Efficient encapsulation of a model drug in chitosan cathodic electrodeposition: Preliminary analysis using FTIR, UV–vis, and NMR spectroscopy
This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its abili...
Saved in:
Published in | Carbohydrate polymers Vol. 348; no. Pt A; p. 122830 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0144-8617 1879-1344 1879-1344 |
DOI | 10.1016/j.carbpol.2024.122830 |
Cover
Abstract | This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV–visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for Td50Ti60, while UV–Vis showed 46.41 % at Td60Ti50. NMR analysis revealed effective concentrations of 0.47 mM for Td70Ti60 and 0.38 mM for Td60Ti50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications.
[Display omitted] |
---|---|
AbstractList | This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV–visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for Td50Ti60, while UV–Vis showed 46.41 % at Td60Ti50. NMR analysis revealed effective concentrations of 0.47 mM for Td70Ti60 and 0.38 mM for Td60Ti50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications.
[Display omitted] This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV–visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for Td50Tᵢ60, while UV–Vis showed 46.41 % at Td60Tᵢ50. NMR analysis revealed effective concentrations of 0.47 mM for Td70Tᵢ60 and 0.38 mM for Td60Tᵢ50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications. This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV-visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for T 50T 60, while UV-Vis showed 46.41 % at T 60T 50. NMR analysis revealed effective concentrations of 0.47 mM for T 70T 60 and 0.38 mM for T 60T 50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications. This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV-visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for Td50Ti60, while UV-Vis showed 46.41 % at Td60Ti50. NMR analysis revealed effective concentrations of 0.47 mM for Td70Ti60 and 0.38 mM for Td60Ti50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications.This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV-visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for Td50Ti60, while UV-Vis showed 46.41 % at Td60Ti50. NMR analysis revealed effective concentrations of 0.47 mM for Td70Ti60 and 0.38 mM for Td60Ti50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications. |
ArticleNumber | 122830 |
Author | Majid, S.R. Zaini Ambia, N. Fairuz Ain Abu Bakar, Nurfarhanim Nordin, Nurdiana |
Author_xml | – sequence: 1 givenname: Nurdiana surname: Nordin fullname: Nordin, Nurdiana email: ndiana13@um.edu.my organization: Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia – sequence: 2 givenname: N. Fairuz Ain surname: Zaini Ambia fullname: Zaini Ambia, N. Fairuz Ain organization: Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia – sequence: 3 givenname: S.R. surname: Majid fullname: Majid, S.R. organization: Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia – sequence: 4 givenname: Nurfarhanim surname: Abu Bakar fullname: Abu Bakar, Nurfarhanim email: Nurfarhanim.AbuBakar@taylors.edu.my organization: Department of Engineering and Sciences, American Degree Program, School of Liberal Arts and Sciences, Taylor's University, Taylor's Lakeside Campus, No. 1 Jalan Taylor, 47500 Subang Jaya, Selangor, Malaysia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39562104$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1uFSEYhompsafVS9CwdNE58jczjC6MaVptUn_StG4JA0zLCQMjME3OzjvoonfolcjpOd24qWwg4Xk_wvMegD0fvAHgNUZLjHDzbrVUMvZTcEuCCFtiQjhFz8AC87arMGVsDywQZqziDW73wUFKK1RWg9ELsE-7uiEYsQW4OxkGq6zxGRqv5JRmJ7MNHoYBSjgGbRzUcb6G1kN1Y3NIshxkvgnaKmicUTkWaArJbmLv4Y9onB2tl3ENpZdunWyCc7L-Gp5enl0cwauff37f39p0VK41_Pb1AqbpYUpSYVq_BM8H6ZJ5tdsPwdXpyeXxl-r8--ez40_nlaIdz5VpdN1LJFlHWqI7qujAu5oPuqZKsYbJvtFtrUjXyr5Hqm2aejBcKqaKH4wJPQRvt3OnGH7NJmUx2qSMc9KbMCdBcU05YZjx_0Ap4sU-bgv6ZofO_Wi0mKIdiwjx6LsAH7aAKv9N0QxC2fwgPEdpncBIbNoVK7FrV2zaFdt2S7r-J_34wFO5j9ucKUZvrYkibSpXRttY1Asd7BMT_gJYIMPG |
CitedBy_id | crossref_primary_10_1080_28361466_2024_2428590 |
Cites_doi | 10.1007/s00253-008-1770-1 10.3390/polym7010001 10.3390/polysaccharides1010005 10.1002/mabi.201800372 10.1016/j.carbpol.2018.06.123 10.1039/C6TB00336B 10.1016/j.mtchem.2020.100338 10.1016/j.jare.2022.04.005 10.1039/C4CP04389H 10.3390/molecules28186561 10.1039/c0lc00047g 10.1016/j.carpta.2024.100515 10.1016/j.proeps.2015.08.109 10.1016/j.carbpol.2017.10.097 10.3390/ma14112754 10.1038/nmeth0206-135 10.1002/adhm.201200409 10.1038/415530a 10.1039/c0sm00124d 10.3390/polym14153023 10.3390/ijms231810975 10.3390/colorants2020014 10.1016/j.ijbiomac.2022.04.231 10.1038/s41598-024-51538-1 |
ContentType | Journal Article |
Copyright | 2024 Copyright © 2024. Published by Elsevier Ltd. |
Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.carbpol.2024.122830 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-1344 |
ExternalDocumentID | 39562104 10_1016_j_carbpol_2024_122830 S0144861724010567 |
Genre | Journal Article |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATLK AATTM AAXKI AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEQOU AFJKZ AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M24 M2Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SAB SDF SDG SDP SES SEW SPC SPCBC SSA SSH SSK SSU SSZ T5K Y6R ~G- ~KM 53G AALCJ AAQXK AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLV HMS HVGLF HZ~ R2- RIG SCB SMS SOC WUQ XPP CGR CUY CVF ECM EFKBS EIF NPM 7X8 ACLOT EFLBG ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c398t-e6d5ba0a49272d93c3f8958fd53cc464ab6d75c297abb0c7665fe8ac4c1871123 |
IEDL.DBID | .~1 |
ISSN | 0144-8617 1879-1344 |
IngestDate | Sat Sep 27 20:18:24 EDT 2025 Sun Sep 28 03:17:43 EDT 2025 Mon Jul 21 06:05:29 EDT 2025 Tue Jul 01 01:25:06 EDT 2025 Thu Apr 24 23:10:10 EDT 2025 Sun Apr 06 06:53:20 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | Multiplex system NMR Chitosan FT-IR, UV-Vis Aromatic dye Metal in-situ interaction |
Language | English |
License | Copyright © 2024. Published by Elsevier Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c398t-e6d5ba0a49272d93c3f8958fd53cc464ab6d75c297abb0c7665fe8ac4c1871123 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 39562104 |
PQID | 3130828317 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3153824148 proquest_miscellaneous_3130828317 pubmed_primary_39562104 crossref_citationtrail_10_1016_j_carbpol_2024_122830 crossref_primary_10_1016_j_carbpol_2024_122830 elsevier_sciencedirect_doi_10_1016_j_carbpol_2024_122830 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-15 |
PublicationDateYYYYMMDD | 2025-01-15 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Carbohydrate polymers |
PublicationTitleAlternate | Carbohydr Polym |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Jiménez-Rosado, Romero (bb0055) 2022; 14 Zhao, Liu, Tan, Gao, Chen, Huang, Xu, Li, Wang, Zhang, Xu (bb0145) 2023; 44 Luna-Bárcenas, Prokhorov, Elizalde-Peña, Nuno-Licona, Sanchez, Gough, Schmidt (bb0080) 2011; 25 García-Torres, Gispert, Gómez, Vallés (bb0030) 2015; 17 Fusco, Chatzipirpiridis, Sivaraman, Ergeneman, Nelson, Pané (bb0025) 2013; 2 Jiang, Liu, Xu, Pan, Hou, Hu, Yang (bb0050) 2018; 182 Zhang, Zhang, Cui, Jing, Feng, Coseri (bb0140) 2024; 328 Sabarish, Unnikrishnan (bb0105) 2018; 199 Tahari, de Hoyos-Martinez, Izaguirre, Houwaida, Abderrabba, Ayadi, Labidi (bb0115) 2022; 210 Islam, Arya, Weidler, Korvink, Badilita (bb0040) 2020; 17 Abourehab, Pramanik, Abdelgawad, Abualsoud, Kadi, Ansari, Deepak (bb0005) 2022; 23 Allouche, Yassaa, Lounici (bb0010) 2015; 15 Kharitonov, Kasach, Gibala, Zimowska, Kurilo, Wrzesinska, Warszynski (bb0060) 2021; 14 Pan, Zhang, Zhan, Xiong, Wang, Cao, Chen (bb0095) 2020; 242 Cheng, Luo, Betz, Buckhout-White, Bekdash, Payne, Rubloff (bb0020) 2010; 6 Koev, Dykstra, Luo, Rubloff, Bentley, Payne, Ghodssi (bb0070) 2010; 10 Kim, Xiong, Cheng, Wu, Liu, Morrow, Payne (bb0065) 2015; 7 Llanes, Dubessay, Pierre, Delattre, Michaud (bb0075) 2020; 1 Tamer, Abbas, Sadik, Omer, Abd-Ellatif, Mohy-Eldin (bb0120) 2024; 14 Nordin, Bordonali, Badilita, MacKinnon (bb0090) 2019; 19 Jemai, Djebbi, Boubakri, Ben Rhaiem, Ben Haj Amara (bb0045) 2023; 2 Nguyen, Goodrich (bb0085) 2006; 3 Rostami (bb0100) 2021; 2 Volumes, 1–2 Trinh, Wlaschin, Srienc (bb0125) 2009; 81 Shikuku, Hasnat, Mashrur, Haque, Rahman, Khan (bb0110) 2024; 7 Yadav, Kaushik, Rao, Srivastava, Vaya (bb0135) 2023; 5 Alyasi, Mackey, McKay (bb0015) 2023; 28 Geng, Wang, Guo, Zhang, Chen, Wang (bb0035) 2016; 4 Van’’t Veer, Dai, Van de Vijver, He, Hart, Mao, Friend (bb0130) 2002; 415 Sabarish (10.1016/j.carbpol.2024.122830_bb0105) 2018; 199 Jiménez-Rosado (10.1016/j.carbpol.2024.122830_bb0055) 2022; 14 Kharitonov (10.1016/j.carbpol.2024.122830_bb0060) 2021; 14 Nordin (10.1016/j.carbpol.2024.122830_bb0090) 2019; 19 Shikuku (10.1016/j.carbpol.2024.122830_bb0110) 2024; 7 Tahari (10.1016/j.carbpol.2024.122830_bb0115) 2022; 210 Trinh (10.1016/j.carbpol.2024.122830_bb0125) 2009; 81 Yadav (10.1016/j.carbpol.2024.122830_bb0135) 2023; 5 Koev (10.1016/j.carbpol.2024.122830_bb0070) 2010; 10 Abourehab (10.1016/j.carbpol.2024.122830_bb0005) 2022; 23 Geng (10.1016/j.carbpol.2024.122830_bb0035) 2016; 4 Tamer (10.1016/j.carbpol.2024.122830_bb0120) 2024; 14 Cheng (10.1016/j.carbpol.2024.122830_bb0020) 2010; 6 Allouche (10.1016/j.carbpol.2024.122830_bb0010) 2015; 15 García-Torres (10.1016/j.carbpol.2024.122830_bb0030) 2015; 17 Zhang (10.1016/j.carbpol.2024.122830_bb0140) 2024; 328 Alyasi (10.1016/j.carbpol.2024.122830_bb0015) 2023; 28 Nguyen (10.1016/j.carbpol.2024.122830_bb0085) 2006; 3 Llanes (10.1016/j.carbpol.2024.122830_bb0075) 2020; 1 Rostami (10.1016/j.carbpol.2024.122830_bb0100) 2021; 2 Volumes, 1–2 Jiang (10.1016/j.carbpol.2024.122830_bb0050) 2018; 182 Pan (10.1016/j.carbpol.2024.122830_bb0095) 2020; 242 Fusco (10.1016/j.carbpol.2024.122830_bb0025) 2013; 2 Jemai (10.1016/j.carbpol.2024.122830_bb0045) 2023; 2 Kim (10.1016/j.carbpol.2024.122830_bb0065) 2015; 7 Luna-Bárcenas (10.1016/j.carbpol.2024.122830_bb0080) 2011; 25 Islam (10.1016/j.carbpol.2024.122830_bb0040) 2020; 17 Van’’t Veer (10.1016/j.carbpol.2024.122830_bb0130) 2002; 415 Zhao (10.1016/j.carbpol.2024.122830_bb0145) 2023; 44 |
References_xml | – volume: 4 start-page: 3331 year: 2016 end-page: 3338 ident: bb0035 article-title: Electrodeposition of chitosan based on coordination with metal ions: In situ -generated by electrochemical oxidation publication-title: Journal of Materials Chemistry B – volume: 14 start-page: 3023 year: 2022 ident: bb0055 article-title: Novel trends in hydrogel development for biomedical applications: A review publication-title: Polymers – volume: 199 start-page: 129 year: 2018 end-page: 140 ident: bb0105 article-title: Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications publication-title: Carbohydrate Polymers – volume: 23 year: 2022 ident: bb0005 article-title: Recent advances of chitosan formulations in biomedical applications publication-title: International Journal of Molecular Sciences – volume: 328 year: 2024 ident: bb0140 article-title: Rapid self-healing carbo- xymethyl chitosan/hyaluronic acid hydrogels with injectable ability for drug delivery publication-title: Carbohydrate Polymers – volume: 17 year: 2020 ident: bb0040 article-title: Electrodeposition of chitosan enables synthesis of copper/carbon composites for H2O2 sensing publication-title: Materials Today Chemistry – volume: 19 year: 2019 ident: bb0090 article-title: Spatial and temporal control over multilayer bio-polymer film assembly and composition publication-title: Macromolecular Bioscience – volume: 3 start-page: 135 year: 2006 end-page: 139 ident: bb0085 article-title: Protein-protein interaction assays: Eliminating false positive interactions publication-title: Nature Methods – volume: 5 year: 2023 ident: bb0135 article-title: Advances and challenges in the use of chitosan and its derivatives in biomedical fields: A review publication-title: Carbohydrate Polymer Technologies and Applications – volume: 210 start-page: 94 year: 2022 end-page: 106 ident: bb0115 article-title: Preparation of chitosan/tannin and montmorillonite films as adsorbents for methyl orange dye removal publication-title: International Journal of Biological Macromolecules – volume: 7 year: 2024 ident: bb0110 article-title: Chitosan-based pH-sensitive semi-interpenetrating network nanoparticles as a sustained release matrix for anticancer drug delivery publication-title: Carbohydrate Polymer Technologies and Applications – volume: 14 start-page: 1 year: 2024 end-page: 16 ident: bb0120 article-title: Development of novel amino-ethyl chitosan hydrogel for the removal of methyl orange azo dye model publication-title: Scientific Reports – volume: 17 start-page: 1630 year: 2015 end-page: 1636 ident: bb0030 article-title: Alginate electrodeposition onto three-dimensional porous Co-Ni films as drug delivery platforms publication-title: Physical Chemistry Chemical Physics – volume: 2 start-page: 209 year: 2023 end-page: 229 ident: bb0045 article-title: Effective removal of methyl orange dyes using an adsorbent prepared from porous starch aerogel and organoclay publication-title: Colorants – volume: 242 year: 2020 ident: bb0095 article-title: In situ generation of silver nanoparticles and nanocomposite films based on electrodeposition of carboxylated chitosan publication-title: Carbohydrate Polymers – volume: 81 start-page: 813 year: 2009 end-page: 826 ident: bb0125 article-title: Elementary mode analysis: A useful metabolic pathway analysis tool for characterizing cellular metabolism. In publication-title: Applied Microbiology and Biotechnology – volume: 182 start-page: 106 year: 2018 end-page: 114 ident: bb0050 article-title: Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism publication-title: Carbohydrate Polymers – volume: 10 start-page: 3026 year: 2010 end-page: 3042 ident: bb0070 article-title: Chitosan: An integrative biomaterial for lab-on-a-chip devices publication-title: Lab on a Chip – volume: 1 start-page: 51 year: 2020 end-page: 79 ident: bb0075 article-title: Biosourced polysaccharide-based superabsorbents publication-title: Polysaccharides – volume: 7 start-page: 1 year: 2015 end-page: 46 ident: bb0065 article-title: Chitosan to connect biology to electronics: Fabricating the bio-device interface and communicating across this interface publication-title: Polymers – volume: 44 start-page: 53 year: 2023 end-page: 70 ident: bb0145 article-title: Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption publication-title: Journal of Advanced Research – volume: 14 year: 2021 ident: bb0060 article-title: Anodic electrodeposition of chitosan–agnp composites using in situ coordination with copper ions publication-title: Materials – volume: 28 start-page: 6561 year: 2023 ident: bb0015 article-title: Adsorption of methyl orange from water using chitosan publication-title: Molecules – volume: 2 start-page: 1037 year: 2013 end-page: 1044 ident: bb0025 article-title: Chitosan electrodeposition for microrobotic drug delivery publication-title: Advanced Healthcare Materials – volume: 6 start-page: 3177 year: 2010 end-page: 3183 ident: bb0020 article-title: In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes publication-title: Soft Matter – volume: 2 Volumes, 1–2 start-page: 1 year: 2021 end-page: 32 ident: bb0100 article-title: Chitosan-based nanoparticles for drug delivery publication-title: Nanoengineering of biomaterials: Drug delivery & biomedical applications – volume: 15 start-page: 596 year: 2015 end-page: 601 ident: bb0010 article-title: Sorption of methyl orange from aqueous solution on chitosan biomass publication-title: Procedia Earth and Planetary Science – volume: 25 start-page: 5858 year: 2011 ident: bb0080 article-title: Chitosan-based hydrogels for tissue engineering applications publication-title: Molecules – volume: 415 start-page: 530 year: 2002 end-page: 536 ident: bb0130 article-title: Gene expression profiling predicts clinical outcome of breast cancer publication-title: Nature – volume: 81 start-page: 813 issue: 5 year: 2009 ident: 10.1016/j.carbpol.2024.122830_bb0125 article-title: Elementary mode analysis: A useful metabolic pathway analysis tool for characterizing cellular metabolism. In publication-title: Applied Microbiology and Biotechnology doi: 10.1007/s00253-008-1770-1 – volume: 7 start-page: 1 issue: 1 year: 2015 ident: 10.1016/j.carbpol.2024.122830_bb0065 article-title: Chitosan to connect biology to electronics: Fabricating the bio-device interface and communicating across this interface publication-title: Polymers doi: 10.3390/polym7010001 – volume: 1 start-page: 51 issue: 1 year: 2020 ident: 10.1016/j.carbpol.2024.122830_bb0075 article-title: Biosourced polysaccharide-based superabsorbents publication-title: Polysaccharides doi: 10.3390/polysaccharides1010005 – volume: 19 issue: 4 year: 2019 ident: 10.1016/j.carbpol.2024.122830_bb0090 article-title: Spatial and temporal control over multilayer bio-polymer film assembly and composition publication-title: Macromolecular Bioscience doi: 10.1002/mabi.201800372 – volume: 199 start-page: 129 issue: July year: 2018 ident: 10.1016/j.carbpol.2024.122830_bb0105 article-title: Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.06.123 – volume: 25 start-page: 5858 year: 2011 ident: 10.1016/j.carbpol.2024.122830_bb0080 article-title: Chitosan-based hydrogels for tissue engineering applications publication-title: Molecules – volume: 4 start-page: 3331 issue: 19 year: 2016 ident: 10.1016/j.carbpol.2024.122830_bb0035 article-title: Electrodeposition of chitosan based on coordination with metal ions: In situ -generated by electrochemical oxidation publication-title: Journal of Materials Chemistry B doi: 10.1039/C6TB00336B – volume: 17 year: 2020 ident: 10.1016/j.carbpol.2024.122830_bb0040 article-title: Electrodeposition of chitosan enables synthesis of copper/carbon composites for H2O2 sensing publication-title: Materials Today Chemistry doi: 10.1016/j.mtchem.2020.100338 – volume: 44 start-page: 53 year: 2023 ident: 10.1016/j.carbpol.2024.122830_bb0145 article-title: Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption publication-title: Journal of Advanced Research doi: 10.1016/j.jare.2022.04.005 – volume: 17 start-page: 1630 issue: 3 year: 2015 ident: 10.1016/j.carbpol.2024.122830_bb0030 article-title: Alginate electrodeposition onto three-dimensional porous Co-Ni films as drug delivery platforms publication-title: Physical Chemistry Chemical Physics doi: 10.1039/C4CP04389H – volume: 328 issue: October 2023 year: 2024 ident: 10.1016/j.carbpol.2024.122830_bb0140 article-title: Rapid self-healing carbo- xymethyl chitosan/hyaluronic acid hydrogels with injectable ability for drug delivery publication-title: Carbohydrate Polymers – volume: 242 issue: April year: 2020 ident: 10.1016/j.carbpol.2024.122830_bb0095 article-title: In situ generation of silver nanoparticles and nanocomposite films based on electrodeposition of carboxylated chitosan publication-title: Carbohydrate Polymers – volume: 28 start-page: 6561 year: 2023 ident: 10.1016/j.carbpol.2024.122830_bb0015 article-title: Adsorption of methyl orange from water using chitosan publication-title: Molecules doi: 10.3390/molecules28186561 – volume: 10 start-page: 3026 issue: 22 year: 2010 ident: 10.1016/j.carbpol.2024.122830_bb0070 article-title: Chitosan: An integrative biomaterial for lab-on-a-chip devices publication-title: Lab on a Chip doi: 10.1039/c0lc00047g – volume: 7 year: 2024 ident: 10.1016/j.carbpol.2024.122830_bb0110 article-title: Chitosan-based pH-sensitive semi-interpenetrating network nanoparticles as a sustained release matrix for anticancer drug delivery publication-title: Carbohydrate Polymer Technologies and Applications doi: 10.1016/j.carpta.2024.100515 – volume: 15 start-page: 596 year: 2015 ident: 10.1016/j.carbpol.2024.122830_bb0010 article-title: Sorption of methyl orange from aqueous solution on chitosan biomass publication-title: Procedia Earth and Planetary Science doi: 10.1016/j.proeps.2015.08.109 – volume: 182 start-page: 106 issue: July 2017 year: 2018 ident: 10.1016/j.carbpol.2024.122830_bb0050 article-title: Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.10.097 – volume: 14 issue: 11 year: 2021 ident: 10.1016/j.carbpol.2024.122830_bb0060 article-title: Anodic electrodeposition of chitosan–agnp composites using in situ coordination with copper ions publication-title: Materials doi: 10.3390/ma14112754 – volume: 3 start-page: 135 issue: 2 year: 2006 ident: 10.1016/j.carbpol.2024.122830_bb0085 article-title: Protein-protein interaction assays: Eliminating false positive interactions publication-title: Nature Methods doi: 10.1038/nmeth0206-135 – volume: 2 start-page: 1037 issue: 7 year: 2013 ident: 10.1016/j.carbpol.2024.122830_bb0025 article-title: Chitosan electrodeposition for microrobotic drug delivery publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201200409 – volume: 415 start-page: 530 issue: 6871 year: 2002 ident: 10.1016/j.carbpol.2024.122830_bb0130 article-title: Gene expression profiling predicts clinical outcome of breast cancer publication-title: Nature doi: 10.1038/415530a – volume: 5 issue: May year: 2023 ident: 10.1016/j.carbpol.2024.122830_bb0135 article-title: Advances and challenges in the use of chitosan and its derivatives in biomedical fields: A review publication-title: Carbohydrate Polymer Technologies and Applications – volume: 6 start-page: 3177 issue: 14 year: 2010 ident: 10.1016/j.carbpol.2024.122830_bb0020 article-title: In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes publication-title: Soft Matter doi: 10.1039/c0sm00124d – volume: 2 Volumes, 1–2 start-page: 1 year: 2021 ident: 10.1016/j.carbpol.2024.122830_bb0100 article-title: Chitosan-based nanoparticles for drug delivery – volume: 14 start-page: 3023 year: 2022 ident: 10.1016/j.carbpol.2024.122830_bb0055 article-title: Novel trends in hydrogel development for biomedical applications: A review publication-title: Polymers doi: 10.3390/polym14153023 – volume: 23 issue: 18 year: 2022 ident: 10.1016/j.carbpol.2024.122830_bb0005 article-title: Recent advances of chitosan formulations in biomedical applications publication-title: International Journal of Molecular Sciences doi: 10.3390/ijms231810975 – volume: 2 start-page: 209 issue: 2 year: 2023 ident: 10.1016/j.carbpol.2024.122830_bb0045 article-title: Effective removal of methyl orange dyes using an adsorbent prepared from porous starch aerogel and organoclay publication-title: Colorants doi: 10.3390/colorants2020014 – volume: 210 start-page: 94 issue: April year: 2022 ident: 10.1016/j.carbpol.2024.122830_bb0115 article-title: Preparation of chitosan/tannin and montmorillonite films as adsorbents for methyl orange dye removal publication-title: International Journal of Biological Macromolecules doi: 10.1016/j.ijbiomac.2022.04.231 – volume: 14 start-page: 1 issue: 1 year: 2024 ident: 10.1016/j.carbpol.2024.122830_bb0120 article-title: Development of novel amino-ethyl chitosan hydrogel for the removal of methyl orange azo dye model publication-title: Scientific Reports doi: 10.1038/s41598-024-51538-1 |
SSID | ssj0000610 |
Score | 2.4869337 |
Snippet | This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 122830 |
SubjectTerms | absorption Aromatic dye Azo Compounds - chemistry Chitosan Chitosan - chemistry Drug Carriers - chemistry Drug Compounding - methods Drug Liberation drugs dyes electrochemistry Electrodes electroplating Electroplating - methods encapsulation FT-IR, UV-Vis hydrogels Hydrogels - chemistry Magnetic Resonance Spectroscopy - methods Metal in-situ interaction methyl orange Multiplex system NMR nuclear magnetic resonance spectroscopy oxidation polymers Spectrophotometry, Ultraviolet Spectroscopy, Fourier Transform Infrared - methods therapeutics ultraviolet-visible spectroscopy |
Title | Efficient encapsulation of a model drug in chitosan cathodic electrodeposition: Preliminary analysis using FTIR, UV–vis, and NMR spectroscopy |
URI | https://dx.doi.org/10.1016/j.carbpol.2024.122830 https://www.ncbi.nlm.nih.gov/pubmed/39562104 https://www.proquest.com/docview/3130828317 https://www.proquest.com/docview/3153824148 |
Volume | 348 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-1344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000610 issn: 0144-8617 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-1344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000610 issn: 0144-8617 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-1344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000610 issn: 0144-8617 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1879-1344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000610 issn: 0144-8617 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-1344 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000610 issn: 0144-8617 databaseCode: AKRWK dateStart: 19810901 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbSX0qavTdugQo_x7tqSJbm3sGTZtGQpIVtyM7IewSHYi3e3kEvpP-ih_7C_pDOyncchDfRmbMnIGnkezMz3EfIxNpoLZiHIkXIccSlNpDOdRixlNmbGahF6q47nYrbgn8_Ssy0y6XthsKyy0_2tTg_aursz6nZztCzLEZYlcYUGmCPLo8COckT_gjM9_BHf0sYBkQAHRzj6potndAEhYFMsa8xAJHwYBzCs--zTff5nsEPTZ-Rp50DSg3aNz8mWq3bI40nP2_aC_DoMqBBgTCh8jYYouC13o7WnmgbmG2qbzTktK4pJhHql4UIjkXRpaEeLY11fzfWJfm3cZeD-aq6o7jBMKNbLn9Pp6dHJPl18-_Pz9_dytQ-PLZ0fn9DQv4k4mfXy6iVZTA9PJ7Ooo12IDMvUOnLCpoUea54lMrEZM8yrLFXepswYLrguhJWpSTKpi2JspBCpd0obbmKIvsASviLbVV25N4QWjjnhwYtThnMvnfJewnsl-qVFwvyA8H6zc9NhkiM1xmXeF59d5J2McpRR3spoQIbX05YtKMdDE1QvyfzO6crBcDw09UMv-RwEiekUXbl6s8pZjFA_Chywf40BgwJOElcD8ro9NtcrZhCaQsDNd_9_cW_JkwT5iMdxFKfvyPa62bj34CSti73wF-yRRwdHX2bzv29XEz8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECVS55Beiu5104UFeoxiS1zVW2DEsJvYKAK7yI2gSCpQEEiGbBfILX_QQ_-wX9KhRKXtIQ3QmyBxBIpDzQLOvIfQx9hoyomFJEeIYUSFMJFONYsIIzYmxmre9FbN5nyypJ_P2fkOGnW9ML6sMtj-1qY31jrcGYTVHKyKYuDLkqj0Dph6lkcuHqBdysAm99Du0fRkMv_DIDegBH585AV-N_IMLiELrLNV5Q8hEnoYN3hYd7mou0LQxhWNH6NHIYbER-00n6AdVz5Fe6OOuu0Z-n7cAEOAP8HwQRoS4bbiDVc51rghv8G23l7gosT-HKFaa7jQnku6MDgw41jXFXR9wl9qd9XQf9XXWAcYE-xL5i_weDE9O8DLrz9vfnwr1gfw2OL57Aw3LZweKrNaXT9Hy_HxYjSJAvNCZEgqN5HjlmV6qGmaiMSmxJBcpkzmlhFjKKc641Ywk6RCZ9nQCM5Z7qQ21MSQgIEzfIF6ZVW6VwhnjjieQyAnDaW5cDLPBbxX-NA0S0jeR7RbbGUCLLlnx7hSXf3ZpQo6Ul5HqtVRHx3eiq1aXI77BGSnSfXXBlPgO-4T_dBpXoEi_YmKLl21XSsSe7QfCTHYv8aAT4E4ico-etlum9sZE8hOIeemr_9_cu_R3mQxO1Wn0_nJPnqYeHriYRzF7A3qbeqtewsx0yZ7F_6JX7arFeo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+encapsulation+of+a+model+drug+in+chitosan+cathodic+electrodeposition%3A+Preliminary+analysis+using+FTIR%2C+UV%E2%80%93vis%2C+and+NMR+spectroscopy&rft.jtitle=Carbohydrate+polymers&rft.au=Nordin%2C+Nurdiana&rft.au=Zaini+Ambia%2C+N.+Fairuz+Ain&rft.au=Majid%2C+S.R.&rft.au=Abu+Bakar%2C+Nurfarhanim&rft.date=2025-01-15&rft.pub=Elsevier+Ltd&rft.issn=0144-8617&rft.volume=348&rft_id=info:doi/10.1016%2Fj.carbpol.2024.122830&rft.externalDocID=S0144861724010567 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon |