Regulatory Eosinophils Suppress T Cells Partly through Galectin-10

Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of c...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 198; no. 12; pp. 4672 - 4681
Main Authors Lingblom, Christine, Andersson, Jennie, Andersson, Kerstin, Wennerås, Christine
Format Journal Article
LanguageEnglish
Published United States American Association of Immunologists 15.06.2017
Subjects
Online AccessGet full text
ISSN0022-1767
1550-6606
1550-6606
DOI10.4049/jimmunol.1601005

Cover

Abstract Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16hi subset of eosinophils, encompassing 1–5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16hi eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16neg eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10–containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell–suppressive molecule in eosinophils.
AbstractList Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16hi subset of eosinophils, encompassing 1-5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16hi eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16neg eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10-containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell-suppressive molecule in eosinophils.
Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/ CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16(hi) subset of eosinophils, encompassing 1-5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16(hi) eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16 neg eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10-containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell-suppressive molecule in eosinophils.
Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16 subset of eosinophils, encompassing 1-5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16 eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16 eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10-containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell-suppressive molecule in eosinophils.
Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16hi subset of eosinophils, encompassing 1-5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16hi eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16neg eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10-containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell-suppressive molecule in eosinophils.Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of eosinophils. Human eosinophils were incubated with T cells that were stimulated with allogeneic leukocytes or CD3/CD28 cross-linking. After 2 d of coculture, 11% of the eosinophils gained CD16 expression. A CD16hi subset of eosinophils, encompassing 1-5% of all eosinophils, was also identified in the blood of healthy subjects. FACS sorting showed that these CD16hi eosinophils were significantly stronger suppressors of T cell proliferation than were conventional CD16neg eosinophils. Human eosinophils contain stores of the immunoregulatory protein galectin-10. We found that Ab-mediated neutralization of galectin-10 partially abrogated the suppressive function of the eosinophils. Moreover, recombinant galectin-10 by itself was able to suppress T cell proliferation. Finally, we detected galectin-10-containing immune synapses between eosinophils and lymphocytes. To conclude, we describe a subset of suppressive eosinophils expressing CD16 that may escape detection because CD16-based negative selection is the standard procedure for the isolation of human eosinophils. Moreover, we show that galectin-10 functions as a T cell-suppressive molecule in eosinophils.
Author Lingblom, Christine
Wennerås, Christine
Andersson, Jennie
Andersson, Kerstin
Author_xml – sequence: 1
  givenname: Christine
  surname: Lingblom
  fullname: Lingblom, Christine
– sequence: 2
  givenname: Jennie
  orcidid: 0000-0001-6860-9355
  surname: Andersson
  fullname: Andersson, Jennie
– sequence: 3
  givenname: Kerstin
  surname: Andersson
  fullname: Andersson, Kerstin
– sequence: 4
  givenname: Christine
  orcidid: 0000-0002-0950-1165
  surname: Wennerås
  fullname: Wennerås, Christine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28515279$$D View this record in MEDLINE/PubMed
https://gup.ub.gu.se/publication/255703$$DView record from Swedish Publication Index
BookMark eNqN0U1r3DAQBmBRUprNx72nYuglF6czsixZx3TZpIVAS5OchezKu1psy9UHYf99FHaTQyDQk2D0vGJGc0KOJjcZQj4jXDJg8tvWjmOa3HCJHBCg_kAWWNdQcg78iCwAKC1RcHFMTkLYAgAHyj6RY9rUWFMhF-T7H7NOg47O74qVC3Zy88YOobhL8-xNCMV9sTRDLvzWPg67Im68S-tNcaMH00U7lQhn5GOvh2DOD-cpebhe3S9_lLe_bn4ur27LrpJNLPvWiAZ1l_vmjLKmr-rKUKCt0YCS9a3utRS95NhySTtpZJvvO4Yoewm0qU5JuX83PJo5tWr2dtR-p5y2ap1mlUvrpIJRtK4FVNlf7P3s3b9kQlSjDV0eRk_GpaBQInKsRNP8BwVASjmKTL--oVuX_JQHz6phleCSPasvB5Xa0fx97fXl4zOAPei8C8Gb_pUgqOfdqpfdqsNuc4S_iXQ26mjdFL22w_vBJz3UqVU
CitedBy_id crossref_primary_10_1155_2018_9095275
crossref_primary_10_3390_molecules23112931
crossref_primary_10_1111_ajt_15660
crossref_primary_10_1016_j_ebiom_2021_103645
crossref_primary_10_1111_exd_14320
crossref_primary_10_1161_CIRCGEN_118_002433
crossref_primary_10_1371_journal_pntd_0012203
crossref_primary_10_1093_cei_uxad026
crossref_primary_10_2174_1871530320666200309094726
crossref_primary_10_1016_j_cgh_2020_05_019
crossref_primary_10_1186_s41927_019_0059_6
crossref_primary_10_3389_fimmu_2021_802839
crossref_primary_10_3390_ijms18122740
crossref_primary_10_1080_2162402X_2017_1393134
crossref_primary_10_1111_all_14697
crossref_primary_10_1038_s41409_022_01708_4
crossref_primary_10_1038_s41569_024_01071_5
crossref_primary_10_1136_thoraxjnl_2020_214764
crossref_primary_10_1007_s10620_020_06368_2
crossref_primary_10_1016_j_cytogfr_2019_05_003
crossref_primary_10_1093_cei_uxae065
crossref_primary_10_3389_fcdhc_2024_1494470
crossref_primary_10_1111_cei_13540
crossref_primary_10_1186_s40364_025_00759_1
crossref_primary_10_1084_jem_20190915
crossref_primary_10_3389_fimmu_2025_1533407
crossref_primary_10_1016_j_exphem_2018_06_288
crossref_primary_10_1016_j_intimp_2024_112023
crossref_primary_10_1002_iid3_836
crossref_primary_10_1111_all_15751
crossref_primary_10_1111_resp_13341
crossref_primary_10_3389_fimmu_2020_00940
crossref_primary_10_1038_s41598_023_35300_7
crossref_primary_10_1111_cea_13037
crossref_primary_10_1016_j_tvjl_2020_105581
crossref_primary_10_1038_s41598_020_77907_0
crossref_primary_10_3389_fphys_2022_819145
crossref_primary_10_1155_2018_9186940
crossref_primary_10_1182_blood_2018_09_873653
crossref_primary_10_3389_fneur_2020_593431
crossref_primary_10_1016_j_jaci_2020_01_013
crossref_primary_10_3389_fimmu_2024_1372009
crossref_primary_10_1111_all_15884
crossref_primary_10_1016_j_vaccine_2021_05_034
crossref_primary_10_1016_j_heliyon_2025_e42234
crossref_primary_10_3748_wjg_v25_i27_3503
crossref_primary_10_1111_imcb_12819
crossref_primary_10_1016_j_autrev_2021_102847
crossref_primary_10_1093_jleuko_qiae102
Cites_doi 10.1084/jem.175.5.1381
10.1111/cei.12676
10.1172/JCI57990
10.4049/jimmunol.150.2.456
10.1002/eji.200323658
10.1002/iid3.25
10.1002/eji.200636936
10.1146/annurev-immunol-030409-101308
10.1016/j.jaci.2007.02.010
10.4049/jimmunol.173.10.5909
10.4049/jimmunol.167.3.1245
10.1067/mai.2001.116002
10.1084/jem.20020394
10.4049/jimmunol.1500703
10.1182/blood-2007-01-069229
10.1016/j.jaci.2012.07.025
10.1038/sj.bjp.0703473
10.1067/mai.2002.121952
10.1182/blood-2005-06-2277
10.1007/s00018-013-1286-4
10.1016/j.immuni.2009.03.019
10.1038/nri2785
10.1186/1479-5876-11-112
10.2353/ajpath.2009.090015
10.4049/jimmunol.148.5.1471
10.1016/S0171-2985(86)80013-4
10.4049/jimmunol.161.5.2574
10.1007/s00262-015-1729-x
10.1084/jem.20141388
10.1111/j.1398-9995.2006.01060.x
10.1111/all.12169
10.4049/jimmunol.0803827
10.1111/nyas.13011
10.1016/j.bbmt.2014.08.017
10.4049/jimmunol.0902023
10.1371/journal.pone.0072249
ContentType Journal Article
Copyright Copyright © 2017 by The American Association of Immunologists, Inc.
Copyright American Association of Immunologists Jun 15, 2017
Copyright_xml – notice: Copyright © 2017 by The American Association of Immunologists, Inc.
– notice: Copyright American Association of Immunologists Jun 15, 2017
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7T5
7TK
7TM
7U9
8FD
FR3
H94
M7N
P64
RC3
7X8
ADTPV
AOWAS
F1U
DOI 10.4049/jimmunol.1601005
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
SwePub
SwePub Articles
SWEPUB Göteborgs universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList AIDS and Cancer Research Abstracts

MEDLINE
Genetics Abstracts
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 4681
ExternalDocumentID oai_gup_ub_gu_se_255703
28515279
10_4049_jimmunol_1601005
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.55
0R~
18M
2WC
34G
39C
53G
5GY
5RE
5VS
5WD
79B
85S
AARDX
AAYXX
ABCQX
ABDFA
ABEJV
ABGNP
ABJNI
ABOCM
ABPPZ
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADIPN
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AGORE
AHMMS
AHWXS
AIZAD
ALMA_UNASSIGNED_HOLDINGS
ARBBW
BAWUL
BCRHZ
BTFSW
CITATION
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
IH2
K-O
KQ8
L7B
OCZFY
OK1
OWPYF
P0W
P2P
PQQKQ
R.V
RHI
ROX
RZQ
SJN
TR2
TWZ
W8F
WH7
WOQ
X7M
XSW
XTH
YHG
CGR
CUY
CVF
ECM
EIF
NPM
RHF
YIN
7QP
7QR
7T5
7TK
7TM
7U9
8FD
FR3
H94
KOP
M7N
P64
RC3
7X8
.GJ
.HR
1KJ
3O-
ABDPE
ABEFU
ACVCV
ADTPV
ADXHL
AFFNX
AI.
AJBYB
AJDVS
AOWAS
F1U
H13
J5H
MVM
NEJ
OHT
SKT
VH1
WHG
XJT
ZE2
ZGI
ZXP
ID FETCH-LOGICAL-c398t-fbe781ac04964248f353e202bea0194fbafa97f961b692c9e9b3e2c4119f90283
ISSN 0022-1767
1550-6606
IngestDate Thu Aug 21 06:34:39 EDT 2025
Fri Sep 05 08:13:02 EDT 2025
Sun Sep 28 02:22:21 EDT 2025
Fri Jul 25 19:49:35 EDT 2025
Wed Feb 19 02:43:18 EST 2025
Thu Apr 24 22:53:53 EDT 2025
Tue Jul 01 05:21:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
Copyright © 2017 by The American Association of Immunologists, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-fbe781ac04964248f353e202bea0194fbafa97f961b692c9e9b3e2c4119f90283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6860-9355
0000-0002-0950-1165
PMID 28515279
PQID 1984376947
PQPubID 105689
PageCount 10
ParticipantIDs swepub_primary_oai_gup_ub_gu_se_255703
proquest_miscellaneous_1911613788
proquest_miscellaneous_1900122617
proquest_journals_1984376947
pubmed_primary_28515279
crossref_primary_10_4049_jimmunol_1601005
crossref_citationtrail_10_4049_jimmunol_1601005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-06-15
PublicationDateYYYYMMDD 2017-06-15
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2017
Publisher American Association of Immunologists
Publisher_xml – name: American Association of Immunologists
References Sugawara (2025030615175170300_r5) 2016; 213
Pillay (2025030615175170300_r25) 2013; 70
Zhu (2025030615175170300_r20) 1998; 161
Andersson (2025030615175170300_r7) 2014; 20
Harfi (2025030615175170300_r4) 2013; 11
2025030615175170300_r6
Wirthmueller (2025030615175170300_r21) 1992; 175
Odemuyiwa (2025030615175170300_r8) 2004; 173
Lee (2025030615175170300_r2) 2001; 107
Lee (2025030615175170300_r16) 2012; 130
Matsunaga (2025030615175170300_r31) 2000; 130
Jonuleit (2025030615175170300_r37) 2002; 196
Firan (2025030615175170300_r26) 2006; 107
Ren (2025030615175170300_r30) 2010; 184
Peterson (2025030615175170300_r9) 1986; 171
Davoine (2025030615175170300_r18) 2002; 109
Svensson (2025030615175170300_r17) 2007; 37
Tulic (2025030615175170300_r12) 2009; 175
Santegoets (2025030615175170300_r23) 2015; 64
Pillay (2025030615175170300_r24) 2012; 122
Miyara (2025030615175170300_r36) 2009; 30
Liu (2025030615175170300_r10) 2006; 61
Kubach (2025030615175170300_r14) 2007; 110
Fooksman (2025030615175170300_r29) 2010; 28
Sakaguchi (2025030615175170300_r28) 2010; 10
Mason (2025030615175170300_r22) 2015; 195
Gleich (2025030615175170300_r11) 2013; 68
Iellem (2025030615175170300_r27) 2003; 33
Ackerman (2025030615175170300_r15) 1993; 150
Tak (2025030615175170300_r33) 2015; 182
de Kleijn (2025030615175170300_r35) 2013; 8
Bacchetta (2025030615175170300_r13) 2016
Baecher-Allan (2025030615175170300_r34) 2001; 167
Simon (2025030615175170300_r3) 2007; 119
Tran (2025030615175170300_r32) 2009; 182
Hartnell (2025030615175170300_r19) 1992; 148
Cromvik (2025030615175170300_r1) 2014; 2
References_xml – volume: 175
  start-page: 1381
  year: 1992
  ident: 2025030615175170300_r21
  article-title: Signal transduction by Fc gamma RIII (CD16) is mediated through the gamma chain
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.175.5.1381
– volume: 182
  start-page: 204
  year: 2015
  ident: 2025030615175170300_r33
  article-title: Similar activation state of neutrophils in sputum of asthma patients irrespective of sputum eosinophilia
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/cei.12676
– volume: 122
  start-page: 327
  year: 2012
  ident: 2025030615175170300_r24
  article-title: A subset of neutrophils in human systemic inflammation inhibits T cell responses through Mac-1
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI57990
– volume: 150
  start-page: 456
  year: 1993
  ident: 2025030615175170300_r15
  article-title: Molecular cloning and characterization of human eosinophil Charcot-Leyden crystal protein (lysophospholipase). Similarities to IgE binding proteins and the S-type animal lectin superfamily
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.150.2.456
– volume: 33
  start-page: 1488
  year: 2003
  ident: 2025030615175170300_r27
  article-title: Skin-versus gut-skewed homing receptor expression and intrinsic CCR4 expression on human peripheral blood CD4+CD25+ suppressor T cells
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200323658
– volume: 2
  start-page: 99
  year: 2014
  ident: 2025030615175170300_r1
  article-title: Eosinophils in the blood of hematopoietic stem cell transplanted patients are activated and have different molecular marker profiles in acute and chronic graft-versus-host disease
  publication-title: Immun. Inflamm. Dis.
  doi: 10.1002/iid3.25
– volume: 37
  start-page: 1966
  year: 2007
  ident: 2025030615175170300_r17
  article-title: House dust mite allergen activates human eosinophils via formyl peptide receptor and formyl peptide receptor-like 1
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200636936
– volume: 28
  start-page: 79
  year: 2010
  ident: 2025030615175170300_r29
  article-title: Functional anatomy of T cell activation and synapse formation
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev-immunol-030409-101308
– volume: 119
  start-page: 1291
  year: 2007
  ident: 2025030615175170300_r3
  article-title: Eosinophilic disorders
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2007.02.010
– volume: 173
  start-page: 5909
  year: 2004
  ident: 2025030615175170300_r8
  article-title: Cutting edge: human eosinophils regulate T cell subset selection through indoleamine 2,3-dioxygenase
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.173.10.5909
– volume: 167
  start-page: 1245
  year: 2001
  ident: 2025030615175170300_r34
  article-title: CD4+CD25high regulatory cells in human peripheral blood
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.167.3.1245
– volume: 107
  start-page: 945
  year: 2001
  ident: 2025030615175170300_r2
  article-title: Pulmonary T cells and eosinophils: coconspirators or independent triggers of allergic respiratory pathology?
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1067/mai.2001.116002
– volume: 196
  start-page: 255
  year: 2002
  ident: 2025030615175170300_r37
  article-title: Infectious tolerance: human CD25(+) regulatory T cells convey suppressor activity to conventional CD4(+) T helper cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20020394
– volume: 195
  start-page: 2030
  year: 2015
  ident: 2025030615175170300_r22
  article-title: Phenotypic complexity of the human regulatory T cell compartment revealed by mass cytometry
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1500703
– volume: 110
  start-page: 1550
  year: 2007
  ident: 2025030615175170300_r14
  article-title: Human CD4+CD25+ regulatory T cells: proteome analysis identifies galectin-10 as a novel marker essential for their anergy and suppressive function
  publication-title: Blood
  doi: 10.1182/blood-2007-01-069229
– volume: 130
  start-page: 572
  year: 2012
  ident: 2025030615175170300_r16
  article-title: Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red”
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2012.07.025
– volume: 130
  start-page: 1539
  year: 2000
  ident: 2025030615175170300_r31
  article-title: Regulation of lymphocyte proliferation by eosinophils via chymotrypsin-like protease activity and adhesion molecule interaction
  publication-title: Br. J. Pharmacol.
  doi: 10.1038/sj.bjp.0703473
– volume: 109
  start-page: 463
  year: 2002
  ident: 2025030615175170300_r18
  article-title: Expression of FcgammaRIII (CD16) on human peripheral blood eosinophils increases in allergic conditions
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1067/mai.2002.121952
– volume: 107
  start-page: 619
  year: 2006
  ident: 2025030615175170300_r26
  article-title: Suppressor activity and potency among regulatory T cells is discriminated by functionally active CD44
  publication-title: Blood
  doi: 10.1182/blood-2005-06-2277
– volume: 70
  start-page: 3813
  year: 2013
  ident: 2025030615175170300_r25
  article-title: Immune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differences
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-013-1286-4
– volume: 30
  start-page: 899
  year: 2009
  ident: 2025030615175170300_r36
  article-title: Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor
  publication-title: Immunity
  doi: 10.1016/j.immuni.2009.03.019
– volume: 10
  start-page: 490
  year: 2010
  ident: 2025030615175170300_r28
  article-title: FOXP3+ regulatory T cells in the human immune system
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2785
– volume: 11
  start-page: 112
  year: 2013
  ident: 2025030615175170300_r4
  article-title: Eosinophils affect functions of in vitro-activated human CD3−CD4+ T cells
  publication-title: J. Transl. Med.
  doi: 10.1186/1479-5876-11-112
– volume: 175
  start-page: 2043
  year: 2009
  ident: 2025030615175170300_r12
  article-title: Thymic indoleamine 2,3-dioxygenase-positive eosinophils in young children: potential role in maturation of the naive immune system
  publication-title: Am. J. Pathol.
  doi: 10.2353/ajpath.2009.090015
– volume: 148
  start-page: 1471
  year: 1992
  ident: 2025030615175170300_r19
  article-title: IFN-gamma induces expression of Fc gamma RIII (CD16) on human eosinophils
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.148.5.1471
– volume: 171
  start-page: 1
  year: 1986
  ident: 2025030615175170300_r9
  article-title: Human eosinophil cationic proteins (ECP and EPX) and their suppressive effects on lymphocyte proliferation
  publication-title: Immunobiology
  doi: 10.1016/S0171-2985(86)80013-4
– volume: 161
  start-page: 2574
  year: 1998
  ident: 2025030615175170300_r20
  article-title: Intracellular expression of Fc gamma RIII (CD16) and its mobilization by chemoattractants in human eosinophils
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.161.5.2574
– volume: 64
  start-page: 1271
  year: 2015
  ident: 2025030615175170300_r23
  article-title: Monitoring regulatory T cells in clinical samples: consensus on an essential marker set and gating strategy for regulatory T cell analysis by flow cytometry
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-015-1729-x
– volume: 213
  start-page: 555
  year: 2016
  ident: 2025030615175170300_r5
  article-title: Small intestinal eosinophils regulate Th17 cells by producing IL-1 receptor antagonist
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20141388
– volume: 61
  start-page: 589
  year: 2006
  ident: 2025030615175170300_r10
  article-title: Human airway and peripheral blood eosinophils enhance Th1 and Th2 cytokine secretion
  publication-title: Allergy
  doi: 10.1111/j.1398-9995.2006.01060.x
– volume: 68
  start-page: 829
  year: 2013
  ident: 2025030615175170300_r11
  article-title: The consequences of not having eosinophils
  publication-title: Allergy
  doi: 10.1111/all.12169
– volume: 182
  start-page: 2929
  year: 2009
  ident: 2025030615175170300_r32
  article-title: Analysis of adhesion molecules, target cells, and role of IL-2 in human FOXP3+ regulatory T cell suppressor function
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0803827
– ident: 2025030615175170300_r6
– volume-title: Ann. N. Y. Acad. Sci.
  year: 2016
  ident: 2025030615175170300_r13
  article-title: From IPEX syndrome to FOXP3 mutation: a lesson on immune dysregulation
  doi: 10.1111/nyas.13011
– volume: 20
  start-page: 1891
  year: 2014
  ident: 2025030615175170300_r7
  article-title: Eosinophils from hematopoietic stem cell recipients suppress allogeneic T cell proliferation
  publication-title: Biol. Blood Marrow Transplant.
  doi: 10.1016/j.bbmt.2014.08.017
– volume: 184
  start-page: 2321
  year: 2010
  ident: 2025030615175170300_r30
  article-title: Inflammatory cytokine-induced intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 in mesenchymal stem cells are critical for immunosuppression
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0902023
– volume: 8
  start-page: e72249
  year: 2013
  ident: 2025030615175170300_r35
  article-title: IFN-γ-stimulated neutrophils suppress lymphocyte proliferation through expression of PD-L1
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0072249
SSID ssj0006024
Score 2.45584
Snippet Eosinophils have the capacity to regulate the function of T cell subsets. Our aim was to test the hypothesis of the existence of a regulatory subset of...
SourceID swepub
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4672
SubjectTerms activation
CD16 antigen
CD28 antigen
CD3 antigen
Cell growth
Cell proliferation
Clonal selection
cytometry
Eosinophils - immunology
expression
Flow cytometry
Galectins - genetics
Galectins - metabolism
gamma-riii cd16
Gene Expression Regulation
GPI-Linked Proteins - genetics
GPI-Linked Proteins - immunology
human peripheral-blood
Humans
Immunological synapses
Immunology
Immunoregulation
Infectious Medicine
Infektionsmedicin
Leukocyte Count
Leukocytes (eosinophilic)
Lymphocyte Activation
Lymphocytes
Lymphocytes T
Negative selection
neutrophils
proliferation
proteins
receptor
Receptors, IgG - genetics
Receptors, IgG - immunology
similarities
Synapses
T-Lymphocyte Subsets - immunology
Title Regulatory Eosinophils Suppress T Cells Partly through Galectin-10
URI https://www.ncbi.nlm.nih.gov/pubmed/28515279
https://www.proquest.com/docview/1984376947
https://www.proquest.com/docview/1900122617
https://www.proquest.com/docview/1911613788
https://gup.ub.gu.se/publication/255703
Volume 198
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKEIgXBANGYaAgARKqsiWO8-HHMXUM9gFCqeib5aRO16m0FW0fxp_CX8ud7aRehyrgJarsxHF9v9yHz3dHyOs0ZoNBVkZ-hMdqGJXcz2TIfMWipKK8olJn1z87T4577FM_7rdav5xTS8tFsVf-_GNcyf9QFdqArhgl-w-UbQaFBvgN9IUrUBiuf0Xjr6aQPLrJu1Mw-qezi9F43sFKnToCJO8cqjE0fIFnx1dNTZ4PEvfqRxPfHvW8XCHG0U9HGDliMjS90X6wwNk1ABN2WIyn321yAsc5f6CjZWwclz47c7Orc4JK56jB5TelC4Chzz6erw1pdyRCfXzOxGQ6QQDAnRyA6biYetowhrsRifEEYWqKcuwpy4ZjMGqTILnGp3nmApI6bBe4PXVEOEtMGZh18cDAHELxYBcQd9bCIIhXorB2_59_Fke901ORd_v5LXKbpqCXocL98aSR8klAWZ2JHmdvXOD4hv318a-rPDfsmLUktVqxyR-Q-5bi3oGB10PSUpNtcsfUKL3aJnfP7OmLR-T9Cm-egzevxpuXexpvnsGbZ_HmOXh7THpH3fzw2Lc1OPwy4tnCrwqVZqEs4X-BpcqyKoojRQNaKAnGAasKWUmeVjwJi4TTkiteQH_JwpBXmBgoekK2JtOJekq8Is6AXWSyzKKAYcRfXCWyUqGig4gWQdom-_UyidImqMc6KWMBhiourKgXVtiFbZN3zRMzk5xlw7279coL-wnPBUCKgYTlDF7-qukGBoteMzlR0yXeo93PoOlvuicEywlLM7TJjqFqMyEKNk1MU94mbw2Zmx7M7D5czgQ0DZdirgTV-fCebZ7pc3Jv9dHtkq3Fj6V6AYrxonipEfobo2a8kA
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Regulatory+Eosinophils+Suppress+T+Cells+Partly+through+Galectin-10&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Lingblom+Christine&rft.au=Andersson%2C+Jennie&rft.au=Andersson+Kerstin&rft.au=Wenner%C3%A5s+Christine&rft.date=2017-06-15&rft.pub=American+Association+of+Immunologists&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=198&rft.issue=12&rft.spage=4672&rft.epage=4681&rft_id=info:doi/10.4049%2Fjimmunol.1601005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon