Using a Deep Learning Model to Predict Postoperative Visual Outcomes of Idiopathic Epiretinal Membrane Surgery
This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images. Validation of algorithms to predict the outcomes of ERM surgery based on OCT d...
Saved in:
| Published in | American journal of ophthalmology Vol. 272; pp. 67 - 78 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0002-9394 1879-1891 1879-1891 |
| DOI | 10.1016/j.ajo.2025.01.003 |
Cover
| Abstract | This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images.
Validation of algorithms to predict the outcomes of ERM surgery based on OCT data.
Internal training and validation were performed using 1,392 OCT images from 696 eyes. External testing was performed using 152 OCT images from 76 eyes. This study assessed three deep learning models, including Inception-v3, ResNet-101, and VGG-19. Grad-CAM was employed for hotspot analysis. The dataset was split into a training set (80%) and a validation set (20%). Subjects presenting an improvement of ≥2 lines on the Snellen chart at 1-year postsurgery were classified as pronounced visual improvement, whereas those presenting an improvement of <2 lines were classified as limited visual improvement. Using an external test dataset, we compared assessments by seven ophthalmologists with the prediction of deep learning model. The main outcome measures were recall, specificity, precision, F1 score, accuracy, and area under the receiver operating characteristic curve (AUROC).
ResNet-101 achieved the best overall performance, as evidenced by the following metrics: recall (0.90), specificity (0.90), precision (0.91), F1-score (0.90), accuracy (0.90), and AUROC (0.97). In Grad-CAM heatmap analysis, the logic of ResNet-101 closely resembled that of clinical physicians. Overall, the performance of this deep learning model was significantly better than that of general ophthalmologists and non-retina specialists and was slightly superior to that of retina specialists.
Deep learning based on preoperative OCT images proved highly effective in predicting the outcomes of ERM surgery and elucidating the structural mechanisms underlying the phenomena observed in OCT images. |
|---|---|
| AbstractList | This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images.
Validation of algorithms to predict the outcomes of ERM surgery based on OCT data.
Internal training and validation were performed using 1,392 OCT images from 696 eyes. External testing was performed using 152 OCT images from 76 eyes. This study assessed three deep learning models, including Inception-v3, ResNet-101, and VGG-19. Grad-CAM was employed for hotspot analysis. The dataset was split into a training set (80%) and a validation set (20%). Subjects presenting an improvement of ≥2 lines on the Snellen chart at 1-year postsurgery were classified as pronounced visual improvement, whereas those presenting an improvement of <2 lines were classified as limited visual improvement. Using an external test dataset, we compared assessments by seven ophthalmologists with the prediction of deep learning model. The main outcome measures were recall, specificity, precision, F1 score, accuracy, and area under the receiver operating characteristic curve (AUROC).
ResNet-101 achieved the best overall performance, as evidenced by the following metrics: recall (0.90), specificity (0.90), precision (0.91), F1-score (0.90), accuracy (0.90), and AUROC (0.97). In Grad-CAM heatmap analysis, the logic of ResNet-101 closely resembled that of clinical physicians. Overall, the performance of this deep learning model was significantly better than that of general ophthalmologists and non-retina specialists and was slightly superior to that of retina specialists.
Deep learning based on preoperative OCT images proved highly effective in predicting the outcomes of ERM surgery and elucidating the structural mechanisms underlying the phenomena observed in OCT images. This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images.PURPOSEThis study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images.Validation of algorithms to predict the outcomes of ERM surgery based on OCT data.DESIGNValidation of algorithms to predict the outcomes of ERM surgery based on OCT data.Internal training and validation were performed using 1,392 OCT images from 696 eyes. External testing was performed using 152 OCT images from 76 eyes. This study assessed three deep learning models, including Inception-v3, ResNet-101, and VGG-19. Grad-CAM was employed for hotspot analysis. The dataset was split into a training set (80%) and a validation set (20%). Subjects presenting an improvement of ≥2 lines on the Snellen chart at 1-year postsurgery were classified as pronounced visual improvement, whereas those presenting an improvement of <2 lines were classified as limited visual improvement. Using an external test dataset, we compared assessments by seven ophthalmologists with the prediction of deep learning model. The main outcome measures were recall, specificity, precision, F1 score, accuracy, and area under the receiver operating characteristic curve (AUROC).METHODSInternal training and validation were performed using 1,392 OCT images from 696 eyes. External testing was performed using 152 OCT images from 76 eyes. This study assessed three deep learning models, including Inception-v3, ResNet-101, and VGG-19. Grad-CAM was employed for hotspot analysis. The dataset was split into a training set (80%) and a validation set (20%). Subjects presenting an improvement of ≥2 lines on the Snellen chart at 1-year postsurgery were classified as pronounced visual improvement, whereas those presenting an improvement of <2 lines were classified as limited visual improvement. Using an external test dataset, we compared assessments by seven ophthalmologists with the prediction of deep learning model. The main outcome measures were recall, specificity, precision, F1 score, accuracy, and area under the receiver operating characteristic curve (AUROC).ResNet-101 achieved the best overall performance, as evidenced by the following metrics: recall (0.90), specificity (0.90), precision (0.91), F1-score (0.90), accuracy (0.90), and AUROC (0.97). In Grad-CAM heatmap analysis, the logic of ResNet-101 closely resembled that of clinical physicians. Overall, the performance of this deep learning model was significantly better than that of general ophthalmologists and non-retina specialists and was slightly superior to that of retina specialists.RESULTSResNet-101 achieved the best overall performance, as evidenced by the following metrics: recall (0.90), specificity (0.90), precision (0.91), F1-score (0.90), accuracy (0.90), and AUROC (0.97). In Grad-CAM heatmap analysis, the logic of ResNet-101 closely resembled that of clinical physicians. Overall, the performance of this deep learning model was significantly better than that of general ophthalmologists and non-retina specialists and was slightly superior to that of retina specialists.Deep learning based on preoperative OCT images proved highly effective in predicting the outcomes of ERM surgery and elucidating the structural mechanisms underlying the phenomena observed in OCT images.CONCLUSIONSDeep learning based on preoperative OCT images proved highly effective in predicting the outcomes of ERM surgery and elucidating the structural mechanisms underlying the phenomena observed in OCT images. |
| Author | PENG, SYU-JYUN LIN, HSIN-LE TSENG, PO-CHEN HSU, MIN-HUEI |
| Author_xml | – sequence: 1 givenname: HSIN-LE surname: LIN fullname: LIN, HSIN-LE organization: From the Department of Ophthalmology (H.L.L, P.C.T), Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan – sequence: 2 givenname: PO-CHEN orcidid: 0000-0003-0519-2446 surname: TSENG fullname: TSENG, PO-CHEN organization: From the Department of Ophthalmology (H.L.L, P.C.T), Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan – sequence: 3 givenname: MIN-HUEI surname: HSU fullname: HSU, MIN-HUEI organization: Graduate Institute of Data Science (H.L.L, M.H.H), College of Management, Taipei Medical University, Taiwan – sequence: 4 givenname: SYU-JYUN orcidid: 0000-0001-5002-6581 surname: PENG fullname: PENG, SYU-JYUN email: sjpeng2019@tmu.edu.tw organization: In-Service Master Program in Artificial Intelligence in Medicine (S.J.P), College of Medicine, Taipei Medical University, Taipei, Taiwan |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39814096$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkcFu1DAURS1URKeFD2CDvGST8BwnTiJWqC1QaapWgrK1PPZL8ZDYwXaK5u_xaEoXXQAr60n3XPsdn5Aj5x0S8ppByYCJd9tSbX1ZQdWUwEoA_oysWNf2Bet6dkRWAFAVPe_rY3IS4zaPoq3bF-SY9x2roRcr4m6jdXdU0XPEma5RBbefr7zBkSZPbwIaqxO98TH5GYNK9h7pNxsXNdLrJWk_YaR-oJfG-lml71bTi9kGTNblxBVOm6Ac0i9LuMOwe0meD2qM-OrhPCW3Hy--nn0u1tefLs8-rAudn5aKYcMFMGw6zgduoEWjUWNj9NAx0RqmDMcWBBOdqID1mxawU7VuGs6arKPmp6Q69C5uVrtfahzlHOykwk4ykHt5ciuzPLmXJ4HJLC9Dbw_QHPzPBWOSk40axzEv4Jcoc7loKsFbyNE3D9FlM6F5LP8jNgfYIaCDjzHg8F_3vz8wmM3cWwwyaotO5x8IqJM03v6V7p_QerTOajX-wN0_2N_4CrL5 |
| Cites_doi | 10.1097/IAE.0000000000003480 10.1016/S0002-9394(14)75195-5 10.1016/j.ajo.2016.12.006 10.1097/IAE.0000000000003646 10.1016/j.ajo.2011.06.021 10.1136/bjo.2008.144626 10.1097/APO.0000000000000576 10.1097/IAE.0b013e3182733f25 10.1038/nature14539 10.1038/s41591-023-02702-z 10.1136/bjo.74.7.393 10.1001/jama.2016.17216 10.1186/s12886-023-03079-w 10.1016/j.ajo.2017.10.011 10.1016/S0161-6420(97)30190-0 10.1016/j.ophtha.2018.01.023 10.1016/j.ajo.2016.05.011 10.1167/iovs.13-12702 10.1186/s12886-023-02856-x 10.1016/j.ajo.2011.09.011 10.1016/S0161-6420(91)32169-9 10.1136/bjo.2005.085142 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.ajo.2025.01.003 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1879-1891 |
| EndPage | 78 |
| ExternalDocumentID | 10.1016/j.ajo.2025.01.003 39814096 10_1016_j_ajo_2025_01_003 S0002939425000224 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .55 .FO .GJ .~1 0R~ 1B1 1CY 1P~ 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAHTB AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AAQXK AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABCQX ABDPE ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABOCM ABPEJ ABWVN ABXDB ACDAQ ACGFO ACGFS ACIEU ACIUM ACLOT ACNCT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFRT ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHMBA AI. AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKEYQ BKOJK BLXMC BNPGV BPHCQ BVXVI CS3 EBS EFJIC EFKBS EFLBG EJD EMOBN EO8 EO9 EP2 EP3 EX3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W J5H K-O KOM L7B M41 MO0 N4W N9A O-L O9- OAUVE OF- OPF OQ~ OZT P-8 P-9 P2P PC. PQQKQ PROAC Q38 R2- ROL RPZ SCC SDF SDG SDP SEL SES SPCBC SSH SSZ SV3 T5K UNMZH UV1 VH1 WH7 WOW X7M XPP Z5R ZGI ZXP ~G- ~HD 6I. AACTN AAFTH AFCTW RIG AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c398t-fb3601e5833f3d07edcece5dcf8167d1ad3e70616862019b70e8a4c5531520243 |
| IEDL.DBID | UNPAY |
| ISSN | 0002-9394 1879-1891 |
| IngestDate | Tue Aug 19 08:54:56 EDT 2025 Sun Sep 28 11:35:43 EDT 2025 Mon Jul 21 05:57:22 EDT 2025 Wed Oct 01 06:42:09 EDT 2025 Sat Mar 29 16:10:42 EDT 2025 Tue Oct 14 19:30:39 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ERM OCT GCIPL CNN P-IM IPL RPE L-IM Grad-CAM INL DL AI AUROC EIFL OPL ILM ROI DRIL COST BCVA SGDM |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c398t-fb3601e5833f3d07edcece5dcf8167d1ad3e70616862019b70e8a4c5531520243 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0001-5002-6581 0000-0003-0519-2446 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.ajo.2025.01.003 |
| PMID | 39814096 |
| PQID | 3156526370 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ajo_2025_01_003 proquest_miscellaneous_3156526370 pubmed_primary_39814096 crossref_primary_10_1016_j_ajo_2025_01_003 elsevier_sciencedirect_doi_10_1016_j_ajo_2025_01_003 elsevier_clinicalkey_doi_10_1016_j_ajo_2025_01_003 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2025 2025-04-00 2025-Apr 20250401 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | American journal of ophthalmology |
| PublicationTitleAlternate | Am J Ophthalmol |
| PublicationYear | 2025 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Govetto, Lalane, Sarraf, Figueroa, Hubschman (bib0015) 2017; 175 Wen, Yu, Yang (bib0027) 2023; 23 Simonyan, Zisserman (bib0022) 2015 Crincoli, Savastano, Savastano (bib0025) 2023; 43 Li, He, Keel, Meng, Chang, He (bib0018) 2018; 125 Govetto, Bhavsar, Virgili (bib0013) 2017; 184 Kim, Kim, Chung, Lee, Koh (bib0010) 2012; 153 Kim, Ahn, Yang, Soo Kim, Lee (bib0026) 2022; 42 Ghazi-Nouri, Tranos, Rubin, Adams, Charteris (bib0009) 2006 May; 90 Pesin, Olk, Grand (bib0008) 1991; 98 Cho, Park, Cho, Woo, Park (bib0016) 2016; 168 He, Zhang, Ren, Sun (bib0023) 2016 Kawasaki, Wang, Mitchell (bib0007) 2008; 92 Itoh, Inoue, Rii, Hirota, Hirakata (bib0012) 2013; 54 Shimozono, Oishi, Hata (bib0011) 2012; 153 Hsia, Lin, Wang (bib0024) 2023; 12 Aung, Makeyeva, Adams (bib0004) 2013; 33 Mitchell, Smith, Chey, Wang, Chang (bib0002) 1997; 104 Li, Zhang, Li (bib0014) 2023; 23 Morino, Hiscott, McKechnie, Grierson (bib0006) 1990; 74 Kampik, Green, Michels, Nase (bib0005) 1980; 90 LeCun, Bengio, Hinton (bib0019) 2015; 521 Dai, Sheng, Chen (bib0020) 2024; 30 Klein, Klein, Wang, Moss (bib0003) 1994; 92 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0021) 2016 Gulshan, Peng, Coram (bib0017) 2016; 316 Li (10.1016/j.ajo.2025.01.003_bib0018) 2018; 125 Dai (10.1016/j.ajo.2025.01.003_bib0020) 2024; 30 Ghazi-Nouri (10.1016/j.ajo.2025.01.003_bib0009) 2006; 90 Klein (10.1016/j.ajo.2025.01.003_bib0003) 1994; 92 Szegedy (10.1016/j.ajo.2025.01.003_bib0021) 2016 Pesin (10.1016/j.ajo.2025.01.003_bib0008) 1991; 98 He (10.1016/j.ajo.2025.01.003_bib0023) 2016 Gulshan (10.1016/j.ajo.2025.01.003_bib0017) 2016; 316 Hsia (10.1016/j.ajo.2025.01.003_bib0024) 2023; 12 Mitchell (10.1016/j.ajo.2025.01.003_bib0002) 1997; 104 Wen (10.1016/j.ajo.2025.01.003_bib0027) 2023; 23 Aung (10.1016/j.ajo.2025.01.003_bib0004) 2013; 33 Itoh (10.1016/j.ajo.2025.01.003_bib0012) 2013; 54 Morino (10.1016/j.ajo.2025.01.003_bib0006) 1990; 74 LeCun (10.1016/j.ajo.2025.01.003_bib0019) 2015; 521 Kim (10.1016/j.ajo.2025.01.003_bib0010) 2012; 153 Crincoli (10.1016/j.ajo.2025.01.003_bib0025) 2023; 43 Simonyan (10.1016/j.ajo.2025.01.003_bib0022) 2015 Kim (10.1016/j.ajo.2025.01.003_bib0026) 2022; 42 Govetto (10.1016/j.ajo.2025.01.003_bib0013) 2017; 184 Kampik (10.1016/j.ajo.2025.01.003_bib0005) 1980; 90 Kawasaki (10.1016/j.ajo.2025.01.003_bib0007) 2008; 92 Shimozono (10.1016/j.ajo.2025.01.003_bib0011) 2012; 153 Govetto (10.1016/j.ajo.2025.01.003_bib0015) 2017; 175 Li (10.1016/j.ajo.2025.01.003_bib0014) 2023; 23 Cho (10.1016/j.ajo.2025.01.003_bib0016) 2016; 168 |
| References_xml | – year: 2015 ident: bib0022 article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition publication-title: International Conference on Learning Representations (ICLR) – volume: 153 start-page: 698 year: 2012 end-page: 704 ident: bib0011 article-title: The significance of cone outer segment tips as a prognostic factor in epiretinal membrane surgery publication-title: Am J Ophthalmol – start-page: 2818 year: 2016 end-page: 2826 ident: bib0021 article-title: Rethinking the Inception Architecture for Computer Vision publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 23 start-page: 361 year: 2023 ident: bib0027 article-title: Deep learning-based postoperative visual acuity prediction in idiopathic epiretinal membrane publication-title: BMC Ophthalmol – volume: 92 start-page: 403 year: 1994 end-page: 425 ident: bib0003 article-title: The epidemiology of epiretinal membranes publication-title: Trans Am Ophthalmol Soc – volume: 42 start-page: 1465 year: 2022 end-page: 1471 ident: bib0026 article-title: Deep learning-based prediction of outcomes following noncomplicated epiretinal membrane surgery publication-title: Retina – volume: 184 start-page: 167 year: 2017 end-page: 180 ident: bib0013 article-title: Tractional abnormalities of the central foveal bouquet in epiretinal membranes: clinical spectrum and pathophysiological perspectives publication-title: Am J Ophthalmol – volume: 23 start-page: 108 year: 2023 ident: bib0014 article-title: Effects of disorganization of retinal inner layers for idiopathic epiretinal membrane surgery: the surgical status and prognosis publication-title: BMC Ophthalmol – volume: 175 start-page: 99 year: 2017 end-page: 113 ident: bib0015 article-title: Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme publication-title: Am J Ophthalmol – volume: 125 start-page: 1199 year: 2018 end-page: 1206 ident: bib0018 article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs publication-title: Ophthalmology – volume: 316 start-page: 2402 year: 2016 end-page: 2410 ident: bib0017 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA – volume: 90 start-page: 559 year: 2006 May end-page: 562 ident: bib0009 article-title: Visual function and quality of life following vitrectomy and epiretinal membrane peel surgery publication-title: Br J Ophthalmol – volume: 54 start-page: 7302 year: 2013 end-page: 7308 ident: bib0012 article-title: Correlation between foveal cone outer segment tips line and visual recovery after epiretinal membrane surgery publication-title: Invest Ophthalmol Vis Sci – volume: 43 start-page: 173 year: 2023 end-page: 181 ident: bib0025 article-title: New artificial intelligence analysis for prediction of long-term visual improvement after epiretinal membrane surgery publication-title: Retina – volume: 12 start-page: 21 year: 2023 end-page: 28 ident: bib0024 article-title: Prediction of visual impairment in epiretinal membrane and feature analysis: a deep learning approach using optical coherence tomography publication-title: Asia-Pacific J Ophthalmol (Philadelphia) – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0019 article-title: Deep learning publication-title: Nature – volume: 168 start-page: 139 year: 2016 end-page: 149 ident: bib0016 article-title: Inner-retinal irregularity index predicts postoperative visual prognosis in idiopathic epiretinal membrane publication-title: Am J Ophthalmol – volume: 33 start-page: 1026 year: 2013 end-page: 1034 ident: bib0004 article-title: The prevalence and risk factors of epiretinal membranes: the Melbourne collaborative cohort study publication-title: Retina – volume: 74 start-page: 393 year: 1990 end-page: 399 ident: bib0006 article-title: Variation in epiretinal membrane components with clinical duration of the proliferative tissue publication-title: Br J Ophthalmol – volume: 104 start-page: 1033 year: 1997 end-page: 1040 ident: bib0002 article-title: Prevalence and associations of epiretinal membranes. The blue mountains eye study, Australia publication-title: Ophthalmology – start-page: 770 year: 2016 end-page: 778 ident: bib0023 article-title: Deep Residual Learning for Image Recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 90 start-page: 797 year: 1980 end-page: 809 ident: bib0005 article-title: Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery publication-title: Am J Ophthalmol – volume: 153 start-page: 103 year: 2012 end-page: 110 ident: bib0010 article-title: Structural and functional predictors of visual outcome of epiretinal membrane surgery publication-title: Am J Ophthalmol – volume: 30 start-page: 584 year: 2024 end-page: 594 ident: bib0020 article-title: A deep learning system for predicting time to progression of diabetic retinopathy publication-title: Nat Med – volume: 92 start-page: 1320 year: 2008 end-page: 1324 ident: bib0007 article-title: Racial difference in the prevalence of epiretinal membrane between Caucasians and Asians publication-title: Br J Ophthalmol – volume: 98 start-page: 1109 year: 1991 end-page: 1114 ident: bib0008 article-title: Vitrectomy for premacular fibroplasia. Prognostic factors, long-term follow-up, and time course of visual improvement publication-title: Ophthalmology – volume: 92 start-page: 403 year: 1994 ident: 10.1016/j.ajo.2025.01.003_bib0003 article-title: The epidemiology of epiretinal membranes publication-title: Trans Am Ophthalmol Soc – volume: 42 start-page: 1465 issue: 8 year: 2022 ident: 10.1016/j.ajo.2025.01.003_bib0026 article-title: Deep learning-based prediction of outcomes following noncomplicated epiretinal membrane surgery publication-title: Retina doi: 10.1097/IAE.0000000000003480 – volume: 90 start-page: 797 issue: 6 year: 1980 ident: 10.1016/j.ajo.2025.01.003_bib0005 article-title: Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery publication-title: Am J Ophthalmol doi: 10.1016/S0002-9394(14)75195-5 – start-page: 770 year: 2016 ident: 10.1016/j.ajo.2025.01.003_bib0023 article-title: Deep Residual Learning for Image Recognition – volume: 175 start-page: 99 year: 2017 ident: 10.1016/j.ajo.2025.01.003_bib0015 article-title: Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2016.12.006 – volume: 43 start-page: 173 issue: 2 year: 2023 ident: 10.1016/j.ajo.2025.01.003_bib0025 article-title: New artificial intelligence analysis for prediction of long-term visual improvement after epiretinal membrane surgery publication-title: Retina doi: 10.1097/IAE.0000000000003646 – volume: 153 start-page: 103 issue: 1 year: 2012 ident: 10.1016/j.ajo.2025.01.003_bib0010 article-title: Structural and functional predictors of visual outcome of epiretinal membrane surgery publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2011.06.021 – volume: 92 start-page: 1320 issue: 10 year: 2008 ident: 10.1016/j.ajo.2025.01.003_bib0007 article-title: Racial difference in the prevalence of epiretinal membrane between Caucasians and Asians publication-title: Br J Ophthalmol doi: 10.1136/bjo.2008.144626 – volume: 12 start-page: 21 issue: 1 year: 2023 ident: 10.1016/j.ajo.2025.01.003_bib0024 article-title: Prediction of visual impairment in epiretinal membrane and feature analysis: a deep learning approach using optical coherence tomography publication-title: Asia-Pacific J Ophthalmol (Philadelphia) doi: 10.1097/APO.0000000000000576 – start-page: 2818 year: 2016 ident: 10.1016/j.ajo.2025.01.003_bib0021 article-title: Rethinking the Inception Architecture for Computer Vision – volume: 33 start-page: 1026 issue: 5 year: 2013 ident: 10.1016/j.ajo.2025.01.003_bib0004 article-title: The prevalence and risk factors of epiretinal membranes: the Melbourne collaborative cohort study publication-title: Retina doi: 10.1097/IAE.0b013e3182733f25 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.ajo.2025.01.003_bib0019 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 30 start-page: 584 issue: 2 year: 2024 ident: 10.1016/j.ajo.2025.01.003_bib0020 article-title: A deep learning system for predicting time to progression of diabetic retinopathy publication-title: Nat Med doi: 10.1038/s41591-023-02702-z – volume: 74 start-page: 393 issue: 7 year: 1990 ident: 10.1016/j.ajo.2025.01.003_bib0006 article-title: Variation in epiretinal membrane components with clinical duration of the proliferative tissue publication-title: Br J Ophthalmol doi: 10.1136/bjo.74.7.393 – volume: 316 start-page: 2402 issue: 22 year: 2016 ident: 10.1016/j.ajo.2025.01.003_bib0017 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: JAMA doi: 10.1001/jama.2016.17216 – volume: 23 start-page: 361 issue: 1 year: 2023 ident: 10.1016/j.ajo.2025.01.003_bib0027 article-title: Deep learning-based postoperative visual acuity prediction in idiopathic epiretinal membrane publication-title: BMC Ophthalmol doi: 10.1186/s12886-023-03079-w – year: 2015 ident: 10.1016/j.ajo.2025.01.003_bib0022 article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition – volume: 184 start-page: 167 year: 2017 ident: 10.1016/j.ajo.2025.01.003_bib0013 article-title: Tractional abnormalities of the central foveal bouquet in epiretinal membranes: clinical spectrum and pathophysiological perspectives publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2017.10.011 – volume: 104 start-page: 1033 issue: 6 year: 1997 ident: 10.1016/j.ajo.2025.01.003_bib0002 article-title: Prevalence and associations of epiretinal membranes. The blue mountains eye study, Australia publication-title: Ophthalmology doi: 10.1016/S0161-6420(97)30190-0 – volume: 125 start-page: 1199 issue: 8 year: 2018 ident: 10.1016/j.ajo.2025.01.003_bib0018 article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs publication-title: Ophthalmology doi: 10.1016/j.ophtha.2018.01.023 – volume: 168 start-page: 139 year: 2016 ident: 10.1016/j.ajo.2025.01.003_bib0016 article-title: Inner-retinal irregularity index predicts postoperative visual prognosis in idiopathic epiretinal membrane publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2016.05.011 – volume: 54 start-page: 7302 issue: 12 year: 2013 ident: 10.1016/j.ajo.2025.01.003_bib0012 article-title: Correlation between foveal cone outer segment tips line and visual recovery after epiretinal membrane surgery publication-title: Invest Ophthalmol Vis Sci doi: 10.1167/iovs.13-12702 – volume: 23 start-page: 108 issue: 1 year: 2023 ident: 10.1016/j.ajo.2025.01.003_bib0014 article-title: Effects of disorganization of retinal inner layers for idiopathic epiretinal membrane surgery: the surgical status and prognosis publication-title: BMC Ophthalmol doi: 10.1186/s12886-023-02856-x – volume: 153 start-page: 698 issue: 4 year: 2012 ident: 10.1016/j.ajo.2025.01.003_bib0011 article-title: The significance of cone outer segment tips as a prognostic factor in epiretinal membrane surgery publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2011.09.011 – volume: 98 start-page: 1109 issue: 7 year: 1991 ident: 10.1016/j.ajo.2025.01.003_bib0008 article-title: Vitrectomy for premacular fibroplasia. Prognostic factors, long-term follow-up, and time course of visual improvement publication-title: Ophthalmology doi: 10.1016/S0161-6420(91)32169-9 – volume: 90 start-page: 559 issue: 5 year: 2006 ident: 10.1016/j.ajo.2025.01.003_bib0009 article-title: Visual function and quality of life following vitrectomy and epiretinal membrane peel surgery publication-title: Br J Ophthalmol doi: 10.1136/bjo.2005.085142 |
| SSID | ssj0006747 |
| Score | 2.484982 |
| Snippet | This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 67 |
| SubjectTerms | Aged Aged, 80 and over Algorithms Deep Learning Epiretinal Membrane - diagnosis Epiretinal Membrane - diagnostic imaging Epiretinal Membrane - physiopathology Epiretinal Membrane - surgery Female Humans Male Middle Aged Postoperative Period Retrospective Studies ROC Curve Tomography, Optical Coherence - methods Visual Acuity - physiology Vitrectomy - methods |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHqAcEI8WtjxkpJ6o0jqxE2ePqLQqSEuRoFVvlhOPUaolibqJKi78dmaSeAFVohK3JLITe2YyHsvzfcPYHsTe535eRiKzWaSkyiJrHURpAYmzWmLMTmjkxafs9Fx9vEwvN9hRwMJQWuXk-0efPnjr6cnhJM3DtqoI4ytwrZqj0Q0sLsQJqpSmKgYHP3-neWRa6RACU-twsjnkeNkrwv8lI3NnqJt1e226HXs-YPf7urU_buxy-cd6dPKIPZwCSf5uHOtjtgH1E3ZvMR2VP2X1kAzALX8P0PKJRvUbp9pnS941_PM1Ne04VettWhgJwPlFterxrWd9hwKBFW88_-CqZqhbXPLjtiLQI313Ad9xn10D_zLiqrfZ-cnx16PTaCquEJVynneRLyTuxYBAV146oSkbtITUlT6PM-1i6yRoXOwJQYJhYKEF5FaVKf6zaUI0hjtss25qeM547p1wLpaxLEDl3uKOBa8KIefgk1wkM_Y2iNW0I4eGCcllVwZ1YEgHRsREVDpjSRC8CeBQdGcGPfy_Oql1p7-s565ub4JmDf5VdFSCgmv6lcFJZilOQ4sZezaqfD10FB-xhGUztr-2gbvntft_Q3zBtuhuzBV6yTa76x5eYRjUFa8HO_8FaSADlw priority: 102 providerName: Elsevier |
| Title | Using a Deep Learning Model to Predict Postoperative Visual Outcomes of Idiopathic Epiretinal Membrane Surgery |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0002939425000224 https://dx.doi.org/10.1016/j.ajo.2025.01.003 https://www.ncbi.nlm.nih.gov/pubmed/39814096 https://www.proquest.com/docview/3156526370 https://doi.org/10.1016/j.ajo.2025.01.003 |
| UnpaywallVersion | publishedVersion |
| Volume | 272 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1891 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006747 issn: 1879-1891 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1891 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006747 issn: 1879-1891 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1891 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006747 issn: 1879-1891 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-1891 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006747 issn: 1879-1891 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1891 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006747 issn: 1879-1891 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5BK4E48H4UQWUkTqBUcZznsYJddUEtK0HRcoqceIy6lCTaJkJw4Lczk0fFe-GWg-3E43H8WTPfNwCPUVob2yR33FCHjq_80NHaoBNk6BkdKcLszEZersLF2n9xEpz0YtHMhfkhft_mYelT5uh5nbom63qOw4Bg9wjG69Xx_N0AbxPVFj3k4tmOjBM5RDB_N8afzqBfMeYVuNwUlf78SW-33507h9e6jK1dK1fI6SYfZk2dzfIvP4k5_tOUrsPVHn2KeecuN-ACFjfh0rKPr9-Cos0gEFo8R6xEr736XnDBtK2oS3F8xk1rwSV-ywo71XDxdrNraNRXTU3uiztRWnFkNmVb7DgXB9WGmZL83iV-pMt5geJ1R8a-DevDgzfPFk5fkcHJVRLXjs0UXeCQmVpWGTfiFNIcA5PbWIaRkdoojAghMO2EsGMWuRhrPw9oowceax_egVFRFngPRGyNa4xUUmXox1bTNYeeMlclaL3Y9SbwZFijtOqEN9IhI-00JQumbMHUlaxuOgFvWMV0YJTSPzAl0_-tk7_v1MONDkac1-3R4CYpbUWOr5DhymaX0iTDgKYRuRO42_nP_tPJfCwtFk7g6d6hzp_X_f9q_QBG9VmDDwkl1dkULs6-yimM50cvF6tpv1u-AUOFDhw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItFyqHizPI3ECRTqxM5jj1VptYVuQaJFvVlObKNU2yTqJqp64bczk8QLqBKVuEWJndgzk3nI880AvLWhc5mbFgFPdBJIIZNAa2ODOLeR0alAn53QyPOjZHYiP53Gp2uw67EwlFY56v5Bp_faeryzPVJzuylLwvhytFVTFLq-iou8BbdlHKUUgX34-TvPI0ll6n1gGu6PNvskL31GAMBoKN3pG2ddN07Xnc-7sNFVjb661IvFHwZp_x5sjZ4k2xkWex_WbPUA7szHs_KHUPXZAEyzj9Y2bKyj-oNR87MFa2v29YKGtoza9daNHSqAs-_lssO3fulapIhdstqxA1PWfePigu01JaEe6btze46BdmXZtwFY_QhO9veOd2fB2F0hKMQ0awOXCwzGLKGunDA8pXTQwsamcFmYpCbURtgUrT1BSNAPzFNuMy2LGH_aOKI6ho9hvaor-xRY5gw3JhShyK3MnMaQBa9yLqbWRRmPJvDOk1U1QxEN5bPLzhTyQBEPFA-pUukEIk945dGhqM8Uqvh_TZKrSX-Jz03T3njOKvyt6KwECVd3S4WbTGLcRson8GRg-WrpSD4qE5ZM4P1KBm7e17P_W-Jr2Jgdzw_V4cHR5-ewSU-GxKEXsN5edPYl-kRt_qqX-V-Dhga6 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBclgY09rF23dSnt0KBPGw625c_H0KZkg3SBLSN7ErJ1Kmkz2yQ2o_3re-ePsO92b36QZOt0sn7i7vc7xk7AMSYycWrZgQosT3iBpZQGy0_A1SoUiNmJjTy9CCZz78PCX7Ri0cSF-Sl-X-dhqSvi6LmNuibpevYDH2F3j_XnF7PR1w7exqIuekjFsy0nip0ugvmnMf52Bv2OMZ-wx1VWqJvvarX64dw5320ytja1XCGlm1wPqzIZpre_iDk-aEp77GmLPvmocZdnbAeyffZo2sbXn7OsziDgip8BFLzVXr3kVDBtxcucz9bUtORU4jcvoFEN51-WmwpH_ViV6L6w4bnh7_Uyr4sdp3xcLIkpSe-dwje8nGfAPzVk7Bdsfj7-fDqx2ooMViriqLRMIvACB8TUMkLbIaWQpuDr1EROEGpHaQEhIgSinSB2TEIbIuWlPm503yXtw5esl-UZvGI8MtrW2hGOSMCLjMJrDj4ltojBuJHtDtjbbo1k0QhvyC4j7UqiBSVZUNoOqZsOmNutouwYpfgPlGj6f3Xytp1auNHAiPu6vencROJWpPgKGi6vNhInGfg4jdAesIPGf7afjuYjabFgwN5tHer-eR3-V-sj1ivXFRwjSiqT1-3-uAOVOQuQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+Deep+Learning+Model+to+Predict+Postoperative+Visual+Outcomes+of+Idiopathic+Epiretinal+Membrane+Surgery&rft.jtitle=American+journal+of+ophthalmology&rft.au=LIN%2C+HSIN-LE&rft.au=TSENG%2C+PO-CHEN&rft.au=HSU%2C+MIN-HUEI&rft.au=PENG%2C+SYU-JYUN&rft.date=2025-04-01&rft.pub=Elsevier+Inc&rft.issn=0002-9394&rft.volume=272&rft.spage=67&rft.epage=78&rft_id=info:doi/10.1016%2Fj.ajo.2025.01.003&rft.externalDocID=S0002939425000224 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon |