Evaporation-Driven Energy Generation Using an Electrospun Polyacrylonitrile Nanofiber Mat with Different Support Substrates

Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofi...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 16; no. 9; p. 1180
Main Authors Kwon, Yongbum, Bui-Vinh, Dai, Lee, Seung-Hwan, Baek, So Hyun, Lee, Songhui, Yun, Jeungjai, Baek, Minwoo, Lee, Hyun-Woo, Park, Jaebeom, Kim, Miri, Yoo, Minsang, Kim, Bum Sung, Song, Yoseb, Lee, Handol, Lee, Do-Hyun, Jeong, Da-Woon
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 01.05.2024
Subjects
Online AccessGet full text
ISSN2073-4360
2073-4360
DOI10.3390/polym16091180

Cover

Abstract Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. However, PAN nanofiber mats require a support substrate to enhance its durability and stability when it is applied to an evaporation-driven energy generator, which could have additional effects on generation performance. Accordingly, various support substrates, including fiberglass, copper, stainless mesh, and fabric screen, were applied to PEEGs and examined to understand their potential impacts on electrical generation outputs. As a result, the PAN nanofiber mats were successfully converted to a hydrophilic material for an evaporation-driven generator by dip-coating them in nanocarbon black (NCB) solution. Furthermore, specific electrokinetic performance trends were investigated and the peak electricity outputs of Voc were recorded to be 150.8, 6.5, 2.4, and 215.9 mV, and Isc outputs were recorded to be 143.8, 60.5, 103.8, and 121.4 μA, from PEEGs with fiberglass, copper, stainless mesh, and fabric screen substrates, respectively. Therefore, the implications of this study would provide further perspectives on the developing evaporation-induced electricity devices based on nanofiber materials.
AbstractList Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. However, PAN nanofiber mats require a support substrate to enhance its durability and stability when it is applied to an evaporation-driven energy generator, which could have additional effects on generation performance. Accordingly, various support substrates, including fiberglass, copper, stainless mesh, and fabric screen, were applied to PEEGs and examined to understand their potential impacts on electrical generation outputs. As a result, the PAN nanofiber mats were successfully converted to a hydrophilic material for an evaporation-driven generator by dip-coating them in nanocarbon black (NCB) solution. Furthermore, specific electrokinetic performance trends were investigated and the peak electricity outputs of Voc were recorded to be 150.8, 6.5, 2.4, and 215.9 mV, and Isc outputs were recorded to be 143.8, 60.5, 103.8, and 121.4 μA, from PEEGs with fiberglass, copper, stainless mesh, and fabric screen substrates, respectively. Therefore, the implications of this study would provide further perspectives on the developing evaporation-induced electricity devices based on nanofiber materials.Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. However, PAN nanofiber mats require a support substrate to enhance its durability and stability when it is applied to an evaporation-driven energy generator, which could have additional effects on generation performance. Accordingly, various support substrates, including fiberglass, copper, stainless mesh, and fabric screen, were applied to PEEGs and examined to understand their potential impacts on electrical generation outputs. As a result, the PAN nanofiber mats were successfully converted to a hydrophilic material for an evaporation-driven generator by dip-coating them in nanocarbon black (NCB) solution. Furthermore, specific electrokinetic performance trends were investigated and the peak electricity outputs of Voc were recorded to be 150.8, 6.5, 2.4, and 215.9 mV, and Isc outputs were recorded to be 143.8, 60.5, 103.8, and 121.4 μA, from PEEGs with fiberglass, copper, stainless mesh, and fabric screen substrates, respectively. Therefore, the implications of this study would provide further perspectives on the developing evaporation-induced electricity devices based on nanofiber materials.
Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. However, PAN nanofiber mats require a support substrate to enhance its durability and stability when it is applied to an evaporation-driven energy generator, which could have additional effects on generation performance. Accordingly, various support substrates, including fiberglass, copper, stainless mesh, and fabric screen, were applied to PEEGs and examined to understand their potential impacts on electrical generation outputs. As a result, the PAN nanofiber mats were successfully converted to a hydrophilic material for an evaporation-driven generator by dip-coating them in nanocarbon black (NCB) solution. Furthermore, specific electrokinetic performance trends were investigated and the peak electricity outputs of Voc were recorded to be 150.8, 6.5, 2.4, and 215.9 mV, and Isc outputs were recorded to be 143.8, 60.5, 103.8, and 121.4 μA, from PEEGs with fiberglass, copper, stainless mesh, and fabric screen substrates, respectively. Therefore, the implications of this study would provide further perspectives on the developing evaporation-induced electricity devices based on nanofiber materials.
Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed polyacrylonitrile (PAN) nanofiber-based evaporation-driven electricity generators (PEEGs) to confirm the feasibility of utilizing electrospun PAN nanofiber mats in an evaporation-driven energy harvesting system. However, PAN nanofiber mats require a support substrate to enhance its durability and stability when it is applied to an evaporation-driven energy generator, which could have additional effects on generation performance. Accordingly, various support substrates, including fiberglass, copper, stainless mesh, and fabric screen, were applied to PEEGs and examined to understand their potential impacts on electrical generation outputs. As a result, the PAN nanofiber mats were successfully converted to a hydrophilic material for an evaporation-driven generator by dip-coating them in nanocarbon black (NCB) solution. Furthermore, specific electrokinetic performance trends were investigated and the peak electricity outputs of were recorded to be 150.8, 6.5, 2.4, and 215.9 mV, and outputs were recorded to be 143.8, 60.5, 103.8, and 121.4 μA, from PEEGs with fiberglass, copper, stainless mesh, and fabric screen substrates, respectively. Therefore, the implications of this study would provide further perspectives on the developing evaporation-induced electricity devices based on nanofiber materials.
Audience Academic
Author Lee, Songhui
Lee, Hyun-Woo
Yun, Jeungjai
Lee, Do-Hyun
Kwon, Yongbum
Lee, Handol
Yoo, Minsang
Baek, So Hyun
Park, Jaebeom
Lee, Seung-Hwan
Song, Yoseb
Jeong, Da-Woon
Baek, Minwoo
Kim, Bum Sung
Bui-Vinh, Dai
Kim, Miri
Author_xml – sequence: 1
  givenname: Yongbum
  orcidid: 0000-0002-4356-3108
  surname: Kwon
  fullname: Kwon, Yongbum
– sequence: 2
  givenname: Dai
  surname: Bui-Vinh
  fullname: Bui-Vinh, Dai
– sequence: 3
  givenname: Seung-Hwan
  surname: Lee
  fullname: Lee, Seung-Hwan
– sequence: 4
  givenname: So Hyun
  surname: Baek
  fullname: Baek, So Hyun
– sequence: 5
  givenname: Songhui
  surname: Lee
  fullname: Lee, Songhui
– sequence: 6
  givenname: Jeungjai
  surname: Yun
  fullname: Yun, Jeungjai
– sequence: 7
  givenname: Minwoo
  surname: Baek
  fullname: Baek, Minwoo
– sequence: 8
  givenname: Hyun-Woo
  surname: Lee
  fullname: Lee, Hyun-Woo
– sequence: 9
  givenname: Jaebeom
  surname: Park
  fullname: Park, Jaebeom
– sequence: 10
  givenname: Miri
  surname: Kim
  fullname: Kim, Miri
– sequence: 11
  givenname: Minsang
  surname: Yoo
  fullname: Yoo, Minsang
– sequence: 12
  givenname: Bum Sung
  orcidid: 0000-0002-6250-0233
  surname: Kim
  fullname: Kim, Bum Sung
– sequence: 13
  givenname: Yoseb
  surname: Song
  fullname: Song, Yoseb
– sequence: 14
  givenname: Handol
  orcidid: 0000-0003-1320-5032
  surname: Lee
  fullname: Lee, Handol
– sequence: 15
  givenname: Do-Hyun
  surname: Lee
  fullname: Lee, Do-Hyun
– sequence: 16
  givenname: Da-Woon
  orcidid: 0000-0002-0676-0583
  surname: Jeong
  fullname: Jeong, Da-Woon
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38732649$$D View this record in MEDLINE/PubMed
BookMark eNp1kU1v1DAQhi1UREvpkSuyxKWXFH8k9vpYtUupVD4k6Dny2pPFlWMH2yla8efx7rYIKmEfxtI888543pfoIMQACL2m5IxzRd5N0W9GKoiidEGeoSNGJG9aLsjBX-9DdJLzHamn7YSg8gU65AvJmWjVEfq1vNdTTLq4GJrL5O4h4GWAtN7gK6hxl8C32YU11jXlwZQU8zQH_KU21yZtfAyuJOcBf9IhDm4FCX_UBf905Tu-dMMACULBX-epNtrGVS5VF_Ir9HzQPsPJQzxGt--X3y4-NDefr64vzm8aw5UqjbBat5IZOnDLrJCUCmlJuwLCLbFWEEo7a5lWTHACsjOybanSzBLWGUIUP0ane90pxR8z5NKPLhvwXgeIc-456bgSirMt-vYJehfnFOp0O4p2bEG7Sp3tqbX20LswxPohU6-F0Zlq0VC30Z9Lxbu6ZyVrwZsH2Xk1gu2n5EadNv2jDxVo9oCpy80Jhj8IJf3W6v4fqyvPn_DGlZ1XdRLn_1P1GzKQra0
CitedBy_id crossref_primary_10_1016_j_cej_2024_153411
crossref_primary_10_3390_polym16172515
Cites_doi 10.1021/acsnano.0c09803
10.1016/j.nanoen.2019.04.020
10.1021/acsami.1c17847
10.1002/adfm.201604188
10.1021/acsnano.9b04375
10.1021/acsami.1c04508
10.1088/1748-9326/9/11/114001
10.1016/j.nanoen.2020.105251
10.1016/j.nanoen.2020.104827
10.1016/j.nanoen.2022.107605
10.1039/C9GC04310A
10.1021/acsami.9b09582
10.1016/S0301-4215(03)00241-6
10.1016/j.apenergy.2020.115764
10.1039/D1TA05636K
10.1021/acsomega.2c02501
10.1016/j.jclepro.2014.01.073
10.1016/j.rser.2014.10.017
10.1021/acsami.9b23380
10.1016/j.cej.2022.135588
10.1021/acssuschemeng.0c08521
10.1016/j.carbon.2022.03.047
10.1021/acs.energyfuels.2c02576
10.1016/j.nanoen.2021.105979
10.1002/idm2.12033
10.1039/D1CS00858G
10.1016/j.nanoen.2022.107288
10.1016/j.nanoen.2021.105970
10.1002/aenm.201802906
10.1016/j.coesh.2020.01.002
10.1002/aenm.202002123
10.1021/acsami.1c13487
10.1002/advs.202201586
10.3390/polym16030433
10.1039/D1EE00859E
10.1016/j.renene.2008.05.002
10.1038/s41586-020-1985-6
10.1016/j.nanoen.2020.104628
10.1016/j.nanoen.2023.108771
10.1016/j.rser.2011.02.024
10.1039/C9EE02616A
10.1038/s41586-020-2010-9
10.1039/D0EE02190C
10.1016/j.wasman.2017.02.007
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
DOI 10.3390/polym16091180
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
PubMed

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID A793573297
38732649
10_3390_polym16091180
Genre Journal Article
GeographicLocations South Korea
Japan
GeographicLocations_xml – name: South Korea
– name: Japan
GrantInformation_xml – fundername: Korea Institute of Industrial Technology
  grantid: KITECH-JB-24-0002
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RNS
RPM
TR2
TUS
NPM
PMFND
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
ESTFP
PUEGO
ID FETCH-LOGICAL-c399t-6daa472c1f3d2d671167d04be03d0dd60115dd2a92630e75c74419a2d025c0093
IEDL.DBID 8FG
ISSN 2073-4360
IngestDate Fri Sep 05 14:41:26 EDT 2025
Fri Jul 25 11:47:38 EDT 2025
Tue Jun 10 21:04:42 EDT 2025
Thu Apr 03 07:08:03 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Tue Jul 01 03:21:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords electrospun nanofiber
nanocarbon black
support substrate
generation efficiency
evaporation-driven energy harvesting
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-6daa472c1f3d2d671167d04be03d0dd60115dd2a92630e75c74419a2d025c0093
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4356-3108
0000-0003-1320-5032
0000-0002-6250-0233
0000-0002-0676-0583
OpenAccessLink https://www.proquest.com/docview/3053152815?pq-origsite=%requestingapplication%
PMID 38732649
PQID 3053152815
PQPubID 2032345
ParticipantIDs proquest_miscellaneous_3053969329
proquest_journals_3053152815
gale_infotracacademiconefile_A793573297
pubmed_primary_38732649
crossref_primary_10_3390_polym16091180
crossref_citationtrail_10_3390_polym16091180
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Polymers
PublicationTitleAlternate Polymers (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Liang (ref_9) 2020; 10
Chi (ref_36) 2022; 9
Saidur (ref_4) 2011; 15
Lu (ref_20) 2020; 78
Bae (ref_26) 2022; 15
Wu (ref_19) 2019; 9
Tabrizizadeh (ref_37) 2021; 13
Wu (ref_39) 2023; 116
Yao (ref_2) 2014; 9
Yun (ref_38) 2019; 13
Li (ref_14) 2021; 85
Wu (ref_30) 2021; 13
Dao (ref_34) 2021; 85
Venkateshaiah (ref_42) 2020; 22
ref_16
Tao (ref_17) 2020; 71
Xu (ref_11) 2020; 578
Tabrizizadeh (ref_35) 2022; 7
Jin (ref_43) 2020; 13
Kim (ref_22) 2021; 15
Zhang (ref_29) 2022; 98
Akella (ref_1) 2009; 34
Deng (ref_21) 2022; 51
Nazir (ref_5) 2020; 13
Shao (ref_44) 2019; 11
Fang (ref_33) 2022; 101
Jiao (ref_23) 2022; 193
Lv (ref_27) 2020; 279
Shin (ref_15) 2020; 74
Park (ref_40) 2021; 9
Liu (ref_18) 2020; 578
Tsoutsos (ref_7) 2005; 33
Kaur (ref_28) 2022; 36
Sun (ref_31) 2021; 13
Bae (ref_13) 2020; 13
Uddin (ref_3) 2014; 69
Zhao (ref_25) 2022; 438
Chen (ref_6) 2015; 42
Fei (ref_10) 2019; 60
Gao (ref_12) 2021; 9
Xue (ref_32) 2016; 26
Liu (ref_8) 2017; 62
Zheng (ref_24) 2022; 1
Zhou (ref_41) 2020; 12
References_xml – volume: 15
  start-page: 258
  year: 2021
  ident: ref_22
  article-title: Triboelectric nanogenerator: Structure, mechanism, and applications
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09803
– volume: 60
  start-page: 656
  year: 2019
  ident: ref_10
  article-title: Waving potential at volt level by a pair of graphene sheets
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.020
– volume: 13
  start-page: 56226
  year: 2021
  ident: ref_31
  article-title: Ceramic nanofiber-based water-induced electric generator
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c17847
– volume: 26
  start-page: 8784
  year: 2016
  ident: ref_32
  article-title: Vapor-activated power generation on conductive polymer
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604188
– volume: 13
  start-page: 12703
  year: 2019
  ident: ref_38
  article-title: Transpiration driven electrokinetic power generator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04375
– volume: 13
  start-page: 26989
  year: 2021
  ident: ref_30
  article-title: Printed honeycomb-structured reduced graphene oxide film for efficient and continuous evaporation-driven electricity generation from salt solution
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c04508
– volume: 9
  start-page: 114001
  year: 2014
  ident: ref_2
  article-title: A hybrid life-cycle inventory for multi-crystalline silicon PV module manufacturing in China
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/9/11/114001
– volume: 78
  start-page: 105251
  year: 2020
  ident: ref_20
  article-title: Flexible PVDF based piezoelectric nanogenerators
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105251
– volume: 74
  start-page: 104827
  year: 2020
  ident: ref_15
  article-title: Carbon anchored conducting polymer composite linkage for high performance water energy harvesters
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104827
– volume: 101
  start-page: 107605
  year: 2022
  ident: ref_33
  article-title: The mechanism for solar irradiation enhanced evaporation and electricity generation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107605
– volume: 22
  start-page: 1198
  year: 2020
  ident: ref_42
  article-title: Recycling non-food-grade tree gum wastes into nanoporous carbon for sustainable energy harvesting
  publication-title: Green. Chem.
  doi: 10.1039/C9GC04310A
– volume: 11
  start-page: 30927
  year: 2019
  ident: ref_44
  article-title: Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09582
– volume: 33
  start-page: 289
  year: 2005
  ident: ref_7
  article-title: Environmental impacts from the solar energy technologies
  publication-title: Energy Policy
  doi: 10.1016/S0301-4215(03)00241-6
– volume: 279
  start-page: 115764
  year: 2020
  ident: ref_27
  article-title: A flexible electrokinetic power generator derived from paper and ink for wearable electronics
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2020.115764
– volume: 9
  start-page: 23555
  year: 2021
  ident: ref_12
  article-title: A new type of flexible energy harvesting device working with micro water droplets achieving high output
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D1TA05636K
– volume: 7
  start-page: 28275
  year: 2022
  ident: ref_35
  article-title: Empowerment of water-evaporation-induced electric generators via the use of metal electrodes
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c02501
– volume: 69
  start-page: 153
  year: 2014
  ident: ref_3
  article-title: Energy, emissions and environmental impact analysis of wind turbine using life cycle assessment technique
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2014.01.073
– volume: 42
  start-page: 78
  year: 2015
  ident: ref_6
  article-title: Assessing the cumulative environmental impact of hydropower construction on river systems based on energy network model
  publication-title: Renew. Sustain. Energy. Rev.
  doi: 10.1016/j.rser.2014.10.017
– volume: 12
  start-page: 11232
  year: 2020
  ident: ref_41
  article-title: Harvesting electricity from water evaporation through microchannels of natural wood
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b23380
– volume: 438
  start-page: 135588
  year: 2022
  ident: ref_25
  article-title: A Nb2CTx/sodium alginate-based composite film with neuron-like network for self-powered humidity sensing
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135588
– volume: 9
  start-page: 5027
  year: 2021
  ident: ref_40
  article-title: Solar evaporation-based energy harvesting using a leaf-inspired energy-harvesting foam
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c08521
– volume: 193
  start-page: 339
  year: 2022
  ident: ref_23
  article-title: Emerging hydrovoltaic technology based on carbon black and porous carbon materials: A mini review
  publication-title: Carbon
  doi: 10.1016/j.carbon.2022.03.047
– volume: 36
  start-page: 11443
  year: 2022
  ident: ref_28
  article-title: Minireview on solar desalination and hydropower generation by water evaporation: Recent challenges and perspectives in materials science
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.2c02576
– volume: 85
  start-page: 105979
  year: 2021
  ident: ref_34
  article-title: Recent advances and challenges for water evaporation-induced electricity toward applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105979
– volume: 1
  start-page: 449
  year: 2022
  ident: ref_24
  article-title: Materials for evaporation-driven hydrovoltaic technology
  publication-title: Interdiscip. Mater.
  doi: 10.1002/idm2.12033
– volume: 51
  start-page: 3380
  year: 2022
  ident: ref_21
  article-title: Piezoelectric nanogenerators for personalized healthcare
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00858G
– volume: 98
  start-page: 107288
  year: 2022
  ident: ref_29
  article-title: Enhancing output performance of surface-modified wood sponge-carbon black ink hygroelectric generator via moisture-triggered galvanic cell
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107288
– volume: 85
  start-page: 105970
  year: 2021
  ident: ref_14
  article-title: A novel, flexible dual-mode power generator adapted for wide dynamic range of the aqueous salinity
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105970
– volume: 9
  start-page: 1802906
  year: 2019
  ident: ref_19
  article-title: Triboelectric nanogenerator: A foundation of the energy for the new era
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201802906
– volume: 13
  start-page: 85
  year: 2020
  ident: ref_5
  article-title: Potential environmental impacts of wind energy development: A global perspective
  publication-title: Curr. Opin. Environ. Sci. Health
  doi: 10.1016/j.coesh.2020.01.002
– volume: 10
  start-page: 2002123
  year: 2020
  ident: ref_9
  article-title: Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002123
– volume: 13
  start-page: 50900
  year: 2021
  ident: ref_37
  article-title: Water-evaporation-induced electric generator built from carbonized electrospun polyacrylonitrile nanofiber mats
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c13487
– volume: 9
  start-page: 2201586
  year: 2022
  ident: ref_36
  article-title: Harvesting Water-Evaporation-Induced Electricity Based on Liquid–Solid Triboelectric Nanogenerator
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202201586
– ident: ref_16
  doi: 10.3390/polym16030433
– volume: 15
  start-page: 123
  year: 2022
  ident: ref_26
  article-title: Towards Watt-scale hydroelectric energy harvesting by Ti3C2Tx-based transpiration-driven electrokinetic power generators
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE00859E
– volume: 34
  start-page: 390
  year: 2009
  ident: ref_1
  article-title: Social, economical and environmental impacts of renewable energy systems
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.05.002
– volume: 578
  start-page: 392
  year: 2020
  ident: ref_11
  article-title: A droplet-based electricity generator with high instantaneous power density
  publication-title: Nature
  doi: 10.1038/s41586-020-1985-6
– volume: 71
  start-page: 104628
  year: 2020
  ident: ref_17
  article-title: Moisture-powered memristor with interfacial oxygen migration for power-free reading of multiple memory states
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104628
– volume: 116
  start-page: 108771
  year: 2023
  ident: ref_39
  article-title: High evaporation rate and electrical conductivity synergistically boosting porous rGO/CNT Film for water evaporation-driven electricity generation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108771
– volume: 15
  start-page: 2423
  year: 2011
  ident: ref_4
  article-title: Environmental impact of wind energy
  publication-title: Renew. Sustain. Energy. Rev.
  doi: 10.1016/j.rser.2011.02.024
– volume: 13
  start-page: 527
  year: 2020
  ident: ref_13
  article-title: Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle
  publication-title: Energy. Environ. Sci.
  doi: 10.1039/C9EE02616A
– volume: 578
  start-page: 550
  year: 2020
  ident: ref_18
  article-title: Power generation from ambient humidity using protein nanowires
  publication-title: Nature
  doi: 10.1038/s41586-020-2010-9
– volume: 13
  start-page: 3432
  year: 2020
  ident: ref_43
  article-title: Identification of water-infiltration-induced electrical energy generation by ionovoltaic effect in porous CuO nanowire films
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE02190C
– volume: 62
  start-page: 229
  year: 2017
  ident: ref_8
  article-title: Wind turbine blade waste in 2050
  publication-title: Waste Manag.
  doi: 10.1016/j.wasman.2017.02.007
SSID ssj0000456617
Score 2.3680232
Snippet Water evaporation-driven energy harvesting is an emerging mechanism for contributing to green energy production with low cost. Herein, we developed...
SourceID proquest
gale
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 1180
SubjectTerms Alternative energy sources
Aluminum
Analysis
Carbon black
Clean energy
Composite materials
Copper
Dip coatings
Electric power production
Electric properties
Electricity generation
Energy harvesting
Evaporation
Fiberglass
Humidity
Identification and classification
Immersion coating
Nanofibers
Nanoparticles
Polyacrylonitrile
Porous materials
Renewable resources
Substrates
Wind power
Title Evaporation-Driven Energy Generation Using an Electrospun Polyacrylonitrile Nanofiber Mat with Different Support Substrates
URI https://www.ncbi.nlm.nih.gov/pubmed/38732649
https://www.proquest.com/docview/3053152815
https://www.proquest.com/docview/3053969329
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT-MwEB6xcGAvK95kechIiL0QkTiJU58QjxaEBEIIpN4iv3qCNKTpYbV_npnELQsSHC1bluUZz3wztucDOFQ6srkTMrQthVmMAUovs1mYacMVRkTG6rba5524fkpvhtnQJ9wm_lnlzCa2htqODeXITxLSloz34uy0eg2JNYpuVz2Fxg9Yijn6WvopPria51gIrqCH7kprJhjdn1Tj578vsUAnGVMhyP9c0WeD_Almtu5msAK_PE5kZ51gV2HBlWuwfDGjZ1uHf4iBKy-_8LImo8X67Uc-1pWSpg7WvghgCrs6uptJNS3ZPS5PmRpDdTzPNZoFhjYWlUy7mt2qhlFull165pSGEfEngnRGNqatZTvZgKdB__HiOvRMCqFBANKEwiqV5tzEo8RyK3K6fLFRql2U2MhaQbjQWq4kbmLk8szkiJKk4hYRkaGkxyYsluPSbQOTo1y4SBqBrj9F7KcNYoRRpBKnR7irOoDj2aYWxpcZJ7aL5wLDDZJB8UEGARzNh1ddfY2vBv4hCRV07nA-o_z3AVwVVbAqztDQZHnCZR7A7kyIhT-Qk-JdfQI4mHejyOh-RJVuPO3GSIGAVgaw1Ql_vqakh3OLVP7-fvId-MkR9XQvIndhsamnbg9RS6P3W9Xch6Xz_t39A7auhvEb4UfwgQ
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5VAuiDeBAkbicSFqYifO-oBQ1e2ypQ9xaKXegl972mZDNiu04j_xG5lxkgUqwa1nW5blGX_zjR_zAbzWJnGFlyp2QcIsxQRllLs8zo3lGjMi60yo9nkmpxfZ58v8cgt-Dn9h6FnlgIkBqN3C0hn5niBvyfkozT_W32JSjaLb1UFCo3OLY7_-jinb8sPRGO37hvPJ4fnBNO5VBWKLwbiNpdM6K7hNZ8JxJwu6iHBJZnwiXOKcJI7kHNeKS5H4IrcFMgaluUN2YJNQfAkh_1YmhKAnhKPJp82ZDtEjZARdKU8hVLJXL-brq1RiUE6p8OQfoe96ALhGa0N4m9yFOz0vZfudI92DLV_dh52DQQ7uAfxAzl33_hKPGwJJdhg-DrKudDU1sPACgWls6uR1lvWqYl9weto26znhR4MwxBDT0amNb9ipbhmdBbNxr9TSMhIaxaSAEaaF2rnLh3BxI2v8CLarReWfAFOzQvpEWYlUI0OuaSxyklmihTczXFUTwfthUUvblzUndY15iekN2aD8ywYRvN10r7t6Hv_q-I4sVNI-x_Gs7r8r4KyoYla5j8CWF4KrIoLdwYhlDwDL8re7RvBq04wmo_sYXfnFquujJBJoFcHjzvibOYkRji0z9fT_g7-Enen56Ul5cnR2_Axuc2Rc3WvMXdhum5V_joypNS-CmzL4etP74her6ilN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQIuqOXV0BaMxONCtI6dOOsDQlW3S0uh6oFKvQXHdk5LNmSzQqv-s_46ZvJYoBLcerZlWZ7xN9_4MR_AK5Nzl3qlQ9dKmEWYoIwTl4RJboXBjMi6vK32eaaOL-JPl8nlBlwPf2HoWeWAiS1Qu7mlM_KRJG9JxDhKRkX_LOJ8Mv1Q_QhJQYpuWgc5jc5FTv3qJ6Zvi_cnE7T1ayGmR18Pj8NeYSC0GJibUDlj4lTYqJBOOJXSpYTjce65dNw5RXzJOWG0UJL7NLEpsgdthEOmYHlbiAnh_04qcZ_QL_Xpx_X5DlElZAddWU8pNR9V89nqe6QwQEdUhPKPMHgzGNyguG2om27Bg56jsoPOqbZhw5cP4d7hIA33CK6Qf1e974STmgCTHbWfCFlXxpoaWPsagRls6qR2FtWyZOc4PWPr1YywpEZIYojv6OC5r9kX0zA6F2aTXrWlYSQ6igkCI3xr6-guHsPFrazxE9gs56XfAaaLVHmurULaESPvzC3yk4Ib6fMCVzUP4N2wqJntS5yT0sYsw1SHbJD9ZYMA3qy7V11tj391fEsWymjP43jW9F8XcFZUPSs7QJBLUil0GsDeYMSsB4NF9tt1A3i5bkaT0d2MKf182fXRCsm0DuBpZ_z1nOQYx1axfvb_wV_AXdwR2eeTs9NduC-QfHUPM_dgs6mXfh_JU5M_b72Uwbfb3ha_AEq5LYA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaporation-Driven+Energy+Generation+Using+an+Electrospun+Polyacrylonitrile+Nanofiber+Mat+with+Different+Support+Substrates&rft.jtitle=Polymers&rft.au=Kwon%2C+Yongbum&rft.au=Bui-Vinh%2C+Dai&rft.au=Lee%2C+Seung-Hwan&rft.au=Baek%2C+So+Hyun&rft.date=2024-05-01&rft.issn=2073-4360&rft.eissn=2073-4360&rft.volume=16&rft.issue=9&rft_id=info:doi/10.3390%2Fpolym16091180&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon