Algorithm-agnostic significance testing in supervised learning with multimodal data

Abstract Motivation Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance,...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 25; no. 6
Main Authors Kook, Lucas, Lundborg, Anton Rask
Format Journal Article
LanguageEnglish
Published England Oxford University Press 23.09.2024
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text
ISSN1467-5463
1477-4054
1477-4054
DOI10.1093/bib/bbae475

Cover

Abstract Abstract Motivation Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests. Results We address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing. Availability and implementation COMETs are implemented in the cometsR package available on CRAN and pycometsPython library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available.
AbstractList Motivation Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests. Results We address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing. Availability and implementation COMETs are implemented in the comets R package available on CRAN and pycomets Python library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available.
Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests. We address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing. COMETs are implemented in the cometsR package available on CRAN and pycometsPython library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available.
Abstract Motivation Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests. Results We address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing. Availability and implementation COMETs are implemented in the cometsR package available on CRAN and pycometsPython library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available.
Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests.MOTIVATIONValid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests.We address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing.RESULTSWe address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing.COMETs are implemented in the cometsR package available on CRAN and pycometsPython library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available.AVAILABILITY AND IMPLEMENTATIONCOMETs are implemented in the cometsR package available on CRAN and pycometsPython library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available.
Author Kook, Lucas
Lundborg, Anton Rask
Author_xml – sequence: 1
  givenname: Lucas
  surname: Kook
  fullname: Kook, Lucas
  email: lucasheinrich.kook@gmail.com
– sequence: 2
  givenname: Anton Rask
  surname: Lundborg
  fullname: Lundborg, Anton Rask
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39323092$$D View this record in MEDLINE/PubMed
BookMark eNqFkctrHSEUh6WkNI921X0ZKJRAO42vGa-rEEL6gEAXbdeiznFicHSqMwn57-vl3j4X7Uo5fufn8fMYHcQUAaHnBL8lWLIz482ZMRq46B6hI8KFaDnu-MF234u24z07RMel3GJMsdiQJ-iQSUYZlvQIfb4IY8p-uZlaPcZUFm-b4sfonbc6WmgWqLU4Nj42ZZ0h3_kCQxNA57gt39fWZlrD4qc06NAMetFP0WOnQ4Fn-_UEfX139eXyQ3v96f3Hy4vr1jIpl1aAEL00cmM519JZyY0WwI0DKodBdwZAOtI7abgBSwShIBgHOWjnOictO0FvdrlrnPXDvQ5BzdlPOj8ogtXWjapu1N5Nxc93-LyaCQYLccn6V0vSXv15Ev2NGtOdIoRT3hFcE073CTl9W6sYNfliIQQdIa1FsXqnFJwKUtGXf6G3ac2x6qgUYbzfUEIr9eL3kX7O8uN_KvB6B9icSsng_vPCVzs6rfM_we-5ubJE
Cites_doi 10.1093/bioinformatics/btz342
10.1038/nature11003
10.1214/12-AOS1077
10.1007/978-0-387-84858-7
10.1214/22-STS850
10.1111/rssb.12544
10.1515/jci-2018-0017
10.1158/1078-0432.CCR-17-0853
10.1214/23-AOS2323
10.1080/00031305.2018.1529625
10.1515/jci-2022-0015
10.1038/nature14539
10.1080/01621459.2021.2003200
10.32614/CRAN.package.comets
10.1111/rssb.12265
10.1148/radiol.212482
10.1080/01621459.2024.2395588
10.1111/rssb.12340
10.1093/jrsssb/qkae091
10.1148/ryai.230060
10.1093/bioinformatics/btab608
10.1093/bib/bbab569
10.1214/19-AOS1857
10.18637/jss.v077.i01
10.1214/22-AOS2233
10.1186/s13073-021-00930-x
10.18637/jss.v106.i01
10.1111/biom.13392
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press. 2024
The Author(s) 2024. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press. 2024
– notice: The Author(s) 2024. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/bib/bbae475
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 10.1093/bib/bbae475
PMC11424510
39323092
10_1093_bib_bbae475
Genre Journal Article
GrantInformation_xml – fundername: Novo Nordisk Fonden
  grantid: 0069071
– fundername: Swiss National Science Foundation
  grantid: 214457
– fundername: ;
  grantid: 0069071
– fundername: ;
  grantid: 214457
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
77I
AAYXX
AHGBF
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c399t-7e7769b98c44a9fc94ba7e4bfe29dda5bee9f16f9b4bec1712e734e9daff5f9c3
IEDL.DBID UNPAY
ISSN 1467-5463
1477-4054
IngestDate Sun Oct 26 02:34:53 EDT 2025
Tue Sep 30 17:07:32 EDT 2025
Thu Oct 02 14:21:10 EDT 2025
Fri Oct 03 06:42:34 EDT 2025
Mon Jul 21 05:58:34 EDT 2025
Wed Oct 01 03:39:11 EDT 2025
Wed Apr 02 07:03:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords significance testin
multimodal data
Conditional independence
Generalised Covariance Measure
Projected Covariance Measure
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2024. Published by Oxford University Press.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-7e7769b98c44a9fc94ba7e4bfe29dda5bee9f16f9b4bec1712e734e9daff5f9c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bib/bbae475
PMID 39323092
PQID 3113468212
PQPubID 26846
ParticipantIDs unpaywall_primary_10_1093_bib_bbae475
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11424510
proquest_miscellaneous_3109974271
proquest_journals_3113468212
pubmed_primary_39323092
crossref_primary_10_1093_bib_bbae475
oup_primary_10_1093_bib_bbae475
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Sep-23
PublicationDateYYYYMMDD 2024-09-23
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-Sep-23
  day: 23
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2024
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Lundborg (2024092604264617000_ref14) 2022
Cheerla (2024092604264617000_ref1) 2019; 35
Kook (2024092604264617000_ref27) 2024
Fernández (2024092604264617000_ref37)
Glocker (2024092604264617000_ref32) 2023; 5
Christgau (2024092604264617000_ref35) 2023; 51
Kim (2024092604264617000_ref17) 2022; 50
Huang (2024092604264617000_ref30) 2024
Wright (2024092604264617000_ref28) 2017; 77
Chaudhary (2024092604264617000_ref22) 2018; 24
Strobl (2024092604264617000_ref9) 2019; 7
Williamson (2024092604264617000_ref12) 2021; 77
Zhang (2024092604264617000_ref8)
Scheidegger (2024092604264617000_ref16) 2022; 23
Berk (2024092604264617000_ref31) 2013; 41
Stahlschmidt (2024092604264617000_ref3) 2022; 23
Sellergren (2024092604264617000_ref25) 2022; 305
Barretina (2024092604264617000_ref19) 2012; 483
Hastie (2024092604264617000_ref4) 2009
Shah (2024092604264617000_ref7) 2023; 38
Kook (2024092604264617000_ref36)
Berrett (2024092604264617000_ref11) 2019; 82
Shah (2024092604264617000_ref15) 2020; 48
R Core Team (2024092604264617000_ref26) 2021
Johnson (2024092604264617000_ref24) 2019
Shi (2024092604264617000_ref21) 2021; 22
Guo (2024092604264617000_ref18)
Tay (2024092604264617000_ref29) 2023; 106
Lundborg (2024092604264617000_ref34) 2022; 84
Poirion (2024092604264617000_ref23) 2021; 13
Ahmed (2024092604264617000_ref2) 2021; 38
Smucler (2024092604264617000_ref6) 2022; 10
Candès (2024092604264617000_ref10) 2018; 80
LeCun (2024092604264617000_ref5) 2015; 521
Greenland (2024092604264617000_ref33) 2019; 73
Bellot (2024092604264617000_ref20) 2019
Williamson (2024092604264617000_ref13) 2023; 118
References_xml – volume: 35
  start-page: i446
  year: 2019
  ident: 2024092604264617000_ref1
  article-title: Deep learning with multimodal representation for pancancer prognosis prediction
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz342
– volume: 483
  start-page: 603
  year: 2012
  ident: 2024092604264617000_ref19
  article-title: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity
  publication-title: Nature
  doi: 10.1038/nature11003
– volume-title: Pycomets: Covariance Measure Tests for Conditional Independence
  year: 2024
  ident: 2024092604264617000_ref30
– volume: 41
  start-page: 802
  year: 2013
  ident: 2024092604264617000_ref31
  article-title: Valid post-selection inference
  publication-title: Ann Stat
  doi: 10.1214/12-AOS1077
– volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2009
  ident: 2024092604264617000_ref4
  doi: 10.1007/978-0-387-84858-7
– volume: 38
  start-page: 68
  year: 2023
  ident: 2024092604264617000_ref7
  article-title: Double-estimation-friendly inference for high-dimensional misspecified models
  publication-title: Stat Sci
  doi: 10.1214/22-STS850
– volume: 84
  start-page: 1821
  year: 2022
  ident: 2024092604264617000_ref34
  article-title: Conditional independence testing in hilbert spaces with applications to functional data analysis
  publication-title: J R Stat Soc Series B Stat Methodology
  doi: 10.1111/rssb.12544
– volume: 7
  start-page: 20180017
  year: 2019
  ident: 2024092604264617000_ref9
  article-title: Approximate kernel-based conditional independence tests for fast non-parametric causal discovery
  publication-title: J Causal Inference
  doi: 10.1515/jci-2018-0017
– volume: 24
  start-page: 1248
  year: 2018
  ident: 2024092604264617000_ref22
  article-title: Deep learning–based multi-omics integration robustly predicts survival in liver cancer
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-17-0853
– volume: 51
  start-page: 2116
  year: 2023
  ident: 2024092604264617000_ref35
  article-title: Nonparametric conditional local independence testing
  publication-title: Ann Stat
  doi: 10.1214/23-AOS2323
– volume: 73
  start-page: 106
  year: 2019
  ident: 2024092604264617000_ref33
  article-title: Valid p-values behave exactly as they should: some misleading criticisms of p-values and their resolution with s-values
  publication-title: Am Stat
  doi: 10.1080/00031305.2018.1529625
– volume: 10
  start-page: 174
  year: 2022
  ident: 2024092604264617000_ref6
  article-title: A note on efficient minimum cost adjustment sets in causal graphical models
  publication-title: J Causal Inference
  doi: 10.1515/jci-2022-0015
– volume: 22
  start-page: 13029
  year: 2021
  ident: 2024092604264617000_ref21
  article-title: Double generative adversarial networks for conditional independence testing
  publication-title: J Mach Learn Res
– volume: 23
  start-page: 12517
  year: 2022
  ident: 2024092604264617000_ref16
  article-title: The weighted Generalised Covariance Measure
  publication-title: J Mach Learn Res
– volume: 521
  start-page: 436
  year: 2015
  ident: 2024092604264617000_ref5
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 118
  start-page: 1645
  year: 2023
  ident: 2024092604264617000_ref13
  article-title: A general framework for inference on algorithm-agnostic variable importance
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.2021.2003200
– volume-title: COMETs: Covariance Measure Tests for Conditional Independence
  year: 2024
  ident: 2024092604264617000_ref27
  doi: 10.32614/CRAN.package.comets
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2021
  ident: 2024092604264617000_ref26
– volume-title: Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI'11)
  ident: 2024092604264617000_ref8
  article-title: Kernel-based conditional independence test and application in causal discovery
– year: 2022
  ident: 2024092604264617000_ref14
  article-title: The Projected Covariance Measure for assumption-lean variable significance testing
– ident: 2024092604264617000_ref37
  article-title: A general framework for the analysis of kernel-based tests
– volume: 80
  start-page: 551
  year: 2018
  ident: 2024092604264617000_ref10
  article-title: Panning for gold: ‘Model-X’ knockoffs for high dimensional controlled variable selection
  publication-title: J R Stat Soc Series B Stat Methodology
  doi: 10.1111/rssb.12265
– volume: 305
  start-page: 454
  year: 2022
  ident: 2024092604264617000_ref25
  article-title: Simplified transfer learning for chest radiography models using less data
  publication-title: Radiology
  doi: 10.1148/radiol.212482
– ident: 2024092604264617000_ref36
  article-title: Model-based causal feature selection for general response types
  doi: 10.1080/01621459.2024.2395588
– volume: 82
  start-page: 175
  year: 2019
  ident: 2024092604264617000_ref11
  article-title: The conditional permutation test for independence while controlling for confounders
  publication-title: J R Stat Soc Series B Stat Methodology
  doi: 10.1111/rssb.12340
– ident: 2024092604264617000_ref18
  article-title: Rank-transformed subsampling: Inference for multiple data splitting and exchangeable p-values
  doi: 10.1093/jrsssb/qkae091
– volume: 5
  start-page: e230060
  year: 2023
  ident: 2024092604264617000_ref32
  article-title: Risk of bias in chest radiography deep learning foundation models
  publication-title: Radiology: Artif Intell
  doi: 10.1148/ryai.230060
– volume-title: Advances in Neural Information Processing Systems
  year: 2019
  ident: 2024092604264617000_ref20
  article-title: Conditional independence testing using generative adversarial
– volume: 38
  start-page: 179
  year: 2021
  ident: 2024092604264617000_ref2
  article-title: Multi-omics data integration by generative adversarial network
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab608
– volume: 23
  start-page: bbab569
  year: 2022
  ident: 2024092604264617000_ref3
  article-title: Multimodal deep learning for biomedical data fusion: a review
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab569
– volume: 48
  start-page: 1514
  year: 2020
  ident: 2024092604264617000_ref15
  article-title: The hardness of conditional independence testing and the Generalised Covariance Measure
  publication-title: Ann Stat
  doi: 10.1214/19-AOS1857
– volume: 77
  start-page: 1
  year: 2017
  ident: 2024092604264617000_ref28
  article-title: Ranger: a fast implementation of random forests for high dimensional data in C++ and R
  publication-title: J Stat Softw
  doi: 10.18637/jss.v077.i01
– volume: 50
  start-page: 3388
  year: 2022
  ident: 2024092604264617000_ref17
  article-title: Local permutation tests for conditional independence
  publication-title: Ann Stat
  doi: 10.1214/22-AOS2233
– year: 2019
  ident: 2024092604264617000_ref24
  article-title: MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs
– volume: 13
  start-page: 1
  year: 2021
  ident: 2024092604264617000_ref23
  article-title: Deepprog: An ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data
  publication-title: Genome Med
  doi: 10.1186/s13073-021-00930-x
– volume: 106
  start-page: 1
  year: 2023
  ident: 2024092604264617000_ref29
  article-title: Elastic net regularization paths for all generalized linear models
  publication-title: J Stat Softw
  doi: 10.18637/jss.v106.i01
– volume: 77
  start-page: 9
  year: 2021
  ident: 2024092604264617000_ref12
  article-title: Nonparametric variable importance assessment using machine learning techniques
  publication-title: Biometrics
  doi: 10.1111/biom.13392
SSID ssj0020781
Score 2.423636
Snippet Abstract Motivation Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g....
Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical...
Motivation Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Availability
Comets
Computational Biology - methods
Datasets
Decision making
Decision trees
Humans
Learning
Liver cancer
Liver Neoplasms - genetics
Machine learning
Medical imaging
Neural networks
Problem Solving Protocol
Robust control
Source code
Statistical analysis
Statistical inference
Supervised learning
Supervised Machine Learning
Title Algorithm-agnostic significance testing in supervised learning with multimodal data
URI https://www.ncbi.nlm.nih.gov/pubmed/39323092
https://www.proquest.com/docview/3113468212
https://www.proquest.com/docview/3109974271
https://pubmed.ncbi.nlm.nih.gov/PMC11424510
https://doi.org/10.1093/bib/bbae475
UnpaywallVersion publishedVersion
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals (WRLC)
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1477-4054
  databaseCode: DOA
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1477-4054
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1477-4054
  databaseCode: ABDBF
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1477-4054
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1477-4054
  databaseCode: OVEED
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1477-4054
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020781
  issn: 1477-4054
  databaseCode: TOX
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-xVtP2wmBfhEHnaewx0MROHD-WQYUmwSaNSt1TZMd2qVbSiiaa2F_POUkrwiTGSxTJZ_njzvbP9u_OAAeONWlZlvkJDXCDoiz1JY-4bwXtS80yEyTOOfn8Ij4bsW_jaLwBn1e-MK37e0GP1FQdKSUN49Ez6MYRAu4OdEcXPwa_ar8h7ruA7tU_57gbiljjhfcgd2vdafmy3YOU_zIjX5T5Qt7-kbPZvWVn-ApOVhWu2Sa_D8tCHWZ_H8Ry_E-LtmCzgZ1kUNvJNmyY_DU8rx-ivH0DPwezyfxmWlxd-xXzDqWIY3Y4HpEzC1K4YBz5hExzsiwXbn5ZGk2aJycmxJ3mkoqbeD3XWI7jnb6F0fD08uuZ3zy34GeIUgqfG46KUyLJGJPCZoIpyQ2qz4RCaxkpY4QNYisUQ8UHPAgNp8wILa2NrMjoO-jk89zsAOlLprCNWkqjmdShDCKrceOllJBxYJUHBytlpIs6qkZa34bTFPsnbfrHg4-oqMcl9lZKTJvBt0zR6iiLE1yUPfi0TsZh4-5CZG7mpZNxLsMs5IEH72udr8uhiGlpX2DupGUNawEXkrudkk-vqtDczjOZ4TTnwZe14TxW_90nyn2AlyGiKUdUCekedIqb0uwjGipUD7qD45PjYa86TcDv5fdxrxkhd7QAEEA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-xIrS9AAM2MsrmCXhMaWInjh8rPoSQQJO2SvAU2bFdqpW0oolQ-et3btKKgAR7i-Sz_PE72-fc784Ah441aVmW-QkN8IKiLPUlj7hvBe1KzTITJC44-eo6vuizy5voZgUOFrEwDf-9oMdqqI6Vkobx6AOsxhEa3C1Y7V__6t1WcUPcdwnd59-c420oYnUU3ovajXOnEcv2zKR8zYz8WOYTOXuUo9GzY-d8A04XHa7YJn87ZaE62dOLXI7vjGgT1muzk_QqPfkMKybfgrXqIcrZNvzujQbjh2Fxd-_PmXcoRRyzw_GInFqQwiXjyAdkmJNpOXH7y9RoUj85MSDuby6ZcxPvxxrbcbzTHeifn_05ufDr5xb8DK2UwueGI3BKJBljUthMMCW5QfhMKLSWkTJG2CC2QjEEPuBBaDhlRmhpbWRFRr9AKx_nZhdIVzKFY9RSGs2kDmUQWY0XL6WEjAOrPDhcgJFOqqwaaeUNpynOT1rPjwc_EKi3JdoLENN68U1T1DrK4gQPZQ9-Lotx2ThfiMzNuHQyLmSYhTzw4GuF-bIdijYt7QqsnTS0YSngUnI3S_Lh3Tw1t4tMZrjNeXC0VJy3-v_tP-X24FOI1pQjqoS0Da3ioTT7aA0V6nu9Gv4BmbEMvQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm-agnostic+significance+testing+in+supervised+learning+with+multimodal+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Kook%2C+Lucas&rft.au=Lundborg%2C+Anton+Rask&rft.date=2024-09-23&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=25&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbae475&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbae475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon