Quantitative analysis of MRI signal abnormalities of brain white matter with high reproducibility and accuracy

Purpose To assess the reproducibility and accuracy compared to radiologists of three automated segmentation pipelines for quantitative magnetic resonance imaging (MRI) measurement of brain white matter signal abnormalities (WMSA). Materials and Methods WMSA segmentation was performed on pairs of who...

Full description

Saved in:
Bibliographic Details
Published inJournal of magnetic resonance imaging Vol. 15; no. 2; pp. 203 - 209
Main Authors Wei, Xingchang, Warfield, Simon K., Zou, Kelly H., Wu, Ying, Li, Xiaoming, Guimond, Alexandre, Mugler III, John P., Benson, Randall R., Wolfson, Leslie, Weiner, Howard L., Guttmann, Charles R.G.
Format Journal Article
LanguageEnglish
Published New York Wiley Subscription Services, Inc., A Wiley Company 01.02.2002
Subjects
Online AccessGet full text
ISSN1053-1807
1522-2586
1522-2586
DOI10.1002/jmri.10053

Cover

Abstract Purpose To assess the reproducibility and accuracy compared to radiologists of three automated segmentation pipelines for quantitative magnetic resonance imaging (MRI) measurement of brain white matter signal abnormalities (WMSA). Materials and Methods WMSA segmentation was performed on pairs of whole brain scans from 20 patients with multiple sclerosis (MS) and 10 older subjects who were positioned and imaged twice within 30 minutes. Radiologist outlines of WMSA on 20 sections from 16 patients were compared with the corresponding results of each segmentation method. Results The segmentation method combining expectation‐maximization (EM) tissue segmentation, template‐driven segmentation (TDS), and partial volume effect correction (PVEC) demonstrated the highest accuracy (the absolute value of the Z‐score was 0.99 for both groups of subjects), as well as high interscan reproducibility (repeatability coefficient was 0.68 mL in MS patients and 1.49 mL in aging subjects). Conclusion The addition of TDS to the EM segmentation and PVEC algorithms significantly improved the accuracy of WMSA volume measurements, while also improving measurement reproducibility. J. Magn. Reson. Imaging 2002;15:203–209. © 2002 Wiley‐Liss, Inc.
AbstractList Purpose To assess the reproducibility and accuracy compared to radiologists of three automated segmentation pipelines for quantitative magnetic resonance imaging (MRI) measurement of brain white matter signal abnormalities (WMSA). Materials and Methods WMSA segmentation was performed on pairs of whole brain scans from 20 patients with multiple sclerosis (MS) and 10 older subjects who were positioned and imaged twice within 30 minutes. Radiologist outlines of WMSA on 20 sections from 16 patients were compared with the corresponding results of each segmentation method. Results The segmentation method combining expectation‐maximization (EM) tissue segmentation, template‐driven segmentation (TDS), and partial volume effect correction (PVEC) demonstrated the highest accuracy (the absolute value of the Z‐score was 0.99 for both groups of subjects), as well as high interscan reproducibility (repeatability coefficient was 0.68 mL in MS patients and 1.49 mL in aging subjects). Conclusion The addition of TDS to the EM segmentation and PVEC algorithms significantly improved the accuracy of WMSA volume measurements, while also improving measurement reproducibility. J. Magn. Reson. Imaging 2002;15:203–209. © 2002 Wiley‐Liss, Inc.
To assess the reproducibility and accuracy compared to radiologists of three automated segmentation pipelines for quantitative magnetic resonance imaging (MRI) measurement of brain white matter signal abnormalities (WMSA). WMSA segmentation was performed on pairs of whole brain scans from 20 patients with multiple sclerosis (MS) and 10 older subjects who were positioned and imaged twice within 30 minutes. Radiologist outlines of WMSA on 20 sections from 16 patients were compared with the corresponding results of each segmentation method. The segmentation method combining expectation-maximization (EM) tissue segmentation, template-driven segmentation (TDS), and partial volume effect correction (PVEC) demonstrated the highest accuracy (the absolute value of the Z-score was 0.99 for both groups of subjects), as well as high interscan reproducibility (repeatability coefficient was 0.68 mL in MS patients and 1.49 mL in aging subjects). The addition of TDS to the EM segmentation and PVEC algorithms significantly improved the accuracy of WMSA volume measurements, while also improving measurement reproducibility.
To assess the reproducibility and accuracy compared to radiologists of three automated segmentation pipelines for quantitative magnetic resonance imaging (MRI) measurement of brain white matter signal abnormalities (WMSA).PURPOSETo assess the reproducibility and accuracy compared to radiologists of three automated segmentation pipelines for quantitative magnetic resonance imaging (MRI) measurement of brain white matter signal abnormalities (WMSA).WMSA segmentation was performed on pairs of whole brain scans from 20 patients with multiple sclerosis (MS) and 10 older subjects who were positioned and imaged twice within 30 minutes. Radiologist outlines of WMSA on 20 sections from 16 patients were compared with the corresponding results of each segmentation method.MATERIALS AND METHODSWMSA segmentation was performed on pairs of whole brain scans from 20 patients with multiple sclerosis (MS) and 10 older subjects who were positioned and imaged twice within 30 minutes. Radiologist outlines of WMSA on 20 sections from 16 patients were compared with the corresponding results of each segmentation method.The segmentation method combining expectation-maximization (EM) tissue segmentation, template-driven segmentation (TDS), and partial volume effect correction (PVEC) demonstrated the highest accuracy (the absolute value of the Z-score was 0.99 for both groups of subjects), as well as high interscan reproducibility (repeatability coefficient was 0.68 mL in MS patients and 1.49 mL in aging subjects).RESULTSThe segmentation method combining expectation-maximization (EM) tissue segmentation, template-driven segmentation (TDS), and partial volume effect correction (PVEC) demonstrated the highest accuracy (the absolute value of the Z-score was 0.99 for both groups of subjects), as well as high interscan reproducibility (repeatability coefficient was 0.68 mL in MS patients and 1.49 mL in aging subjects).The addition of TDS to the EM segmentation and PVEC algorithms significantly improved the accuracy of WMSA volume measurements, while also improving measurement reproducibility.CONCLUSIONThe addition of TDS to the EM segmentation and PVEC algorithms significantly improved the accuracy of WMSA volume measurements, while also improving measurement reproducibility.
Author Guimond, Alexandre
Guttmann, Charles R.G.
Mugler III, John P.
Wolfson, Leslie
Weiner, Howard L.
Zou, Kelly H.
Li, Xiaoming
Benson, Randall R.
Wu, Ying
Wei, Xingchang
Warfield, Simon K.
Author_xml – sequence: 1
  givenname: Xingchang
  surname: Wei
  fullname: Wei, Xingchang
  organization: Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
– sequence: 2
  givenname: Simon K.
  surname: Warfield
  fullname: Warfield, Simon K.
  organization: Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
– sequence: 3
  givenname: Kelly H.
  surname: Zou
  fullname: Zou, Kelly H.
  organization: Department of Health Care Policy, Harvard Medical School, and Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
– sequence: 4
  givenname: Ying
  surname: Wu
  fullname: Wu, Ying
  organization: Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
– sequence: 5
  givenname: Xiaoming
  surname: Li
  fullname: Li, Xiaoming
  organization: Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
– sequence: 6
  givenname: Alexandre
  surname: Guimond
  fullname: Guimond, Alexandre
  organization: Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
– sequence: 7
  givenname: John P.
  surname: Mugler III
  fullname: Mugler III, John P.
  organization: Departments of Radiology and Biomedical Engineering, University of Virginia Health School of Medicine, Charlottesville, Virginia
– sequence: 8
  givenname: Randall R.
  surname: Benson
  fullname: Benson, Randall R.
  organization: Department of Neurology, University of CT Health Center, University of Connecticut, Farmington, Connecticut
– sequence: 9
  givenname: Leslie
  surname: Wolfson
  fullname: Wolfson, Leslie
  organization: Department of Neurology, University of CT Health Center, University of Connecticut, Farmington, Connecticut
– sequence: 10
  givenname: Howard L.
  surname: Weiner
  fullname: Weiner, Howard L.
  organization: Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
– sequence: 11
  givenname: Charles R.G.
  surname: Guttmann
  fullname: Guttmann, Charles R.G.
  email: guttmann@bwh.harvard.edu
  organization: Center for Neurological Imaging, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11836778$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1DAUhS1URB-w4Qcgr1iAAn7EibOkFZSiAdQKKDvrxvF0XBxnsB2G_Hs8kwEkhLqwfHX9nePr42N04AdvEHpMyQtKCHt52we7rQS_h46oYKxgQlYHuc6tgkpSH6LjGG8JIU1TigfokFLJq7qWR8hfjuCTTZDsD4PBg5uijXhY4vdXFzjam9zB0Poh9OBssmZ31gawHm9WNhncQ0om4I1NK7yyNysczDoM3ahta7NiyqYdBq3HAHp6iO4vwUXzaL-foM9vXn86e1ssPp5fnL1aFJo3DS-aZaU72WnKy7ISQHQHZSMaydq8jGib2pS0Y6Lt8kO4BFNxJivDdCMkVCD5CXo--45-DdMGnFPrYHsIk6JEbVNT29TULrVMP53pPPj30cSkehu1cQ68GcaoaloKVnOWwSd7cGx70_313OeZATIDOgwxBrNUepft4FOOzP3_8mf_SO6clM7wxjoz3UGqd_n_fmuKWWNjMj__aCB8U1XNa6GuP5yr8oourr-cflWX_BcBlraN
CitedBy_id crossref_primary_10_1016_j_neuroimage_2015_06_037
crossref_primary_10_1212_NXI_0000000000000530
crossref_primary_10_1002_jmri_27479
crossref_primary_10_1007_s00415_015_8009_8
crossref_primary_10_1016_j_jns_2004_12_017
crossref_primary_10_1002_ima_22297
crossref_primary_10_1371_journal_pone_0078927
crossref_primary_10_1097_01_SMJ_0000063470_95541_6B
crossref_primary_10_1212_WNL_58_1_48
crossref_primary_10_1111_jon_12433
crossref_primary_10_3390_jpm13030378
crossref_primary_10_1016_j_neuroimage_2005_05_046
crossref_primary_10_1002_jmri_10365
crossref_primary_10_1097_01_rmr_0000175131_63152_53
crossref_primary_10_1002_ana_26370
crossref_primary_10_1016_j_neulet_2005_03_025
crossref_primary_10_1016_j_acra_2007_10_012
crossref_primary_10_1007_s00234_007_0262_9
crossref_primary_10_1088_1361_6560_abb6be
crossref_primary_10_1002_ana_22433
crossref_primary_10_1016_S1053_8119_03_00354_9
crossref_primary_10_1177_0271678X16647396
crossref_primary_10_1212_01_wnl_0000264890_97479_b1
crossref_primary_10_1016_j_engappai_2011_02_002
crossref_primary_10_1016_j_jns_2004_04_026
crossref_primary_10_3174_ajnr_A1659
crossref_primary_10_1148_radiol_2343031499
crossref_primary_10_1111_j_1600_0684_2008_00288_x
crossref_primary_10_1109_TITB_2007_911310
crossref_primary_10_1212_WNL_0b013e3181ed9c9c
crossref_primary_10_1186_s12883_019_1245_2
crossref_primary_10_1007_s00234_011_0992_6
crossref_primary_10_1109_TMI_2013_2258403
crossref_primary_10_1111_jon_12688
crossref_primary_10_3389_fnins_2019_00679
crossref_primary_10_1016_j_mri_2007_03_004
crossref_primary_10_1111_j_1552_6569_2008_00296_x
crossref_primary_10_1007_s00234_011_0886_7
crossref_primary_10_1093_toxsci_kfi153
crossref_primary_10_1212_01_wnl_0000325915_00112_61
crossref_primary_10_1111_j_1552_6569_2005_tb00328_x
crossref_primary_10_1016_j_nicl_2017_01_022
crossref_primary_10_1038_gene_2010_58
crossref_primary_10_1002_mrm_20259
crossref_primary_10_1016_j_neuroimage_2014_04_056
crossref_primary_10_1177_1352458516635874
crossref_primary_10_1080_00207450490512650
crossref_primary_10_1016_j_media_2011_01_004
crossref_primary_10_1111_j_1552_6569_2011_00585_x
crossref_primary_10_1080_00207454_2016_1185421
crossref_primary_10_1016_j_neuroimage_2003_10_012
crossref_primary_10_1016_j_neurobiolaging_2007_03_022
crossref_primary_10_1016_j_jns_2022_120501
crossref_primary_10_1007_s00234_014_1322_6
crossref_primary_10_1109_TMI_2015_2393853
crossref_primary_10_1191_1352458504ms1061oa
crossref_primary_10_1109_TMI_2012_2186639
crossref_primary_10_1212_NXI_0000000000200167
crossref_primary_10_1016_j_neuroimage_2017_10_034
crossref_primary_10_1177_1051228405282864
crossref_primary_10_1186_1471_2377_13_73
crossref_primary_10_1111_jon_12490
crossref_primary_10_1371_journal_pone_0174866
crossref_primary_10_1109_TMI_2009_2012896
crossref_primary_10_1111_jon_12491
crossref_primary_10_1016_j_neurol_2008_04_009
crossref_primary_10_1016_j_media_2021_102233
crossref_primary_10_1016_j_nicl_2015_06_009
crossref_primary_10_1109_TBME_2008_926671
crossref_primary_10_1191_1352458505ms1210oa
crossref_primary_10_1016_j_jns_2011_11_040
crossref_primary_10_4329_wjr_v15_i9_256
crossref_primary_10_1016_j_msard_2017_06_011
crossref_primary_10_3174_ajnr_A0701
crossref_primary_10_1177_2055217321999070
crossref_primary_10_1016_j_media_2012_09_004
crossref_primary_10_1016_j_neuroimage_2005_06_061
crossref_primary_10_1155_2009_715124
crossref_primary_10_1177_1352458507077943
crossref_primary_10_1016_j_neuroimage_2010_03_075
crossref_primary_10_1007_s42600_023_00265_z
crossref_primary_10_1016_j_media_2004_11_005
crossref_primary_10_1016_j_jns_2009_04_020
crossref_primary_10_3174_ajnr_A0795
crossref_primary_10_1016_j_jns_2014_08_047
crossref_primary_10_1002_jmri_10258
crossref_primary_10_1016_j_autrev_2006_06_003
crossref_primary_10_3174_ajnr_A1162
crossref_primary_10_4329_wjr_v6_i11_855
crossref_primary_10_1016_j_neuroimage_2004_04_014
crossref_primary_10_1016_j_neuroimage_2006_04_211
Cites_doi 10.1002/(SICI)1522-712X(1995)1:6<326::AID-IGS4>3.0.CO;2-C
10.1002/jmri.1880020603
10.1212/WNL.49.1.274
10.1007/BFb0056229
10.1109/42.511747
10.1002/(SICI)1097-0258(19990815)18:15<2051::AID-SIM162>3.0.CO;2-P
10.1016/S0165-5728(99)00273-8
10.1016/S0730-725X(98)00210-0
10.1002/(SICI)1522-2586(199904)9:4<519::AID-JMRI3>3.0.CO;2-M
10.1109/42.640750
10.1002/ana.410430414
10.1002/jmri.1880060502
10.1148/radiology.216.3.r00au46891
10.1007/10704282_22
10.1002/(SICI)1522-2586(199904)9:4<509::AID-JMRI2>3.0.CO;2-S
10.1093/brain/121.1.3
10.1212/WNL.54.6.1277
10.1016/S0140-6736(86)90837-8
10.1016/S1361-8415(00)00003-7
10.1016/B978-012692535-7/50080-X
ContentType Journal Article
Copyright Copyright © 2002 Wiley‐Liss, Inc.
Copyright 2002 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2002 Wiley‐Liss, Inc.
– notice: Copyright 2002 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1002/jmri.10053
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1522-2586
EndPage 209
ExternalDocumentID 10.1002/jmri.10053
11836778
10_1002_jmri_10053
JMRI10053
ark_67375_WNG_4R1LWVBX_Q
Genre article
Research Support, U.S. Gov't, P.H.S
Comparative Study
Clinical Trial
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Institutes of Health
  funderid: P41 RR13218‐01
– fundername: NIA NIH HHS
  grantid: AGO9675
– fundername: NINDS NIH HHS
  grantid: R01 NS35142
– fundername: NIMH NIH HHS
  grantid: 2R44MH57200-002
– fundername: NIA NIH HHS
  grantid: P01 AG0495316
– fundername: NCRR NIH HHS
  grantid: P41 RR13218-01
GroupedDBID ---
-DZ
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V8K
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
XG1
XV2
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
RGB
RWI
WRC
WUP
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c3993-9f6cd8dc134465a0cda495982b982e5b97e41d25bd18338ae63286e2c958a6a83
IEDL.DBID DR2
ISSN 1053-1807
1522-2586
IngestDate Tue Aug 19 23:40:26 EDT 2025
Fri Jul 11 08:26:43 EDT 2025
Wed Feb 19 01:31:15 EST 2025
Thu Apr 24 23:10:56 EDT 2025
Wed Oct 01 02:23:55 EDT 2025
Sun Sep 21 06:19:31 EDT 2025
Sun Sep 21 06:18:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2002 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3993-9f6cd8dc134465a0cda495982b982e5b97e41d25bd18338ae63286e2c958a6a83
Notes ark:/67375/WNG-4R1LWVBX-Q
ArticleID:JMRI10053
istex:F963CC62D296B6ABDC68103262740F6EEC672406
National Institutes of Health - No. P41 RR13218-01
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Undefined-3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.10053
PMID 11836778
PQID 71452732
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1002_jmri_10053
proquest_miscellaneous_71452732
pubmed_primary_11836778
crossref_citationtrail_10_1002_jmri_10053
crossref_primary_10_1002_jmri_10053
wiley_primary_10_1002_jmri_10053_JMRI10053
istex_primary_ark_67375_WNG_4R1LWVBX_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2002
PublicationDateYYYYMMDD 2002-02-01
PublicationDate_xml – month: 02
  year: 2002
  text: February 2002
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle Journal of magnetic resonance imaging
PublicationTitleAlternate J. Magn. Reson. Imaging
PublicationYear 2002
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Wells WM, Grimson WEL, Kininis R, Jolesz FA. Adaptive segmentation of MRI data. IEEE Trans Med Imaging 1996; 15: 419-442.
Zou KH, McDermott MP. Higher-moment approaches to approximate interval estimation for a certain intraclass correlation coefficient. Stat Med 1999; 18: 2051-2061.
Miller DH, Grossman RI, Reingold SC, McFarland HF. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 1998; 121: 3-24.
Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 8476: 307-310.
Warfield S, Dengler J, Zaers J, Guttmann CRG, et al. Automatic identification of gray matter structures from MRI to improve the segmentation of white matter lesions. J Image Guid Surg 1995; 1: 326-338.
Guttmann CRG, Kikinis R, Anderson MC, et al. Quantitative follow-up of patients with multiple sclerosis using MRI: reproducibility. J Magn Reson Imaging 1999; 9: 509-518.
Gawne-Cain ML, Webb S, Tofts P, Miller DH. Lesion volume measurement in multiple sclerosis: how important is accurate repositioning? J Magn Reson Imaging 1996; 6: 705-713.
Kikinis R, Guttmann CRG, Metcalf D, et al. Quantitative follow-up of patients with multiple sclerosis using MRI: technical aspects. J Magn Reson Imaging 1999; 9: 519-530.
Udupa JK, Wei L, Samarasekera S, Miki Y, van Buchem MA, Grossman RI. Multiple sclerosis lesion quantification using fuzzy-connectedness principles. IEEE Trans Med Imaging 1997; 16: 598-609.
Hohol M, Guttmann CRG, Olek M, et al. Roquinimex (Linomide®) treatment in secondary progressive and relapsing remitting multiple sclerosis: results from 48 week randomized, double-blind, placebo-controlled pilot studies [Abstract]. Neurolgy 1997; 48: A174.
Filippi M, Horsfield MA, Ader HJ, et al. Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 1998; 43: 499-506.
Kikinis R, Shenton ME, Gerig G, et al. Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging. J Magn Reson Imaging 1992; 2: 619-629.
Weiner HL, Guttmann CRG, Khoury SJ, et al. Serial magnetic resonance imaging in multiple sclerosis: correlation with attacks, disability, and disease stage. J Neuroimmunol 2000; 104: 164-173.
Paty DW, McFarland H. Magnetic resonance techniques to monitor the long term evolution of multiple sclerosis pathology and to monitor definitive clinical trials. J Neurol Neurosurg Psychiatry 1998; 64: S47-S51.
Warfield SK, Kaus M, Jolesz FA, Kikinis R. Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 2000; 4: 43-55.
Zijdenbos AP, Dawant BM. Brain segmentation and white matter lesion detection in MR images. Crit Rev Biomed Eng 1994; 22: 401-465.
Filippi M, Marciano N, Capra R, et al. The effect of imprecise repositioning on lesion volume measurements in patients with multiple sclerosis. Neurology 1997; 49: 274-276.
Firbank MJ, Coulthard A, Harrison RM, Williams ED. Partial volume effects in MRI studies of multiple sclerosis. Magn Reson Imaging 1999; 17: 593-601.
Mugler JP, Bao S, Mulkern RV, Guttmann CRG, et al. Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology 2000; 216: 891-899.
Wei X, Warfield SK, Mulkern RV, Brookeman JR, Mugler III JP, Guttmann CR. Multi-contrast high-resolution segmentation of the brain: preliminary report [Abstract]. Radiology 2000; 217: 602.
Guttmann CRG, Benson R, Warfield SK, et al. White matter abnormalities in mobility-impaired older persons. Neurology 2000; 54: 1277-1283.
2000; 104
2000; 4
1999; 18
1997; 48
2000; 54
1999; 17
2000; 216
2000; 217
1986; 8476
1998
1994; 22
1997; 49
1997; 16
1998; 121
1995; 1
1998; 43
1998; 64
1996; 15
1992; 2
1996; 6
1999; 9
1999
Paty DW (e_1_2_6_4_2) 1998; 64
Hohol M (e_1_2_6_11_2) 1997; 48
e_1_2_6_20_2
Wei X (e_1_2_6_22_2) 2000; 217
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_18_2
e_1_2_6_9_2
e_1_2_6_19_2
e_1_2_6_3_2
Zijdenbos AP (e_1_2_6_15_2) 1994; 22
e_1_2_6_6_2
e_1_2_6_5_2
e_1_2_6_12_2
e_1_2_6_24_2
e_1_2_6_13_2
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_10_2
e_1_2_6_21_2
e_1_2_6_16_2
e_1_2_6_17_2
e_1_2_6_14_2
e_1_2_6_25_2
References_xml – reference: Kikinis R, Guttmann CRG, Metcalf D, et al. Quantitative follow-up of patients with multiple sclerosis using MRI: technical aspects. J Magn Reson Imaging 1999; 9: 519-530.
– reference: Paty DW, McFarland H. Magnetic resonance techniques to monitor the long term evolution of multiple sclerosis pathology and to monitor definitive clinical trials. J Neurol Neurosurg Psychiatry 1998; 64: S47-S51.
– reference: Wei X, Warfield SK, Mulkern RV, Brookeman JR, Mugler III JP, Guttmann CR. Multi-contrast high-resolution segmentation of the brain: preliminary report [Abstract]. Radiology 2000; 217: 602.
– reference: Gawne-Cain ML, Webb S, Tofts P, Miller DH. Lesion volume measurement in multiple sclerosis: how important is accurate repositioning? J Magn Reson Imaging 1996; 6: 705-713.
– reference: Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986; 8476: 307-310.
– reference: Miller DH, Grossman RI, Reingold SC, McFarland HF. The role of magnetic resonance techniques in understanding and managing multiple sclerosis. Brain 1998; 121: 3-24.
– reference: Zou KH, McDermott MP. Higher-moment approaches to approximate interval estimation for a certain intraclass correlation coefficient. Stat Med 1999; 18: 2051-2061.
– reference: Warfield S, Dengler J, Zaers J, Guttmann CRG, et al. Automatic identification of gray matter structures from MRI to improve the segmentation of white matter lesions. J Image Guid Surg 1995; 1: 326-338.
– reference: Weiner HL, Guttmann CRG, Khoury SJ, et al. Serial magnetic resonance imaging in multiple sclerosis: correlation with attacks, disability, and disease stage. J Neuroimmunol 2000; 104: 164-173.
– reference: Mugler JP, Bao S, Mulkern RV, Guttmann CRG, et al. Optimized single-slab three-dimensional spin-echo MR imaging of the brain. Radiology 2000; 216: 891-899.
– reference: Guttmann CRG, Benson R, Warfield SK, et al. White matter abnormalities in mobility-impaired older persons. Neurology 2000; 54: 1277-1283.
– reference: Wells WM, Grimson WEL, Kininis R, Jolesz FA. Adaptive segmentation of MRI data. IEEE Trans Med Imaging 1996; 15: 419-442.
– reference: Filippi M, Horsfield MA, Ader HJ, et al. Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis. Ann Neurol 1998; 43: 499-506.
– reference: Udupa JK, Wei L, Samarasekera S, Miki Y, van Buchem MA, Grossman RI. Multiple sclerosis lesion quantification using fuzzy-connectedness principles. IEEE Trans Med Imaging 1997; 16: 598-609.
– reference: Filippi M, Marciano N, Capra R, et al. The effect of imprecise repositioning on lesion volume measurements in patients with multiple sclerosis. Neurology 1997; 49: 274-276.
– reference: Warfield SK, Kaus M, Jolesz FA, Kikinis R. Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 2000; 4: 43-55.
– reference: Zijdenbos AP, Dawant BM. Brain segmentation and white matter lesion detection in MR images. Crit Rev Biomed Eng 1994; 22: 401-465.
– reference: Firbank MJ, Coulthard A, Harrison RM, Williams ED. Partial volume effects in MRI studies of multiple sclerosis. Magn Reson Imaging 1999; 17: 593-601.
– reference: Hohol M, Guttmann CRG, Olek M, et al. Roquinimex (Linomide®) treatment in secondary progressive and relapsing remitting multiple sclerosis: results from 48 week randomized, double-blind, placebo-controlled pilot studies [Abstract]. Neurolgy 1997; 48: A174.
– reference: Kikinis R, Shenton ME, Gerig G, et al. Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging. J Magn Reson Imaging 1992; 2: 619-629.
– reference: Guttmann CRG, Kikinis R, Anderson MC, et al. Quantitative follow-up of patients with multiple sclerosis using MRI: reproducibility. J Magn Reson Imaging 1999; 9: 509-518.
– volume: 49
  start-page: 274
  year: 1997
  end-page: 276
  article-title: The effect of imprecise repositioning on lesion volume measurements in patients with multiple sclerosis
  publication-title: Neurology
– volume: 216
  start-page: 891
  year: 2000
  end-page: 899
  article-title: Optimized single‐slab three‐dimensional spin‐echo MR imaging of the brain
  publication-title: Radiology
– volume: 48
  start-page: A174
  year: 1997
  article-title: Roquinimex (Linomide®) treatment in secondary progressive and relapsing remitting multiple sclerosis: results from 48 week randomized, double‐blind, placebo‐controlled pilot studies [Abstract]
  publication-title: Neurolgy
– volume: 6
  start-page: 705
  year: 1996
  end-page: 713
  article-title: Lesion volume measurement in multiple sclerosis: how important is accurate repositioning?
  publication-title: J Magn Reson Imaging
– volume: 43
  start-page: 499
  year: 1998
  end-page: 506
  article-title: Guidelines for using quantitative measures of brain magnetic resonance imaging abnormalities in monitoring the treatment of multiple sclerosis
  publication-title: Ann Neurol
– volume: 121
  start-page: 3
  year: 1998
  end-page: 24
  article-title: The role of magnetic resonance techniques in understanding and managing multiple sclerosis
  publication-title: Brain
– volume: 2
  start-page: 619
  year: 1992
  end-page: 629
  article-title: Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging
  publication-title: J Magn Reson Imaging
– volume: 18
  start-page: 2051
  year: 1999
  end-page: 2061
  article-title: Higher‐moment approaches to approximate interval estimation for a certain intraclass correlation coefficient
  publication-title: Stat Med
– volume: 9
  start-page: 509
  year: 1999
  end-page: 518
  article-title: Quantitative follow‐up of patients with multiple sclerosis using MRI: reproducibility
  publication-title: J Magn Reson Imaging
– volume: 9
  start-page: 519
  year: 1999
  end-page: 530
  article-title: Quantitative follow‐up of patients with multiple sclerosis using MRI: technical aspects
  publication-title: J Magn Reson Imaging
– volume: 104
  start-page: 164
  year: 2000
  end-page: 173
  article-title: Serial magnetic resonance imaging in multiple sclerosis: correlation with attacks, disability, and disease stage
  publication-title: J Neuroimmunol
– volume: 1
  start-page: 326
  year: 1995
  end-page: 338
  article-title: Automatic identification of gray matter structures from MRI to improve the segmentation of white matter lesions
  publication-title: J Image Guid Surg
– volume: 22
  start-page: 401
  year: 1994
  end-page: 465
  article-title: Brain segmentation and white matter lesion detection in MR images
  publication-title: Crit Rev Biomed Eng
– volume: 8476
  start-page: 307
  year: 1986
  end-page: 310
  article-title: Statistical methods for assessing agreement between two methods of clinical measurement
  publication-title: Lancet
– start-page: 202
  year: 1999
  end-page: 209
– volume: 54
  start-page: 1277
  year: 2000
  end-page: 1283
  article-title: White matter abnormalities in mobility‐impaired older persons
  publication-title: Neurology
– volume: 16
  start-page: 598
  year: 1997
  end-page: 609
  article-title: Multiple sclerosis lesion quantification using fuzzy‐connectedness principles
  publication-title: IEEE Trans Med Imaging
– start-page: 67
  year: 1999
  end-page: 84
– volume: 217
  start-page: 602
  year: 2000
  article-title: Multi‐contrast high‐resolution segmentation of the brain: preliminary report [Abstract]
  publication-title: Radiology
– start-page: 439
  year: 1998
  end-page: 448
– volume: 17
  start-page: 593
  year: 1999
  end-page: 601
  article-title: Partial volume effects in MRI studies of multiple sclerosis
  publication-title: Magn Reson Imaging
– volume: 64
  start-page: S47
  year: 1998
  end-page: S51
  article-title: Magnetic resonance techniques to monitor the long term evolution of multiple sclerosis pathology and to monitor definitive clinical trials
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 4
  start-page: 43
  year: 2000
  end-page: 55
  article-title: Adaptive, template moderated, spatially varying statistical classification
  publication-title: Med Image Anal
– volume: 15
  start-page: 419
  year: 1996
  end-page: 442
  article-title: Adaptive segmentation of MRI data
  publication-title: IEEE Trans Med Imaging
– ident: e_1_2_6_8_2
  doi: 10.1002/(SICI)1522-712X(1995)1:6<326::AID-IGS4>3.0.CO;2-C
– ident: e_1_2_6_13_2
  doi: 10.1002/jmri.1880020603
– volume: 48
  start-page: A174
  year: 1997
  ident: e_1_2_6_11_2
  article-title: Roquinimex (Linomide®) treatment in secondary progressive and relapsing remitting multiple sclerosis: results from 48 week randomized, double‐blind, placebo‐controlled pilot studies [Abstract]
  publication-title: Neurolgy
– ident: e_1_2_6_19_2
  doi: 10.1212/WNL.49.1.274
– ident: e_1_2_6_24_2
  doi: 10.1007/BFb0056229
– ident: e_1_2_6_14_2
  doi: 10.1109/42.511747
– ident: e_1_2_6_17_2
  doi: 10.1002/(SICI)1097-0258(19990815)18:15<2051::AID-SIM162>3.0.CO;2-P
– ident: e_1_2_6_2_2
  doi: 10.1016/S0165-5728(99)00273-8
– volume: 22
  start-page: 401
  year: 1994
  ident: e_1_2_6_15_2
  article-title: Brain segmentation and white matter lesion detection in MR images
  publication-title: Crit Rev Biomed Eng
– ident: e_1_2_6_20_2
  doi: 10.1016/S0730-725X(98)00210-0
– ident: e_1_2_6_7_2
  doi: 10.1002/(SICI)1522-2586(199904)9:4<519::AID-JMRI3>3.0.CO;2-M
– ident: e_1_2_6_25_2
  doi: 10.1109/42.640750
– ident: e_1_2_6_6_2
  doi: 10.1002/ana.410430414
– volume: 64
  start-page: S47
  year: 1998
  ident: e_1_2_6_4_2
  article-title: Magnetic resonance techniques to monitor the long term evolution of multiple sclerosis pathology and to monitor definitive clinical trials
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 217
  start-page: 602
  year: 2000
  ident: e_1_2_6_22_2
  article-title: Multi‐contrast high‐resolution segmentation of the brain: preliminary report [Abstract]
  publication-title: Radiology
– ident: e_1_2_6_18_2
  doi: 10.1002/jmri.1880060502
– ident: e_1_2_6_21_2
  doi: 10.1148/radiology.216.3.r00au46891
– ident: e_1_2_6_23_2
  doi: 10.1007/10704282_22
– ident: e_1_2_6_3_2
  doi: 10.1002/(SICI)1522-2586(199904)9:4<509::AID-JMRI2>3.0.CO;2-S
– ident: e_1_2_6_5_2
  doi: 10.1093/brain/121.1.3
– ident: e_1_2_6_12_2
  doi: 10.1212/WNL.54.6.1277
– ident: e_1_2_6_16_2
  doi: 10.1016/S0140-6736(86)90837-8
– ident: e_1_2_6_10_2
  doi: 10.1016/S1361-8415(00)00003-7
– ident: e_1_2_6_9_2
  doi: 10.1016/B978-012692535-7/50080-X
SSID ssj0009945
Score 2.038256
Snippet Purpose To assess the reproducibility and accuracy compared to radiologists of three automated segmentation pipelines for quantitative magnetic resonance...
To assess the reproducibility and accuracy compared to radiologists of three automated segmentation pipelines for quantitative magnetic resonance imaging (MRI)...
SourceID unpaywall
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 203
SubjectTerms aging
Aging - physiology
brain
Brain - pathology
Brain - physiology
brain, aging
brain, white matter
computer-assisted
Double-Blind Method
Humans
Image Interpretation, Computer-Assisted
image processing
image processing, computer‐assisted
magnetic resonance imaging
Magnetic Resonance Imaging - methods
magnetic resonance imaging, volume measurement
multiple sclerosis
Multiple Sclerosis - pathology
Reproducibility of Results
Sensitivity and Specificity
Signal Processing, Computer-Assisted
volume measurement
white matter
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BKwF74BsWPi0xITEpI3HixHkciDEmWrGJsvJk-SsSrEur0mh0f_18Tho2NE1IPESylLMT23fns-_uZ4CNQjmz2Og05AWPwrTMo1Alpggz6xan0nJb-Ky0wTDbHaV7YzY-l8Xf4EN0B24oGV5fo4DPTNno-da7T9_-PJ7_wBJLrkM_Y-6zPeiPhl-2v3snJ0vCuMmYdqsUDSnjWYdQer7yhTWpj8P7-zKDcw1u1tVMLk_kZHLRlvWL0c4dkKtuNDEoR1v1Qm3p078QHv-nn3fhdmupku2Gte7BNVvdhxuD1hf_AKr9WlY-Rc0pTCJbcBMyLcng4BPBuBBXW6oKjeKJx23FdwqvpCAn6Lwgxx7bk-BRMEHYZIIImwhA20TsLl2jhkit67nUy4cw2vnw9f1u2N7eEGo0esKizLThRscJYrLJSBvpNmMFp8o9lqkit2lsKFPGaZWES5sllGeW6oJxmUmePIJeNa3sOhCqDctKt1GMlE4TVUgpWWRzx04sV0lsAnizmj-hW2hzvGFjIhpQZipwAIUfwABedbSzBtDjUqrXng06Ejk_whC4nInD4UeRHsSfD7-9G4v9AF6u-EQ4wURvi6zstP4l8jhFcDsawOOGff58znUYcfsC2Oj46cp_2fT8cQWJ2HMz60tP_q3Np3DLX2vjw8-fQW8xr-1zZ10t1ItWgM4AuIojFA
  priority: 102
  providerName: Unpaywall
Title Quantitative analysis of MRI signal abnormalities of brain white matter with high reproducibility and accuracy
URI https://api.istex.fr/ark:/67375/WNG-4R1LWVBX-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmri.10053
https://www.ncbi.nlm.nih.gov/pubmed/11836778
https://www.proquest.com/docview/71452732
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/jmri.10053
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2586
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2586
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009945
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3raxQxEMCH0oKPD76166MGLILCtrubfSTglyrWWrzDHp69fpCQ10Ltda9cb6nnX28mu7dHpRT0w0JgZx9JJskkmfwGYJMrZxYbnYaMsyhMyyIKFTU8zK0bnErLLPen0nr9fG-Y7o-y0Qq8W5yFafgQ3YIbtgzfX2MDl-p8ewkN_Xk6PcZ0hqjPmOZ-PjVYsqM49xGKnf1Aw5hFRccmTbaXj14ajdawYH9dZWrehpt1dSbnF3I8vmzF-mFo9y78WGSg8T452apnakv__ovt-L85vAd3WvuU7DQKdR9WbPUAbvTaHfiHUB3UsvIH01w3SWSLNCGTkvQGnwl6g7inparQFB57WiveUxiIglzglgU59URPggvABGHJBLmaiJ1t_HTn7qWGSK3rqdTzRzDc_fjtw17YxmwINZo6IS9zbZjRMUUSm4y0kW4Kxlmi3GUzxQubxibJlHF9CWXS5jRhuU00z5jMJaOPYbWaVHYdSKJNlpduehgpnVLFpZRZZAunRFmhaGwCeLOoO6FboDnG1RiLBsWcCCxA4QswgFed7FmD8bhS6rVXgU5ETk_Q8a3IxGH_k0gH8ZfD7-9H4iCAlwsdEa454h6LrOykPhdFnCLSLgngSaM6y8-5DCOtL4DNTpeu_Ze3XjeuERH7rmZ96um_CD-DWz6kjXc9fw6rs2ltXzjLaqY2fAvagLVh_-vO0R9mHyCa
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3ba9swFIcPWwvr9rD7Ou9WwcpgBbe25Yv0uI11aZcEGto1b0I3w9rUKWlMl_3105Fdh45S2B4Chhzf5CPpJ-noOwCbXDlZbHQaMs6iMC2LKFTU8DC3rnMqLbPc70obDPPeUbo_zsZtbA7uhWn4EN2EG9YM315jBccJ6Z0lNfTkbPYTjzN6F1bT3A1UUBONlvQozn2OYqcgaBizqOjopMnO8txr_dEqFu2vm8TmA1irq3O5uJSTyXUd6zui3UdNttULzy_E-JPT7XqutvXvv-iO__2Oj-FhK1HJp8annsAdWz2Fe4N2Ef4ZVAe1rPzeNNdSEtlSTci0JIPRHsGAEHe2VBWq4YkHtuJ_CnNRkEtctSBnHupJcA6YIC-ZIFoTybNNqO7CXdQQqXU9k3rxHI52vx5-6YVt2oZQo9oJeZlrw4yOKcLYZKSNdKMwzhLlfjZTvLBpbJJMGdecUCZtThOW20TzjMlcMvoCVqppZV8CSbTJ8tKNECOlU6q4lDKLbOH8KCsUjU0AH68-ntAt0xxTa0xEQ2NOBBag8AUYwPvO9rwhedxo9cH7QGciZ6cY-1Zk4nj4TaSjuH_84_NYHASwceUkwtVIXGaRlZ3WF6KIU6TaJQGsN76zvJ17YQT2BbDZOdOtz7LlneMWE7Hvvqw_evUvxhuw1jsc9EV_b_j9Ndz3GW58JPobWJnPavvWCa25euer0x9PBiML
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Zb9QwEIBH0EoFHriPcNUSFRJIaXM5sR-BsrSlu6Ir2u6b5SsSdJtdbTcqy6_H46RZFVWV4CGSpUwO22N7bI-_AdjgypnFRmch4ywKs7KIQpUaHubWDU6lZZb7U2n9Qb5zmO2N6Kj1zcGzMA0foltww5bh-2ts4HZqyq0lNfTn6ewHpml6E1Yzyhl69G0Pl_Qozn2MYmdBpGHMoqKjkyZby2cvjUerWLS_rjI278CtuprKxbkcjy_bsX4g6t1roq2eeX4h-p-cbNZztal__0V3_O883oe7rYlKPjQ69QBu2OohrPXbTfhHUB3UsvJn01xPSWRLNSGTkvSHuwQdQtzTUlVoDY89sBXvKYxFQc5x14KceqgnwTVggrxkgmhNJM82rroL91JDpNb1TOrFYzjsff7-aSdswzaEGq2dkJe5NszoOEUYm4y0kW4Wxlmi3GWp4oXNYpNQZVx3kjJp8zRhuU00p0zmkqVPYKWaVPYZkEQbmpduhhgpnaWKSylpZAunR7RQaWwCeHdReUK3THMMrTEWDY05EViAwhdgAG862WlD8rhS6q3XgU5Ezk7Q962g4njwRWTDeP_46ONIHASwfqEkwrVI3GaRlZ3UZ6KIM6TaJQE8bXRn-TmXYQT2BbDRKdO1__LeK8c1ImLP1axPPf8X4XVY-7bdE_u7g68v4LYPcOMd0V_CynxW21fOzpqr1741_QHI4SKP
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9BKwF74BsWPi0xITEpI3HixHkciDEmWrGJsvJk-SsSrEur0mh0f_18Tho2NE1IPESylLMT23fns-_uZ4CNQjmz2Og05AWPwrTMo1Alpggz6xan0nJb-Ky0wTDbHaV7YzY-l8Xf4EN0B24oGV5fo4DPTNno-da7T9_-PJ7_wBJLrkM_Y-6zPeiPhl-2v3snJ0vCuMmYdqsUDSnjWYdQer7yhTWpj8P7-zKDcw1u1tVMLk_kZHLRlvWL0c4dkKtuNDEoR1v1Qm3p078QHv-nn3fhdmupku2Gte7BNVvdhxuD1hf_AKr9WlY-Rc0pTCJbcBMyLcng4BPBuBBXW6oKjeKJx23FdwqvpCAn6Lwgxx7bk-BRMEHYZIIImwhA20TsLl2jhkit67nUy4cw2vnw9f1u2N7eEGo0esKizLThRscJYrLJSBvpNmMFp8o9lqkit2lsKFPGaZWES5sllGeW6oJxmUmePIJeNa3sOhCqDctKt1GMlE4TVUgpWWRzx04sV0lsAnizmj-hW2hzvGFjIhpQZipwAIUfwABedbSzBtDjUqrXng06Ejk_whC4nInD4UeRHsSfD7-9G4v9AF6u-EQ4wURvi6zstP4l8jhFcDsawOOGff58znUYcfsC2Oj46cp_2fT8cQWJ2HMz60tP_q3Np3DLX2vjw8-fQW8xr-1zZ10t1ItWgM4AuIojFA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+analysis+of+MRI+signal+abnormalities+of+brain+white+matter+with+high+reproducibility+and+accuracy&rft.jtitle=Journal+of+magnetic+resonance+imaging&rft.au=Wei%2C+Xingchang&rft.au=Warfield%2C+Simon+K.&rft.au=Zou%2C+Kelly+H.&rft.au=Wu%2C+Ying&rft.date=2002-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=1053-1807&rft.eissn=1522-2586&rft.volume=15&rft.issue=2&rft.spage=203&rft.epage=209&rft_id=info:doi/10.1002%2Fjmri.10053&rft.externalDBID=10.1002%252Fjmri.10053&rft.externalDocID=JMRI10053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-1807&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-1807&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-1807&client=summon