The nickel ion removal prediction model from aqueous solutions using a hybrid neural genetic algorithm
Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new predictive model based on the hybrid neural genetic algorithm (GANN) was developed to predict the Ni(II) ion removal and water removal durin...
Saved in:
| Published in | Journal of environmental management Vol. 204; no. Pt 1; pp. 311 - 317 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
15.12.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0301-4797 1095-8630 1095-8630 |
| DOI | 10.1016/j.jenvman.2017.09.011 |
Cover
| Abstract | Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new predictive model based on the hybrid neural genetic algorithm (GANN) was developed to predict the Ni(II) ion removal and water removal during the process from aqueous solutions using ion flotation. A multi-layer GANN model was trained to develop a predictive model based on the important effective variables on the Ni(II) ion flotation. The input variables of the model were pH, collector concentration, frother concentration, impeller speed and flotation time, while the removal percentage of Ni(II) ions and water during ion flotation were the outputs. The most effective input variables on Ni(II) removal and water removal were evaluated using the sensitivity analysis. The sensitivity analysis of the model shows that all input variables have a significant impact on the outputs. The results show that the proposed GANN models can be used to predict the Ni(II) removal and water removal during ion flotation.
•A new predictive model based on GANN is developed to predict Ni(II) removal.•Ni(II) removal is sensitive to impeller speed, pH, collector concentration and time.•The water removal during ion flotation is more sensitive to flotation time and pH.•The new proposed GANN models has relative superiority to ANN models. |
|---|---|
| AbstractList | Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new predictive model based on the hybrid neural genetic algorithm (GANN) was developed to predict the Ni(II) ion removal and water removal during the process from aqueous solutions using ion flotation. A multi-layer GANN model was trained to develop a predictive model based on the important effective variables on the Ni(II) ion flotation. The input variables of the model were pH, collector concentration, frother concentration, impeller speed and flotation time, while the removal percentage of Ni(II) ions and water during ion flotation were the outputs. The most effective input variables on Ni(II) removal and water removal were evaluated using the sensitivity analysis. The sensitivity analysis of the model shows that all input variables have a significant impact on the outputs. The results show that the proposed GANN models can be used to predict the Ni(II) removal and water removal during ion flotation.
•A new predictive model based on GANN is developed to predict Ni(II) removal.•Ni(II) removal is sensitive to impeller speed, pH, collector concentration and time.•The water removal during ion flotation is more sensitive to flotation time and pH.•The new proposed GANN models has relative superiority to ANN models. Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new predictive model based on the hybrid neural genetic algorithm (GANN) was developed to predict the Ni(II) ion removal and water removal during the process from aqueous solutions using ion flotation. A multi-layer GANN model was trained to develop a predictive model based on the important effective variables on the Ni(II) ion flotation. The input variables of the model were pH, collector concentration, frother concentration, impeller speed and flotation time, while the removal percentage of Ni(II) ions and water during ion flotation were the outputs. The most effective input variables on Ni(II) removal and water removal were evaluated using the sensitivity analysis. The sensitivity analysis of the model shows that all input variables have a significant impact on the outputs. The results show that the proposed GANN models can be used to predict the Ni(II) removal and water removal during ion flotation.Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new predictive model based on the hybrid neural genetic algorithm (GANN) was developed to predict the Ni(II) ion removal and water removal during the process from aqueous solutions using ion flotation. A multi-layer GANN model was trained to develop a predictive model based on the important effective variables on the Ni(II) ion flotation. The input variables of the model were pH, collector concentration, frother concentration, impeller speed and flotation time, while the removal percentage of Ni(II) ions and water during ion flotation were the outputs. The most effective input variables on Ni(II) removal and water removal were evaluated using the sensitivity analysis. The sensitivity analysis of the model shows that all input variables have a significant impact on the outputs. The results show that the proposed GANN models can be used to predict the Ni(II) removal and water removal during ion flotation. Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new predictive model based on the hybrid neural genetic algorithm (GANN) was developed to predict the Ni(II) ion removal and water removal during the process from aqueous solutions using ion flotation. A multi-layer GANN model was trained to develop a predictive model based on the important effective variables on the Ni(II) ion flotation. The input variables of the model were pH, collector concentration, frother concentration, impeller speed and flotation time, while the removal percentage of Ni(II) ions and water during ion flotation were the outputs. The most effective input variables on Ni(II) removal and water removal were evaluated using the sensitivity analysis. The sensitivity analysis of the model shows that all input variables have a significant impact on the outputs. The results show that the proposed GANN models can be used to predict the Ni(II) removal and water removal during ion flotation. |
| Author | Kowsari, Elaheh Rezai, Bahram Hoseinian, Fatemeh Sadat |
| Author_xml | – sequence: 1 givenname: Fatemeh Sadat surname: Hoseinian fullname: Hoseinian, Fatemeh Sadat organization: Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran 158754413, Iran – sequence: 2 givenname: Bahram orcidid: 0000-0002-9008-7490 surname: Rezai fullname: Rezai, Bahram email: rezai@aut.ac.ir organization: Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran 158754413, Iran – sequence: 3 givenname: Elaheh surname: Kowsari fullname: Kowsari, Elaheh organization: Department of Chemistry, Amirkabir University of Technology, Tehran 15916-34311, Iran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28898752$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1uEzEUhS1URNPCI4C8ZDPBP-M_sUCoAlqpEpuythzPncRhxg72TKS-fT1KYMEmK0u-37m6Ot8NuoopAkLvKVlTQuWn_XoP8Ti6uGaEqjUxa0LpK7SixIhGS06u0IpwQptWGXWNbkrZE0I4o-oNumZaG60EW6H-aQc4Bv8bBhxSxBnGdHQDPmTogp-WrzF1ddjnNGL3Z4Y0F1zSMC-zgucS4hY7vHve5NDhCHOu6S1EmILHbtimHKbd-Ba97t1Q4N35vUW_vn97urtvHn_-eLj7-th4bvTU9B6M71vaqp5smOeq1Vqa3lDKJaey7VgHTmshpfRmw7nqqFBcKMKkUEwIfos-nvYecqq3lsmOoXgYBheXwy2rHQihNeMXUWq4FsYQySr64YzOmxE6e8hhdPnZ_q2xAuIE-JxKydD_Qyixiy67t2dddtFlibFVV819_i_nw-SWZqfswnAx_eWUhtroMUC2xQeIvprL4CfbpXBhwwsF37O_ |
| CitedBy_id | crossref_primary_10_1088_1742_6596_1384_1_012008 crossref_primary_10_3390_su10072474 crossref_primary_10_1016_j_iswcr_2022_03_004 crossref_primary_10_1080_21622515_2021_1913242 crossref_primary_10_1080_00986445_2020_1746655 crossref_primary_10_1016_j_rser_2021_111153 crossref_primary_10_1080_01496395_2025_2463602 crossref_primary_10_1016_j_cej_2021_130011 crossref_primary_10_1088_1742_6596_1679_4_042016 crossref_primary_10_1016_j_jece_2018_11_013 crossref_primary_10_1111_jfpe_13844 crossref_primary_10_1021_acs_langmuir_4c01732 crossref_primary_10_5004_dwt_2019_24661 crossref_primary_10_1016_j_seppur_2020_116639 crossref_primary_10_1007_s40089_021_00356_8 crossref_primary_10_1016_j_mineng_2022_107480 crossref_primary_10_1016_j_scitotenv_2019_134279 crossref_primary_10_1080_01496395_2018_1548479 crossref_primary_10_1080_12269328_2019_1644205 crossref_primary_10_1080_01496395_2025_2452407 crossref_primary_10_1080_01496395_2019_1582543 crossref_primary_10_1016_j_est_2023_107942 crossref_primary_10_1080_01496395_2018_1474925 |
| Cites_doi | 10.1016/S0301-7516(03)00113-3 10.1080/01496395.2016.1267216 10.1016/j.jhazmat.2007.02.013 10.1016/j.powtec.2016.11.045 10.1021/la900098g 10.1016/j.enmm.2014.03.001 10.1080/01496395.2014.978456 10.1021/ie400085t 10.1016/j.minpro.2015.07.006 10.1007/s12613-010-0353-1 10.1016/j.watres.2009.10.029 10.1016/j.jprocont.2009.01.001 10.1016/j.cej.2011.05.005 10.1016/j.engappai.2006.06.005 10.1016/j.molliq.2016.11.069 10.1016/j.jhazmat.2009.06.025 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd Copyright © 2017 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright © 2017 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1016/j.jenvman.2017.09.011 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Environmental Sciences |
| EISSN | 1095-8630 |
| EndPage | 317 |
| ExternalDocumentID | 28898752 10_1016_j_jenvman_2017_09_011 S0301479717308721 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFRF ABFYP ABJNI ABLST ABMAC ABMMH ABYKQ ACDAQ ACGFO ACGFS ACPRK ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AVARZ AXJTR BELTK BKOJK BKOMP BLECG BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HMC IHE J1W JARJE KCYFY KOM LG5 LY8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ PRBVW Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SES SPC SPCBC SSB SSJ SSO SSR SSZ T5K TAE TWZ WH7 XSW Y6R YK3 ZCA ZU3 ~02 ~G- ~KM 29K 3EH 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADFGL ADMUD ADNMO ADXHL AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIDBO AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CAG CITATION COF D-I EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SEN SEW UHS UQL VH1 WUQ XPP YV5 ZMT ZY4 ~HD CGR CUY CVF ECM EIF NPM YIN 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c398t-fce9cf4147f0b2c3748869f911363164d2dea885666c9b337d157357026572553 |
| IEDL.DBID | .~1 |
| ISSN | 0301-4797 1095-8630 |
| IngestDate | Thu Oct 02 08:53:38 EDT 2025 Thu Oct 02 16:29:29 EDT 2025 Wed Feb 19 02:44:34 EST 2025 Wed Oct 01 03:20:11 EDT 2025 Thu Apr 24 23:11:59 EDT 2025 Fri Feb 23 02:29:25 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | Pt 1 |
| Keywords | Ni(II) removal Sensitivity analysis Artificial neural network Genetic algorithm Ion flotation |
| Language | English |
| License | Copyright © 2017 Elsevier Ltd. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c398t-fce9cf4147f0b2c3748869f911363164d2dea885666c9b337d157357026572553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9008-7490 |
| PMID | 28898752 |
| PQID | 1938599062 |
| PQPubID | 23479 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_2000558823 proquest_miscellaneous_1938599062 pubmed_primary_28898752 crossref_primary_10_1016_j_jenvman_2017_09_011 crossref_citationtrail_10_1016_j_jenvman_2017_09_011 elsevier_sciencedirect_doi_10_1016_j_jenvman_2017_09_011 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-12-15 |
| PublicationDateYYYYMMDD | 2017-12-15 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of environmental management |
| PublicationTitleAlternate | J Environ Manage |
| PublicationYear | 2017 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Deliyanni, Kyzas, Matis (bib6) 2017; 225 Hoseinian, Irannajad, Nooshabadi (bib9) 2015; 143 Mohanty (bib14) 2009; 19 Hoseinian, Faradonbeh, Abdollahzadeh, Rezai, Soltani-Mohammadi (bib8) 2017; 308 Hoseinian, Irannajad, Safari (bib10) 2017; 52 Shanthi, Sahoo, Saravanan (bib17) 2009; 4 Chelgani, Shahbazi, Rezai (bib4) 2010; 17 Polat, Erdogan (bib15) 2007; 148 Liu, Doyle (bib12) 2009; 25 Yasin, Ahmad, Ghaffari-Moghaddam, Khajeh (bib19) 2014; 1 Li, Yang, Yan, Wang (bib11) 2014 Das, Das, Dhundasi (bib5) 2008; 128 Mahmoud, Lazaridis (bib13) 2015; 50 Shakir, Elkafrawy, Ghoneimy, Beheir, Refaat (bib16) 2010; 44 Benardos, Vosniakos (bib2) 2007; 20 Bodagh, Khoshdast, Sharafi, Shahbani Zahiri, Akbari Noghabi (bib3) 2013; 52 Doyle (bib7) 2003; 72 Turan, Mesci, Ozgonenel (bib18) 2011; 171 Aber, Amani-Ghadim, Mirzajani (bib1) 2009; 171 Hoseinian (10.1016/j.jenvman.2017.09.011_bib10) 2017; 52 Deliyanni (10.1016/j.jenvman.2017.09.011_bib6) 2017; 225 Doyle (10.1016/j.jenvman.2017.09.011_bib7) 2003; 72 Chelgani (10.1016/j.jenvman.2017.09.011_bib4) 2010; 17 Turan (10.1016/j.jenvman.2017.09.011_bib18) 2011; 171 Bodagh (10.1016/j.jenvman.2017.09.011_bib3) 2013; 52 Shanthi (10.1016/j.jenvman.2017.09.011_bib17) 2009; 4 Hoseinian (10.1016/j.jenvman.2017.09.011_bib8) 2017; 308 Li (10.1016/j.jenvman.2017.09.011_bib11) 2014 Hoseinian (10.1016/j.jenvman.2017.09.011_bib9) 2015; 143 Liu (10.1016/j.jenvman.2017.09.011_bib12) 2009; 25 Mahmoud (10.1016/j.jenvman.2017.09.011_bib13) 2015; 50 Polat (10.1016/j.jenvman.2017.09.011_bib15) 2007; 148 Das (10.1016/j.jenvman.2017.09.011_bib5) 2008; 128 Shakir (10.1016/j.jenvman.2017.09.011_bib16) 2010; 44 Mohanty (10.1016/j.jenvman.2017.09.011_bib14) 2009; 19 Yasin (10.1016/j.jenvman.2017.09.011_bib19) 2014; 1 Aber (10.1016/j.jenvman.2017.09.011_bib1) 2009; 171 Benardos (10.1016/j.jenvman.2017.09.011_bib2) 2007; 20 |
| References_xml | – volume: 171 start-page: 484 year: 2009 end-page: 490 ident: bib1 article-title: Removal of Cr (VI) from polluted solutions by electrocoagulation: modeling of experimental results using artificial neural network publication-title: J. Hazard Mater. – volume: 17 start-page: 526 year: 2010 end-page: 534 ident: bib4 article-title: Estimation of froth flotation recovery and collision probability based on operational parameters using an artificial neural network publication-title: Int. J. Min. Metall. Mater. – volume: 171 start-page: 1091 year: 2011 end-page: 1097 ident: bib18 article-title: The use of artificial neural networks (ANN) for modeling of adsorption of Cu (II) from industrial leachate by pumice publication-title: Chem. Eng. J. – volume: 20 start-page: 365 year: 2007 end-page: 382 ident: bib2 article-title: Optimizing feedforward artificial neural network architecture publication-title: Eng. Appl. Artif. Intell. – volume: 148 start-page: 267 year: 2007 end-page: 273 ident: bib15 article-title: Heavy metal removal from waste waters by ion flotation publication-title: J. Hazard Mater. – volume: 4 start-page: 95 year: 2009 end-page: 102 ident: bib17 article-title: Evolving connection weights of artificial neural networks using genetic algorithm with application to the prediction of stroke disease publication-title: Int. J. Soft Comput. – volume: 52 start-page: 3910 year: 2013 end-page: 3917 ident: bib3 article-title: Removal of cadmium (II) from aqueous solution by ion flotation using rhamnolipid biosurfactant as an ion collector publication-title: Ind. Eng. Chem. Res. – volume: 25 start-page: 8927 year: 2009 end-page: 8934 ident: bib12 article-title: Ion flotation of Co publication-title: Langmuir – volume: 225 start-page: 260 year: 2017 end-page: 264 ident: bib6 article-title: Various flotation techniques for metal ions removal publication-title: J. Mol. Liq. – volume: 143 start-page: 131 year: 2015 end-page: 137 ident: bib9 article-title: Ion flotation for removal of Ni (II) and Zn (II) ions from wastewaters publication-title: Int. J. Miner. Process. – volume: 50 start-page: 1421 year: 2015 end-page: 1432 ident: bib13 article-title: Simultaneous removal of nickel (II) and chromium (VI) from aqueous solutions and simulated wastewaters by foam separation publication-title: Separ. Sci. Technol. – volume: 19 start-page: 991 year: 2009 end-page: 999 ident: bib14 article-title: Artificial neural network based system identification and model predictive control of a flotation column publication-title: J. Process Contr. – volume: 308 start-page: 61 year: 2017 end-page: 69 ident: bib8 article-title: Semi-autogenous mill power model development using gene expression programming publication-title: Powder Technol. – volume: 1 start-page: 2 year: 2014 end-page: 7 ident: bib19 article-title: Application of a hybrid artificial neural network–genetic algorithm approach to optimize the lead ions removal from aqueous solutions using intercalated tartrate-Mg–Al layered double hydroxides publication-title: Environ. Nanotechnol. Monit. Manag. – year: 2014 ident: bib11 article-title: The Application and Research of the GA-BP Neural Network Algorithm in the MBR Membrane Fouling – volume: 128 start-page: 412 year: 2008 ident: bib5 article-title: Nickel, its adverse health effects & oxidative stress publication-title: Indian J. Med. Res. – volume: 44 start-page: 1449 year: 2010 end-page: 1461 ident: bib16 article-title: Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation publication-title: Water Res. – volume: 52 start-page: 892 year: 2017 end-page: 902 ident: bib10 article-title: Effective factors and kinetics study of zinc ion removal from synthetic wastewater by ion flotation publication-title: Separ. Sci. Technol. – volume: 72 start-page: 387 year: 2003 end-page: 399 ident: bib7 article-title: Ion flotation—its potential for hydrometallurgical operations publication-title: Int. J. Miner. Process. – volume: 72 start-page: 387 issue: 1 year: 2003 ident: 10.1016/j.jenvman.2017.09.011_bib7 article-title: Ion flotation—its potential for hydrometallurgical operations publication-title: Int. J. Miner. Process. doi: 10.1016/S0301-7516(03)00113-3 – volume: 52 start-page: 892 issue: 5 year: 2017 ident: 10.1016/j.jenvman.2017.09.011_bib10 article-title: Effective factors and kinetics study of zinc ion removal from synthetic wastewater by ion flotation publication-title: Separ. Sci. Technol. doi: 10.1080/01496395.2016.1267216 – volume: 148 start-page: 267 issue: 1 year: 2007 ident: 10.1016/j.jenvman.2017.09.011_bib15 article-title: Heavy metal removal from waste waters by ion flotation publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2007.02.013 – volume: 308 start-page: 61 year: 2017 ident: 10.1016/j.jenvman.2017.09.011_bib8 article-title: Semi-autogenous mill power model development using gene expression programming publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.11.045 – volume: 25 start-page: 8927 issue: 16 year: 2009 ident: 10.1016/j.jenvman.2017.09.011_bib12 article-title: Ion flotation of Co2+, Ni2+, and Cu2+ using dodecyldiethylenetriamine (Ddien) publication-title: Langmuir doi: 10.1021/la900098g – volume: 1 start-page: 2 year: 2014 ident: 10.1016/j.jenvman.2017.09.011_bib19 article-title: Application of a hybrid artificial neural network–genetic algorithm approach to optimize the lead ions removal from aqueous solutions using intercalated tartrate-Mg–Al layered double hydroxides publication-title: Environ. Nanotechnol. Monit. Manag. doi: 10.1016/j.enmm.2014.03.001 – volume: 50 start-page: 1421 issue: 9 year: 2015 ident: 10.1016/j.jenvman.2017.09.011_bib13 article-title: Simultaneous removal of nickel (II) and chromium (VI) from aqueous solutions and simulated wastewaters by foam separation publication-title: Separ. Sci. Technol. doi: 10.1080/01496395.2014.978456 – volume: 52 start-page: 3910 issue: 10 year: 2013 ident: 10.1016/j.jenvman.2017.09.011_bib3 article-title: Removal of cadmium (II) from aqueous solution by ion flotation using rhamnolipid biosurfactant as an ion collector publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie400085t – volume: 143 start-page: 131 year: 2015 ident: 10.1016/j.jenvman.2017.09.011_bib9 article-title: Ion flotation for removal of Ni (II) and Zn (II) ions from wastewaters publication-title: Int. J. Miner. Process. doi: 10.1016/j.minpro.2015.07.006 – volume: 17 start-page: 526 issue: 5 year: 2010 ident: 10.1016/j.jenvman.2017.09.011_bib4 article-title: Estimation of froth flotation recovery and collision probability based on operational parameters using an artificial neural network publication-title: Int. J. Min. Metall. Mater. doi: 10.1007/s12613-010-0353-1 – volume: 44 start-page: 1449 issue: 5 year: 2010 ident: 10.1016/j.jenvman.2017.09.011_bib16 article-title: Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation publication-title: Water Res. doi: 10.1016/j.watres.2009.10.029 – volume: 19 start-page: 991 issue: 6 year: 2009 ident: 10.1016/j.jenvman.2017.09.011_bib14 article-title: Artificial neural network based system identification and model predictive control of a flotation column publication-title: J. Process Contr. doi: 10.1016/j.jprocont.2009.01.001 – volume: 171 start-page: 1091 issue: 3 year: 2011 ident: 10.1016/j.jenvman.2017.09.011_bib18 article-title: The use of artificial neural networks (ANN) for modeling of adsorption of Cu (II) from industrial leachate by pumice publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2011.05.005 – year: 2014 ident: 10.1016/j.jenvman.2017.09.011_bib11 – volume: 4 start-page: 95 issue: 2 year: 2009 ident: 10.1016/j.jenvman.2017.09.011_bib17 article-title: Evolving connection weights of artificial neural networks using genetic algorithm with application to the prediction of stroke disease publication-title: Int. J. Soft Comput. – volume: 20 start-page: 365 issue: 3 year: 2007 ident: 10.1016/j.jenvman.2017.09.011_bib2 article-title: Optimizing feedforward artificial neural network architecture publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2006.06.005 – volume: 225 start-page: 260 year: 2017 ident: 10.1016/j.jenvman.2017.09.011_bib6 article-title: Various flotation techniques for metal ions removal publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2016.11.069 – volume: 171 start-page: 484 issue: 1 year: 2009 ident: 10.1016/j.jenvman.2017.09.011_bib1 article-title: Removal of Cr (VI) from polluted solutions by electrocoagulation: modeling of experimental results using artificial neural network publication-title: J. Hazard Mater. doi: 10.1016/j.jhazmat.2009.06.025 – volume: 128 start-page: 412 issue: 4 year: 2008 ident: 10.1016/j.jenvman.2017.09.011_bib5 article-title: Nickel, its adverse health effects & oxidative stress publication-title: Indian J. Med. Res. |
| SSID | ssj0003217 |
| Score | 2.3569665 |
| Snippet | Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 311 |
| SubjectTerms | Adsorption Algorithms aqueous solutions Artificial neural network Genetic algorithm Ion flotation ions Ions - chemistry Ni(II) removal nickel Nickel - analysis Nickel - chemistry prediction Sensitivity analysis Solutions - chemistry Water Pollutants, Chemical Water Purification - methods |
| Title | The nickel ion removal prediction model from aqueous solutions using a hybrid neural genetic algorithm |
| URI | https://dx.doi.org/10.1016/j.jenvman.2017.09.011 https://www.ncbi.nlm.nih.gov/pubmed/28898752 https://www.proquest.com/docview/1938599062 https://www.proquest.com/docview/2000558823 |
| Volume | 204 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1095-8630 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003217 issn: 0301-4797 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1095-8630 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003217 issn: 0301-4797 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1095-8630 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003217 issn: 0301-4797 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1095-8630 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003217 issn: 0301-4797 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1095-8630 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003217 issn: 0301-4797 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4h9jBe0MYGdPyQJ-01bRPHsf2IEKhsGi-AxJtlOza0atOqLZP2sr99d2nSiocKicdEvujk-2zfxffdAfygElI6pjFRWe4wQBFl4lwREhu4C7rIRWqJKPz7thg85D8fxeMOXLZcGEqrbPb-1Z5e79bNm14zm73ZcNi7q6MBqekaua9kTSbPc0ldDLr_NmkePKu77tJg-oskNyye3qg7CtWfiaUyqKmsy52m6bbzaZv_WZ9D159gv3Eg2cVKx8-wE6oD-NjyixcHcHi14a7hwGbxLr5AREiwaojLdszQGmweJlPEGZvN6bKGDMTqvjiMKCfMohrTlwVbY5NRivwTs-z5L7G8GFXCRGkEIPEgmR0_TefD5fPkKzxcX91fDpKmzULiuVbLJPqgfcxxLmPfZZ7q0ahCR03dXjhGU2VWBqsU-n2F145zWaZCciExehMSIxJ-CLvVtArHwLI8lkH4aPte4-e0K6Nwnpe2RCQUQXYgbyfX-KYGObXCGJs22WxkGpsYsonpa4M26UB3LTZbFeF4S0C1ljOv0GTwoHhL9HtraYMrja5PbEXzbdDVVUJTXeftY4j4hOhXGe_A0Qoma40zpTRGh9m39yt3Anv0ROk0qTiF3eX8JZyhU7R05zXqz-HDxc2vwe1_rFcNzw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaK7tBdhq1bt-ypAbs6iSXLko5D0SLb2l7WAr0Jkiy1CRInSNIBu-y3j3TsBDsEBXa1RYPgQyItfiTAF2ohZVKeMs0LjwmKrDLvy5i5KHw0ZSFzR0Dhy6tydFN8v5W3B3DaYWGorLLd-zd7erNbt08GrTQHi_F48LPJBpSha-ShVgQmf1JIrigD6__Z1XkI3ozdpdX0G0ntYDyDSX8S618zR31Qc9X0O83zfQfUvgC0OYjOn8OzNoJkXzdMvoCDWB_DUQcwXh3DydkOvIYLW-9dvYSENsHqMfrtlKE62DLO5mhobLGk2xrSEGsG4zDCnDCHbMwfVmxrnIxq5O-YY_e_CebFqBUmUqMFEhCSuendfDle389ewc352fXpKGvnLGRBGL3OUogmpAKFmYaeB2pIo0uTDI17EZhOVbyKTmsM_MpgvBCqyqUSUmH6JhWmJOIEDut5Hd8A40WqogzJDYPBzxlfJemDqFyFplBG1YOiE64NbRNymoUxtV212cS2OrGkEzs0FnXSg_6WbLHpwvEYge40Z_8xJ4snxWOknztNW3Q1uj9xNcnbYqyrpaHGzvvXEPIJzV9z0YPXGzPZcsy1Npge8rf_z9wnOBpdX17Yi29XP97BU3pDtTW5fA-H6-VD_IAR0tp_bDzgL8oPD2Q |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+nickel+ion+removal+prediction+model+from+aqueous+solutions+using+a+hybrid+neural+genetic+algorithm&rft.jtitle=Journal+of+environmental+management&rft.au=Hoseinian%2C+Fatemeh+Sadat&rft.au=Rezai%2C+Bahram&rft.au=Kowsari%2C+Elaheh&rft.date=2017-12-15&rft.pub=Elsevier+Ltd&rft.issn=0301-4797&rft.eissn=1095-8630&rft.volume=204&rft.spage=311&rft.epage=317&rft_id=info:doi/10.1016%2Fj.jenvman.2017.09.011&rft.externalDocID=S0301479717308721 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon |