The nickel ion removal prediction model from aqueous solutions using a hybrid neural genetic algorithm

Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new predictive model based on the hybrid neural genetic algorithm (GANN) was developed to predict the Ni(II) ion removal and water removal durin...

Full description

Saved in:
Bibliographic Details
Published inJournal of environmental management Vol. 204; no. Pt 1; pp. 311 - 317
Main Authors Hoseinian, Fatemeh Sadat, Rezai, Bahram, Kowsari, Elaheh
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.12.2017
Subjects
Online AccessGet full text
ISSN0301-4797
1095-8630
1095-8630
DOI10.1016/j.jenvman.2017.09.011

Cover

Abstract Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new predictive model based on the hybrid neural genetic algorithm (GANN) was developed to predict the Ni(II) ion removal and water removal during the process from aqueous solutions using ion flotation. A multi-layer GANN model was trained to develop a predictive model based on the important effective variables on the Ni(II) ion flotation. The input variables of the model were pH, collector concentration, frother concentration, impeller speed and flotation time, while the removal percentage of Ni(II) ions and water during ion flotation were the outputs. The most effective input variables on Ni(II) removal and water removal were evaluated using the sensitivity analysis. The sensitivity analysis of the model shows that all input variables have a significant impact on the outputs. The results show that the proposed GANN models can be used to predict the Ni(II) removal and water removal during ion flotation. •A new predictive model based on GANN is developed to predict Ni(II) removal.•Ni(II) removal is sensitive to impeller speed, pH, collector concentration and time.•The water removal during ion flotation is more sensitive to flotation time and pH.•The new proposed GANN models has relative superiority to ANN models.
AbstractList Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new predictive model based on the hybrid neural genetic algorithm (GANN) was developed to predict the Ni(II) ion removal and water removal during the process from aqueous solutions using ion flotation. A multi-layer GANN model was trained to develop a predictive model based on the important effective variables on the Ni(II) ion flotation. The input variables of the model were pH, collector concentration, frother concentration, impeller speed and flotation time, while the removal percentage of Ni(II) ions and water during ion flotation were the outputs. The most effective input variables on Ni(II) removal and water removal were evaluated using the sensitivity analysis. The sensitivity analysis of the model shows that all input variables have a significant impact on the outputs. The results show that the proposed GANN models can be used to predict the Ni(II) removal and water removal during ion flotation. •A new predictive model based on GANN is developed to predict Ni(II) removal.•Ni(II) removal is sensitive to impeller speed, pH, collector concentration and time.•The water removal during ion flotation is more sensitive to flotation time and pH.•The new proposed GANN models has relative superiority to ANN models.
Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new predictive model based on the hybrid neural genetic algorithm (GANN) was developed to predict the Ni(II) ion removal and water removal during the process from aqueous solutions using ion flotation. A multi-layer GANN model was trained to develop a predictive model based on the important effective variables on the Ni(II) ion flotation. The input variables of the model were pH, collector concentration, frother concentration, impeller speed and flotation time, while the removal percentage of Ni(II) ions and water during ion flotation were the outputs. The most effective input variables on Ni(II) removal and water removal were evaluated using the sensitivity analysis. The sensitivity analysis of the model shows that all input variables have a significant impact on the outputs. The results show that the proposed GANN models can be used to predict the Ni(II) removal and water removal during ion flotation.Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new predictive model based on the hybrid neural genetic algorithm (GANN) was developed to predict the Ni(II) ion removal and water removal during the process from aqueous solutions using ion flotation. A multi-layer GANN model was trained to develop a predictive model based on the important effective variables on the Ni(II) ion flotation. The input variables of the model were pH, collector concentration, frother concentration, impeller speed and flotation time, while the removal percentage of Ni(II) ions and water during ion flotation were the outputs. The most effective input variables on Ni(II) removal and water removal were evaluated using the sensitivity analysis. The sensitivity analysis of the model shows that all input variables have a significant impact on the outputs. The results show that the proposed GANN models can be used to predict the Ni(II) removal and water removal during ion flotation.
Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new predictive model based on the hybrid neural genetic algorithm (GANN) was developed to predict the Ni(II) ion removal and water removal during the process from aqueous solutions using ion flotation. A multi-layer GANN model was trained to develop a predictive model based on the important effective variables on the Ni(II) ion flotation. The input variables of the model were pH, collector concentration, frother concentration, impeller speed and flotation time, while the removal percentage of Ni(II) ions and water during ion flotation were the outputs. The most effective input variables on Ni(II) removal and water removal were evaluated using the sensitivity analysis. The sensitivity analysis of the model shows that all input variables have a significant impact on the outputs. The results show that the proposed GANN models can be used to predict the Ni(II) removal and water removal during ion flotation.
Author Kowsari, Elaheh
Rezai, Bahram
Hoseinian, Fatemeh Sadat
Author_xml – sequence: 1
  givenname: Fatemeh Sadat
  surname: Hoseinian
  fullname: Hoseinian, Fatemeh Sadat
  organization: Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran 158754413, Iran
– sequence: 2
  givenname: Bahram
  orcidid: 0000-0002-9008-7490
  surname: Rezai
  fullname: Rezai, Bahram
  email: rezai@aut.ac.ir
  organization: Department of Mining and Metallurgical Engineering, Amirkabir University of Technology, Tehran 158754413, Iran
– sequence: 3
  givenname: Elaheh
  surname: Kowsari
  fullname: Kowsari, Elaheh
  organization: Department of Chemistry, Amirkabir University of Technology, Tehran 15916-34311, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28898752$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1uEzEUhS1URNPCI4C8ZDPBP-M_sUCoAlqpEpuythzPncRhxg72TKS-fT1KYMEmK0u-37m6Ot8NuoopAkLvKVlTQuWn_XoP8Ti6uGaEqjUxa0LpK7SixIhGS06u0IpwQptWGXWNbkrZE0I4o-oNumZaG60EW6H-aQc4Bv8bBhxSxBnGdHQDPmTogp-WrzF1ddjnNGL3Z4Y0F1zSMC-zgucS4hY7vHve5NDhCHOu6S1EmILHbtimHKbd-Ba97t1Q4N35vUW_vn97urtvHn_-eLj7-th4bvTU9B6M71vaqp5smOeq1Vqa3lDKJaey7VgHTmshpfRmw7nqqFBcKMKkUEwIfos-nvYecqq3lsmOoXgYBheXwy2rHQihNeMXUWq4FsYQySr64YzOmxE6e8hhdPnZ_q2xAuIE-JxKydD_Qyixiy67t2dddtFlibFVV819_i_nw-SWZqfswnAx_eWUhtroMUC2xQeIvprL4CfbpXBhwwsF37O_
CitedBy_id crossref_primary_10_1088_1742_6596_1384_1_012008
crossref_primary_10_3390_su10072474
crossref_primary_10_1016_j_iswcr_2022_03_004
crossref_primary_10_1080_21622515_2021_1913242
crossref_primary_10_1080_00986445_2020_1746655
crossref_primary_10_1016_j_rser_2021_111153
crossref_primary_10_1080_01496395_2025_2463602
crossref_primary_10_1016_j_cej_2021_130011
crossref_primary_10_1088_1742_6596_1679_4_042016
crossref_primary_10_1016_j_jece_2018_11_013
crossref_primary_10_1111_jfpe_13844
crossref_primary_10_1021_acs_langmuir_4c01732
crossref_primary_10_5004_dwt_2019_24661
crossref_primary_10_1016_j_seppur_2020_116639
crossref_primary_10_1007_s40089_021_00356_8
crossref_primary_10_1016_j_mineng_2022_107480
crossref_primary_10_1016_j_scitotenv_2019_134279
crossref_primary_10_1080_01496395_2018_1548479
crossref_primary_10_1080_12269328_2019_1644205
crossref_primary_10_1080_01496395_2025_2452407
crossref_primary_10_1080_01496395_2019_1582543
crossref_primary_10_1016_j_est_2023_107942
crossref_primary_10_1080_01496395_2018_1474925
Cites_doi 10.1016/S0301-7516(03)00113-3
10.1080/01496395.2016.1267216
10.1016/j.jhazmat.2007.02.013
10.1016/j.powtec.2016.11.045
10.1021/la900098g
10.1016/j.enmm.2014.03.001
10.1080/01496395.2014.978456
10.1021/ie400085t
10.1016/j.minpro.2015.07.006
10.1007/s12613-010-0353-1
10.1016/j.watres.2009.10.029
10.1016/j.jprocont.2009.01.001
10.1016/j.cej.2011.05.005
10.1016/j.engappai.2006.06.005
10.1016/j.molliq.2016.11.069
10.1016/j.jhazmat.2009.06.025
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright © 2017 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright © 2017 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.jenvman.2017.09.011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
EISSN 1095-8630
EndPage 317
ExternalDocumentID 28898752
10_1016_j_jenvman_2017_09_011
S0301479717308721
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
9JO
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFRF
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABYKQ
ACDAQ
ACGFO
ACGFS
ACPRK
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AVARZ
AXJTR
BELTK
BKOJK
BKOMP
BLECG
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMC
IHE
J1W
JARJE
KCYFY
KOM
LG5
LY8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
TAE
TWZ
WH7
XSW
Y6R
YK3
ZCA
ZU3
~02
~G-
~KM
29K
3EH
53G
AAHBH
AAQXK
AATTM
AAXKI
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADFGL
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIDBO
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
D-I
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SEN
SEW
UHS
UQL
VH1
WUQ
XPP
YV5
ZMT
ZY4
~HD
CGR
CUY
CVF
ECM
EIF
NPM
YIN
7X8
7S9
L.6
ID FETCH-LOGICAL-c398t-fce9cf4147f0b2c3748869f911363164d2dea885666c9b337d157357026572553
IEDL.DBID .~1
ISSN 0301-4797
1095-8630
IngestDate Thu Oct 02 08:53:38 EDT 2025
Thu Oct 02 16:29:29 EDT 2025
Wed Feb 19 02:44:34 EST 2025
Wed Oct 01 03:20:11 EDT 2025
Thu Apr 24 23:11:59 EDT 2025
Fri Feb 23 02:29:25 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt 1
Keywords Ni(II) removal
Sensitivity analysis
Artificial neural network
Genetic algorithm
Ion flotation
Language English
License Copyright © 2017 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-fce9cf4147f0b2c3748869f911363164d2dea885666c9b337d157357026572553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9008-7490
PMID 28898752
PQID 1938599062
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_2000558823
proquest_miscellaneous_1938599062
pubmed_primary_28898752
crossref_primary_10_1016_j_jenvman_2017_09_011
crossref_citationtrail_10_1016_j_jenvman_2017_09_011
elsevier_sciencedirect_doi_10_1016_j_jenvman_2017_09_011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-12-15
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-12-15
  day: 15
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of environmental management
PublicationTitleAlternate J Environ Manage
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Deliyanni, Kyzas, Matis (bib6) 2017; 225
Hoseinian, Irannajad, Nooshabadi (bib9) 2015; 143
Mohanty (bib14) 2009; 19
Hoseinian, Faradonbeh, Abdollahzadeh, Rezai, Soltani-Mohammadi (bib8) 2017; 308
Hoseinian, Irannajad, Safari (bib10) 2017; 52
Shanthi, Sahoo, Saravanan (bib17) 2009; 4
Chelgani, Shahbazi, Rezai (bib4) 2010; 17
Polat, Erdogan (bib15) 2007; 148
Liu, Doyle (bib12) 2009; 25
Yasin, Ahmad, Ghaffari-Moghaddam, Khajeh (bib19) 2014; 1
Li, Yang, Yan, Wang (bib11) 2014
Das, Das, Dhundasi (bib5) 2008; 128
Mahmoud, Lazaridis (bib13) 2015; 50
Shakir, Elkafrawy, Ghoneimy, Beheir, Refaat (bib16) 2010; 44
Benardos, Vosniakos (bib2) 2007; 20
Bodagh, Khoshdast, Sharafi, Shahbani Zahiri, Akbari Noghabi (bib3) 2013; 52
Doyle (bib7) 2003; 72
Turan, Mesci, Ozgonenel (bib18) 2011; 171
Aber, Amani-Ghadim, Mirzajani (bib1) 2009; 171
Hoseinian (10.1016/j.jenvman.2017.09.011_bib10) 2017; 52
Deliyanni (10.1016/j.jenvman.2017.09.011_bib6) 2017; 225
Doyle (10.1016/j.jenvman.2017.09.011_bib7) 2003; 72
Chelgani (10.1016/j.jenvman.2017.09.011_bib4) 2010; 17
Turan (10.1016/j.jenvman.2017.09.011_bib18) 2011; 171
Bodagh (10.1016/j.jenvman.2017.09.011_bib3) 2013; 52
Shanthi (10.1016/j.jenvman.2017.09.011_bib17) 2009; 4
Hoseinian (10.1016/j.jenvman.2017.09.011_bib8) 2017; 308
Li (10.1016/j.jenvman.2017.09.011_bib11) 2014
Hoseinian (10.1016/j.jenvman.2017.09.011_bib9) 2015; 143
Liu (10.1016/j.jenvman.2017.09.011_bib12) 2009; 25
Mahmoud (10.1016/j.jenvman.2017.09.011_bib13) 2015; 50
Polat (10.1016/j.jenvman.2017.09.011_bib15) 2007; 148
Das (10.1016/j.jenvman.2017.09.011_bib5) 2008; 128
Shakir (10.1016/j.jenvman.2017.09.011_bib16) 2010; 44
Mohanty (10.1016/j.jenvman.2017.09.011_bib14) 2009; 19
Yasin (10.1016/j.jenvman.2017.09.011_bib19) 2014; 1
Aber (10.1016/j.jenvman.2017.09.011_bib1) 2009; 171
Benardos (10.1016/j.jenvman.2017.09.011_bib2) 2007; 20
References_xml – volume: 171
  start-page: 484
  year: 2009
  end-page: 490
  ident: bib1
  article-title: Removal of Cr (VI) from polluted solutions by electrocoagulation: modeling of experimental results using artificial neural network
  publication-title: J. Hazard Mater.
– volume: 17
  start-page: 526
  year: 2010
  end-page: 534
  ident: bib4
  article-title: Estimation of froth flotation recovery and collision probability based on operational parameters using an artificial neural network
  publication-title: Int. J. Min. Metall. Mater.
– volume: 171
  start-page: 1091
  year: 2011
  end-page: 1097
  ident: bib18
  article-title: The use of artificial neural networks (ANN) for modeling of adsorption of Cu (II) from industrial leachate by pumice
  publication-title: Chem. Eng. J.
– volume: 20
  start-page: 365
  year: 2007
  end-page: 382
  ident: bib2
  article-title: Optimizing feedforward artificial neural network architecture
  publication-title: Eng. Appl. Artif. Intell.
– volume: 148
  start-page: 267
  year: 2007
  end-page: 273
  ident: bib15
  article-title: Heavy metal removal from waste waters by ion flotation
  publication-title: J. Hazard Mater.
– volume: 4
  start-page: 95
  year: 2009
  end-page: 102
  ident: bib17
  article-title: Evolving connection weights of artificial neural networks using genetic algorithm with application to the prediction of stroke disease
  publication-title: Int. J. Soft Comput.
– volume: 52
  start-page: 3910
  year: 2013
  end-page: 3917
  ident: bib3
  article-title: Removal of cadmium (II) from aqueous solution by ion flotation using rhamnolipid biosurfactant as an ion collector
  publication-title: Ind. Eng. Chem. Res.
– volume: 25
  start-page: 8927
  year: 2009
  end-page: 8934
  ident: bib12
  article-title: Ion flotation of Co
  publication-title: Langmuir
– volume: 225
  start-page: 260
  year: 2017
  end-page: 264
  ident: bib6
  article-title: Various flotation techniques for metal ions removal
  publication-title: J. Mol. Liq.
– volume: 143
  start-page: 131
  year: 2015
  end-page: 137
  ident: bib9
  article-title: Ion flotation for removal of Ni (II) and Zn (II) ions from wastewaters
  publication-title: Int. J. Miner. Process.
– volume: 50
  start-page: 1421
  year: 2015
  end-page: 1432
  ident: bib13
  article-title: Simultaneous removal of nickel (II) and chromium (VI) from aqueous solutions and simulated wastewaters by foam separation
  publication-title: Separ. Sci. Technol.
– volume: 19
  start-page: 991
  year: 2009
  end-page: 999
  ident: bib14
  article-title: Artificial neural network based system identification and model predictive control of a flotation column
  publication-title: J. Process Contr.
– volume: 308
  start-page: 61
  year: 2017
  end-page: 69
  ident: bib8
  article-title: Semi-autogenous mill power model development using gene expression programming
  publication-title: Powder Technol.
– volume: 1
  start-page: 2
  year: 2014
  end-page: 7
  ident: bib19
  article-title: Application of a hybrid artificial neural network–genetic algorithm approach to optimize the lead ions removal from aqueous solutions using intercalated tartrate-Mg–Al layered double hydroxides
  publication-title: Environ. Nanotechnol. Monit. Manag.
– year: 2014
  ident: bib11
  article-title: The Application and Research of the GA-BP Neural Network Algorithm in the MBR Membrane Fouling
– volume: 128
  start-page: 412
  year: 2008
  ident: bib5
  article-title: Nickel, its adverse health effects & oxidative stress
  publication-title: Indian J. Med. Res.
– volume: 44
  start-page: 1449
  year: 2010
  end-page: 1461
  ident: bib16
  article-title: Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation
  publication-title: Water Res.
– volume: 52
  start-page: 892
  year: 2017
  end-page: 902
  ident: bib10
  article-title: Effective factors and kinetics study of zinc ion removal from synthetic wastewater by ion flotation
  publication-title: Separ. Sci. Technol.
– volume: 72
  start-page: 387
  year: 2003
  end-page: 399
  ident: bib7
  article-title: Ion flotation—its potential for hydrometallurgical operations
  publication-title: Int. J. Miner. Process.
– volume: 72
  start-page: 387
  issue: 1
  year: 2003
  ident: 10.1016/j.jenvman.2017.09.011_bib7
  article-title: Ion flotation—its potential for hydrometallurgical operations
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/S0301-7516(03)00113-3
– volume: 52
  start-page: 892
  issue: 5
  year: 2017
  ident: 10.1016/j.jenvman.2017.09.011_bib10
  article-title: Effective factors and kinetics study of zinc ion removal from synthetic wastewater by ion flotation
  publication-title: Separ. Sci. Technol.
  doi: 10.1080/01496395.2016.1267216
– volume: 148
  start-page: 267
  issue: 1
  year: 2007
  ident: 10.1016/j.jenvman.2017.09.011_bib15
  article-title: Heavy metal removal from waste waters by ion flotation
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2007.02.013
– volume: 308
  start-page: 61
  year: 2017
  ident: 10.1016/j.jenvman.2017.09.011_bib8
  article-title: Semi-autogenous mill power model development using gene expression programming
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.11.045
– volume: 25
  start-page: 8927
  issue: 16
  year: 2009
  ident: 10.1016/j.jenvman.2017.09.011_bib12
  article-title: Ion flotation of Co2+, Ni2+, and Cu2+ using dodecyldiethylenetriamine (Ddien)
  publication-title: Langmuir
  doi: 10.1021/la900098g
– volume: 1
  start-page: 2
  year: 2014
  ident: 10.1016/j.jenvman.2017.09.011_bib19
  article-title: Application of a hybrid artificial neural network–genetic algorithm approach to optimize the lead ions removal from aqueous solutions using intercalated tartrate-Mg–Al layered double hydroxides
  publication-title: Environ. Nanotechnol. Monit. Manag.
  doi: 10.1016/j.enmm.2014.03.001
– volume: 50
  start-page: 1421
  issue: 9
  year: 2015
  ident: 10.1016/j.jenvman.2017.09.011_bib13
  article-title: Simultaneous removal of nickel (II) and chromium (VI) from aqueous solutions and simulated wastewaters by foam separation
  publication-title: Separ. Sci. Technol.
  doi: 10.1080/01496395.2014.978456
– volume: 52
  start-page: 3910
  issue: 10
  year: 2013
  ident: 10.1016/j.jenvman.2017.09.011_bib3
  article-title: Removal of cadmium (II) from aqueous solution by ion flotation using rhamnolipid biosurfactant as an ion collector
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie400085t
– volume: 143
  start-page: 131
  year: 2015
  ident: 10.1016/j.jenvman.2017.09.011_bib9
  article-title: Ion flotation for removal of Ni (II) and Zn (II) ions from wastewaters
  publication-title: Int. J. Miner. Process.
  doi: 10.1016/j.minpro.2015.07.006
– volume: 17
  start-page: 526
  issue: 5
  year: 2010
  ident: 10.1016/j.jenvman.2017.09.011_bib4
  article-title: Estimation of froth flotation recovery and collision probability based on operational parameters using an artificial neural network
  publication-title: Int. J. Min. Metall. Mater.
  doi: 10.1007/s12613-010-0353-1
– volume: 44
  start-page: 1449
  issue: 5
  year: 2010
  ident: 10.1016/j.jenvman.2017.09.011_bib16
  article-title: Removal of rhodamine B (a basic dye) and thoron (an acidic dye) from dilute aqueous solutions and wastewater simulants by ion flotation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.10.029
– volume: 19
  start-page: 991
  issue: 6
  year: 2009
  ident: 10.1016/j.jenvman.2017.09.011_bib14
  article-title: Artificial neural network based system identification and model predictive control of a flotation column
  publication-title: J. Process Contr.
  doi: 10.1016/j.jprocont.2009.01.001
– volume: 171
  start-page: 1091
  issue: 3
  year: 2011
  ident: 10.1016/j.jenvman.2017.09.011_bib18
  article-title: The use of artificial neural networks (ANN) for modeling of adsorption of Cu (II) from industrial leachate by pumice
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2011.05.005
– year: 2014
  ident: 10.1016/j.jenvman.2017.09.011_bib11
– volume: 4
  start-page: 95
  issue: 2
  year: 2009
  ident: 10.1016/j.jenvman.2017.09.011_bib17
  article-title: Evolving connection weights of artificial neural networks using genetic algorithm with application to the prediction of stroke disease
  publication-title: Int. J. Soft Comput.
– volume: 20
  start-page: 365
  issue: 3
  year: 2007
  ident: 10.1016/j.jenvman.2017.09.011_bib2
  article-title: Optimizing feedforward artificial neural network architecture
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2006.06.005
– volume: 225
  start-page: 260
  year: 2017
  ident: 10.1016/j.jenvman.2017.09.011_bib6
  article-title: Various flotation techniques for metal ions removal
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2016.11.069
– volume: 171
  start-page: 484
  issue: 1
  year: 2009
  ident: 10.1016/j.jenvman.2017.09.011_bib1
  article-title: Removal of Cr (VI) from polluted solutions by electrocoagulation: modeling of experimental results using artificial neural network
  publication-title: J. Hazard Mater.
  doi: 10.1016/j.jhazmat.2009.06.025
– volume: 128
  start-page: 412
  issue: 4
  year: 2008
  ident: 10.1016/j.jenvman.2017.09.011_bib5
  article-title: Nickel, its adverse health effects & oxidative stress
  publication-title: Indian J. Med. Res.
SSID ssj0003217
Score 2.3569665
Snippet Prediction of Ni(II) removal during ion flotation is necessary for increasing the process efficiency by suitable modeling and simulation. In this regard, a new...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 311
SubjectTerms Adsorption
Algorithms
aqueous solutions
Artificial neural network
Genetic algorithm
Ion flotation
ions
Ions - chemistry
Ni(II) removal
nickel
Nickel - analysis
Nickel - chemistry
prediction
Sensitivity analysis
Solutions - chemistry
Water Pollutants, Chemical
Water Purification - methods
Title The nickel ion removal prediction model from aqueous solutions using a hybrid neural genetic algorithm
URI https://dx.doi.org/10.1016/j.jenvman.2017.09.011
https://www.ncbi.nlm.nih.gov/pubmed/28898752
https://www.proquest.com/docview/1938599062
https://www.proquest.com/docview/2000558823
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1095-8630
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003217
  issn: 0301-4797
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1095-8630
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003217
  issn: 0301-4797
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1095-8630
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003217
  issn: 0301-4797
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1095-8630
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003217
  issn: 0301-4797
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1095-8630
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003217
  issn: 0301-4797
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED4h9jBe0MYGdPyQJ-01bRPHsf2IEKhsGi-AxJtlOza0atOqLZP2sr99d2nSiocKicdEvujk-2zfxffdAfygElI6pjFRWe4wQBFl4lwREhu4C7rIRWqJKPz7thg85D8fxeMOXLZcGEqrbPb-1Z5e79bNm14zm73ZcNi7q6MBqekaua9kTSbPc0ldDLr_NmkePKu77tJg-oskNyye3qg7CtWfiaUyqKmsy52m6bbzaZv_WZ9D159gv3Eg2cVKx8-wE6oD-NjyixcHcHi14a7hwGbxLr5AREiwaojLdszQGmweJlPEGZvN6bKGDMTqvjiMKCfMohrTlwVbY5NRivwTs-z5L7G8GFXCRGkEIPEgmR0_TefD5fPkKzxcX91fDpKmzULiuVbLJPqgfcxxLmPfZZ7q0ahCR03dXjhGU2VWBqsU-n2F145zWaZCciExehMSIxJ-CLvVtArHwLI8lkH4aPte4-e0K6Nwnpe2RCQUQXYgbyfX-KYGObXCGJs22WxkGpsYsonpa4M26UB3LTZbFeF4S0C1ljOv0GTwoHhL9HtraYMrja5PbEXzbdDVVUJTXeftY4j4hOhXGe_A0Qoma40zpTRGh9m39yt3Anv0ROk0qTiF3eX8JZyhU7R05zXqz-HDxc2vwe1_rFcNzw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDCaK7tBdhq1bt-ypAbs6iSXLko5D0SLb2l7WAr0Jkiy1CRInSNIBu-y3j3TsBDsEBXa1RYPgQyItfiTAF2ohZVKeMs0LjwmKrDLvy5i5KHw0ZSFzR0Dhy6tydFN8v5W3B3DaYWGorLLd-zd7erNbt08GrTQHi_F48LPJBpSha-ShVgQmf1JIrigD6__Z1XkI3ozdpdX0G0ntYDyDSX8S618zR31Qc9X0O83zfQfUvgC0OYjOn8OzNoJkXzdMvoCDWB_DUQcwXh3DydkOvIYLW-9dvYSENsHqMfrtlKE62DLO5mhobLGk2xrSEGsG4zDCnDCHbMwfVmxrnIxq5O-YY_e_CebFqBUmUqMFEhCSuendfDle389ewc352fXpKGvnLGRBGL3OUogmpAKFmYaeB2pIo0uTDI17EZhOVbyKTmsM_MpgvBCqyqUSUmH6JhWmJOIEDut5Hd8A40WqogzJDYPBzxlfJemDqFyFplBG1YOiE64NbRNymoUxtV212cS2OrGkEzs0FnXSg_6WbLHpwvEYge40Z_8xJ4snxWOknztNW3Q1uj9xNcnbYqyrpaHGzvvXEPIJzV9z0YPXGzPZcsy1Npge8rf_z9wnOBpdX17Yi29XP97BU3pDtTW5fA-H6-VD_IAR0tp_bDzgL8oPD2Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+nickel+ion+removal+prediction+model+from+aqueous+solutions+using+a+hybrid+neural+genetic+algorithm&rft.jtitle=Journal+of+environmental+management&rft.au=Hoseinian%2C+Fatemeh+Sadat&rft.au=Rezai%2C+Bahram&rft.au=Kowsari%2C+Elaheh&rft.date=2017-12-15&rft.pub=Elsevier+Ltd&rft.issn=0301-4797&rft.eissn=1095-8630&rft.volume=204&rft.spage=311&rft.epage=317&rft_id=info:doi/10.1016%2Fj.jenvman.2017.09.011&rft.externalDocID=S0301479717308721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-4797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-4797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-4797&client=summon