Stochastic AC optimal power flow: A data-driven approach

There is an emerging need for efficient solutions to stochastic AC Optimal Power Flow (AC-OPF) to ensure optimal and reliable grid operations in the presence of increasing demand and generation uncertainty. This paper presents a highly scalable data-driven algorithm for stochastic AC-OPF that has ex...

Full description

Saved in:
Bibliographic Details
Published inElectric power systems research Vol. 189; p. 106567
Main Authors Mezghani, Ilyes, Misra, Sidhant, Deka, Deepjyoti
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.12.2020
Elsevier Science Ltd
Elsevier
Subjects
Online AccessGet full text
ISSN0378-7796
1873-2046
1873-2046
DOI10.1016/j.epsr.2020.106567

Cover

Abstract There is an emerging need for efficient solutions to stochastic AC Optimal Power Flow (AC-OPF) to ensure optimal and reliable grid operations in the presence of increasing demand and generation uncertainty. This paper presents a highly scalable data-driven algorithm for stochastic AC-OPF that has extremely low sample requirement. The novelty behind the algorithm’s performance involves an iterative scenario design approach that merges information regarding constraint violations in the system with data-driven sparse regression. Compared to conventional methods with random scenario sampling, our approach is able to provide feasible operating points for realistic systems with much lower sample requirements. Furthermore, multiple sub-tasks in our approach can be easily paralleled and based on historical data to enhance its performance and application. We demonstrate the computational improvements of our approach through simulations on different test cases in the IEEE PES PGLib-OPF benchmark library.
AbstractList There is an emerging need for efficient solutions to stochastic AC Optimal Power Flow (AC-OPF) to ensure optimal and reliable grid operations in the presence of increasing demand and generation uncertainty. This paper presents a highly scalable data-driven algorithm for stochastic AC-OPF that has extremely low sample requirement. The novelty behind the algorithm's performance involves an iterative scenario design approach that merges information regarding constraint violations in the system with data-driven sparse regression. Compared to conventional methods with random scenario sampling, our approach is able to provide feasible operating points for realistic systems with much lower sample requirements. Furthermore, multiple sub-tasks in our approach can be easily paralleled and based on historical data to enhance its performance and application. We demonstrate the computational improvements of our approach through simulations on different test cases in the IEEE PES PGLib-OPF benchmark library.
There is an emerging need for efficient solutions to stochastic AC Optimal Power Flow (AC-OPF) to ensure optimal and reliable grid operations in the presence of increasing demand and generation uncertainty. Herein this paper presents a highly scalable data-driven algorithm for stochastic AC-OPF that has extremely low sample requirement. The novelty behind the algorithm’s performance involves an iterative scenario design approach that merges information regarding constraint violations in the system with data-driven sparse regression. Compared to conventional methods with random scenario sampling, our approach is able to provide feasible operating points for realistic systems with much lower sample requirements. Furthermore, multiple sub-tasks in our approach can be easily paralleled and based on historical data to enhance its performance and application. We demonstrate the computational improvements of our approach through simulations on different test cases in the IEEE PES PGLib-OPF benchmark library.
ArticleNumber 106567
Author Deka, Deepjyoti
Mezghani, Ilyes
Misra, Sidhant
Author_xml – sequence: 1
  givenname: Ilyes
  surname: Mezghani
  fullname: Mezghani, Ilyes
  email: ilyes.mezghani@uclouvain.be
  organization: CORE, UCLouvain Louvain-la-Neuve, Belgium
– sequence: 2
  givenname: Sidhant
  surname: Misra
  fullname: Misra, Sidhant
  email: sidhant@lanl.gov
  organization: Theoretical Division, Los Alamos Nationial Laboratory, Los Alamos, NM, USA
– sequence: 3
  givenname: Deepjyoti
  orcidid: 0000-0003-3928-3936
  surname: Deka
  fullname: Deka, Deepjyoti
  email: deepjyoti@lanl.gov
  organization: Theoretical Division, Los Alamos Nationial Laboratory, Los Alamos, NM, USA
BackLink https://www.osti.gov/servlets/purl/1970300$$D View this record in Osti.gov
BookMark eNqNkMtKxDAUhoMoOF5ewFXRdcc0l6YRN8PgDQZcqOuQSU-ZDDWpScbBtzelrlyIq4Twf-f8X07QofMOELqo8LzCVX29ncMQw5xgMj7UvBYHaFY1gpYEs_oQzTAVTSmErI_RSYxbjHEtBZ-h5iV5s9ExWVMsloUfkn3XfTH4PYSi6_3-plgUrU66bIP9BFfoYQhem80ZOup0H-H85zxFb_d3r8vHcvX88LRcrEpDpUwl4wIM7XjDGJMUeM24pI02GJhkhPOWyI40kgHRRLQcqopSoju8zhe8XgM9RXSau3OD_trrvldDyB3Dl6qwGuXVVo3yapRXk3ymLifKZzMVjU1gNsY7ByapSgpMMc6hqymUjT52EJPa-l1w2UYR1kghsBAkp8iUMsHHGKD73_7mF5Qr6GS9S0Hb_m_0dkIh_-qnhTDWB2egtWFs33r7F_4NFdWdoA
CitedBy_id crossref_primary_10_1016_j_epsr_2022_108497
crossref_primary_10_1016_j_epsr_2022_108563
crossref_primary_10_1016_j_epsr_2025_111409
crossref_primary_10_3389_fenrg_2021_793686
crossref_primary_10_1109_LCSYS_2024_3413367
crossref_primary_10_1016_j_ijepes_2023_109249
crossref_primary_10_1109_LCSYS_2021_3096826
crossref_primary_10_1109_TSTE_2023_3305865
crossref_primary_10_3389_fenrg_2024_1465604
crossref_primary_10_3390_su13147577
crossref_primary_10_1109_TPWRS_2022_3187218
crossref_primary_10_1109_TCNS_2023_3330232
crossref_primary_10_1186_s13663_023_00751_0
crossref_primary_10_1007_s11750_022_00639_z
crossref_primary_10_1080_01430750_2022_2163287
crossref_primary_10_1016_j_segan_2025_101672
crossref_primary_10_3390_en15062062
crossref_primary_10_1049_gtd2_12666
Cites_doi 10.1109/TPWRS.2009.2021235
10.1109/TCNS.2017.2673546
10.1007/s10107-002-0331-0
10.1109/TPWRS.2019.2918363
10.1109/TAC.2015.2494875
10.1137/130910312
10.1109/TPWRS.2017.2743348
10.1109/TPWRS.2017.2745410
10.1109/TAC.2006.875041
10.1109/TPWRS.2017.2748060
10.1109/TPWRS.2017.2656080
10.1109/TAC.2014.2303232
10.1109/TPWRS.2017.2760699
10.1109/TPWRS.2013.2272546
ContentType Journal Article
Copyright 2020
Copyright Elsevier Science Ltd. Dec 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier Science Ltd. Dec 2020
CorporateAuthor Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
CorporateAuthor_xml – name: Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
DBID AAYXX
CITATION
7SP
8FD
FR3
KR7
L7M
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1016/j.epsr.2020.106567
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2046
ExternalDocumentID oai:dial.uclouvain.be:boreal:252429
1970300
10_1016_j_epsr_2020_106567
S0378779620303710
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADHUB
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSW
SSZ
T5K
VH1
WUQ
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SP
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
KR7
L7M
SSH
AALMO
AAPBV
ABPIF
ABPTK
OIOZB
OTOTI
ADTOC
UNPAY
ID FETCH-LOGICAL-c399t-457ec3f5844493e5645938ac0e494255d29f2894e2a27d5e11332af0b1130bbe3
IEDL.DBID UNPAY
ISSN 0378-7796
1873-2046
IngestDate Tue Aug 19 23:31:36 EDT 2025
Mon Jul 17 03:58:55 EDT 2023
Fri Jul 25 03:59:56 EDT 2025
Thu Apr 24 23:08:08 EDT 2025
Thu Oct 16 04:31:26 EDT 2025
Fri Feb 23 02:46:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Chance constraints
Sparse regression
Scenario optimization
Monte Carlo
Stochastic AC-OPF
Data-driven optimization
Language English
License other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c399t-457ec3f5844493e5645938ac0e494255d29f2894e2a27d5e11332af0b1130bbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Electricity (OE)
89233218CNA000001
LA-UR-22-32188
USDOE National Nuclear Security Administration (NNSA)
ORCID 0000-0003-3928-3936
0000000290640348
0000000339283936
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/2078.1/252429
PQID 2489770772
PQPubID 2047565
ParticipantIDs unpaywall_primary_10_1016_j_epsr_2020_106567
osti_scitechconnect_1970300
proquest_journals_2489770772
crossref_primary_10_1016_j_epsr_2020_106567
crossref_citationtrail_10_1016_j_epsr_2020_106567
elsevier_sciencedirect_doi_10_1016_j_epsr_2020_106567
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Electric power systems research
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
– name: Elsevier
References Deka, Misra (bib0021) 2019
Molzahn, Roald (bib0006) 2018
Venzke, Halilbasic, Markovic, Hug, Chatzivasileiadis (bib0007) 2018; 33
Calafiore, Campi (bib0009) 2006; 51
Margellos, Goulart, Lygeros (bib0015) 2014; 59
DallAnese, Baker, Summers (bib0008) 2017; 32
S. Babaeinejadsarookolaee, A. Birchfield, R.D. Christie, C. Coffrin, C. DeMarco, R. Diao, M. Ferris, S. Fliscounakis, S. Greene, R. Huang, et al., The power grid library for benchmarking AC optimal power flow algorithms, arXiv preprint arXiv:1908.02788 (2019).
Muhlpfordt, Roald, Hagenmeyer, Faulwasser, Misra (bib0002) 2019; 34
Roald, Misra, Chertkov, Andersson (bib0014) 2015
Chamanbaz, Dabbene, Tempo, Venkataramanan, Wang (bib0016) 2015; 61
Roald, Andersson (bib0001) 2017; 33
Bienstock, Chertkov, Harnett (bib0013) 2014; 56
Ng, Misra, Roald, Backhaus (bib0020) 2018
Dupačová, Gröwe-Kuska, Römisch (bib0018) 2003; 95
Wainwright, Jordan (bib0022) 2008; 1
Mashayekh, Stadler, Cardoso, Heleno, Madathil, Nagarajan, Bent, Mueller-Stoffels, Lu, Wang (bib0011) 2017; 33
Growe-Kuska, Heitsch, Romisch (bib0017) 2003; 3
Stott, Jardim, Alsaç (bib0003) 2009; 24
Lorca, Sun (bib0005) 2018; 33
Deka, Backhaus, Chertkov (bib0004) 2017; 5
Vrakopoulou, Margellos, Lygeros, Andersson (bib0010) 2013; 28
Roald, Oldewurtel, Krause, Andersson (bib0012) 2013
Muhlpfordt (10.1016/j.epsr.2020.106567_bib0002) 2019; 34
Calafiore (10.1016/j.epsr.2020.106567_bib0009) 2006; 51
Molzahn (10.1016/j.epsr.2020.106567_bib0006) 2018
Bienstock (10.1016/j.epsr.2020.106567_bib0013) 2014; 56
Growe-Kuska (10.1016/j.epsr.2020.106567_bib0017) 2003; 3
Dupačová (10.1016/j.epsr.2020.106567_bib0018) 2003; 95
Deka (10.1016/j.epsr.2020.106567_bib0004) 2017; 5
Vrakopoulou (10.1016/j.epsr.2020.106567_bib0010) 2013; 28
Wainwright (10.1016/j.epsr.2020.106567_bib0022) 2008; 1
Roald (10.1016/j.epsr.2020.106567_bib0001) 2017; 33
DallAnese (10.1016/j.epsr.2020.106567_bib0008) 2017; 32
Deka (10.1016/j.epsr.2020.106567_bib0021) 2019
Margellos (10.1016/j.epsr.2020.106567_bib0015) 2014; 59
Ng (10.1016/j.epsr.2020.106567_bib0020) 2018
Roald (10.1016/j.epsr.2020.106567_bib0012) 2013
10.1016/j.epsr.2020.106567_bib0019
Venzke (10.1016/j.epsr.2020.106567_bib0007) 2018; 33
Stott (10.1016/j.epsr.2020.106567_bib0003) 2009; 24
Chamanbaz (10.1016/j.epsr.2020.106567_bib0016) 2015; 61
Mashayekh (10.1016/j.epsr.2020.106567_bib0011) 2017; 33
Lorca (10.1016/j.epsr.2020.106567_bib0005) 2018; 33
Roald (10.1016/j.epsr.2020.106567_bib0014) 2015
References_xml – volume: 59
  start-page: 2258
  year: 2014
  end-page: 2263
  ident: bib0015
  article-title: On the road between robust optimization and the scenario approach for chance constrained optimization problems
  publication-title: IEEE Trans. Autom. Control
– volume: 33
  start-page: 2906
  year: 2017
  end-page: 2918
  ident: bib0001
  article-title: Chance-constrained AC optimal power flow: reformulations and efficient algorithms
  publication-title: IEEE Trans. Power Syst.
– volume: 61
  start-page: 2565
  year: 2015
  end-page: 2571
  ident: bib0016
  article-title: Sequential randomized algorithms for convex optimization in the presence of uncertainty
  publication-title: IEEE Trans. Autom. Control
– volume: 32
  start-page: 3427
  year: 2017
  end-page: 3438
  ident: bib0008
  article-title: Chance-constrained AC optimal power flow for distribution systems with renewables
  publication-title: IEEE Trans. Power Syst.
– volume: 34
  start-page: 4806
  year: 2019
  end-page: 4816
  ident: bib0002
  article-title: Chance-constrained AC optimal power flow: apolynomial chaos approach
  publication-title: IEEE Trans. Power Syst.
– volume: 33
  start-page: 1993
  year: 2018
  end-page: 2003
  ident: bib0005
  article-title: The adaptive robust multi-Period alternating current optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
– volume: 33
  start-page: 2829
  year: 2018
  end-page: 2841
  ident: bib0007
  article-title: Convex relaxations of chance constrained AC optimal power flow
  publication-title: IEEE Trans. Power Syst.
– volume: 28
  start-page: 3885
  year: 2013
  end-page: 3896
  ident: bib0010
  article-title: A probabilistic framework for reserve scheduling and security assessment of systems with high wind power penetration
  publication-title: IEEE Trans. Power Syst.
– volume: 95
  start-page: 493
  year: 2003
  end-page: 511
  ident: bib0018
  article-title: Scenariov reduction in stochastic programming
  publication-title: Math. Program.
– volume: 51
  start-page: 742
  year: 2006
  end-page: 753
  ident: bib0009
  article-title: The scenario approach to robust control design
  publication-title: IEEE Trans. Autom. Control
– volume: 5
  start-page: 1061
  year: 2017
  end-page: 1074
  ident: bib0004
  article-title: Structure learning in power distribution networks
  publication-title: IEEE Trans. Control Netw. Syst.
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0021
  article-title: Learning for DC-OPF: classifying active sets using neural nets
  publication-title: 2019 IEEE Milan PowerTech
– volume: 33
  start-page: 2452
  year: 2017
  end-page: 2462
  ident: bib0011
  article-title: Security-constrained design of isolated multi-energy microgrids
  publication-title: IEEE Trans. Power Syst.
– start-page: 1
  year: 2018
  end-page: 7
  ident: bib0020
  article-title: Statistical learning for DC optimal power flow
  publication-title: 2018 Power Systems Computation Conference (PSCC)
– volume: 56
  start-page: 461
  year: 2014
  end-page: 495
  ident: bib0013
  article-title: Chance-constrained optimal power flow: risk-aware network control under uncertainty
  publication-title: SIAM Rev.
– year: 2018
  ident: bib0006
  article-title: Towards an AC optimal power flow algorithm with robust feasibility guarantees
  publication-title: 20th Power Sys. Comp. Conf., Dublin
– reference: S. Babaeinejadsarookolaee, A. Birchfield, R.D. Christie, C. Coffrin, C. DeMarco, R. Diao, M. Ferris, S. Fliscounakis, S. Greene, R. Huang, et al., The power grid library for benchmarking AC optimal power flow algorithms, arXiv preprint arXiv:1908.02788 (2019).
– volume: 1
  start-page: 1
  year: 2008
  end-page: 305
  ident: bib0022
  article-title: Graphical models, exponential families, and variational inference
  publication-title: Found. Trends® Mach. Learn.
– volume: 3
  start-page: 7
  year: 2003
  end-page: pp
  ident: bib0017
  article-title: Scenario reduction and scenario tree construction for power management problems
  publication-title: 2003 IEEE Bologna Power Tech Conference Proceedings,
– volume: 24
  start-page: 1290
  year: 2009
  end-page: 1300
  ident: bib0003
  article-title: DC power flow revisited
  publication-title: IEEE Trans. Power Syst.
– start-page: 1
  year: 2013
  end-page: 6
  ident: bib0012
  article-title: Analytical reformulation of security constrained optimal power flow with probabilistic constraints
  publication-title: 2013 IEEE Grenoble Conference
– start-page: 6927
  year: 2015
  end-page: 6933
  ident: bib0014
  article-title: Optimal power flow with weighted chance constraints and general policies for generation control
  publication-title: 2015 54th IEEE conference on decision and control (CDC)
– volume: 24
  start-page: 1290
  issue: 3
  year: 2009
  ident: 10.1016/j.epsr.2020.106567_bib0003
  article-title: DC power flow revisited
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2009.2021235
– volume: 5
  start-page: 1061
  issue: 3
  year: 2017
  ident: 10.1016/j.epsr.2020.106567_bib0004
  article-title: Structure learning in power distribution networks
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2017.2673546
– ident: 10.1016/j.epsr.2020.106567_bib0019
– volume: 3
  start-page: 7
  year: 2003
  ident: 10.1016/j.epsr.2020.106567_bib0017
  article-title: Scenario reduction and scenario tree construction for power management problems
– volume: 95
  start-page: 493
  issue: 3
  year: 2003
  ident: 10.1016/j.epsr.2020.106567_bib0018
  article-title: Scenariov reduction in stochastic programming
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0331-0
– volume: 34
  start-page: 4806
  issue: 6
  year: 2019
  ident: 10.1016/j.epsr.2020.106567_bib0002
  article-title: Chance-constrained AC optimal power flow: apolynomial chaos approach
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2918363
– start-page: 1
  year: 2019
  ident: 10.1016/j.epsr.2020.106567_bib0021
  article-title: Learning for DC-OPF: classifying active sets using neural nets
– volume: 61
  start-page: 2565
  issue: 9
  year: 2015
  ident: 10.1016/j.epsr.2020.106567_bib0016
  article-title: Sequential randomized algorithms for convex optimization in the presence of uncertainty
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2015.2494875
– volume: 56
  start-page: 461
  issue: 3
  year: 2014
  ident: 10.1016/j.epsr.2020.106567_bib0013
  article-title: Chance-constrained optimal power flow: risk-aware network control under uncertainty
  publication-title: SIAM Rev.
  doi: 10.1137/130910312
– volume: 33
  start-page: 1993
  issue: 2
  year: 2018
  ident: 10.1016/j.epsr.2020.106567_bib0005
  article-title: The adaptive robust multi-Period alternating current optimal power flow problem
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2743348
– year: 2018
  ident: 10.1016/j.epsr.2020.106567_bib0006
  article-title: Towards an AC optimal power flow algorithm with robust feasibility guarantees
– volume: 33
  start-page: 2906
  issue: 3
  year: 2017
  ident: 10.1016/j.epsr.2020.106567_bib0001
  article-title: Chance-constrained AC optimal power flow: reformulations and efficient algorithms
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2745410
– volume: 51
  start-page: 742
  issue: 5
  year: 2006
  ident: 10.1016/j.epsr.2020.106567_bib0009
  article-title: The scenario approach to robust control design
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2006.875041
– start-page: 1
  year: 2013
  ident: 10.1016/j.epsr.2020.106567_bib0012
  article-title: Analytical reformulation of security constrained optimal power flow with probabilistic constraints
– volume: 33
  start-page: 2452
  issue: 3
  year: 2017
  ident: 10.1016/j.epsr.2020.106567_bib0011
  article-title: Security-constrained design of isolated multi-energy microgrids
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2748060
– volume: 32
  start-page: 3427
  issue: 5
  year: 2017
  ident: 10.1016/j.epsr.2020.106567_bib0008
  article-title: Chance-constrained AC optimal power flow for distribution systems with renewables
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2656080
– start-page: 1
  year: 2018
  ident: 10.1016/j.epsr.2020.106567_bib0020
  article-title: Statistical learning for DC optimal power flow
– volume: 1
  start-page: 1
  issue: 1–2
  year: 2008
  ident: 10.1016/j.epsr.2020.106567_bib0022
  article-title: Graphical models, exponential families, and variational inference
  publication-title: Found. Trends® Mach. Learn.
– volume: 59
  start-page: 2258
  issue: 8
  year: 2014
  ident: 10.1016/j.epsr.2020.106567_bib0015
  article-title: On the road between robust optimization and the scenario approach for chance constrained optimization problems
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2014.2303232
– volume: 33
  start-page: 2829
  issue: 3
  year: 2018
  ident: 10.1016/j.epsr.2020.106567_bib0007
  article-title: Convex relaxations of chance constrained AC optimal power flow
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2760699
– volume: 28
  start-page: 3885
  issue: 4
  year: 2013
  ident: 10.1016/j.epsr.2020.106567_bib0010
  article-title: A probabilistic framework for reserve scheduling and security assessment of systems with high wind power penetration
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2013.2272546
– start-page: 6927
  year: 2015
  ident: 10.1016/j.epsr.2020.106567_bib0014
  article-title: Optimal power flow with weighted chance constraints and general policies for generation control
SSID ssj0006975
Score 2.47333
Snippet There is an emerging need for efficient solutions to stochastic AC Optimal Power Flow (AC-OPF) to ensure optimal and reliable grid operations in the presence...
SourceID unpaywall
osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106567
SubjectTerms Algorithms
Chance constraints
Data-driven optimization
ENGINEERING
Fluid dynamics
Iterative methods
Monte Carlo
Optimization algorithms
Power flow
Probability
Scenario optimization
Sparse regression
Stochastic AC-OPF
Stochastic models
SummonAdditionalLinks – databaseName: Elsevier ScienceDirect
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jF_UgfuLclB68aV2bph_xNoZjCHqZg91Ck6Y4mW3ZOoYX_3bf68fcDg7x1oQ8CC8vv_xSXn6PkBs4IpktfcdUXAUm81zAQUljkwO5DzzFaaTxf8fzizccs6eJO2mQfv0WBtMqK-wvMb1A66qnW3mzm02n3ZHlQLD53KMQp45fPLNizMcqBvdfP2keHi_EdnGwiaOrhzNljpfOFqgJSrEDiI3_2-HUTGG_bXHQvWWShZ-rcDbbOI4GR-Sw4pFGr5zqMWno5IQcbKgLnpJglKfqLUQhZqPXN1IAhw8wybAumhHP0tWD0TMwQ9SM5oh5Rq0vfkbGg8fX_tCsCiWYCvhFbjLX18qJgUswxh1dCMQ4QagszTjsSTeiPAbfM01D6keutuFiSsPYkvBhSamdc9JM0kRfEEPyMNbAubQX28yPULsFLnxMAm9SjEnVInbtIaEqFXEsZjETdbrYu0CvCvSqKL3aIrdrm6zU0Ng52q0dL7YiQQDI77Rr4yqhDcrfKswTAiObI6ZZLdKpF09Uu3QhKAuA_lpwwWiRu_WC_mGOl_-cY5vsY6tMh-mQZj5f6isgNbm8LqL2G1MW728
  priority: 102
  providerName: Elsevier
Title Stochastic AC optimal power flow: A data-driven approach
URI https://dx.doi.org/10.1016/j.epsr.2020.106567
https://www.proquest.com/docview/2489770772
https://www.osti.gov/servlets/purl/1970300
http://hdl.handle.net/2078.1/252429
UnpaywallVersion submittedVersion
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2046
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006975
  issn: 0378-7796
  databaseCode: AKRWK
  dateStart: 19770901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6F5FA4QB9UBELkQ2_Uqb1eP5abxUMpqFEliERPK-96LVRCHCWOIjjw25mJbQRUjeBmWzvyY3ZmvlnPfgPwDUMkd1Xo2VroyOaBj35QscwWCO6jQAuWGlrv-DUI-kN-duVfNaBuePeKXoBhAOu5P5iPgUSsQSvwEXA3oTUc_I7_LP8PYA4UhssuXG6Ed2SY7lVbY8oqLjOZEesnowsIXcL_hZ9mjhb1AmV-mI8nyd0iGY2eBZzTLTiut-2UdSY3vXmhevr-XxbHVe_yETYrwGnF5Qz5BA0z_gwbz2gIv0B0UeT6OiHGZis-snL0IrcoMqEGalY2yheHVmxRKamdTsk5WjUR-TYMT08uj_p21VHB1ghECpv7odFehqCDc-GZJZOMFyXaMVyg8fopExkqiRuWsDD1jYsZLEsyR-GBo5TxvkJznI_NDlhKJJlBcGaCzOVhSiQvmBlyhQBLc650G9z6Q0td0Y1T14uRrOvK_kpSjiTlyFI5bTh4kpmUZBsrR_u1_mQFF0oYIDEarJTbI2WTDPHkaiooQiFXkPNz2tCp54CszHkmGY8QJzuYibTh-9O8eMMz7r5v-B6s01lZLtOBZjGdm30EPYXqwlrvwe1CK_553h90KxN4BPzs-gQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5VZQAGxFOUZwY2CE0c52G2qgKVR7sAUjcrdhxRVJoIWlUs_HbumqTAQIXYIscnWefz5--s82eAE9wiuatCz9ZCRzYPfMRBxVJbILmPAi1YYui8o9sLOo_8pu_3a9Cu7sJQWWWJ_QWmz9C6bGmW3mzmg0Hz3vEw2EIRMIxTL6RrVkvcZyFlYOcfX3UegZip7VJvm7qXN2eKIi-Tv5EoKKMGZDbhb7tTPcMF94OELk9Gefw-jYfDb_vR1TqslUTSahVj3YCaGW3C6jd5wS2I7seZfopJidlqta0M0eEFTXJ6GM1Kh9n0wmpZVCJqJ68EelYlML4Nj1eXD-2OXb6UYGskGGOb-6HRXopkgnPhmZlCjBfF2jFc4KL0EyZSdD43LGZh4hsXM1MWp47CD0cp4-1AfZSNzC5YSsSpQdJlgtTlYULiLZjxcYXESXOudAPcykNSlzLi9JrFUFb1Ys-SvCrJq7LwagNO5zZ5IaKxsLdfOV7-CAWJKL_Qbp9miWxI_1ZToRAauYJAzWnAQTV5slymb5LxCPmvgxlGA87mE_qHMe79c4zHsNx56N7Ju-ve7T6s0J-iNuYA6uPXiTlEhjNWR7MI_gRwS_KS
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HtSDb7FaJQdvmppsNo_1VqqlCBZBC3paspsNorUpmiL6651pkuIDi96SsEMeMzvzzWb2G4BDDJHcVaFna6Ejmwc--kHFUlsguI8CLVhiaL3jshd0-_zi1r-dg6rh3Td6AYYBrOmeMB8DiZiHhcBHwF2DhX7vqnU3-T-AOVAYTrpwuRHekWG6V26NKaq4zOiFWD8ZXUDoEv4WfmoZzqgvKHNxPBzFb6_xYPAp4HRW4azatlPUmTw2x7lq6vefLI6z3mUNVkrAabUKC1mHOTPcgOVPNISbEF3nmb6PibHZarWtDL3IE4qMqIGalQ6y11OrZVEpqZ08k3O0KiLyLeh3zm_aXbvsqGBrBCK5zf3QaC9F0MG58MyEScaLYu0YLnDy-gkTKSqJGxazMPGNixksi1NH4YGjlPG2oTbMhmYHLCXi1CA4M0Hq8jAhkhfMDLlCgKU5V7oObvWhpS7pxqnrxUBWdWUPkpQjSTmyUE4djqYyo4JsY-Zov9KfLOFCAQMkRoOZcnukbJIhnlxNBUUo5Apyfk4dGpUNyHI6v0jGI8TJDmYidTie2sUfnnH3f8P3YInOinKZBtTy57HZR9CTq4PS6D8AZzz3eA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stochastic+AC+optimal+power+flow%3A+A+data-driven+approach&rft.jtitle=Electric+power+systems+research&rft.au=Mezghani%2C+Ilyes&rft.au=Misra%2C+Sidhant&rft.au=Deka%2C+Deepjyoti&rft.date=2020-12-01&rft.pub=Elsevier+B.V&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=189&rft_id=info:doi/10.1016%2Fj.epsr.2020.106567&rft.externalDocID=S0378779620303710
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon