Efficient encapsulation of a model drug in chitosan cathodic electrodeposition: Preliminary analysis using FTIR, UV–vis, and NMR spectroscopy

This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its abili...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 348; no. Pt A; p. 122830
Main Authors Nordin, Nurdiana, Zaini Ambia, N. Fairuz Ain, Majid, S.R., Abu Bakar, Nurfarhanim
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 15.01.2025
Subjects
Online AccessGet full text
ISSN0144-8617
1879-1344
1879-1344
DOI10.1016/j.carbpol.2024.122830

Cover

Abstract This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV–visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for Td50Ti60, while UV–Vis showed 46.41 % at Td60Ti50. NMR analysis revealed effective concentrations of 0.47 mM for Td70Ti60 and 0.38 mM for Td60Ti50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications. [Display omitted]
AbstractList This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV–visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for Td50Ti60, while UV–Vis showed 46.41 % at Td60Ti50. NMR analysis revealed effective concentrations of 0.47 mM for Td70Ti60 and 0.38 mM for Td60Ti50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications. [Display omitted]
This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV–visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for Td50Tᵢ60, while UV–Vis showed 46.41 % at Td60Tᵢ50. NMR analysis revealed effective concentrations of 0.47 mM for Td70Tᵢ60 and 0.38 mM for Td60Tᵢ50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications.
This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV-visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for T 50T 60, while UV-Vis showed 46.41 % at T 60T 50. NMR analysis revealed effective concentrations of 0.47 mM for T 70T 60 and 0.38 mM for T 60T 50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications.
This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV-visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for Td50Ti60, while UV-Vis showed 46.41 % at Td60Ti50. NMR analysis revealed effective concentrations of 0.47 mM for Td70Ti60 and 0.38 mM for Td60Ti50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications.This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the aromatic dye methyl orange to enhance drug delivery in biological systems. Chitosan, a biocompatible and transparent polymer, is known for its ability to effectively encapsulate and transport therapeutic agents, which is critical for sustained and targeted drug release. Methyl orange was selected as a model drug to study the effects of deposition and immersion times on encapsulation efficiency. The effects of deposition and immersion times on encapsulation efficiency were analyzed by synthesizing multilayer hydrogels via electrochemical oxidation. Characterization techniques, including UV-visible spectroscopy, FTIR, and NMR, were employed; FTIR indicated an effective absorption of 4.34 % for Td50Ti60, while UV-Vis showed 46.41 % at Td60Ti50. NMR analysis revealed effective concentrations of 0.47 mM for Td70Ti60 and 0.38 mM for Td60Ti50, indicating that longer immersion times enhance absorption. These findings provide a foundation for further studies aimed at optimizing drug delivery strategies and improving the therapeutic efficacy of encapsulated agents in biological applications.
ArticleNumber 122830
Author Majid, S.R.
Zaini Ambia, N. Fairuz Ain
Abu Bakar, Nurfarhanim
Nordin, Nurdiana
Author_xml – sequence: 1
  givenname: Nurdiana
  surname: Nordin
  fullname: Nordin, Nurdiana
  email: ndiana13@um.edu.my
  organization: Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
– sequence: 2
  givenname: N. Fairuz Ain
  surname: Zaini Ambia
  fullname: Zaini Ambia, N. Fairuz Ain
  organization: Department of Chemistry, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
– sequence: 3
  givenname: S.R.
  surname: Majid
  fullname: Majid, S.R.
  organization: Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
– sequence: 4
  givenname: Nurfarhanim
  surname: Abu Bakar
  fullname: Abu Bakar, Nurfarhanim
  email: Nurfarhanim.AbuBakar@taylors.edu.my
  organization: Department of Engineering and Sciences, American Degree Program, School of Liberal Arts and Sciences, Taylor's University, Taylor's Lakeside Campus, No. 1 Jalan Taylor, 47500 Subang Jaya, Selangor, Malaysia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39562104$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1uFSEYhompsafVS9CwdNE58jczjC6MaVptUn_StG4JA0zLCQMjME3OzjvoonfolcjpOd24qWwg4Xk_wvMegD0fvAHgNUZLjHDzbrVUMvZTcEuCCFtiQjhFz8AC87arMGVsDywQZqziDW73wUFKK1RWg9ELsE-7uiEYsQW4OxkGq6zxGRqv5JRmJ7MNHoYBSjgGbRzUcb6G1kN1Y3NIshxkvgnaKmicUTkWaArJbmLv4Y9onB2tl3ENpZdunWyCc7L-Gp5enl0cwauff37f39p0VK41_Pb1AqbpYUpSYVq_BM8H6ZJ5tdsPwdXpyeXxl-r8--ez40_nlaIdz5VpdN1LJFlHWqI7qujAu5oPuqZKsYbJvtFtrUjXyr5Hqm2aejBcKqaKH4wJPQRvt3OnGH7NJmUx2qSMc9KbMCdBcU05YZjx_0Ap4sU-bgv6ZofO_Wi0mKIdiwjx6LsAH7aAKv9N0QxC2fwgPEdpncBIbNoVK7FrV2zaFdt2S7r-J_34wFO5j9ucKUZvrYkibSpXRttY1Asd7BMT_gJYIMPG
CitedBy_id crossref_primary_10_1080_28361466_2024_2428590
Cites_doi 10.1007/s00253-008-1770-1
10.3390/polym7010001
10.3390/polysaccharides1010005
10.1002/mabi.201800372
10.1016/j.carbpol.2018.06.123
10.1039/C6TB00336B
10.1016/j.mtchem.2020.100338
10.1016/j.jare.2022.04.005
10.1039/C4CP04389H
10.3390/molecules28186561
10.1039/c0lc00047g
10.1016/j.carpta.2024.100515
10.1016/j.proeps.2015.08.109
10.1016/j.carbpol.2017.10.097
10.3390/ma14112754
10.1038/nmeth0206-135
10.1002/adhm.201200409
10.1038/415530a
10.1039/c0sm00124d
10.3390/polym14153023
10.3390/ijms231810975
10.3390/colorants2020014
10.1016/j.ijbiomac.2022.04.231
10.1038/s41598-024-51538-1
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier Ltd.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.carbpol.2024.122830
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-1344
ExternalDocumentID 39562104
10_1016_j_carbpol_2024_122830
S0144861724010567
Genre Journal Article
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AFJKZ
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJSZI
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M24
M2Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSA
SSH
SSK
SSU
SSZ
T5K
Y6R
~G-
~KM
53G
AALCJ
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMS
HVGLF
HZ~
R2-
RIG
SCB
SMS
SOC
WUQ
XPP
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
ACLOT
EFLBG
~HD
7S9
L.6
ID FETCH-LOGICAL-c398t-e6d5ba0a49272d93c3f8958fd53cc464ab6d75c297abb0c7665fe8ac4c1871123
IEDL.DBID .~1
ISSN 0144-8617
1879-1344
IngestDate Sat Sep 27 20:18:24 EDT 2025
Sun Sep 28 03:17:43 EDT 2025
Mon Jul 21 06:05:29 EDT 2025
Tue Jul 01 01:25:06 EDT 2025
Thu Apr 24 23:10:10 EDT 2025
Sun Apr 06 06:53:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Multiplex system
NMR
Chitosan
FT-IR, UV-Vis
Aromatic dye
Metal in-situ interaction
Language English
License Copyright © 2024. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-e6d5ba0a49272d93c3f8958fd53cc464ab6d75c297abb0c7665fe8ac4c1871123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 39562104
PQID 3130828317
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3153824148
proquest_miscellaneous_3130828317
pubmed_primary_39562104
crossref_citationtrail_10_1016_j_carbpol_2024_122830
crossref_primary_10_1016_j_carbpol_2024_122830
elsevier_sciencedirect_doi_10_1016_j_carbpol_2024_122830
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-15
PublicationDateYYYYMMDD 2025-01-15
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-15
  day: 15
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Carbohydrate polymers
PublicationTitleAlternate Carbohydr Polym
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jiménez-Rosado, Romero (bb0055) 2022; 14
Zhao, Liu, Tan, Gao, Chen, Huang, Xu, Li, Wang, Zhang, Xu (bb0145) 2023; 44
Luna-Bárcenas, Prokhorov, Elizalde-Peña, Nuno-Licona, Sanchez, Gough, Schmidt (bb0080) 2011; 25
García-Torres, Gispert, Gómez, Vallés (bb0030) 2015; 17
Fusco, Chatzipirpiridis, Sivaraman, Ergeneman, Nelson, Pané (bb0025) 2013; 2
Jiang, Liu, Xu, Pan, Hou, Hu, Yang (bb0050) 2018; 182
Zhang, Zhang, Cui, Jing, Feng, Coseri (bb0140) 2024; 328
Sabarish, Unnikrishnan (bb0105) 2018; 199
Tahari, de Hoyos-Martinez, Izaguirre, Houwaida, Abderrabba, Ayadi, Labidi (bb0115) 2022; 210
Islam, Arya, Weidler, Korvink, Badilita (bb0040) 2020; 17
Abourehab, Pramanik, Abdelgawad, Abualsoud, Kadi, Ansari, Deepak (bb0005) 2022; 23
Allouche, Yassaa, Lounici (bb0010) 2015; 15
Kharitonov, Kasach, Gibala, Zimowska, Kurilo, Wrzesinska, Warszynski (bb0060) 2021; 14
Pan, Zhang, Zhan, Xiong, Wang, Cao, Chen (bb0095) 2020; 242
Cheng, Luo, Betz, Buckhout-White, Bekdash, Payne, Rubloff (bb0020) 2010; 6
Koev, Dykstra, Luo, Rubloff, Bentley, Payne, Ghodssi (bb0070) 2010; 10
Kim, Xiong, Cheng, Wu, Liu, Morrow, Payne (bb0065) 2015; 7
Llanes, Dubessay, Pierre, Delattre, Michaud (bb0075) 2020; 1
Tamer, Abbas, Sadik, Omer, Abd-Ellatif, Mohy-Eldin (bb0120) 2024; 14
Nordin, Bordonali, Badilita, MacKinnon (bb0090) 2019; 19
Jemai, Djebbi, Boubakri, Ben Rhaiem, Ben Haj Amara (bb0045) 2023; 2
Nguyen, Goodrich (bb0085) 2006; 3
Rostami (bb0100) 2021; 2 Volumes, 1–2
Trinh, Wlaschin, Srienc (bb0125) 2009; 81
Shikuku, Hasnat, Mashrur, Haque, Rahman, Khan (bb0110) 2024; 7
Yadav, Kaushik, Rao, Srivastava, Vaya (bb0135) 2023; 5
Alyasi, Mackey, McKay (bb0015) 2023; 28
Geng, Wang, Guo, Zhang, Chen, Wang (bb0035) 2016; 4
Van’’t Veer, Dai, Van de Vijver, He, Hart, Mao, Friend (bb0130) 2002; 415
Sabarish (10.1016/j.carbpol.2024.122830_bb0105) 2018; 199
Jiménez-Rosado (10.1016/j.carbpol.2024.122830_bb0055) 2022; 14
Kharitonov (10.1016/j.carbpol.2024.122830_bb0060) 2021; 14
Nordin (10.1016/j.carbpol.2024.122830_bb0090) 2019; 19
Shikuku (10.1016/j.carbpol.2024.122830_bb0110) 2024; 7
Tahari (10.1016/j.carbpol.2024.122830_bb0115) 2022; 210
Trinh (10.1016/j.carbpol.2024.122830_bb0125) 2009; 81
Yadav (10.1016/j.carbpol.2024.122830_bb0135) 2023; 5
Koev (10.1016/j.carbpol.2024.122830_bb0070) 2010; 10
Abourehab (10.1016/j.carbpol.2024.122830_bb0005) 2022; 23
Geng (10.1016/j.carbpol.2024.122830_bb0035) 2016; 4
Tamer (10.1016/j.carbpol.2024.122830_bb0120) 2024; 14
Cheng (10.1016/j.carbpol.2024.122830_bb0020) 2010; 6
Allouche (10.1016/j.carbpol.2024.122830_bb0010) 2015; 15
García-Torres (10.1016/j.carbpol.2024.122830_bb0030) 2015; 17
Zhang (10.1016/j.carbpol.2024.122830_bb0140) 2024; 328
Alyasi (10.1016/j.carbpol.2024.122830_bb0015) 2023; 28
Nguyen (10.1016/j.carbpol.2024.122830_bb0085) 2006; 3
Llanes (10.1016/j.carbpol.2024.122830_bb0075) 2020; 1
Rostami (10.1016/j.carbpol.2024.122830_bb0100) 2021; 2 Volumes, 1–2
Jiang (10.1016/j.carbpol.2024.122830_bb0050) 2018; 182
Pan (10.1016/j.carbpol.2024.122830_bb0095) 2020; 242
Fusco (10.1016/j.carbpol.2024.122830_bb0025) 2013; 2
Jemai (10.1016/j.carbpol.2024.122830_bb0045) 2023; 2
Kim (10.1016/j.carbpol.2024.122830_bb0065) 2015; 7
Luna-Bárcenas (10.1016/j.carbpol.2024.122830_bb0080) 2011; 25
Islam (10.1016/j.carbpol.2024.122830_bb0040) 2020; 17
Van’’t Veer (10.1016/j.carbpol.2024.122830_bb0130) 2002; 415
Zhao (10.1016/j.carbpol.2024.122830_bb0145) 2023; 44
References_xml – volume: 4
  start-page: 3331
  year: 2016
  end-page: 3338
  ident: bb0035
  article-title: Electrodeposition of chitosan based on coordination with metal ions: In situ -generated by electrochemical oxidation
  publication-title: Journal of Materials Chemistry B
– volume: 14
  start-page: 3023
  year: 2022
  ident: bb0055
  article-title: Novel trends in hydrogel development for biomedical applications: A review
  publication-title: Polymers
– volume: 199
  start-page: 129
  year: 2018
  end-page: 140
  ident: bb0105
  article-title: Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications
  publication-title: Carbohydrate Polymers
– volume: 23
  year: 2022
  ident: bb0005
  article-title: Recent advances of chitosan formulations in biomedical applications
  publication-title: International Journal of Molecular Sciences
– volume: 328
  year: 2024
  ident: bb0140
  article-title: Rapid self-healing carbo- xymethyl chitosan/hyaluronic acid hydrogels with injectable ability for drug delivery
  publication-title: Carbohydrate Polymers
– volume: 17
  year: 2020
  ident: bb0040
  article-title: Electrodeposition of chitosan enables synthesis of copper/carbon composites for H2O2 sensing
  publication-title: Materials Today Chemistry
– volume: 19
  year: 2019
  ident: bb0090
  article-title: Spatial and temporal control over multilayer bio-polymer film assembly and composition
  publication-title: Macromolecular Bioscience
– volume: 3
  start-page: 135
  year: 2006
  end-page: 139
  ident: bb0085
  article-title: Protein-protein interaction assays: Eliminating false positive interactions
  publication-title: Nature Methods
– volume: 5
  year: 2023
  ident: bb0135
  article-title: Advances and challenges in the use of chitosan and its derivatives in biomedical fields: A review
  publication-title: Carbohydrate Polymer Technologies and Applications
– volume: 210
  start-page: 94
  year: 2022
  end-page: 106
  ident: bb0115
  article-title: Preparation of chitosan/tannin and montmorillonite films as adsorbents for methyl orange dye removal
  publication-title: International Journal of Biological Macromolecules
– volume: 7
  year: 2024
  ident: bb0110
  article-title: Chitosan-based pH-sensitive semi-interpenetrating network nanoparticles as a sustained release matrix for anticancer drug delivery
  publication-title: Carbohydrate Polymer Technologies and Applications
– volume: 14
  start-page: 1
  year: 2024
  end-page: 16
  ident: bb0120
  article-title: Development of novel amino-ethyl chitosan hydrogel for the removal of methyl orange azo dye model
  publication-title: Scientific Reports
– volume: 17
  start-page: 1630
  year: 2015
  end-page: 1636
  ident: bb0030
  article-title: Alginate electrodeposition onto three-dimensional porous Co-Ni films as drug delivery platforms
  publication-title: Physical Chemistry Chemical Physics
– volume: 2
  start-page: 209
  year: 2023
  end-page: 229
  ident: bb0045
  article-title: Effective removal of methyl orange dyes using an adsorbent prepared from porous starch aerogel and organoclay
  publication-title: Colorants
– volume: 242
  year: 2020
  ident: bb0095
  article-title: In situ generation of silver nanoparticles and nanocomposite films based on electrodeposition of carboxylated chitosan
  publication-title: Carbohydrate Polymers
– volume: 81
  start-page: 813
  year: 2009
  end-page: 826
  ident: bb0125
  article-title: Elementary mode analysis: A useful metabolic pathway analysis tool for characterizing cellular metabolism. In
  publication-title: Applied Microbiology and Biotechnology
– volume: 182
  start-page: 106
  year: 2018
  end-page: 114
  ident: bb0050
  article-title: Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism
  publication-title: Carbohydrate Polymers
– volume: 10
  start-page: 3026
  year: 2010
  end-page: 3042
  ident: bb0070
  article-title: Chitosan: An integrative biomaterial for lab-on-a-chip devices
  publication-title: Lab on a Chip
– volume: 1
  start-page: 51
  year: 2020
  end-page: 79
  ident: bb0075
  article-title: Biosourced polysaccharide-based superabsorbents
  publication-title: Polysaccharides
– volume: 7
  start-page: 1
  year: 2015
  end-page: 46
  ident: bb0065
  article-title: Chitosan to connect biology to electronics: Fabricating the bio-device interface and communicating across this interface
  publication-title: Polymers
– volume: 44
  start-page: 53
  year: 2023
  end-page: 70
  ident: bb0145
  article-title: Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption
  publication-title: Journal of Advanced Research
– volume: 14
  year: 2021
  ident: bb0060
  article-title: Anodic electrodeposition of chitosan–agnp composites using in situ coordination with copper ions
  publication-title: Materials
– volume: 28
  start-page: 6561
  year: 2023
  ident: bb0015
  article-title: Adsorption of methyl orange from water using chitosan
  publication-title: Molecules
– volume: 2
  start-page: 1037
  year: 2013
  end-page: 1044
  ident: bb0025
  article-title: Chitosan electrodeposition for microrobotic drug delivery
  publication-title: Advanced Healthcare Materials
– volume: 6
  start-page: 3177
  year: 2010
  end-page: 3183
  ident: bb0020
  article-title: In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes
  publication-title: Soft Matter
– volume: 2 Volumes, 1–2
  start-page: 1
  year: 2021
  end-page: 32
  ident: bb0100
  article-title: Chitosan-based nanoparticles for drug delivery
  publication-title: Nanoengineering of biomaterials: Drug delivery & biomedical applications
– volume: 15
  start-page: 596
  year: 2015
  end-page: 601
  ident: bb0010
  article-title: Sorption of methyl orange from aqueous solution on chitosan biomass
  publication-title: Procedia Earth and Planetary Science
– volume: 25
  start-page: 5858
  year: 2011
  ident: bb0080
  article-title: Chitosan-based hydrogels for tissue engineering applications
  publication-title: Molecules
– volume: 415
  start-page: 530
  year: 2002
  end-page: 536
  ident: bb0130
  article-title: Gene expression profiling predicts clinical outcome of breast cancer
  publication-title: Nature
– volume: 81
  start-page: 813
  issue: 5
  year: 2009
  ident: 10.1016/j.carbpol.2024.122830_bb0125
  article-title: Elementary mode analysis: A useful metabolic pathway analysis tool for characterizing cellular metabolism. In
  publication-title: Applied Microbiology and Biotechnology
  doi: 10.1007/s00253-008-1770-1
– volume: 7
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.carbpol.2024.122830_bb0065
  article-title: Chitosan to connect biology to electronics: Fabricating the bio-device interface and communicating across this interface
  publication-title: Polymers
  doi: 10.3390/polym7010001
– volume: 1
  start-page: 51
  issue: 1
  year: 2020
  ident: 10.1016/j.carbpol.2024.122830_bb0075
  article-title: Biosourced polysaccharide-based superabsorbents
  publication-title: Polysaccharides
  doi: 10.3390/polysaccharides1010005
– volume: 19
  issue: 4
  year: 2019
  ident: 10.1016/j.carbpol.2024.122830_bb0090
  article-title: Spatial and temporal control over multilayer bio-polymer film assembly and composition
  publication-title: Macromolecular Bioscience
  doi: 10.1002/mabi.201800372
– volume: 199
  start-page: 129
  issue: July
  year: 2018
  ident: 10.1016/j.carbpol.2024.122830_bb0105
  article-title: Polyvinyl alcohol/carboxymethyl cellulose/ZSM-5 zeolite biocomposite membranes for dye adsorption applications
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.06.123
– volume: 25
  start-page: 5858
  year: 2011
  ident: 10.1016/j.carbpol.2024.122830_bb0080
  article-title: Chitosan-based hydrogels for tissue engineering applications
  publication-title: Molecules
– volume: 4
  start-page: 3331
  issue: 19
  year: 2016
  ident: 10.1016/j.carbpol.2024.122830_bb0035
  article-title: Electrodeposition of chitosan based on coordination with metal ions: In situ -generated by electrochemical oxidation
  publication-title: Journal of Materials Chemistry B
  doi: 10.1039/C6TB00336B
– volume: 17
  year: 2020
  ident: 10.1016/j.carbpol.2024.122830_bb0040
  article-title: Electrodeposition of chitosan enables synthesis of copper/carbon composites for H2O2 sensing
  publication-title: Materials Today Chemistry
  doi: 10.1016/j.mtchem.2020.100338
– volume: 44
  start-page: 53
  year: 2023
  ident: 10.1016/j.carbpol.2024.122830_bb0145
  article-title: Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption
  publication-title: Journal of Advanced Research
  doi: 10.1016/j.jare.2022.04.005
– volume: 17
  start-page: 1630
  issue: 3
  year: 2015
  ident: 10.1016/j.carbpol.2024.122830_bb0030
  article-title: Alginate electrodeposition onto three-dimensional porous Co-Ni films as drug delivery platforms
  publication-title: Physical Chemistry Chemical Physics
  doi: 10.1039/C4CP04389H
– volume: 328
  issue: October 2023
  year: 2024
  ident: 10.1016/j.carbpol.2024.122830_bb0140
  article-title: Rapid self-healing carbo- xymethyl chitosan/hyaluronic acid hydrogels with injectable ability for drug delivery
  publication-title: Carbohydrate Polymers
– volume: 242
  issue: April
  year: 2020
  ident: 10.1016/j.carbpol.2024.122830_bb0095
  article-title: In situ generation of silver nanoparticles and nanocomposite films based on electrodeposition of carboxylated chitosan
  publication-title: Carbohydrate Polymers
– volume: 28
  start-page: 6561
  year: 2023
  ident: 10.1016/j.carbpol.2024.122830_bb0015
  article-title: Adsorption of methyl orange from water using chitosan
  publication-title: Molecules
  doi: 10.3390/molecules28186561
– volume: 10
  start-page: 3026
  issue: 22
  year: 2010
  ident: 10.1016/j.carbpol.2024.122830_bb0070
  article-title: Chitosan: An integrative biomaterial for lab-on-a-chip devices
  publication-title: Lab on a Chip
  doi: 10.1039/c0lc00047g
– volume: 7
  year: 2024
  ident: 10.1016/j.carbpol.2024.122830_bb0110
  article-title: Chitosan-based pH-sensitive semi-interpenetrating network nanoparticles as a sustained release matrix for anticancer drug delivery
  publication-title: Carbohydrate Polymer Technologies and Applications
  doi: 10.1016/j.carpta.2024.100515
– volume: 15
  start-page: 596
  year: 2015
  ident: 10.1016/j.carbpol.2024.122830_bb0010
  article-title: Sorption of methyl orange from aqueous solution on chitosan biomass
  publication-title: Procedia Earth and Planetary Science
  doi: 10.1016/j.proeps.2015.08.109
– volume: 182
  start-page: 106
  issue: July 2017
  year: 2018
  ident: 10.1016/j.carbpol.2024.122830_bb0050
  article-title: Cross-linked chitosan/β-cyclodextrin composite for selective removal of methyl orange: Adsorption performance and mechanism
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2017.10.097
– volume: 14
  issue: 11
  year: 2021
  ident: 10.1016/j.carbpol.2024.122830_bb0060
  article-title: Anodic electrodeposition of chitosan–agnp composites using in situ coordination with copper ions
  publication-title: Materials
  doi: 10.3390/ma14112754
– volume: 3
  start-page: 135
  issue: 2
  year: 2006
  ident: 10.1016/j.carbpol.2024.122830_bb0085
  article-title: Protein-protein interaction assays: Eliminating false positive interactions
  publication-title: Nature Methods
  doi: 10.1038/nmeth0206-135
– volume: 2
  start-page: 1037
  issue: 7
  year: 2013
  ident: 10.1016/j.carbpol.2024.122830_bb0025
  article-title: Chitosan electrodeposition for microrobotic drug delivery
  publication-title: Advanced Healthcare Materials
  doi: 10.1002/adhm.201200409
– volume: 415
  start-page: 530
  issue: 6871
  year: 2002
  ident: 10.1016/j.carbpol.2024.122830_bb0130
  article-title: Gene expression profiling predicts clinical outcome of breast cancer
  publication-title: Nature
  doi: 10.1038/415530a
– volume: 5
  issue: May
  year: 2023
  ident: 10.1016/j.carbpol.2024.122830_bb0135
  article-title: Advances and challenges in the use of chitosan and its derivatives in biomedical fields: A review
  publication-title: Carbohydrate Polymer Technologies and Applications
– volume: 6
  start-page: 3177
  issue: 14
  year: 2010
  ident: 10.1016/j.carbpol.2024.122830_bb0020
  article-title: In situ quantitative visualization and characterization of chitosan electrodeposition with paired sidewall electrodes
  publication-title: Soft Matter
  doi: 10.1039/c0sm00124d
– volume: 2 Volumes, 1–2
  start-page: 1
  year: 2021
  ident: 10.1016/j.carbpol.2024.122830_bb0100
  article-title: Chitosan-based nanoparticles for drug delivery
– volume: 14
  start-page: 3023
  year: 2022
  ident: 10.1016/j.carbpol.2024.122830_bb0055
  article-title: Novel trends in hydrogel development for biomedical applications: A review
  publication-title: Polymers
  doi: 10.3390/polym14153023
– volume: 23
  issue: 18
  year: 2022
  ident: 10.1016/j.carbpol.2024.122830_bb0005
  article-title: Recent advances of chitosan formulations in biomedical applications
  publication-title: International Journal of Molecular Sciences
  doi: 10.3390/ijms231810975
– volume: 2
  start-page: 209
  issue: 2
  year: 2023
  ident: 10.1016/j.carbpol.2024.122830_bb0045
  article-title: Effective removal of methyl orange dyes using an adsorbent prepared from porous starch aerogel and organoclay
  publication-title: Colorants
  doi: 10.3390/colorants2020014
– volume: 210
  start-page: 94
  issue: April
  year: 2022
  ident: 10.1016/j.carbpol.2024.122830_bb0115
  article-title: Preparation of chitosan/tannin and montmorillonite films as adsorbents for methyl orange dye removal
  publication-title: International Journal of Biological Macromolecules
  doi: 10.1016/j.ijbiomac.2022.04.231
– volume: 14
  start-page: 1
  issue: 1
  year: 2024
  ident: 10.1016/j.carbpol.2024.122830_bb0120
  article-title: Development of novel amino-ethyl chitosan hydrogel for the removal of methyl orange azo dye model
  publication-title: Scientific Reports
  doi: 10.1038/s41598-024-51538-1
SSID ssj0000610
Score 2.4869337
Snippet This study investigates the preliminary efficacy of drug encapsulation in chitosan hydrogels by cathodic electrodeposition for the encapsulation of the...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 122830
SubjectTerms absorption
Aromatic dye
Azo Compounds - chemistry
Chitosan
Chitosan - chemistry
Drug Carriers - chemistry
Drug Compounding - methods
Drug Liberation
drugs
dyes
electrochemistry
Electrodes
electroplating
Electroplating - methods
encapsulation
FT-IR, UV-Vis
hydrogels
Hydrogels - chemistry
Magnetic Resonance Spectroscopy - methods
Metal in-situ interaction
methyl orange
Multiplex system
NMR
nuclear magnetic resonance spectroscopy
oxidation
polymers
Spectrophotometry, Ultraviolet
Spectroscopy, Fourier Transform Infrared - methods
therapeutics
ultraviolet-visible spectroscopy
Title Efficient encapsulation of a model drug in chitosan cathodic electrodeposition: Preliminary analysis using FTIR, UV–vis, and NMR spectroscopy
URI https://dx.doi.org/10.1016/j.carbpol.2024.122830
https://www.ncbi.nlm.nih.gov/pubmed/39562104
https://www.proquest.com/docview/3130828317
https://www.proquest.com/docview/3153824148
Volume 348
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-1344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000610
  issn: 0144-8617
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-1344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000610
  issn: 0144-8617
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-1344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000610
  issn: 0144-8617
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1879-1344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000610
  issn: 0144-8617
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-1344
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000610
  issn: 0144-8617
  databaseCode: AKRWK
  dateStart: 19810901
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhPbSX0qavTdugQo_x7tqSJbm3sGTZtGQpIVtyM7IewSHYi3e3kEvpP-ih_7C_pDOyncchDfRmbMnIGnkezMz3EfIxNpoLZiHIkXIccSlNpDOdRixlNmbGahF6q47nYrbgn8_Ssy0y6XthsKyy0_2tTg_aursz6nZztCzLEZYlcYUGmCPLo8COckT_gjM9_BHf0sYBkQAHRzj6potndAEhYFMsa8xAJHwYBzCs--zTff5nsEPTZ-Rp50DSg3aNz8mWq3bI40nP2_aC_DoMqBBgTCh8jYYouC13o7WnmgbmG2qbzTktK4pJhHql4UIjkXRpaEeLY11fzfWJfm3cZeD-aq6o7jBMKNbLn9Pp6dHJPl18-_Pz9_dytQ-PLZ0fn9DQv4k4mfXy6iVZTA9PJ7Ooo12IDMvUOnLCpoUea54lMrEZM8yrLFXepswYLrguhJWpSTKpi2JspBCpd0obbmKIvsASviLbVV25N4QWjjnhwYtThnMvnfJewnsl-qVFwvyA8H6zc9NhkiM1xmXeF59d5J2McpRR3spoQIbX05YtKMdDE1QvyfzO6crBcDw09UMv-RwEiekUXbl6s8pZjFA_Chywf40BgwJOElcD8ro9NtcrZhCaQsDNd_9_cW_JkwT5iMdxFKfvyPa62bj34CSti73wF-yRRwdHX2bzv29XEz8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECVS55Beiu5104UFeoxiS1zVW2DEsJvYKAK7yI2gSCpQEEiGbBfILX_QQ_-wX9KhRKXtIQ3QmyBxBIpDzQLOvIfQx9hoyomFJEeIYUSFMJFONYsIIzYmxmre9FbN5nyypJ_P2fkOGnW9ML6sMtj-1qY31jrcGYTVHKyKYuDLkqj0Dph6lkcuHqBdysAm99Du0fRkMv_DIDegBH585AV-N_IMLiELrLNV5Q8hEnoYN3hYd7mou0LQxhWNH6NHIYbER-00n6AdVz5Fe6OOuu0Z-n7cAEOAP8HwQRoS4bbiDVc51rghv8G23l7gosT-HKFaa7jQnku6MDgw41jXFXR9wl9qd9XQf9XXWAcYE-xL5i_weDE9O8DLrz9vfnwr1gfw2OL57Aw3LZweKrNaXT9Hy_HxYjSJAvNCZEgqN5HjlmV6qGmaiMSmxJBcpkzmlhFjKKc641Ywk6RCZ9nQCM5Z7qQ21MSQgIEzfIF6ZVW6VwhnjjieQyAnDaW5cDLPBbxX-NA0S0jeR7RbbGUCLLlnx7hSXf3ZpQo6Ul5HqtVRHx3eiq1aXI77BGSnSfXXBlPgO-4T_dBpXoEi_YmKLl21XSsSe7QfCTHYv8aAT4E4ico-etlum9sZE8hOIeemr_9_cu_R3mQxO1Wn0_nJPnqYeHriYRzF7A3qbeqtewsx0yZ7F_6JX7arFeo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+encapsulation+of+a+model+drug+in+chitosan+cathodic+electrodeposition%3A+Preliminary+analysis+using+FTIR%2C+UV%E2%80%93vis%2C+and+NMR+spectroscopy&rft.jtitle=Carbohydrate+polymers&rft.au=Nordin%2C+Nurdiana&rft.au=Zaini+Ambia%2C+N.+Fairuz+Ain&rft.au=Majid%2C+S.R.&rft.au=Abu+Bakar%2C+Nurfarhanim&rft.date=2025-01-15&rft.pub=Elsevier+Ltd&rft.issn=0144-8617&rft.volume=348&rft_id=info:doi/10.1016%2Fj.carbpol.2024.122830&rft.externalDocID=S0144861724010567
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon