Algorithm-agnostic significance testing in supervised learning with multimodal data
Abstract Motivation Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance,...
Saved in:
| Published in | Briefings in bioinformatics Vol. 25; no. 6 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
England
Oxford University Press
23.09.2024
Oxford Publishing Limited (England) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1467-5463 1477-4054 1477-4054 |
| DOI | 10.1093/bib/bbae475 |
Cover
| Abstract | Abstract
Motivation
Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests.
Results
We address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing.
Availability and implementation
COMETs are implemented in the cometsR package available on CRAN and pycometsPython library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available. |
|---|---|
| AbstractList | Motivation Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests. Results We address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing. Availability and implementation COMETs are implemented in the comets R package available on CRAN and pycomets Python library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available. Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests. We address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing. COMETs are implemented in the cometsR package available on CRAN and pycometsPython library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available. Abstract Motivation Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests. Results We address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing. Availability and implementation COMETs are implemented in the cometsR package available on CRAN and pycometsPython library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available. Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests.MOTIVATIONValid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical features, genomic data, and medical images. Multimodal data often warrants the use of black-box algorithms, for instance, random forests or neural networks, which impede the use of traditional variable significance tests.We address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing.RESULTSWe address this problem by proposing the use of COvariance MEasure Tests (COMETs), which are calibrated and powerful tests that can be combined with any sufficiently predictive supervised learning algorithm. We apply COMETs to several high-dimensional, multimodal data sets to illustrate (i) variable significance testing for finding relevant mutations modulating drug-activity, (ii) modality selection for predicting survival in liver cancer patients with multiomics data, and (iii) modality selection with clinical features and medical imaging data. In all applications, COMETs yield results consistent with domain knowledge without requiring data-driven pre-processing, which may invalidate type I error control. These novel applications with high-dimensional multimodal data corroborate prior results on the power and robustness of COMETs for significance testing.COMETs are implemented in the cometsR package available on CRAN and pycometsPython library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available.AVAILABILITY AND IMPLEMENTATIONCOMETs are implemented in the cometsR package available on CRAN and pycometsPython library available on GitHub. Source code for reproducing all results is available at https://github.com/LucasKook/comets. All data sets used in this work are openly available. |
| Author | Kook, Lucas Lundborg, Anton Rask |
| Author_xml | – sequence: 1 givenname: Lucas surname: Kook fullname: Kook, Lucas email: lucasheinrich.kook@gmail.com – sequence: 2 givenname: Anton Rask surname: Lundborg fullname: Lundborg, Anton Rask |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39323092$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctrHSEUh6WkNI921X0ZKJRAO42vGa-rEEL6gEAXbdeiznFicHSqMwn57-vl3j4X7Uo5fufn8fMYHcQUAaHnBL8lWLIz482ZMRq46B6hI8KFaDnu-MF234u24z07RMel3GJMsdiQJ-iQSUYZlvQIfb4IY8p-uZlaPcZUFm-b4sfonbc6WmgWqLU4Nj42ZZ0h3_kCQxNA57gt39fWZlrD4qc06NAMetFP0WOnQ4Fn-_UEfX139eXyQ3v96f3Hy4vr1jIpl1aAEL00cmM519JZyY0WwI0DKodBdwZAOtI7abgBSwShIBgHOWjnOictO0FvdrlrnPXDvQ5BzdlPOj8ogtXWjapu1N5Nxc93-LyaCQYLccn6V0vSXv15Ev2NGtOdIoRT3hFcE073CTl9W6sYNfliIQQdIa1FsXqnFJwKUtGXf6G3ac2x6qgUYbzfUEIr9eL3kX7O8uN_KvB6B9icSsng_vPCVzs6rfM_we-5ubJE |
| Cites_doi | 10.1093/bioinformatics/btz342 10.1038/nature11003 10.1214/12-AOS1077 10.1007/978-0-387-84858-7 10.1214/22-STS850 10.1111/rssb.12544 10.1515/jci-2018-0017 10.1158/1078-0432.CCR-17-0853 10.1214/23-AOS2323 10.1080/00031305.2018.1529625 10.1515/jci-2022-0015 10.1038/nature14539 10.1080/01621459.2021.2003200 10.32614/CRAN.package.comets 10.1111/rssb.12265 10.1148/radiol.212482 10.1080/01621459.2024.2395588 10.1111/rssb.12340 10.1093/jrsssb/qkae091 10.1148/ryai.230060 10.1093/bioinformatics/btab608 10.1093/bib/bbab569 10.1214/19-AOS1857 10.18637/jss.v077.i01 10.1214/22-AOS2233 10.1186/s13073-021-00930-x 10.18637/jss.v106.i01 10.1111/biom.13392 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024. Published by Oxford University Press. 2024 The Author(s) 2024. Published by Oxford University Press. |
| Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press. 2024 – notice: The Author(s) 2024. Published by Oxford University Press. |
| DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM ADTOC UNPAY |
| DOI | 10.1093/bib/bbae475 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | Genetics Abstracts MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1477-4054 |
| ExternalDocumentID | 10.1093/bib/bbae475 PMC11424510 39323092 10_1093_bib_bbae475 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Novo Nordisk Fonden grantid: 0069071 – fundername: Swiss National Science Foundation grantid: 214457 – fundername: ; grantid: 0069071 – fundername: ; grantid: 214457 |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 77I AAYXX AHGBF CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c399t-7e7769b98c44a9fc94ba7e4bfe29dda5bee9f16f9b4bec1712e734e9daff5f9c3 |
| IEDL.DBID | UNPAY |
| ISSN | 1467-5463 1477-4054 |
| IngestDate | Sun Oct 26 02:34:53 EDT 2025 Tue Sep 30 17:07:32 EDT 2025 Thu Oct 02 14:21:10 EDT 2025 Fri Oct 03 06:42:34 EDT 2025 Mon Jul 21 05:58:34 EDT 2025 Wed Oct 01 03:39:11 EDT 2025 Wed Apr 02 07:03:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | significance testin multimodal data Conditional independence Generalised Covariance Measure Projected Covariance Measure |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2024. Published by Oxford University Press. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c399t-7e7769b98c44a9fc94ba7e4bfe29dda5bee9f16f9b4bec1712e734e9daff5f9c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1093/bib/bbae475 |
| PMID | 39323092 |
| PQID | 3113468212 |
| PQPubID | 26846 |
| ParticipantIDs | unpaywall_primary_10_1093_bib_bbae475 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11424510 proquest_miscellaneous_3109974271 proquest_journals_3113468212 pubmed_primary_39323092 crossref_primary_10_1093_bib_bbae475 oup_primary_10_1093_bib_bbae475 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-Sep-23 |
| PublicationDateYYYYMMDD | 2024-09-23 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-Sep-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Oxford |
| PublicationTitle | Briefings in bioinformatics |
| PublicationTitleAlternate | Brief Bioinform |
| PublicationYear | 2024 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | Lundborg (2024092604264617000_ref14) 2022 Cheerla (2024092604264617000_ref1) 2019; 35 Kook (2024092604264617000_ref27) 2024 Fernández (2024092604264617000_ref37) Glocker (2024092604264617000_ref32) 2023; 5 Christgau (2024092604264617000_ref35) 2023; 51 Kim (2024092604264617000_ref17) 2022; 50 Huang (2024092604264617000_ref30) 2024 Wright (2024092604264617000_ref28) 2017; 77 Chaudhary (2024092604264617000_ref22) 2018; 24 Strobl (2024092604264617000_ref9) 2019; 7 Williamson (2024092604264617000_ref12) 2021; 77 Zhang (2024092604264617000_ref8) Scheidegger (2024092604264617000_ref16) 2022; 23 Berk (2024092604264617000_ref31) 2013; 41 Stahlschmidt (2024092604264617000_ref3) 2022; 23 Sellergren (2024092604264617000_ref25) 2022; 305 Barretina (2024092604264617000_ref19) 2012; 483 Hastie (2024092604264617000_ref4) 2009 Shah (2024092604264617000_ref7) 2023; 38 Kook (2024092604264617000_ref36) Berrett (2024092604264617000_ref11) 2019; 82 Shah (2024092604264617000_ref15) 2020; 48 R Core Team (2024092604264617000_ref26) 2021 Johnson (2024092604264617000_ref24) 2019 Shi (2024092604264617000_ref21) 2021; 22 Guo (2024092604264617000_ref18) Tay (2024092604264617000_ref29) 2023; 106 Lundborg (2024092604264617000_ref34) 2022; 84 Poirion (2024092604264617000_ref23) 2021; 13 Ahmed (2024092604264617000_ref2) 2021; 38 Smucler (2024092604264617000_ref6) 2022; 10 Candès (2024092604264617000_ref10) 2018; 80 LeCun (2024092604264617000_ref5) 2015; 521 Greenland (2024092604264617000_ref33) 2019; 73 Bellot (2024092604264617000_ref20) 2019 Williamson (2024092604264617000_ref13) 2023; 118 |
| References_xml | – volume: 35 start-page: i446 year: 2019 ident: 2024092604264617000_ref1 article-title: Deep learning with multimodal representation for pancancer prognosis prediction publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz342 – volume: 483 start-page: 603 year: 2012 ident: 2024092604264617000_ref19 article-title: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity publication-title: Nature doi: 10.1038/nature11003 – volume-title: Pycomets: Covariance Measure Tests for Conditional Independence year: 2024 ident: 2024092604264617000_ref30 – volume: 41 start-page: 802 year: 2013 ident: 2024092604264617000_ref31 article-title: Valid post-selection inference publication-title: Ann Stat doi: 10.1214/12-AOS1077 – volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction year: 2009 ident: 2024092604264617000_ref4 doi: 10.1007/978-0-387-84858-7 – volume: 38 start-page: 68 year: 2023 ident: 2024092604264617000_ref7 article-title: Double-estimation-friendly inference for high-dimensional misspecified models publication-title: Stat Sci doi: 10.1214/22-STS850 – volume: 84 start-page: 1821 year: 2022 ident: 2024092604264617000_ref34 article-title: Conditional independence testing in hilbert spaces with applications to functional data analysis publication-title: J R Stat Soc Series B Stat Methodology doi: 10.1111/rssb.12544 – volume: 7 start-page: 20180017 year: 2019 ident: 2024092604264617000_ref9 article-title: Approximate kernel-based conditional independence tests for fast non-parametric causal discovery publication-title: J Causal Inference doi: 10.1515/jci-2018-0017 – volume: 24 start-page: 1248 year: 2018 ident: 2024092604264617000_ref22 article-title: Deep learning–based multi-omics integration robustly predicts survival in liver cancer publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-17-0853 – volume: 51 start-page: 2116 year: 2023 ident: 2024092604264617000_ref35 article-title: Nonparametric conditional local independence testing publication-title: Ann Stat doi: 10.1214/23-AOS2323 – volume: 73 start-page: 106 year: 2019 ident: 2024092604264617000_ref33 article-title: Valid p-values behave exactly as they should: some misleading criticisms of p-values and their resolution with s-values publication-title: Am Stat doi: 10.1080/00031305.2018.1529625 – volume: 10 start-page: 174 year: 2022 ident: 2024092604264617000_ref6 article-title: A note on efficient minimum cost adjustment sets in causal graphical models publication-title: J Causal Inference doi: 10.1515/jci-2022-0015 – volume: 22 start-page: 13029 year: 2021 ident: 2024092604264617000_ref21 article-title: Double generative adversarial networks for conditional independence testing publication-title: J Mach Learn Res – volume: 23 start-page: 12517 year: 2022 ident: 2024092604264617000_ref16 article-title: The weighted Generalised Covariance Measure publication-title: J Mach Learn Res – volume: 521 start-page: 436 year: 2015 ident: 2024092604264617000_ref5 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 118 start-page: 1645 year: 2023 ident: 2024092604264617000_ref13 article-title: A general framework for inference on algorithm-agnostic variable importance publication-title: J Am Stat Assoc doi: 10.1080/01621459.2021.2003200 – volume-title: COMETs: Covariance Measure Tests for Conditional Independence year: 2024 ident: 2024092604264617000_ref27 doi: 10.32614/CRAN.package.comets – volume-title: R: A Language and Environment for Statistical Computing year: 2021 ident: 2024092604264617000_ref26 – volume-title: Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence (UAI'11) ident: 2024092604264617000_ref8 article-title: Kernel-based conditional independence test and application in causal discovery – year: 2022 ident: 2024092604264617000_ref14 article-title: The Projected Covariance Measure for assumption-lean variable significance testing – ident: 2024092604264617000_ref37 article-title: A general framework for the analysis of kernel-based tests – volume: 80 start-page: 551 year: 2018 ident: 2024092604264617000_ref10 article-title: Panning for gold: ‘Model-X’ knockoffs for high dimensional controlled variable selection publication-title: J R Stat Soc Series B Stat Methodology doi: 10.1111/rssb.12265 – volume: 305 start-page: 454 year: 2022 ident: 2024092604264617000_ref25 article-title: Simplified transfer learning for chest radiography models using less data publication-title: Radiology doi: 10.1148/radiol.212482 – ident: 2024092604264617000_ref36 article-title: Model-based causal feature selection for general response types doi: 10.1080/01621459.2024.2395588 – volume: 82 start-page: 175 year: 2019 ident: 2024092604264617000_ref11 article-title: The conditional permutation test for independence while controlling for confounders publication-title: J R Stat Soc Series B Stat Methodology doi: 10.1111/rssb.12340 – ident: 2024092604264617000_ref18 article-title: Rank-transformed subsampling: Inference for multiple data splitting and exchangeable p-values doi: 10.1093/jrsssb/qkae091 – volume: 5 start-page: e230060 year: 2023 ident: 2024092604264617000_ref32 article-title: Risk of bias in chest radiography deep learning foundation models publication-title: Radiology: Artif Intell doi: 10.1148/ryai.230060 – volume-title: Advances in Neural Information Processing Systems year: 2019 ident: 2024092604264617000_ref20 article-title: Conditional independence testing using generative adversarial – volume: 38 start-page: 179 year: 2021 ident: 2024092604264617000_ref2 article-title: Multi-omics data integration by generative adversarial network publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab608 – volume: 23 start-page: bbab569 year: 2022 ident: 2024092604264617000_ref3 article-title: Multimodal deep learning for biomedical data fusion: a review publication-title: Brief Bioinform doi: 10.1093/bib/bbab569 – volume: 48 start-page: 1514 year: 2020 ident: 2024092604264617000_ref15 article-title: The hardness of conditional independence testing and the Generalised Covariance Measure publication-title: Ann Stat doi: 10.1214/19-AOS1857 – volume: 77 start-page: 1 year: 2017 ident: 2024092604264617000_ref28 article-title: Ranger: a fast implementation of random forests for high dimensional data in C++ and R publication-title: J Stat Softw doi: 10.18637/jss.v077.i01 – volume: 50 start-page: 3388 year: 2022 ident: 2024092604264617000_ref17 article-title: Local permutation tests for conditional independence publication-title: Ann Stat doi: 10.1214/22-AOS2233 – year: 2019 ident: 2024092604264617000_ref24 article-title: MIMIC-CXR-JPG, a large publicly available database of labeled chest radiographs – volume: 13 start-page: 1 year: 2021 ident: 2024092604264617000_ref23 article-title: Deepprog: An ensemble of deep-learning and machine-learning models for prognosis prediction using multi-omics data publication-title: Genome Med doi: 10.1186/s13073-021-00930-x – volume: 106 start-page: 1 year: 2023 ident: 2024092604264617000_ref29 article-title: Elastic net regularization paths for all generalized linear models publication-title: J Stat Softw doi: 10.18637/jss.v106.i01 – volume: 77 start-page: 9 year: 2021 ident: 2024092604264617000_ref12 article-title: Nonparametric variable importance assessment using machine learning techniques publication-title: Biometrics doi: 10.1111/biom.13392 |
| SSID | ssj0020781 |
| Score | 2.423636 |
| Snippet | Abstract
Motivation
Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g.... Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of clinical... Motivation Valid statistical inference is crucial for decision-making but difficult to obtain in supervised learning with multimodal data, e.g. combinations of... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref oup |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Availability Comets Computational Biology - methods Datasets Decision making Decision trees Humans Learning Liver cancer Liver Neoplasms - genetics Machine learning Medical imaging Neural networks Problem Solving Protocol Robust control Source code Statistical analysis Statistical inference Supervised learning Supervised Machine Learning |
| Title | Algorithm-agnostic significance testing in supervised learning with multimodal data |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/39323092 https://www.proquest.com/docview/3113468212 https://www.proquest.com/docview/3109974271 https://pubmed.ncbi.nlm.nih.gov/PMC11424510 https://doi.org/10.1093/bib/bbae475 |
| UnpaywallVersion | publishedVersion |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals (WRLC) customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020781 issn: 1477-4054 databaseCode: DOA dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1477-4054 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0020781 issn: 1477-4054 databaseCode: ABDBF dateStart: 20010301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020781 issn: 1477-4054 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVOVD databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020781 issn: 1477-4054 databaseCode: OVEED dateStart: 20080101 isFulltext: true titleUrlDefault: http://ovidsp.ovid.com/ providerName: Ovid – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020781 issn: 1477-4054 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-xVtP2wmBfhEHnaewx0MROHD-WQYUmwSaNSt1TZMd2qVbSiiaa2F_POUkrwiTGSxTJZ_njzvbP9u_OAAeONWlZlvkJDXCDoiz1JY-4bwXtS80yEyTOOfn8Ij4bsW_jaLwBn1e-MK37e0GP1FQdKSUN49Ez6MYRAu4OdEcXPwa_ar8h7ruA7tU_57gbiljjhfcgd2vdafmy3YOU_zIjX5T5Qt7-kbPZvWVn-ApOVhWu2Sa_D8tCHWZ_H8Ry_E-LtmCzgZ1kUNvJNmyY_DU8rx-ivH0DPwezyfxmWlxd-xXzDqWIY3Y4HpEzC1K4YBz5hExzsiwXbn5ZGk2aJycmxJ3mkoqbeD3XWI7jnb6F0fD08uuZ3zy34GeIUgqfG46KUyLJGJPCZoIpyQ2qz4RCaxkpY4QNYisUQ8UHPAgNp8wILa2NrMjoO-jk89zsAOlLprCNWkqjmdShDCKrceOllJBxYJUHBytlpIs6qkZa34bTFPsnbfrHg4-oqMcl9lZKTJvBt0zR6iiLE1yUPfi0TsZh4-5CZG7mpZNxLsMs5IEH72udr8uhiGlpX2DupGUNawEXkrudkk-vqtDczjOZ4TTnwZe14TxW_90nyn2AlyGiKUdUCekedIqb0uwjGipUD7qD45PjYa86TcDv5fdxrxkhd7QAEEA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED-xIrS9AAM2MsrmCXhMaWInjh8rPoSQQJO2SvAU2bFdqpW0oolQ-et3btKKgAR7i-Sz_PE72-fc784Ah441aVmW-QkN8IKiLPUlj7hvBe1KzTITJC44-eo6vuizy5voZgUOFrEwDf-9oMdqqI6Vkobx6AOsxhEa3C1Y7V__6t1WcUPcdwnd59-c420oYnUU3ovajXOnEcv2zKR8zYz8WOYTOXuUo9GzY-d8A04XHa7YJn87ZaE62dOLXI7vjGgT1muzk_QqPfkMKybfgrXqIcrZNvzujQbjh2Fxd-_PmXcoRRyzw_GInFqQwiXjyAdkmJNpOXH7y9RoUj85MSDuby6ZcxPvxxrbcbzTHeifn_05ufDr5xb8DK2UwueGI3BKJBljUthMMCW5QfhMKLSWkTJG2CC2QjEEPuBBaDhlRmhpbWRFRr9AKx_nZhdIVzKFY9RSGs2kDmUQWY0XL6WEjAOrPDhcgJFOqqwaaeUNpynOT1rPjwc_EKi3JdoLENN68U1T1DrK4gQPZQ9-Lotx2ThfiMzNuHQyLmSYhTzw4GuF-bIdijYt7QqsnTS0YSngUnI3S_Lh3Tw1t4tMZrjNeXC0VJy3-v_tP-X24FOI1pQjqoS0Da3ioTT7aA0V6nu9Gv4BmbEMvQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Algorithm-agnostic+significance+testing+in+supervised+learning+with+multimodal+data&rft.jtitle=Briefings+in+bioinformatics&rft.au=Kook%2C+Lucas&rft.au=Lundborg%2C+Anton+Rask&rft.date=2024-09-23&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=25&rft.issue=6&rft_id=info:doi/10.1093%2Fbib%2Fbbae475&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbae475 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |