Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts
•A solar-geothermal CCHP is modeled using exergoeconomic and exergoenvironmental concepts.•ηex, ĊP,tot and ḂP,tot are selected as objective functions with twelve decision variables.•The increment of nanoparticles volume fraction has a positive effect on all objective functions.•NSGA-II is applied...
        Saved in:
      
    
          | Published in | Applied thermal engineering Vol. 112; pp. 660 - 675 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Elsevier Ltd
    
        05.02.2017
     Elsevier BV  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1359-4311 1873-5606  | 
| DOI | 10.1016/j.applthermaleng.2016.10.139 | 
Cover
| Abstract | •A solar-geothermal CCHP is modeled using exergoeconomic and exergoenvironmental concepts.•ηex, ĊP,tot and ḂP,tot are selected as objective functions with twelve decision variables.•The increment of nanoparticles volume fraction has a positive effect on all objective functions.•NSGA-II is applied individually for R134a, R423A, R1234ze and R134yf.
The main objective of the present study is to perform the thermodynamic, economic and environmental analyses of a solar-geothermal driven combined cooling, heating and power (CCHP) cycle integrated with flat plat collectors containing water/copper oxide (CuO) nanofluid as the absorbing medium. Twelve main parameters are selected as the decision variables of the desired system while the daily exergetic efficiency, total product cost rate and total product environmental impact associated with exergy rate are chosen as the three main objective functions. NSGA-II (Non-dominated Sort Genetic Algorithm-II) is individually applied to obtain the final optimal solutions in the multi-objective optimization of the desired system for four working fluids including R134a, R423A, R1234ze and R134yf from the exergy, exergoeconomic and exergoenviromental points of view. Based on the multi-objective optimization outcomes, R1234ze is the best fluid with 36.82Pts/h total product environmental impact rate so that the maximum nanoparticles volume fraction and minimum collector tilt angle are required. Moreover, R423A with the minimum total product cost rate of 4496 $/year is the best fluid at which minimum collector area is needed. Furthermore, R134a is the best fluid with 4.194% daily exergetic efficiency so that the minimum nanoparticle volume fraction is required compared with other studied fluids. | 
    
|---|---|
| AbstractList | The main objective of the present study is to perform the thermodynamic, economic and environmental analyses of a solar-geothermal driven combined cooling, heating and power (CCHP) cycle integrated with flat plat collectors containing water/copper oxide (CuO) nanofluid as the absorbing medium. Twelve main parameters are selected as the decision variables of the desired system while the daily exergetic efficiency, total product cost rate and total product environmental impact associated with exergy rate are chosen as the three main objective functions. NSGA-II (Non-dominated Sort Genetic Algorithm-II) is individually applied to obtain the final optimal solutions in the multi-objective optimization of the desired system for four working fluids including R134a, R423A, R1234ze and R134yf from the exergy, exergoeconomic and exergoenviromental points of view. Based on the multi-objective optimization outcomes, R1234ze is the best fluid with 36.82 Pts/h total product environmental impact rate so that the maximum nanoparticles volume fraction and minimum collector tilt angle are required. Moreover, R423A with the minimum total product cost rate of 4496 $/year is the best fluid at which minimum collector area is needed. Furthermore, R134a is the best fluid with 4.194% daily exergetic efficiency so that the minimum nanoparticle volume fraction is required compared with other studied fluids. •A solar-geothermal CCHP is modeled using exergoeconomic and exergoenvironmental concepts.•ηex, ĊP,tot and ḂP,tot are selected as objective functions with twelve decision variables.•The increment of nanoparticles volume fraction has a positive effect on all objective functions.•NSGA-II is applied individually for R134a, R423A, R1234ze and R134yf. The main objective of the present study is to perform the thermodynamic, economic and environmental analyses of a solar-geothermal driven combined cooling, heating and power (CCHP) cycle integrated with flat plat collectors containing water/copper oxide (CuO) nanofluid as the absorbing medium. Twelve main parameters are selected as the decision variables of the desired system while the daily exergetic efficiency, total product cost rate and total product environmental impact associated with exergy rate are chosen as the three main objective functions. NSGA-II (Non-dominated Sort Genetic Algorithm-II) is individually applied to obtain the final optimal solutions in the multi-objective optimization of the desired system for four working fluids including R134a, R423A, R1234ze and R134yf from the exergy, exergoeconomic and exergoenviromental points of view. Based on the multi-objective optimization outcomes, R1234ze is the best fluid with 36.82Pts/h total product environmental impact rate so that the maximum nanoparticles volume fraction and minimum collector tilt angle are required. Moreover, R423A with the minimum total product cost rate of 4496 $/year is the best fluid at which minimum collector area is needed. Furthermore, R134a is the best fluid with 4.194% daily exergetic efficiency so that the minimum nanoparticle volume fraction is required compared with other studied fluids.  | 
    
| Author | Boyaghchi, Fateme Ahmadi Chavoshi, Mansoure  | 
    
| Author_xml | – sequence: 1 givenname: Fateme Ahmadi surname: Boyaghchi fullname: Boyaghchi, Fateme Ahmadi email: fahmadi@alzahra.ac.ir, aboyaghchi@gmail.com – sequence: 2 givenname: Mansoure surname: Chavoshi fullname: Chavoshi, Mansoure email: mansoure.chavoshi@gmail.com  | 
    
| BookMark | eNqNkc9u1DAQxq2qlfqPd7AER7KN48QbS1wgohSpqBzgbM3ak8WrxA62U1jehjfF2S0HOPU01nwzv7G-75KcOu-QkFesXLGSiZvdCqZpSN8wjDCg266q3F0tKpcn5IK1a140ohSn-c0bWdScsXNyGeOuLFnVrusL8vvTPCRb6GATBgvUT8mO9hck6x31PQU6Wh08jX6AUGzRP12jXXf3mcZ9TDjS5Rd767b0B2TKTTc_UAfO98NsDd1AREMzDX9i2O5fH6tH7Z3PbArO_G25Rxu8G9GlfCDrGqcUr8lZD0PEF0_1iny9ff-luyvuHz587N7eF5pLmYpWVwxqBMmMAMYkNIJLbNemao1pRa-1aWXJNfAeRF33Vd1vpG7EpmqZkI3kV-TlkTsF_33GmNTOz8Hlk4rJqmFC8MPUm-NUNiXGgL2agh0h7BUr1RKK2ql_Q1FLKAeVL-vv_lvXNh3MTgHs8FzI7RGC2Y5Hi0FFbTG7ZWxAnZTx9nmgPzG6vAc | 
    
| CitedBy_id | crossref_primary_10_1016_j_energy_2023_129581 crossref_primary_10_1016_j_nexus_2024_100340 crossref_primary_10_1016_j_energy_2022_123360 crossref_primary_10_1016_j_psep_2023_03_023 crossref_primary_10_1016_j_seta_2022_102718 crossref_primary_10_1016_j_enconman_2019_02_076 crossref_primary_10_3390_en14041030 crossref_primary_10_1016_j_est_2021_103601 crossref_primary_10_1016_j_renene_2017_06_055 crossref_primary_10_1080_01430750_2019_1630299 crossref_primary_10_1016_j_apenergy_2020_114764 crossref_primary_10_1049_iet_rpg_2020_0370 crossref_primary_10_1016_j_rser_2019_109344 crossref_primary_10_1016_j_enconman_2019_111831 crossref_primary_10_1016_j_enconman_2018_11_035 crossref_primary_10_3390_pr8030364 crossref_primary_10_3390_en14154464 crossref_primary_10_1016_j_psep_2024_04_001 crossref_primary_10_3390_en10070848 crossref_primary_10_1002_tee_23651 crossref_primary_10_1007_s13369_021_06296_x crossref_primary_10_1016_j_applthermaleng_2024_123205 crossref_primary_10_1016_j_enconman_2019_111900 crossref_primary_10_1016_j_seta_2021_101732 crossref_primary_10_1016_j_seta_2021_101457 crossref_primary_10_1016_j_applthermaleng_2020_115827 crossref_primary_10_1016_j_enconman_2017_10_055 crossref_primary_10_1016_j_enconman_2018_01_050 crossref_primary_10_3390_e24121832 crossref_primary_10_1007_s10973_023_12450_4 crossref_primary_10_1016_j_enconman_2017_10_057 crossref_primary_10_1007_s40430_021_02893_x crossref_primary_10_1016_j_energy_2018_07_026 crossref_primary_10_3390_e23111483 crossref_primary_10_1016_j_enconman_2018_05_024 crossref_primary_10_1016_j_rser_2023_113741 crossref_primary_10_1016_j_powtec_2019_05_034 crossref_primary_10_3390_nano11061628 crossref_primary_10_1016_j_applthermaleng_2016_12_104 crossref_primary_10_1016_j_energy_2021_122678 crossref_primary_10_1016_j_energy_2020_119410 crossref_primary_10_1016_j_compchemeng_2023_108504 crossref_primary_10_1016_j_pecs_2020_100898 crossref_primary_10_32604_ee_2024_050224 crossref_primary_10_1007_s10973_023_11968_x crossref_primary_10_1016_j_enconman_2018_11_009 crossref_primary_10_5541_ijot_873456 crossref_primary_10_1016_j_enconman_2023_117801 crossref_primary_10_1016_j_ijhydene_2020_02_138 crossref_primary_10_1016_j_rser_2021_111410 crossref_primary_10_1016_j_renene_2021_10_080 crossref_primary_10_1016_j_jpowsour_2024_235149 crossref_primary_10_1002_er_4282 crossref_primary_10_1016_j_icheatmasstransfer_2022_106261 crossref_primary_10_1016_j_rineng_2024_103002 crossref_primary_10_1002_er_4689 crossref_primary_10_1016_j_enconman_2023_118051 crossref_primary_10_3390_en11051268 crossref_primary_10_1016_j_energy_2021_121537 crossref_primary_10_1016_j_amc_2019_124710 crossref_primary_10_1016_j_applthermaleng_2023_121736 crossref_primary_10_3390_su132011133 crossref_primary_10_1016_j_enconman_2022_116282 crossref_primary_10_1007_s40430_024_04938_3 crossref_primary_10_1016_j_applthermaleng_2022_118944 crossref_primary_10_1016_j_applthermaleng_2022_118382 crossref_primary_10_1016_j_molliq_2023_122213 crossref_primary_10_1016_j_applthermaleng_2017_08_058 crossref_primary_10_1016_j_enconman_2022_115876 crossref_primary_10_1016_j_jclepro_2017_06_211 crossref_primary_10_1021_acssuschemeng_3c07622 crossref_primary_10_32604_jrm_2022_022719 crossref_primary_10_1016_j_apenergy_2019_113394 crossref_primary_10_1016_j_rser_2021_110855 crossref_primary_10_1016_j_matpr_2020_09_749 crossref_primary_10_1016_j_enconman_2019_01_003 crossref_primary_10_1002_ente_202200820 crossref_primary_10_1016_j_csite_2024_104588 crossref_primary_10_1016_j_nanoen_2021_106069 crossref_primary_10_1016_j_renene_2019_06_100 crossref_primary_10_1016_j_apenergy_2019_04_172 crossref_primary_10_1016_j_psep_2023_01_038 crossref_primary_10_1007_s12182_019_00391_3 crossref_primary_10_1016_j_enconman_2019_111945 crossref_primary_10_1016_j_enconman_2018_04_022 crossref_primary_10_1016_j_nanoso_2019_100386 crossref_primary_10_1016_j_rser_2022_112729 crossref_primary_10_1016_j_energy_2018_02_054 crossref_primary_10_1016_j_energy_2020_118195 crossref_primary_10_1016_j_cep_2023_109477 crossref_primary_10_3389_fenrg_2024_1417453 crossref_primary_10_3390_pr10010137 crossref_primary_10_1016_j_enconman_2023_117253 crossref_primary_10_1016_j_solener_2018_08_079 crossref_primary_10_1063_5_0039609 crossref_primary_10_1016_j_enbuild_2024_113943 crossref_primary_10_1016_j_energy_2023_127694 crossref_primary_10_1016_j_rser_2022_112430 crossref_primary_10_1016_j_cej_2021_132321 crossref_primary_10_1016_j_jclepro_2017_10_313 crossref_primary_10_1016_j_jobe_2021_103486 crossref_primary_10_1016_j_energy_2023_126752 crossref_primary_10_1016_j_rser_2017_10_108 crossref_primary_10_1007_s40430_024_05322_x crossref_primary_10_1155_2021_9984840 crossref_primary_10_1016_j_solener_2018_03_069  | 
    
| Cites_doi | 10.1016/j.enbuild.2013.07.027 10.1016/j.renene.2008.01.017 10.1016/j.enconman.2005.06.024 10.1016/j.pecs.2006.02.001 10.1115/1.4027932 10.1016/j.enbuild.2013.03.024 10.1016/j.buildenv.2006.10.014 10.1016/j.enconman.2010.03.020 10.1016/j.energy.2013.01.058 10.1016/j.enconman.2010.03.021 10.1016/j.ijggc.2010.06.008 10.1016/j.apenergy.2014.01.079 10.1016/j.energy.2012.01.042 10.1016/j.apenergy.2009.11.023 10.1016/j.enconman.2015.12.083 10.1016/j.enbuild.2013.06.018 10.1016/j.apenergy.2008.11.020 10.1016/j.energy.2014.06.048 10.1016/j.energy.2015.11.010 10.1016/j.apenergy.2015.10.122 10.1016/j.apenergy.2012.01.007 10.1016/j.renene.2011.08.056 10.1504/IJEX.2015.068216 10.1016/j.cherd.2010.08.001 10.1016/j.energy.2013.11.002 10.1016/j.energy.2013.05.064 10.1016/j.renene.2009.06.010 10.1016/j.enconman.2015.03.036 10.1016/j.enconman.2012.12.030 10.1016/j.enconman.2013.07.038 10.1016/j.enconman.2013.09.053 10.1016/j.icheatmasstransfer.2013.11.006 10.1115/1.4028365 10.1016/j.apenergy.2012.07.002 10.1016/j.energy.2008.07.018 10.1016/j.energy.2010.05.020 10.1016/j.energy.2015.08.082 10.1016/j.jclepro.2013.12.041 10.1016/j.buildenv.2006.04.007 10.1016/j.energy.2012.08.030 10.1016/j.applthermaleng.2012.08.013 10.1016/0140-7007(92)90024-O 10.1016/j.enconman.2012.12.032 10.1016/j.enconman.2013.03.028 10.1016/j.solener.2014.07.022 10.1016/j.energy.2005.03.011 10.1016/j.energy.2014.05.095 10.1115/1.4003343 10.1002/er.2952 10.1016/j.applthermaleng.2011.11.069 10.1016/j.enconman.2013.06.051 10.1016/j.enconman.2014.10.009  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 Elsevier Ltd Copyright Elsevier BV Feb 5, 2017  | 
    
| Copyright_xml | – notice: 2016 Elsevier Ltd – notice: Copyright Elsevier BV Feb 5, 2017  | 
    
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7  | 
    
| DOI | 10.1016/j.applthermaleng.2016.10.139 | 
    
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts  | 
    
| DatabaseTitleList | Civil Engineering Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1873-5606 | 
    
| EndPage | 675 | 
    
| ExternalDocumentID | 10_1016_j_applthermaleng_2016_10_139 S1359431116326618  | 
    
| GeographicLocations | Turkey | 
    
| GeographicLocations_xml | – name: Turkey | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABFNM ABJNI ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG FGOYB HZ~ R2- SEW ~HD 7TB 8FD AFXIZ AGCQF AGRNS FR3 KR7 SSH  | 
    
| ID | FETCH-LOGICAL-c399t-8c21a4ea91d6a119a5639e87d28dd86fccd8903ca3fa644f24fb9c56b28169593 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1359-4311 | 
    
| IngestDate | Fri Jul 25 08:04:42 EDT 2025 Wed Oct 01 03:08:41 EDT 2025 Thu Apr 24 22:52:24 EDT 2025 Mon Oct 07 06:11:39 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Flat plate collector Ejector refrigeration NSGA-II Water/CuO nanofluid Environmental impact Organic Rankine cycle  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c399t-8c21a4ea91d6a119a5639e87d28dd86fccd8903ca3fa644f24fb9c56b28169593 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 1925166359 | 
    
| PQPubID | 2045278 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | proquest_journals_1925166359 crossref_primary_10_1016_j_applthermaleng_2016_10_139 crossref_citationtrail_10_1016_j_applthermaleng_2016_10_139 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2016_10_139  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2017-02-05 | 
    
| PublicationDateYYYYMMDD | 2017-02-05 | 
    
| PublicationDate_xml | – month: 02 year: 2017 text: 2017-02-05 day: 05  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Applied thermal engineering | 
    
| PublicationYear | 2017 | 
    
| Publisher | Elsevier Ltd Elsevier BV  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV  | 
    
| References | Lazzaretto, Tsatsaronis (b0240) 2006; 31 Esen, Inalli, Esen (b0015) 2007; 42 Mago, Luck (b0075) 2013; 102 Kanoglu, Bolatturk (b0285) 2008; 33 Khoshgoftar Manesh (b0160) 2014; 77 Wang (b0225) 2013; 37 Khorasaninejad, Hajabdollahi (b0305) 2014; 72 Al-Sulaiman, Dincer, Hamdullahpur (b0090) 2013; 69 Boyaghchi, Heidarnejad (b0110) 2015; 97 Wang (b0070) 2012; 94 Blanco-Marigorta, Masi, Manfrida (b0150) 2014; 76 Boyaghchi, Heidarnejad (b0105) 2015; 16 Sanaye, Hajabdollahi (b0100) 2015; 137 Petrakopoulou (b0130) 2011; 5 Wang (b0040) 2009; 34 Balli, Aras, Hepbasli (b0055) 2010; 51 Fergani, Touil, Morosuk (b0170) 2016; 112 Alim (b0190) 2013; 66 Wang (b0230) 2013; 71 Meyer (b0280) 2009; 12 Atılgan (b0140) 2013; 58 . Meng (b0050) 2010; 87 Boyaghchi, Chavoshi, Sabeti (b0260) 2015; 91 Boyano (b0125) 2011; 36 Al-Sulaiman, Dincer, Hamdullahpur (b0085) 2013; 69 Wu, Wang (b0030) 2006; 32 Kalogirou (b0215) 2013 Mohammadkhani (b0255) 2014; 65 E.E.E. Solver, Available at Tempesti, Fiaschi (b0295) 2013; 58 Abusoglu, Sedeeq (b0145) 2013; 62 Esen, Inalli, Esen (b0010) 2006; 47 Ghaebi, Saidi, Ahmadi (b0080) 2012; 36 Wang (b0210) 2013; 50 Faizal (b0185) 2013; 76 Van Gool (b0290) 1997 R. Frunzulică, A. Damian, Small-scale cogeneration-a viable alternative for Romania, 2008. Balli, Aras, Hepbasli (b0060) 2010; 51 Meyer (b0120) 2009; 34 Bejan, Moran (b0245) 1996 Li (b0235) 2014; 121 Purevsuren (b0265) 2005 Petrakopoulou (b0135) 2011; 89 Zhai (b0045) 2009 Zhang, Mohamed (b0195) 2015; 137 Bejan, Tsatsaronis (b0270) 1996 Guo (b0095) 2013; 74 Esen, Yuksel (b0025) 2013; 65 Ayub (b0205) 2010; 2 Wang (b0115) 2015; 89 Mosaffa, Farshi (b0175) 2016; 162 Keçebaş (b0165) 2016; 94 Yousefi (b0180) 2012; 39 Huber, McLinden (b0200) 1992; 15 Esen (b0020) 2007; 42 Targoff (b0005) 2008; 50 Ahmadi, Dincer, Rosen (b0250) 2014; 108 Fang (b0065) 2012; 46 Petrakopoulou (b0275) 2012; 45 Hamut, Dincer, Naterer (b0155) 2014; 67 Khairul (b0220) 2014; 50 Abusoglu (10.1016/j.applthermaleng.2016.10.139_b0145) 2013; 62 Fang (10.1016/j.applthermaleng.2016.10.139_b0065) 2012; 46 Al-Sulaiman (10.1016/j.applthermaleng.2016.10.139_b0090) 2013; 69 Keçebaş (10.1016/j.applthermaleng.2016.10.139_b0165) 2016; 94 Yousefi (10.1016/j.applthermaleng.2016.10.139_b0180) 2012; 39 10.1016/j.applthermaleng.2016.10.139_b0035 Hamut (10.1016/j.applthermaleng.2016.10.139_b0155) 2014; 67 Guo (10.1016/j.applthermaleng.2016.10.139_b0095) 2013; 74 Mosaffa (10.1016/j.applthermaleng.2016.10.139_b0175) 2016; 162 Wang (10.1016/j.applthermaleng.2016.10.139_b0210) 2013; 50 Purevsuren (10.1016/j.applthermaleng.2016.10.139_b0265) 2005 Petrakopoulou (10.1016/j.applthermaleng.2016.10.139_b0275) 2012; 45 Meng (10.1016/j.applthermaleng.2016.10.139_b0050) 2010; 87 Esen (10.1016/j.applthermaleng.2016.10.139_b0015) 2007; 42 Ghaebi (10.1016/j.applthermaleng.2016.10.139_b0080) 2012; 36 Fergani (10.1016/j.applthermaleng.2016.10.139_b0170) 2016; 112 Zhang (10.1016/j.applthermaleng.2016.10.139_b0195) 2015; 137 Boyaghchi (10.1016/j.applthermaleng.2016.10.139_b0110) 2015; 97 Kalogirou (10.1016/j.applthermaleng.2016.10.139_b0215) 2013 Balli (10.1016/j.applthermaleng.2016.10.139_b0055) 2010; 51 Ahmadi (10.1016/j.applthermaleng.2016.10.139_b0250) 2014; 108 Al-Sulaiman (10.1016/j.applthermaleng.2016.10.139_b0085) 2013; 69 Esen (10.1016/j.applthermaleng.2016.10.139_b0025) 2013; 65 10.1016/j.applthermaleng.2016.10.139_b0300 Petrakopoulou (10.1016/j.applthermaleng.2016.10.139_b0135) 2011; 89 Wu (10.1016/j.applthermaleng.2016.10.139_b0030) 2006; 32 Wang (10.1016/j.applthermaleng.2016.10.139_b0230) 2013; 71 Meyer (10.1016/j.applthermaleng.2016.10.139_b0120) 2009; 34 Targoff (10.1016/j.applthermaleng.2016.10.139_b0005) 2008; 50 Wang (10.1016/j.applthermaleng.2016.10.139_b0070) 2012; 94 Esen (10.1016/j.applthermaleng.2016.10.139_b0020) 2007; 42 Mago (10.1016/j.applthermaleng.2016.10.139_b0075) 2013; 102 Blanco-Marigorta (10.1016/j.applthermaleng.2016.10.139_b0150) 2014; 76 Mohammadkhani (10.1016/j.applthermaleng.2016.10.139_b0255) 2014; 65 Wang (10.1016/j.applthermaleng.2016.10.139_b0040) 2009; 34 Li (10.1016/j.applthermaleng.2016.10.139_b0235) 2014; 121 Khoshgoftar Manesh (10.1016/j.applthermaleng.2016.10.139_b0160) 2014; 77 Kanoglu (10.1016/j.applthermaleng.2016.10.139_b0285) 2008; 33 Boyaghchi (10.1016/j.applthermaleng.2016.10.139_b0105) 2015; 16 Faizal (10.1016/j.applthermaleng.2016.10.139_b0185) 2013; 76 Huber (10.1016/j.applthermaleng.2016.10.139_b0200) 1992; 15 Meyer (10.1016/j.applthermaleng.2016.10.139_b0280) 2009; 12 Wang (10.1016/j.applthermaleng.2016.10.139_b0115) 2015; 89 Khairul (10.1016/j.applthermaleng.2016.10.139_b0220) 2014; 50 Petrakopoulou (10.1016/j.applthermaleng.2016.10.139_b0130) 2011; 5 Khorasaninejad (10.1016/j.applthermaleng.2016.10.139_b0305) 2014; 72 Boyano (10.1016/j.applthermaleng.2016.10.139_b0125) 2011; 36 Wang (10.1016/j.applthermaleng.2016.10.139_b0225) 2013; 37 Sanaye (10.1016/j.applthermaleng.2016.10.139_b0100) 2015; 137 Van Gool (10.1016/j.applthermaleng.2016.10.139_b0290) 1997 Lazzaretto (10.1016/j.applthermaleng.2016.10.139_b0240) 2006; 31 Esen (10.1016/j.applthermaleng.2016.10.139_b0010) 2006; 47 Bejan (10.1016/j.applthermaleng.2016.10.139_b0270) 1996 Ayub (10.1016/j.applthermaleng.2016.10.139_b0205) 2010; 2 Tempesti (10.1016/j.applthermaleng.2016.10.139_b0295) 2013; 58 Zhai (10.1016/j.applthermaleng.2016.10.139_b0045) 2009 Alim (10.1016/j.applthermaleng.2016.10.139_b0190) 2013; 66 Bejan (10.1016/j.applthermaleng.2016.10.139_b0245) 1996 Balli (10.1016/j.applthermaleng.2016.10.139_b0060) 2010; 51 Atılgan (10.1016/j.applthermaleng.2016.10.139_b0140) 2013; 58 Boyaghchi (10.1016/j.applthermaleng.2016.10.139_b0260) 2015; 91  | 
    
| References_xml | – volume: 76 start-page: 162 year: 2013 end-page: 168 ident: b0185 article-title: Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector publication-title: Energy Convers. Manage. – volume: 69 start-page: 209 year: 2013 end-page: 216 ident: b0090 article-title: Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles: Part II–Applications publication-title: Energy Convers. Manage. – reference: R. Frunzulică, A. Damian, Small-scale cogeneration-a viable alternative for Romania, 2008. – volume: 69 start-page: 199 year: 2013 end-page: 208 ident: b0085 article-title: Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles: Part I-Formulations publication-title: Energy Convers. Manage. – volume: 2 start-page: 044001 year: 2010 ident: b0205 article-title: Status of enhanced heat transfer in systems with natural refrigerants publication-title: J. Therm. Sci. Eng. Appl. – volume: 94 start-page: 58 year: 2012 end-page: 64 ident: b0070 article-title: Parametric analysis of a new combined cooling, heating and power system with transcritical CO 2 driven by solar energy publication-title: Appl. Energy – volume: 34 start-page: 2780 year: 2009 end-page: 2788 ident: b0040 article-title: A new combined cooling, heating and power system driven by solar energy publication-title: Renewable Energy – volume: 87 start-page: 2050 year: 2010 end-page: 2061 ident: b0050 article-title: Theoretical study of a novel solar trigeneration system based on metal hydrides publication-title: Appl. Energy – volume: 58 start-page: 664 year: 2013 end-page: 671 ident: b0140 article-title: Environmental impact assessment of a turboprop engine with the aid of exergy publication-title: Energy – volume: 50 start-page: 42 year: 2008 ident: b0005 article-title: Using Stirling engines for residential CHP publication-title: ASHRAE J. – volume: 45 start-page: 23 year: 2012 end-page: 30 ident: b0275 article-title: Environmental evaluation of a power plant using conventional and advanced exergy-based methods publication-title: Energy – volume: 36 start-page: 113 year: 2012 end-page: 125 ident: b0080 article-title: Exergoeconomic optimization of a trigeneration system for heating, cooling and power production purpose based on TRR method and using evolutionary algorithm publication-title: Appl. Therm. Eng. – year: 1996 ident: b0270 article-title: Thermal Design and Optimization – start-page: 1395 year: 2009 end-page: 1404 ident: b0045 article-title: Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas publication-title: Appl. Energy – volume: 32 start-page: 459 year: 2006 end-page: 495 ident: b0030 article-title: Combined cooling, heating and power: a review publication-title: Prog. Energy Combust. Sci. – volume: 12 start-page: 177 year: 2009 end-page: 186 ident: b0280 article-title: Application of exergoeconomic and exergoenvironmental analysis to an SOFC system with an allothermal biomass gasifier publication-title: Int. J. Thermodyn. – volume: 137 start-page: 011001 year: 2015 ident: b0100 article-title: Thermo-economic optimization of solar CCHP using both genetic and particle swarm algorithms publication-title: J. Sol. Energy Eng. – volume: 102 start-page: 1324 year: 2013 end-page: 1333 ident: b0075 article-title: Evaluation of the potential use of a combined micro-turbine organic Rankine cycle for different geographic locations publication-title: Appl. Energy – volume: 162 start-page: 515 year: 2016 end-page: 526 ident: b0175 article-title: Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage publication-title: Appl. Energy – volume: 66 start-page: 289 year: 2013 end-page: 296 ident: b0190 article-title: Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids publication-title: Energy Build. – volume: 62 start-page: 268 year: 2013 end-page: 277 ident: b0145 article-title: Comparative exergoenvironmental analysis and assessment of various residential heating systems publication-title: Energy Build. – volume: 89 start-page: 289 year: 2015 end-page: 297 ident: b0115 article-title: Multi-objective optimization of a combined cooling, heating and power system driven by solar energy publication-title: Energy Convers. Manage. – volume: 112 start-page: 81 year: 2016 end-page: 90 ident: b0170 article-title: Multi-criteria exergy based optimization of an Organic Rankine Cycle for waste heat recovery in the cement industry publication-title: Energy Convers. Manage. – volume: 65 start-page: 533 year: 2014 end-page: 543 ident: b0255 article-title: Exergoeconomic assessment and parametric study of a gas turbine-modular helium reactor combined with two Organic Rankine Cycles publication-title: Energy – year: 1996 ident: b0245 article-title: Thermal Design and Optimization – volume: 42 start-page: 1955 year: 2007 end-page: 1965 ident: b0015 article-title: A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling publication-title: Build. Environ. – volume: 67 start-page: 187 year: 2014 end-page: 196 ident: b0155 article-title: Exergoenvironmental analysis of hybrid electric vehicle thermal management systems publication-title: J. Cleaner Prod. – year: 2005 ident: b0265 article-title: Thermoeconomic Analysis of a New Geothermal Utilizzation CHP Plant in Tsetserleg Mongolia – volume: 91 start-page: 685 year: 2015 end-page: 699 ident: b0260 article-title: Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid publication-title: Energy – volume: 137 start-page: 021001 year: 2015 ident: b0195 article-title: Conceptual design and analysis of hydrocarbon-based solar thermal power and ejector cooling systems in hot climates publication-title: J. Sol. Energy Eng. – volume: 39 start-page: 293 year: 2012 end-page: 298 ident: b0180 article-title: An experimental investigation on the effect of Al 2 O 3–H 2 O nanofluid on the efficiency of flat-plate solar collectors publication-title: Renewable Energy – volume: 58 start-page: 45 year: 2013 end-page: 51 ident: b0295 article-title: Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy publication-title: Energy – volume: 31 start-page: 1257 year: 2006 end-page: 1289 ident: b0240 article-title: SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems publication-title: Energy – volume: 16 start-page: 139 year: 2015 end-page: 168 ident: b0105 article-title: Thermodynamic analysis and optimisation of a solar combined cooling, heating and power system for a domestic application publication-title: Int. J. Exergy – volume: 34 start-page: 75 year: 2009 end-page: 89 ident: b0120 article-title: Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems publication-title: Energy – volume: 65 start-page: 340 year: 2013 end-page: 351 ident: b0025 article-title: Experimental evaluation of using various renewable energy sources for heating a greenhouse publication-title: Energy Build. – volume: 94 start-page: 391 year: 2016 end-page: 400 ident: b0165 article-title: Exergoenvironmental analysis for a geothermal district heating system: An application publication-title: Energy – volume: 51 start-page: 2252 year: 2010 end-page: 2259 ident: b0055 article-title: Thermodynamic and thermoeconomic analyses of a trigeneration (TRIGEN) system with a gas–diesel engine: Part I-methodology publication-title: Energy Convers. Manage. – volume: 47 start-page: 1281 year: 2006 end-page: 1297 ident: b0010 article-title: Technoeconomic appraisal of a ground source heat pump system for a heating season in eastern Turkey publication-title: Energy Convers. Manage. – volume: 77 start-page: 469 year: 2014 end-page: 483 ident: b0160 article-title: Exergoeconomic and exergoenvironmental evaluation of the coupling of a gas fired steam power plant with a total site utility system publication-title: Energy Convers. Manage. – volume: 33 start-page: 2366 year: 2008 end-page: 2374 ident: b0285 article-title: Performance and parametric investigation of a binary geothermal power plant by exergy publication-title: Renewable Energy – volume: 5 start-page: 475 year: 2011 end-page: 482 ident: b0130 article-title: Exergoeconomic and exergoenvironmental analyses of a combined cycle power plant with chemical looping technology publication-title: Int. J. Greenhouse Gas Control – volume: 97 start-page: 224 year: 2015 end-page: 234 ident: b0110 article-title: Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on Organic Rankine Cycle for domestic application publication-title: Energy Convers. Manage. – volume: 89 start-page: 1461 year: 2011 end-page: 1469 ident: b0135 article-title: Exergoeconomic and exergoenvironmental evaluation of power plants including CO 2 capture publication-title: Chem. Eng. Res. Des. – volume: 121 start-page: 96 year: 2014 end-page: 103 ident: b0235 article-title: Performance characteristics of R1234yf ejector-expansion refrigeration cycle publication-title: Appl. Energy – volume: 71 start-page: 146 year: 2013 end-page: 158 ident: b0230 article-title: Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm publication-title: Energy Convers. Manage. – volume: 74 start-page: 433 year: 2013 end-page: 445 ident: b0095 article-title: A two-stage optimal planning and design method for combined cooling, heat and power microgrid system publication-title: Energy Convers. Manage. – volume: 36 start-page: 2202 year: 2011 end-page: 2214 ident: b0125 article-title: Exergoenvironmental analysis of a steam methane reforming process for hydrogen production publication-title: Energy – volume: 51 start-page: 2260 year: 2010 end-page: 2271 ident: b0060 article-title: Thermodynamic and thermoeconomic analyses of a trigeneration (TRIGEN) system with a gas–diesel engine: Part II–An application publication-title: Energy Convers. Manage. – volume: 37 start-page: 1465 year: 2013 end-page: 1474 ident: b0225 article-title: Parametric analysis and optimization of a building cooling heating power system driven by solar energy based on organic working fluid publication-title: Int. J. Energy Res. – volume: 72 start-page: 680 year: 2014 end-page: 690 ident: b0305 article-title: Thermo-economic and environmental optimization of solar assisted heat pump by using multi-objective particle swam algorithm publication-title: Energy – volume: 50 start-page: 8 year: 2014 end-page: 14 ident: b0220 article-title: Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids publication-title: Int. Commun. Heat Mass Transfer – start-page: 93 year: 1997 end-page: 105 ident: b0290 publication-title: Energy policy: fairy tales and factualities – volume: 76 start-page: 223 year: 2014 end-page: 232 ident: b0150 article-title: Exergo-environmental analysis of a reverse osmosis desalination plant in Gran Canaria publication-title: Energy – year: 2013 ident: b0215 article-title: Solar Energy Engineering: Processes and Systems – reference: . – reference: E.E.E. Solver, Available at: – volume: 46 start-page: 211 year: 2012 end-page: 220 ident: b0065 article-title: Complementary configuration and operation of a CCHP-ORC system publication-title: Energy – volume: 50 start-page: 816 year: 2013 end-page: 825 ident: b0210 article-title: Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors publication-title: Appl. Therm. Eng. – volume: 42 start-page: 3606 year: 2007 end-page: 3615 ident: b0020 article-title: Energy and exergy analysis of a ground-coupled heat pump system with two horizontal ground heat exchangers publication-title: Build. Environ. – volume: 15 start-page: 393 year: 1992 end-page: 400 ident: b0200 article-title: Thermodynamic properties of R134a (1, 1, 1, 2-tetrafluoroethane) publication-title: Int. J. Refrig. – volume: 108 start-page: 576 year: 2014 end-page: 591 ident: b0250 article-title: Multi-objective optimization of a novel solar-based multigeneration energy system publication-title: Sol. Energy – volume: 66 start-page: 289 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0190 article-title: Analyses of entropy generation and pressure drop for a conventional flat plate solar collector using different types of metal oxide nanofluids publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.07.027 – volume: 33 start-page: 2366 issue: 11 year: 2008 ident: 10.1016/j.applthermaleng.2016.10.139_b0285 article-title: Performance and parametric investigation of a binary geothermal power plant by exergy publication-title: Renewable Energy doi: 10.1016/j.renene.2008.01.017 – volume: 47 start-page: 1281 issue: 9 year: 2006 ident: 10.1016/j.applthermaleng.2016.10.139_b0010 article-title: Technoeconomic appraisal of a ground source heat pump system for a heating season in eastern Turkey publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2005.06.024 – volume: 32 start-page: 459 issue: 5 year: 2006 ident: 10.1016/j.applthermaleng.2016.10.139_b0030 article-title: Combined cooling, heating and power: a review publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2006.02.001 – ident: 10.1016/j.applthermaleng.2016.10.139_b0300 – volume: 137 start-page: 011001 issue: 1 year: 2015 ident: 10.1016/j.applthermaleng.2016.10.139_b0100 article-title: Thermo-economic optimization of solar CCHP using both genetic and particle swarm algorithms publication-title: J. Sol. Energy Eng. doi: 10.1115/1.4027932 – volume: 62 start-page: 268 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0145 article-title: Comparative exergoenvironmental analysis and assessment of various residential heating systems publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.03.024 – volume: 42 start-page: 3606 issue: 10 year: 2007 ident: 10.1016/j.applthermaleng.2016.10.139_b0020 article-title: Energy and exergy analysis of a ground-coupled heat pump system with two horizontal ground heat exchangers publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.10.014 – volume: 51 start-page: 2260 issue: 11 year: 2010 ident: 10.1016/j.applthermaleng.2016.10.139_b0060 article-title: Thermodynamic and thermoeconomic analyses of a trigeneration (TRIGEN) system with a gas–diesel engine: Part II–An application publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.03.020 – volume: 58 start-page: 45 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0295 article-title: Thermo-economic assessment of a micro CHP system fuelled by geothermal and solar energy publication-title: Energy doi: 10.1016/j.energy.2013.01.058 – volume: 51 start-page: 2252 issue: 11 year: 2010 ident: 10.1016/j.applthermaleng.2016.10.139_b0055 article-title: Thermodynamic and thermoeconomic analyses of a trigeneration (TRIGEN) system with a gas–diesel engine: Part I-methodology publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2010.03.021 – volume: 5 start-page: 475 issue: 3 year: 2011 ident: 10.1016/j.applthermaleng.2016.10.139_b0130 article-title: Exergoeconomic and exergoenvironmental analyses of a combined cycle power plant with chemical looping technology publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2010.06.008 – volume: 121 start-page: 96 year: 2014 ident: 10.1016/j.applthermaleng.2016.10.139_b0235 article-title: Performance characteristics of R1234yf ejector-expansion refrigeration cycle publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.01.079 – year: 1996 ident: 10.1016/j.applthermaleng.2016.10.139_b0245 – volume: 45 start-page: 23 issue: 1 year: 2012 ident: 10.1016/j.applthermaleng.2016.10.139_b0275 article-title: Environmental evaluation of a power plant using conventional and advanced exergy-based methods publication-title: Energy doi: 10.1016/j.energy.2012.01.042 – volume: 87 start-page: 2050 issue: 6 year: 2010 ident: 10.1016/j.applthermaleng.2016.10.139_b0050 article-title: Theoretical study of a novel solar trigeneration system based on metal hydrides publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.11.023 – volume: 112 start-page: 81 year: 2016 ident: 10.1016/j.applthermaleng.2016.10.139_b0170 article-title: Multi-criteria exergy based optimization of an Organic Rankine Cycle for waste heat recovery in the cement industry publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.12.083 – volume: 65 start-page: 340 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0025 article-title: Experimental evaluation of using various renewable energy sources for heating a greenhouse publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.06.018 – start-page: 1395 year: 2009 ident: 10.1016/j.applthermaleng.2016.10.139_b0045 article-title: Energy and exergy analyses on a novel hybrid solar heating, cooling and power generation system for remote areas publication-title: Appl. Energy doi: 10.1016/j.apenergy.2008.11.020 – volume: 76 start-page: 223 year: 2014 ident: 10.1016/j.applthermaleng.2016.10.139_b0150 article-title: Exergo-environmental analysis of a reverse osmosis desalination plant in Gran Canaria publication-title: Energy doi: 10.1016/j.energy.2014.06.048 – volume: 94 start-page: 391 year: 2016 ident: 10.1016/j.applthermaleng.2016.10.139_b0165 article-title: Exergoenvironmental analysis for a geothermal district heating system: An application publication-title: Energy doi: 10.1016/j.energy.2015.11.010 – volume: 162 start-page: 515 year: 2016 ident: 10.1016/j.applthermaleng.2016.10.139_b0175 article-title: Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.10.122 – volume: 94 start-page: 58 year: 2012 ident: 10.1016/j.applthermaleng.2016.10.139_b0070 article-title: Parametric analysis of a new combined cooling, heating and power system with transcritical CO 2 driven by solar energy publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.01.007 – volume: 39 start-page: 293 issue: 1 year: 2012 ident: 10.1016/j.applthermaleng.2016.10.139_b0180 article-title: An experimental investigation on the effect of Al 2 O 3–H 2 O nanofluid on the efficiency of flat-plate solar collectors publication-title: Renewable Energy doi: 10.1016/j.renene.2011.08.056 – year: 2005 ident: 10.1016/j.applthermaleng.2016.10.139_b0265 – volume: 16 start-page: 139 issue: 2 year: 2015 ident: 10.1016/j.applthermaleng.2016.10.139_b0105 article-title: Thermodynamic analysis and optimisation of a solar combined cooling, heating and power system for a domestic application publication-title: Int. J. Exergy doi: 10.1504/IJEX.2015.068216 – volume: 89 start-page: 1461 issue: 9 year: 2011 ident: 10.1016/j.applthermaleng.2016.10.139_b0135 article-title: Exergoeconomic and exergoenvironmental evaluation of power plants including CO 2 capture publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2010.08.001 – volume: 65 start-page: 533 year: 2014 ident: 10.1016/j.applthermaleng.2016.10.139_b0255 article-title: Exergoeconomic assessment and parametric study of a gas turbine-modular helium reactor combined with two Organic Rankine Cycles publication-title: Energy doi: 10.1016/j.energy.2013.11.002 – volume: 58 start-page: 664 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0140 article-title: Environmental impact assessment of a turboprop engine with the aid of exergy publication-title: Energy doi: 10.1016/j.energy.2013.05.064 – volume: 34 start-page: 2780 issue: 12 year: 2009 ident: 10.1016/j.applthermaleng.2016.10.139_b0040 article-title: A new combined cooling, heating and power system driven by solar energy publication-title: Renewable Energy doi: 10.1016/j.renene.2009.06.010 – volume: 97 start-page: 224 year: 2015 ident: 10.1016/j.applthermaleng.2016.10.139_b0110 article-title: Thermoeconomic assessment and multi objective optimization of a solar micro CCHP based on Organic Rankine Cycle for domestic application publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.03.036 – volume: 69 start-page: 199 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0085 article-title: Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles: Part I-Formulations publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2012.12.030 – volume: 76 start-page: 162 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0185 article-title: Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.07.038 – volume: 12 start-page: 177 issue: 4 year: 2009 ident: 10.1016/j.applthermaleng.2016.10.139_b0280 article-title: Application of exergoeconomic and exergoenvironmental analysis to an SOFC system with an allothermal biomass gasifier publication-title: Int. J. Thermodyn. – volume: 77 start-page: 469 year: 2014 ident: 10.1016/j.applthermaleng.2016.10.139_b0160 article-title: Exergoeconomic and exergoenvironmental evaluation of the coupling of a gas fired steam power plant with a total site utility system publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.09.053 – volume: 50 start-page: 8 year: 2014 ident: 10.1016/j.applthermaleng.2016.10.139_b0220 article-title: Heat transfer performance and exergy analyses of a corrugated plate heat exchanger using metal oxide nanofluids publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2013.11.006 – volume: 137 start-page: 021001 issue: 2 year: 2015 ident: 10.1016/j.applthermaleng.2016.10.139_b0195 article-title: Conceptual design and analysis of hydrocarbon-based solar thermal power and ejector cooling systems in hot climates publication-title: J. Sol. Energy Eng. doi: 10.1115/1.4028365 – year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0215 – volume: 102 start-page: 1324 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0075 article-title: Evaluation of the potential use of a combined micro-turbine organic Rankine cycle for different geographic locations publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.07.002 – volume: 34 start-page: 75 issue: 1 year: 2009 ident: 10.1016/j.applthermaleng.2016.10.139_b0120 article-title: Exergoenvironmental analysis for evaluation of the environmental impact of energy conversion systems publication-title: Energy doi: 10.1016/j.energy.2008.07.018 – volume: 36 start-page: 2202 issue: 4 year: 2011 ident: 10.1016/j.applthermaleng.2016.10.139_b0125 article-title: Exergoenvironmental analysis of a steam methane reforming process for hydrogen production publication-title: Energy doi: 10.1016/j.energy.2010.05.020 – volume: 91 start-page: 685 year: 2015 ident: 10.1016/j.applthermaleng.2016.10.139_b0260 article-title: Optimization of a novel combined cooling, heating and power cycle driven by geothermal and solar energies using the water/CuO (copper oxide) nanofluid publication-title: Energy doi: 10.1016/j.energy.2015.08.082 – year: 1996 ident: 10.1016/j.applthermaleng.2016.10.139_b0270 – volume: 67 start-page: 187 year: 2014 ident: 10.1016/j.applthermaleng.2016.10.139_b0155 article-title: Exergoenvironmental analysis of hybrid electric vehicle thermal management systems publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2013.12.041 – volume: 42 start-page: 1955 issue: 5 year: 2007 ident: 10.1016/j.applthermaleng.2016.10.139_b0015 article-title: A techno-economic comparison of ground-coupled and air-coupled heat pump system for space cooling publication-title: Build. Environ. doi: 10.1016/j.buildenv.2006.04.007 – volume: 46 start-page: 211 issue: 1 year: 2012 ident: 10.1016/j.applthermaleng.2016.10.139_b0065 article-title: Complementary configuration and operation of a CCHP-ORC system publication-title: Energy doi: 10.1016/j.energy.2012.08.030 – volume: 50 start-page: 816 issue: 1 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0210 article-title: Thermodynamic analysis and optimization of a solar-driven regenerative organic Rankine cycle (ORC) based on flat-plate solar collectors publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.08.013 – start-page: 93 year: 1997 ident: 10.1016/j.applthermaleng.2016.10.139_b0290 – volume: 15 start-page: 393 issue: 6 year: 1992 ident: 10.1016/j.applthermaleng.2016.10.139_b0200 article-title: Thermodynamic properties of R134a (1, 1, 1, 2-tetrafluoroethane) publication-title: Int. J. Refrig. doi: 10.1016/0140-7007(92)90024-O – volume: 69 start-page: 209 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0090 article-title: Thermoeconomic optimization of three trigeneration systems using organic Rankine cycles: Part II–Applications publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2012.12.032 – volume: 71 start-page: 146 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0230 article-title: Multi-objective optimization of an organic Rankine cycle (ORC) for low grade waste heat recovery using evolutionary algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.03.028 – volume: 108 start-page: 576 year: 2014 ident: 10.1016/j.applthermaleng.2016.10.139_b0250 article-title: Multi-objective optimization of a novel solar-based multigeneration energy system publication-title: Sol. Energy doi: 10.1016/j.solener.2014.07.022 – volume: 31 start-page: 1257 issue: 8 year: 2006 ident: 10.1016/j.applthermaleng.2016.10.139_b0240 article-title: SPECO: a systematic and general methodology for calculating efficiencies and costs in thermal systems publication-title: Energy doi: 10.1016/j.energy.2005.03.011 – volume: 72 start-page: 680 year: 2014 ident: 10.1016/j.applthermaleng.2016.10.139_b0305 article-title: Thermo-economic and environmental optimization of solar assisted heat pump by using multi-objective particle swam algorithm publication-title: Energy doi: 10.1016/j.energy.2014.05.095 – volume: 50 start-page: 42 issue: 11 year: 2008 ident: 10.1016/j.applthermaleng.2016.10.139_b0005 article-title: Using Stirling engines for residential CHP publication-title: ASHRAE J. – volume: 2 start-page: 044001 issue: 4 year: 2010 ident: 10.1016/j.applthermaleng.2016.10.139_b0205 article-title: Status of enhanced heat transfer in systems with natural refrigerants publication-title: J. Therm. Sci. Eng. Appl. doi: 10.1115/1.4003343 – volume: 37 start-page: 1465 issue: 12 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0225 article-title: Parametric analysis and optimization of a building cooling heating power system driven by solar energy based on organic working fluid publication-title: Int. J. Energy Res. doi: 10.1002/er.2952 – volume: 36 start-page: 113 year: 2012 ident: 10.1016/j.applthermaleng.2016.10.139_b0080 article-title: Exergoeconomic optimization of a trigeneration system for heating, cooling and power production purpose based on TRR method and using evolutionary algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2011.11.069 – volume: 74 start-page: 433 year: 2013 ident: 10.1016/j.applthermaleng.2016.10.139_b0095 article-title: A two-stage optimal planning and design method for combined cooling, heat and power microgrid system publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.06.051 – ident: 10.1016/j.applthermaleng.2016.10.139_b0035 – volume: 89 start-page: 289 year: 2015 ident: 10.1016/j.applthermaleng.2016.10.139_b0115 article-title: Multi-objective optimization of a combined cooling, heating and power system driven by solar energy publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2014.10.009  | 
    
| SSID | ssj0012874 | 
    
| Score | 2.520101 | 
    
| Snippet | •A solar-geothermal CCHP is modeled using exergoeconomic and exergoenvironmental concepts.•ηex, ĊP,tot and ḂP,tot are selected as objective functions with... The main objective of the present study is to perform the thermodynamic, economic and environmental analyses of a solar-geothermal driven combined cooling,...  | 
    
| SourceID | proquest crossref elsevier  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 660 | 
    
| SubjectTerms | Accumulators Collectors Concentration (composition) Cooling Copper oxides Cost engineering Decentralization Economic analysis Ejector refrigeration Environmental impact Exergy Flat plate collector Genetic algorithms Geothermal power Multiple objective analysis Nanofluids Nanoparticles NSGA-II Optimization Organic Rankine cycle Solar generators Studies Thermodynamics Water/CuO nanofluid Working fluids  | 
    
| Title | Multi-criteria optimization of a micro solar-geothermal CCHP system applying water/CuO nanofluid based on exergy, exergoeconomic and exergoenvironmental concepts | 
    
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2016.10.139 https://www.proquest.com/docview/1925166359  | 
    
| Volume | 112 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: .~1 dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: AIKHN dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: ACRLP dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5606 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 issn: 1359-4311 databaseCode: AKRWK dateStart: 19960101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG5EQdzD4vpgXXXog8dtx34kk8aDDEGZVdAFFbyFTj9kFicRZ4bFy_6X_adWJR0fCwuCp0An_aC7qfqKfF8VIXslF0GmQTBvB5IpcFDMCBFYEMFoo4T3Lcv3PB1dq9Ob5GaB5J0WBmmV0fa3Nr2x1rGlH3ezfz8e9y-5TDS4Pw6IAr0MCn6VGmAVg_0_zzQPjvncm6Ar0Qy_XiZ7Lxwv_EmMOGtisGwJEr3S_aYWhP6fm_rHYDde6GSVfI7wkQ7bFX4hC75aI59eJRVcJ38bTS0Da4BpmA2twShMotqS1oEaOkESHp1iUMtufR2XRvN89JO2mZ0pLhkFUPQ3YNGHfj6_oJWp6nA3HzuKns9RGA3rNd0-fm-ftY8aZ2oq1zW9yOhgAttKJKcb5Prk-CofsViIgVnALzOWWcGN8kZzlxrOtUkA1_hs4ETmXJYGa12mD6Q1MhjAV0GoUGqbpKXIeIqZjzfJYlVX_iuhqjxQJYQ90olSwaCZTiEElcEOvHQAxrbIYbfvhY1ZyrFYxl3R0dF-FW9PrcBTa95KvUWS5973bbaOd_Y76o64eHP7CnAs7xxhp7sZRbQC0wLQc8IR0ulvH55gm6wIRBRIGE92yOLsYe53AQ_Nyl5z4XtkafjjbHT-BKycEdE | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LaxRBEG5iBB-H4CsYE7UPOdrZ9Gt2mhxEhoRVYxRMILempx9hJTsTsruIF_-L_9SqmZ7ECELA00DP9IPupuor5vuqCNmuuUiySIJFP5ZMgYNiTojEkkjOOCVi7Fm-R8XkRH041acrpBq0MEirzLa_t-mdtc4to7ybo4vpdPSVS23A_XFAFOhlyjvkrtJijBHYzs8rngfHhO5d1KUNw8_vke1rkhf-JUagNXNYtwSZXsVOVwzC_MtP_WWxOzd08IisZfxI3_VLfExWYvOEPPwjq-BT8qsT1TIwB5iH2dEWrMIsyy1pm6ijM2Th0TlGtewstnlptKomX2if2pniklEBRb8DGL0cVcvPtHFNm86X00DR9QUKo2HBprMfb_pnG7PImbomDE3XOjqYwPcayfkzcnKwf1xNWK7EwDwAmAUrveBORWd4KBznxmkANrEcB1GGUBbJ-1CaXemdTA4AVhIq1cbrohYlLzD18TpZbdomPidU1buqhrhHBlErGLQ0BcSgMvlxlAHQ2AbZG_bd-pymHKtlnNuBj_bN3jw1i6fWvZVmg-ir3hd9uo5b9ns7HLG9cf0seJZbjrA13AybzcDcAnzWHDGdefHfE7wm9yfHnw7t4fujj5vkgUB4gexxvUVWF5fL-BLA0aJ-1V3-39lHE2Y | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-criteria+optimization+of+a+micro+solar-geothermal+CCHP+system+applying+water%2FCuO+nanofluid+based+on+exergy%2C+exergoeconomic+and+exergoenvironmental+concepts&rft.jtitle=Applied+thermal+engineering&rft.au=Boyaghchi%2C+Fateme+Ahmadi&rft.au=Chavoshi%2C+Mansoure&rft.date=2017-02-05&rft.pub=Elsevier+Ltd&rft.issn=1359-4311&rft.volume=112&rft.spage=660&rft.epage=675&rft_id=info:doi/10.1016%2Fj.applthermaleng.2016.10.139&rft.externalDocID=S1359431116326618 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |