Using a Deep Learning Model to Predict Postoperative Visual Outcomes of Idiopathic Epiretinal Membrane Surgery

This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images. Validation of algorithms to predict the outcomes of ERM surgery based on OCT d...

Full description

Saved in:
Bibliographic Details
Published inAmerican journal of ophthalmology Vol. 272; pp. 67 - 78
Main Authors LIN, HSIN-LE, TSENG, PO-CHEN, HSU, MIN-HUEI, PENG, SYU-JYUN
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.04.2025
Subjects
Online AccessGet full text
ISSN0002-9394
1879-1891
1879-1891
DOI10.1016/j.ajo.2025.01.003

Cover

Abstract This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images. Validation of algorithms to predict the outcomes of ERM surgery based on OCT data. Internal training and validation were performed using 1,392 OCT images from 696 eyes. External testing was performed using 152 OCT images from 76 eyes. This study assessed three deep learning models, including Inception-v3, ResNet-101, and VGG-19. Grad-CAM was employed for hotspot analysis. The dataset was split into a training set (80%) and a validation set (20%). Subjects presenting an improvement of ≥2 lines on the Snellen chart at 1-year postsurgery were classified as pronounced visual improvement, whereas those presenting an improvement of <2 lines were classified as limited visual improvement. Using an external test dataset, we compared assessments by seven ophthalmologists with the prediction of deep learning model. The main outcome measures were recall, specificity, precision, F1 score, accuracy, and area under the receiver operating characteristic curve (AUROC). ResNet-101 achieved the best overall performance, as evidenced by the following metrics: recall (0.90), specificity (0.90), precision (0.91), F1-score (0.90), accuracy (0.90), and AUROC (0.97). In Grad-CAM heatmap analysis, the logic of ResNet-101 closely resembled that of clinical physicians. Overall, the performance of this deep learning model was significantly better than that of general ophthalmologists and non-retina specialists and was slightly superior to that of retina specialists. Deep learning based on preoperative OCT images proved highly effective in predicting the outcomes of ERM surgery and elucidating the structural mechanisms underlying the phenomena observed in OCT images.
AbstractList This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images. Validation of algorithms to predict the outcomes of ERM surgery based on OCT data. Internal training and validation were performed using 1,392 OCT images from 696 eyes. External testing was performed using 152 OCT images from 76 eyes. This study assessed three deep learning models, including Inception-v3, ResNet-101, and VGG-19. Grad-CAM was employed for hotspot analysis. The dataset was split into a training set (80%) and a validation set (20%). Subjects presenting an improvement of ≥2 lines on the Snellen chart at 1-year postsurgery were classified as pronounced visual improvement, whereas those presenting an improvement of <2 lines were classified as limited visual improvement. Using an external test dataset, we compared assessments by seven ophthalmologists with the prediction of deep learning model. The main outcome measures were recall, specificity, precision, F1 score, accuracy, and area under the receiver operating characteristic curve (AUROC). ResNet-101 achieved the best overall performance, as evidenced by the following metrics: recall (0.90), specificity (0.90), precision (0.91), F1-score (0.90), accuracy (0.90), and AUROC (0.97). In Grad-CAM heatmap analysis, the logic of ResNet-101 closely resembled that of clinical physicians. Overall, the performance of this deep learning model was significantly better than that of general ophthalmologists and non-retina specialists and was slightly superior to that of retina specialists. Deep learning based on preoperative OCT images proved highly effective in predicting the outcomes of ERM surgery and elucidating the structural mechanisms underlying the phenomena observed in OCT images.
This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images.PURPOSEThis study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery based on preoperative optical coherence tomography (OCT) images.Validation of algorithms to predict the outcomes of ERM surgery based on OCT data.DESIGNValidation of algorithms to predict the outcomes of ERM surgery based on OCT data.Internal training and validation were performed using 1,392 OCT images from 696 eyes. External testing was performed using 152 OCT images from 76 eyes. This study assessed three deep learning models, including Inception-v3, ResNet-101, and VGG-19. Grad-CAM was employed for hotspot analysis. The dataset was split into a training set (80%) and a validation set (20%). Subjects presenting an improvement of ≥2 lines on the Snellen chart at 1-year postsurgery were classified as pronounced visual improvement, whereas those presenting an improvement of <2 lines were classified as limited visual improvement. Using an external test dataset, we compared assessments by seven ophthalmologists with the prediction of deep learning model. The main outcome measures were recall, specificity, precision, F1 score, accuracy, and area under the receiver operating characteristic curve (AUROC).METHODSInternal training and validation were performed using 1,392 OCT images from 696 eyes. External testing was performed using 152 OCT images from 76 eyes. This study assessed three deep learning models, including Inception-v3, ResNet-101, and VGG-19. Grad-CAM was employed for hotspot analysis. The dataset was split into a training set (80%) and a validation set (20%). Subjects presenting an improvement of ≥2 lines on the Snellen chart at 1-year postsurgery were classified as pronounced visual improvement, whereas those presenting an improvement of <2 lines were classified as limited visual improvement. Using an external test dataset, we compared assessments by seven ophthalmologists with the prediction of deep learning model. The main outcome measures were recall, specificity, precision, F1 score, accuracy, and area under the receiver operating characteristic curve (AUROC).ResNet-101 achieved the best overall performance, as evidenced by the following metrics: recall (0.90), specificity (0.90), precision (0.91), F1-score (0.90), accuracy (0.90), and AUROC (0.97). In Grad-CAM heatmap analysis, the logic of ResNet-101 closely resembled that of clinical physicians. Overall, the performance of this deep learning model was significantly better than that of general ophthalmologists and non-retina specialists and was slightly superior to that of retina specialists.RESULTSResNet-101 achieved the best overall performance, as evidenced by the following metrics: recall (0.90), specificity (0.90), precision (0.91), F1-score (0.90), accuracy (0.90), and AUROC (0.97). In Grad-CAM heatmap analysis, the logic of ResNet-101 closely resembled that of clinical physicians. Overall, the performance of this deep learning model was significantly better than that of general ophthalmologists and non-retina specialists and was slightly superior to that of retina specialists.Deep learning based on preoperative OCT images proved highly effective in predicting the outcomes of ERM surgery and elucidating the structural mechanisms underlying the phenomena observed in OCT images.CONCLUSIONSDeep learning based on preoperative OCT images proved highly effective in predicting the outcomes of ERM surgery and elucidating the structural mechanisms underlying the phenomena observed in OCT images.
Author PENG, SYU-JYUN
LIN, HSIN-LE
TSENG, PO-CHEN
HSU, MIN-HUEI
Author_xml – sequence: 1
  givenname: HSIN-LE
  surname: LIN
  fullname: LIN, HSIN-LE
  organization: From the Department of Ophthalmology (H.L.L, P.C.T), Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan
– sequence: 2
  givenname: PO-CHEN
  orcidid: 0000-0003-0519-2446
  surname: TSENG
  fullname: TSENG, PO-CHEN
  organization: From the Department of Ophthalmology (H.L.L, P.C.T), Ren-Ai Branch, Taipei City Hospital, Taipei, Taiwan
– sequence: 3
  givenname: MIN-HUEI
  surname: HSU
  fullname: HSU, MIN-HUEI
  organization: Graduate Institute of Data Science (H.L.L, M.H.H), College of Management, Taipei Medical University, Taiwan
– sequence: 4
  givenname: SYU-JYUN
  orcidid: 0000-0001-5002-6581
  surname: PENG
  fullname: PENG, SYU-JYUN
  email: sjpeng2019@tmu.edu.tw
  organization: In-Service Master Program in Artificial Intelligence in Medicine (S.J.P), College of Medicine, Taipei Medical University, Taipei, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39814096$$D View this record in MEDLINE/PubMed
BookMark eNqNkcFu1DAURS1URKeFD2CDvGST8BwnTiJWqC1QaapWgrK1PPZL8ZDYwXaK5u_xaEoXXQAr60n3XPsdn5Aj5x0S8ppByYCJd9tSbX1ZQdWUwEoA_oysWNf2Bet6dkRWAFAVPe_rY3IS4zaPoq3bF-SY9x2roRcr4m6jdXdU0XPEma5RBbefr7zBkSZPbwIaqxO98TH5GYNK9h7pNxsXNdLrJWk_YaR-oJfG-lml71bTi9kGTNblxBVOm6Ac0i9LuMOwe0meD2qM-OrhPCW3Hy--nn0u1tefLs8-rAudn5aKYcMFMGw6zgduoEWjUWNj9NAx0RqmDMcWBBOdqID1mxawU7VuGs6arKPmp6Q69C5uVrtfahzlHOykwk4ykHt5ciuzPLmXJ4HJLC9Dbw_QHPzPBWOSk40axzEv4Jcoc7loKsFbyNE3D9FlM6F5LP8jNgfYIaCDjzHg8F_3vz8wmM3cWwwyaotO5x8IqJM03v6V7p_QerTOajX-wN0_2N_4CrL5
Cites_doi 10.1097/IAE.0000000000003480
10.1016/S0002-9394(14)75195-5
10.1016/j.ajo.2016.12.006
10.1097/IAE.0000000000003646
10.1016/j.ajo.2011.06.021
10.1136/bjo.2008.144626
10.1097/APO.0000000000000576
10.1097/IAE.0b013e3182733f25
10.1038/nature14539
10.1038/s41591-023-02702-z
10.1136/bjo.74.7.393
10.1001/jama.2016.17216
10.1186/s12886-023-03079-w
10.1016/j.ajo.2017.10.011
10.1016/S0161-6420(97)30190-0
10.1016/j.ophtha.2018.01.023
10.1016/j.ajo.2016.05.011
10.1167/iovs.13-12702
10.1186/s12886-023-02856-x
10.1016/j.ajo.2011.09.011
10.1016/S0161-6420(91)32169-9
10.1136/bjo.2005.085142
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.ajo.2025.01.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-1891
EndPage 78
ExternalDocumentID 10.1016/j.ajo.2025.01.003
39814096
10_1016_j_ajo_2025_01_003
S0002939425000224
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1CY
1P~
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHTB
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AAQXK
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABCQX
ABDPE
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABOCM
ABPEJ
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACLOT
ACNCT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADFRT
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHMBA
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N4W
N9A
O-L
O9-
OAUVE
OF-
OPF
OQ~
OZT
P-8
P-9
P2P
PC.
PQQKQ
PROAC
Q38
R2-
ROL
RPZ
SCC
SDF
SDG
SDP
SEL
SES
SPCBC
SSH
SSZ
SV3
T5K
UNMZH
UV1
VH1
WH7
WOW
X7M
XPP
Z5R
ZGI
ZXP
~G-
~HD
6I.
AACTN
AAFTH
AFCTW
RIG
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c398t-fb3601e5833f3d07edcece5dcf8167d1ad3e70616862019b70e8a4c5531520243
IEDL.DBID UNPAY
ISSN 0002-9394
1879-1891
IngestDate Tue Aug 19 08:54:56 EDT 2025
Sun Sep 28 11:35:43 EDT 2025
Mon Jul 21 05:57:22 EDT 2025
Wed Oct 01 06:42:09 EDT 2025
Sat Mar 29 16:10:42 EDT 2025
Tue Oct 14 19:30:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ERM
OCT
GCIPL
CNN
P-IM
IPL
RPE
L-IM
Grad-CAM
INL
DL
AI
AUROC
EIFL
OPL
ILM
ROI
DRIL
COST
BCVA
SGDM
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-fb3601e5833f3d07edcece5dcf8167d1ad3e70616862019b70e8a4c5531520243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0001-5002-6581
0000-0003-0519-2446
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.ajo.2025.01.003
PMID 39814096
PQID 3156526370
PQPubID 23479
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_ajo_2025_01_003
proquest_miscellaneous_3156526370
pubmed_primary_39814096
crossref_primary_10_1016_j_ajo_2025_01_003
elsevier_sciencedirect_doi_10_1016_j_ajo_2025_01_003
elsevier_clinicalkey_doi_10_1016_j_ajo_2025_01_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
2025-Apr
20250401
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle American journal of ophthalmology
PublicationTitleAlternate Am J Ophthalmol
PublicationYear 2025
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Govetto, Lalane, Sarraf, Figueroa, Hubschman (bib0015) 2017; 175
Wen, Yu, Yang (bib0027) 2023; 23
Simonyan, Zisserman (bib0022) 2015
Crincoli, Savastano, Savastano (bib0025) 2023; 43
Li, He, Keel, Meng, Chang, He (bib0018) 2018; 125
Govetto, Bhavsar, Virgili (bib0013) 2017; 184
Kim, Kim, Chung, Lee, Koh (bib0010) 2012; 153
Kim, Ahn, Yang, Soo Kim, Lee (bib0026) 2022; 42
Ghazi-Nouri, Tranos, Rubin, Adams, Charteris (bib0009) 2006 May; 90
Pesin, Olk, Grand (bib0008) 1991; 98
Cho, Park, Cho, Woo, Park (bib0016) 2016; 168
He, Zhang, Ren, Sun (bib0023) 2016
Kawasaki, Wang, Mitchell (bib0007) 2008; 92
Itoh, Inoue, Rii, Hirota, Hirakata (bib0012) 2013; 54
Shimozono, Oishi, Hata (bib0011) 2012; 153
Hsia, Lin, Wang (bib0024) 2023; 12
Aung, Makeyeva, Adams (bib0004) 2013; 33
Mitchell, Smith, Chey, Wang, Chang (bib0002) 1997; 104
Li, Zhang, Li (bib0014) 2023; 23
Morino, Hiscott, McKechnie, Grierson (bib0006) 1990; 74
Kampik, Green, Michels, Nase (bib0005) 1980; 90
LeCun, Bengio, Hinton (bib0019) 2015; 521
Dai, Sheng, Chen (bib0020) 2024; 30
Klein, Klein, Wang, Moss (bib0003) 1994; 92
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (bib0021) 2016
Gulshan, Peng, Coram (bib0017) 2016; 316
Li (10.1016/j.ajo.2025.01.003_bib0018) 2018; 125
Dai (10.1016/j.ajo.2025.01.003_bib0020) 2024; 30
Ghazi-Nouri (10.1016/j.ajo.2025.01.003_bib0009) 2006; 90
Klein (10.1016/j.ajo.2025.01.003_bib0003) 1994; 92
Szegedy (10.1016/j.ajo.2025.01.003_bib0021) 2016
Pesin (10.1016/j.ajo.2025.01.003_bib0008) 1991; 98
He (10.1016/j.ajo.2025.01.003_bib0023) 2016
Gulshan (10.1016/j.ajo.2025.01.003_bib0017) 2016; 316
Hsia (10.1016/j.ajo.2025.01.003_bib0024) 2023; 12
Mitchell (10.1016/j.ajo.2025.01.003_bib0002) 1997; 104
Wen (10.1016/j.ajo.2025.01.003_bib0027) 2023; 23
Aung (10.1016/j.ajo.2025.01.003_bib0004) 2013; 33
Itoh (10.1016/j.ajo.2025.01.003_bib0012) 2013; 54
Morino (10.1016/j.ajo.2025.01.003_bib0006) 1990; 74
LeCun (10.1016/j.ajo.2025.01.003_bib0019) 2015; 521
Kim (10.1016/j.ajo.2025.01.003_bib0010) 2012; 153
Crincoli (10.1016/j.ajo.2025.01.003_bib0025) 2023; 43
Simonyan (10.1016/j.ajo.2025.01.003_bib0022) 2015
Kim (10.1016/j.ajo.2025.01.003_bib0026) 2022; 42
Govetto (10.1016/j.ajo.2025.01.003_bib0013) 2017; 184
Kampik (10.1016/j.ajo.2025.01.003_bib0005) 1980; 90
Kawasaki (10.1016/j.ajo.2025.01.003_bib0007) 2008; 92
Shimozono (10.1016/j.ajo.2025.01.003_bib0011) 2012; 153
Govetto (10.1016/j.ajo.2025.01.003_bib0015) 2017; 175
Li (10.1016/j.ajo.2025.01.003_bib0014) 2023; 23
Cho (10.1016/j.ajo.2025.01.003_bib0016) 2016; 168
References_xml – year: 2015
  ident: bib0022
  article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 153
  start-page: 698
  year: 2012
  end-page: 704
  ident: bib0011
  article-title: The significance of cone outer segment tips as a prognostic factor in epiretinal membrane surgery
  publication-title: Am J Ophthalmol
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: bib0021
  article-title: Rethinking the Inception Architecture for Computer Vision
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 23
  start-page: 361
  year: 2023
  ident: bib0027
  article-title: Deep learning-based postoperative visual acuity prediction in idiopathic epiretinal membrane
  publication-title: BMC Ophthalmol
– volume: 92
  start-page: 403
  year: 1994
  end-page: 425
  ident: bib0003
  article-title: The epidemiology of epiretinal membranes
  publication-title: Trans Am Ophthalmol Soc
– volume: 42
  start-page: 1465
  year: 2022
  end-page: 1471
  ident: bib0026
  article-title: Deep learning-based prediction of outcomes following noncomplicated epiretinal membrane surgery
  publication-title: Retina
– volume: 184
  start-page: 167
  year: 2017
  end-page: 180
  ident: bib0013
  article-title: Tractional abnormalities of the central foveal bouquet in epiretinal membranes: clinical spectrum and pathophysiological perspectives
  publication-title: Am J Ophthalmol
– volume: 23
  start-page: 108
  year: 2023
  ident: bib0014
  article-title: Effects of disorganization of retinal inner layers for idiopathic epiretinal membrane surgery: the surgical status and prognosis
  publication-title: BMC Ophthalmol
– volume: 175
  start-page: 99
  year: 2017
  end-page: 113
  ident: bib0015
  article-title: Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme
  publication-title: Am J Ophthalmol
– volume: 125
  start-page: 1199
  year: 2018
  end-page: 1206
  ident: bib0018
  article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
  publication-title: Ophthalmology
– volume: 316
  start-page: 2402
  year: 2016
  end-page: 2410
  ident: bib0017
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
– volume: 90
  start-page: 559
  year: 2006 May
  end-page: 562
  ident: bib0009
  article-title: Visual function and quality of life following vitrectomy and epiretinal membrane peel surgery
  publication-title: Br J Ophthalmol
– volume: 54
  start-page: 7302
  year: 2013
  end-page: 7308
  ident: bib0012
  article-title: Correlation between foveal cone outer segment tips line and visual recovery after epiretinal membrane surgery
  publication-title: Invest Ophthalmol Vis Sci
– volume: 43
  start-page: 173
  year: 2023
  end-page: 181
  ident: bib0025
  article-title: New artificial intelligence analysis for prediction of long-term visual improvement after epiretinal membrane surgery
  publication-title: Retina
– volume: 12
  start-page: 21
  year: 2023
  end-page: 28
  ident: bib0024
  article-title: Prediction of visual impairment in epiretinal membrane and feature analysis: a deep learning approach using optical coherence tomography
  publication-title: Asia-Pacific J Ophthalmol (Philadelphia)
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0019
  article-title: Deep learning
  publication-title: Nature
– volume: 168
  start-page: 139
  year: 2016
  end-page: 149
  ident: bib0016
  article-title: Inner-retinal irregularity index predicts postoperative visual prognosis in idiopathic epiretinal membrane
  publication-title: Am J Ophthalmol
– volume: 33
  start-page: 1026
  year: 2013
  end-page: 1034
  ident: bib0004
  article-title: The prevalence and risk factors of epiretinal membranes: the Melbourne collaborative cohort study
  publication-title: Retina
– volume: 74
  start-page: 393
  year: 1990
  end-page: 399
  ident: bib0006
  article-title: Variation in epiretinal membrane components with clinical duration of the proliferative tissue
  publication-title: Br J Ophthalmol
– volume: 104
  start-page: 1033
  year: 1997
  end-page: 1040
  ident: bib0002
  article-title: Prevalence and associations of epiretinal membranes. The blue mountains eye study, Australia
  publication-title: Ophthalmology
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0023
  article-title: Deep Residual Learning for Image Recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 90
  start-page: 797
  year: 1980
  end-page: 809
  ident: bib0005
  article-title: Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery
  publication-title: Am J Ophthalmol
– volume: 153
  start-page: 103
  year: 2012
  end-page: 110
  ident: bib0010
  article-title: Structural and functional predictors of visual outcome of epiretinal membrane surgery
  publication-title: Am J Ophthalmol
– volume: 30
  start-page: 584
  year: 2024
  end-page: 594
  ident: bib0020
  article-title: A deep learning system for predicting time to progression of diabetic retinopathy
  publication-title: Nat Med
– volume: 92
  start-page: 1320
  year: 2008
  end-page: 1324
  ident: bib0007
  article-title: Racial difference in the prevalence of epiretinal membrane between Caucasians and Asians
  publication-title: Br J Ophthalmol
– volume: 98
  start-page: 1109
  year: 1991
  end-page: 1114
  ident: bib0008
  article-title: Vitrectomy for premacular fibroplasia. Prognostic factors, long-term follow-up, and time course of visual improvement
  publication-title: Ophthalmology
– volume: 92
  start-page: 403
  year: 1994
  ident: 10.1016/j.ajo.2025.01.003_bib0003
  article-title: The epidemiology of epiretinal membranes
  publication-title: Trans Am Ophthalmol Soc
– volume: 42
  start-page: 1465
  issue: 8
  year: 2022
  ident: 10.1016/j.ajo.2025.01.003_bib0026
  article-title: Deep learning-based prediction of outcomes following noncomplicated epiretinal membrane surgery
  publication-title: Retina
  doi: 10.1097/IAE.0000000000003480
– volume: 90
  start-page: 797
  issue: 6
  year: 1980
  ident: 10.1016/j.ajo.2025.01.003_bib0005
  article-title: Ultrastructural features of progressive idiopathic epiretinal membrane removed by vitreous surgery
  publication-title: Am J Ophthalmol
  doi: 10.1016/S0002-9394(14)75195-5
– start-page: 770
  year: 2016
  ident: 10.1016/j.ajo.2025.01.003_bib0023
  article-title: Deep Residual Learning for Image Recognition
– volume: 175
  start-page: 99
  year: 2017
  ident: 10.1016/j.ajo.2025.01.003_bib0015
  article-title: Insights into epiretinal membranes: presence of ectopic inner foveal layers and a new optical coherence tomography staging scheme
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2016.12.006
– volume: 43
  start-page: 173
  issue: 2
  year: 2023
  ident: 10.1016/j.ajo.2025.01.003_bib0025
  article-title: New artificial intelligence analysis for prediction of long-term visual improvement after epiretinal membrane surgery
  publication-title: Retina
  doi: 10.1097/IAE.0000000000003646
– volume: 153
  start-page: 103
  issue: 1
  year: 2012
  ident: 10.1016/j.ajo.2025.01.003_bib0010
  article-title: Structural and functional predictors of visual outcome of epiretinal membrane surgery
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2011.06.021
– volume: 92
  start-page: 1320
  issue: 10
  year: 2008
  ident: 10.1016/j.ajo.2025.01.003_bib0007
  article-title: Racial difference in the prevalence of epiretinal membrane between Caucasians and Asians
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.2008.144626
– volume: 12
  start-page: 21
  issue: 1
  year: 2023
  ident: 10.1016/j.ajo.2025.01.003_bib0024
  article-title: Prediction of visual impairment in epiretinal membrane and feature analysis: a deep learning approach using optical coherence tomography
  publication-title: Asia-Pacific J Ophthalmol (Philadelphia)
  doi: 10.1097/APO.0000000000000576
– start-page: 2818
  year: 2016
  ident: 10.1016/j.ajo.2025.01.003_bib0021
  article-title: Rethinking the Inception Architecture for Computer Vision
– volume: 33
  start-page: 1026
  issue: 5
  year: 2013
  ident: 10.1016/j.ajo.2025.01.003_bib0004
  article-title: The prevalence and risk factors of epiretinal membranes: the Melbourne collaborative cohort study
  publication-title: Retina
  doi: 10.1097/IAE.0b013e3182733f25
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.ajo.2025.01.003_bib0019
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 30
  start-page: 584
  issue: 2
  year: 2024
  ident: 10.1016/j.ajo.2025.01.003_bib0020
  article-title: A deep learning system for predicting time to progression of diabetic retinopathy
  publication-title: Nat Med
  doi: 10.1038/s41591-023-02702-z
– volume: 74
  start-page: 393
  issue: 7
  year: 1990
  ident: 10.1016/j.ajo.2025.01.003_bib0006
  article-title: Variation in epiretinal membrane components with clinical duration of the proliferative tissue
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.74.7.393
– volume: 316
  start-page: 2402
  issue: 22
  year: 2016
  ident: 10.1016/j.ajo.2025.01.003_bib0017
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: JAMA
  doi: 10.1001/jama.2016.17216
– volume: 23
  start-page: 361
  issue: 1
  year: 2023
  ident: 10.1016/j.ajo.2025.01.003_bib0027
  article-title: Deep learning-based postoperative visual acuity prediction in idiopathic epiretinal membrane
  publication-title: BMC Ophthalmol
  doi: 10.1186/s12886-023-03079-w
– year: 2015
  ident: 10.1016/j.ajo.2025.01.003_bib0022
  article-title: Very Deep Convolutional Networks for Large-Scale Image Recognition
– volume: 184
  start-page: 167
  year: 2017
  ident: 10.1016/j.ajo.2025.01.003_bib0013
  article-title: Tractional abnormalities of the central foveal bouquet in epiretinal membranes: clinical spectrum and pathophysiological perspectives
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2017.10.011
– volume: 104
  start-page: 1033
  issue: 6
  year: 1997
  ident: 10.1016/j.ajo.2025.01.003_bib0002
  article-title: Prevalence and associations of epiretinal membranes. The blue mountains eye study, Australia
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(97)30190-0
– volume: 125
  start-page: 1199
  issue: 8
  year: 2018
  ident: 10.1016/j.ajo.2025.01.003_bib0018
  article-title: Efficacy of a deep learning system for detecting glaucomatous optic neuropathy based on color fundus photographs
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2018.01.023
– volume: 168
  start-page: 139
  year: 2016
  ident: 10.1016/j.ajo.2025.01.003_bib0016
  article-title: Inner-retinal irregularity index predicts postoperative visual prognosis in idiopathic epiretinal membrane
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2016.05.011
– volume: 54
  start-page: 7302
  issue: 12
  year: 2013
  ident: 10.1016/j.ajo.2025.01.003_bib0012
  article-title: Correlation between foveal cone outer segment tips line and visual recovery after epiretinal membrane surgery
  publication-title: Invest Ophthalmol Vis Sci
  doi: 10.1167/iovs.13-12702
– volume: 23
  start-page: 108
  issue: 1
  year: 2023
  ident: 10.1016/j.ajo.2025.01.003_bib0014
  article-title: Effects of disorganization of retinal inner layers for idiopathic epiretinal membrane surgery: the surgical status and prognosis
  publication-title: BMC Ophthalmol
  doi: 10.1186/s12886-023-02856-x
– volume: 153
  start-page: 698
  issue: 4
  year: 2012
  ident: 10.1016/j.ajo.2025.01.003_bib0011
  article-title: The significance of cone outer segment tips as a prognostic factor in epiretinal membrane surgery
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2011.09.011
– volume: 98
  start-page: 1109
  issue: 7
  year: 1991
  ident: 10.1016/j.ajo.2025.01.003_bib0008
  article-title: Vitrectomy for premacular fibroplasia. Prognostic factors, long-term follow-up, and time course of visual improvement
  publication-title: Ophthalmology
  doi: 10.1016/S0161-6420(91)32169-9
– volume: 90
  start-page: 559
  issue: 5
  year: 2006
  ident: 10.1016/j.ajo.2025.01.003_bib0009
  article-title: Visual function and quality of life following vitrectomy and epiretinal membrane peel surgery
  publication-title: Br J Ophthalmol
  doi: 10.1136/bjo.2005.085142
SSID ssj0006747
Score 2.484982
Snippet This study assessed the performance of various deep learning models in predicting the postoperative outcomes of idiopathic epiretinal membrane (ERM) surgery...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 67
SubjectTerms Aged
Aged, 80 and over
Algorithms
Deep Learning
Epiretinal Membrane - diagnosis
Epiretinal Membrane - diagnostic imaging
Epiretinal Membrane - physiopathology
Epiretinal Membrane - surgery
Female
Humans
Male
Middle Aged
Postoperative Period
Retrospective Studies
ROC Curve
Tomography, Optical Coherence - methods
Visual Acuity - physiology
Vitrectomy - methods
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHqAcEI8WtjxkpJ6o0jqxE2ePqLQqSEuRoFVvlhOPUaolibqJKi78dmaSeAFVohK3JLITe2YyHsvzfcPYHsTe535eRiKzWaSkyiJrHURpAYmzWmLMTmjkxafs9Fx9vEwvN9hRwMJQWuXk-0efPnjr6cnhJM3DtqoI4ytwrZqj0Q0sLsQJqpSmKgYHP3-neWRa6RACU-twsjnkeNkrwv8lI3NnqJt1e226HXs-YPf7urU_buxy-cd6dPKIPZwCSf5uHOtjtgH1E3ZvMR2VP2X1kAzALX8P0PKJRvUbp9pnS941_PM1Ne04VettWhgJwPlFterxrWd9hwKBFW88_-CqZqhbXPLjtiLQI313Ad9xn10D_zLiqrfZ-cnx16PTaCquEJVynneRLyTuxYBAV146oSkbtITUlT6PM-1i6yRoXOwJQYJhYKEF5FaVKf6zaUI0hjtss25qeM547p1wLpaxLEDl3uKOBa8KIefgk1wkM_Y2iNW0I4eGCcllVwZ1YEgHRsREVDpjSRC8CeBQdGcGPfy_Oql1p7-s565ub4JmDf5VdFSCgmv6lcFJZilOQ4sZezaqfD10FB-xhGUztr-2gbvntft_Q3zBtuhuzBV6yTa76x5eYRjUFa8HO_8FaSADlw
  priority: 102
  providerName: Elsevier
Title Using a Deep Learning Model to Predict Postoperative Visual Outcomes of Idiopathic Epiretinal Membrane Surgery
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0002939425000224
https://dx.doi.org/10.1016/j.ajo.2025.01.003
https://www.ncbi.nlm.nih.gov/pubmed/39814096
https://www.proquest.com/docview/3156526370
https://doi.org/10.1016/j.ajo.2025.01.003
UnpaywallVersion publishedVersion
Volume 272
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1891
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006747
  issn: 1879-1891
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1891
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006747
  issn: 1879-1891
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1891
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006747
  issn: 1879-1891
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-1891
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006747
  issn: 1879-1891
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1891
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006747
  issn: 1879-1891
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB5BK4E48H4UQWUkTqBUcZznsYJddUEtK0HRcoqceIy6lCTaJkJw4Lczk0fFe-GWg-3E43H8WTPfNwCPUVob2yR33FCHjq_80NHaoBNk6BkdKcLszEZersLF2n9xEpz0YtHMhfkhft_mYelT5uh5nbom63qOw4Bg9wjG69Xx_N0AbxPVFj3k4tmOjBM5RDB_N8afzqBfMeYVuNwUlf78SW-33507h9e6jK1dK1fI6SYfZk2dzfIvP4k5_tOUrsPVHn2KeecuN-ACFjfh0rKPr9-Cos0gEFo8R6xEr736XnDBtK2oS3F8xk1rwSV-ywo71XDxdrNraNRXTU3uiztRWnFkNmVb7DgXB9WGmZL83iV-pMt5geJ1R8a-DevDgzfPFk5fkcHJVRLXjs0UXeCQmVpWGTfiFNIcA5PbWIaRkdoojAghMO2EsGMWuRhrPw9oowceax_egVFRFngPRGyNa4xUUmXox1bTNYeeMlclaL3Y9SbwZFijtOqEN9IhI-00JQumbMHUlaxuOgFvWMV0YJTSPzAl0_-tk7_v1MONDkac1-3R4CYpbUWOr5DhymaX0iTDgKYRuRO42_nP_tPJfCwtFk7g6d6hzp_X_f9q_QBG9VmDDwkl1dkULs6-yimM50cvF6tpv1u-AUOFDhw
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VItFyqHizPI3ECRTqxM5jj1VptYVuQaJFvVlObKNU2yTqJqp64bczk8QLqBKVuEWJndgzk3nI880AvLWhc5mbFgFPdBJIIZNAa2ODOLeR0alAn53QyPOjZHYiP53Gp2uw67EwlFY56v5Bp_faeryzPVJzuylLwvhytFVTFLq-iou8BbdlHKUUgX34-TvPI0ll6n1gGu6PNvskL31GAMBoKN3pG2ddN07Xnc-7sNFVjb661IvFHwZp_x5sjZ4k2xkWex_WbPUA7szHs_KHUPXZAEyzj9Y2bKyj-oNR87MFa2v29YKGtoza9daNHSqAs-_lssO3fulapIhdstqxA1PWfePigu01JaEe6btze46BdmXZtwFY_QhO9veOd2fB2F0hKMQ0awOXCwzGLKGunDA8pXTQwsamcFmYpCbURtgUrT1BSNAPzFNuMy2LGH_aOKI6ho9hvaor-xRY5gw3JhShyK3MnMaQBa9yLqbWRRmPJvDOk1U1QxEN5bPLzhTyQBEPFA-pUukEIk945dGhqM8Uqvh_TZKrSX-Jz03T3njOKvyt6KwECVd3S4WbTGLcRson8GRg-WrpSD4qE5ZM4P1KBm7e17P_W-Jr2Jgdzw_V4cHR5-ewSU-GxKEXsN5edPYl-kRt_qqX-V-Dhga6
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBclgY09rF23dSnt0KBPGw625c_H0KZkg3SBLSN7ErJ1Kmkz2yQ2o_3re-ePsO92b36QZOt0sn7i7vc7xk7AMSYycWrZgQosT3iBpZQGy0_A1SoUiNmJjTy9CCZz78PCX7Ri0cSF-Sl-X-dhqSvi6LmNuibpevYDH2F3j_XnF7PR1w7exqIuekjFsy0nip0ugvmnMf52Bv2OMZ-wx1VWqJvvarX64dw5320ytja1XCGlm1wPqzIZpre_iDk-aEp77GmLPvmocZdnbAeyffZo2sbXn7OsziDgip8BFLzVXr3kVDBtxcucz9bUtORU4jcvoFEN51-WmwpH_ViV6L6w4bnh7_Uyr4sdp3xcLIkpSe-dwje8nGfAPzVk7Bdsfj7-fDqx2ooMViriqLRMIvACB8TUMkLbIaWQpuDr1EROEGpHaQEhIgSinSB2TEIbIuWlPm503yXtw5esl-UZvGI8MtrW2hGOSMCLjMJrDj4ltojBuJHtDtjbbo1k0QhvyC4j7UqiBSVZUNoOqZsOmNutouwYpfgPlGj6f3Xytp1auNHAiPu6vencROJWpPgKGi6vNhInGfg4jdAesIPGf7afjuYjabFgwN5tHer-eR3-V-sj1ivXFRwjSiqT1-3-uAOVOQuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+a+Deep+Learning+Model+to+Predict+Postoperative+Visual+Outcomes+of+Idiopathic+Epiretinal+Membrane+Surgery&rft.jtitle=American+journal+of+ophthalmology&rft.au=LIN%2C+HSIN-LE&rft.au=TSENG%2C+PO-CHEN&rft.au=HSU%2C+MIN-HUEI&rft.au=PENG%2C+SYU-JYUN&rft.date=2025-04-01&rft.pub=Elsevier+Inc&rft.issn=0002-9394&rft.volume=272&rft.spage=67&rft.epage=78&rft_id=info:doi/10.1016%2Fj.ajo.2025.01.003&rft.externalDocID=S0002939425000224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0002-9394&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0002-9394&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0002-9394&client=summon