A MAP-based algorithm for spectroscopic semi-blind deconvolution

Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior (MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two pri...

Full description

Saved in:
Bibliographic Details
Published inAnalyst (London) Vol. 137; no. 16; pp. 3862 - 3873
Main Authors Liu, Hai, Zhang, Tianxu, Yan, Luxin, Fang, Houzhang, Chang, Yi
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 21.08.2012
Subjects
Online AccessGet full text
ISSN0003-2654
1364-5528
1364-5528
DOI10.1039/c2an16213j

Cover

Abstract Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior (MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two prior terms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a spectral observation model, a robust Huber-Markov model is used as spectra prior PDF, and the kernel prior is described based on a parametric Gaussian function. Moreover, we describe an efficient optimization scheme that alternates between latent spectrum recovery and blur kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution methods suggest that the proposed method can recover spectral structural details as well as suppress noise effectively. Overlapping bands and random noise create problems in spectroscopy. We describe an algorithm that estimates kernel slit width and latent spectrum simultaneously.
AbstractList Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior (MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two prior terms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a spectral observation model, a robust Huber-Markov model is used as spectra prior PDF, and the kernel prior is described based on a parametric Gaussian function. Moreover, we describe an efficient optimization scheme that alternates between latent spectrum recovery and blur kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution methods suggest that the proposed method can recover spectral structural details as well as suppress noise effectively.Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior (MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two prior terms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a spectral observation model, a robust Huber-Markov model is used as spectra prior PDF, and the kernel prior is described based on a parametric Gaussian function. Moreover, we describe an efficient optimization scheme that alternates between latent spectrum recovery and blur kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution methods suggest that the proposed method can recover spectral structural details as well as suppress noise effectively.
Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior(MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two priorterms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a spectral observation model, a robust Huber-Markov model is used as spectra priorPDF, and the kernel prioris described based on a parametric Gaussian function. Moreover, we describe an efficient optimization scheme that alternates between latent spectrum recovery and blur kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution methods suggest that the proposed method can recover spectral structural details as well as suppress noise effectively.
Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior (MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two prior terms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a spectral observation model, a robust Huber-Markov model is used as spectra prior PDF, and the kernel prior is described based on a parametric Gaussian function. Moreover, we describe an efficient optimization scheme that alternates between latent spectrum recovery and blur kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution methods suggest that the proposed method can recover spectral structural details as well as suppress noise effectively. Overlapping bands and random noise create problems in spectroscopy. We describe an algorithm that estimates kernel slit width and latent spectrum simultaneously.
Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior (MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two prior terms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a spectral observation model, a robust Huber-Markov model is used as spectra prior PDF, and the kernel prior is described based on a parametric Gaussian function. Moreover, we describe an efficient optimization scheme that alternates between latent spectrum recovery and blur kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution methods suggest that the proposed method can recover spectral structural details as well as suppress noise effectively.
Author Yan, Luxin
Chang, Yi
Zhang, Tianxu
Fang, Houzhang
Liu, Hai
AuthorAffiliation Science and Technology on Multi-spectral Information Processing Laboratory
Huazhong University of Science and Technology
Institute for Pattern Recognition and Artificial Intelligence
AuthorAffiliation_xml – name: Science and Technology on Multi-spectral Information Processing Laboratory
– name: Huazhong University of Science and Technology
– name: Institute for Pattern Recognition and Artificial Intelligence
Author_xml – sequence: 1
  givenname: Hai
  surname: Liu
  fullname: Liu, Hai
– sequence: 2
  givenname: Tianxu
  surname: Zhang
  fullname: Zhang, Tianxu
– sequence: 3
  givenname: Luxin
  surname: Yan
  fullname: Yan, Luxin
– sequence: 4
  givenname: Houzhang
  surname: Fang
  fullname: Fang, Houzhang
– sequence: 5
  givenname: Yi
  surname: Chang
  fullname: Chang, Yi
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26192837$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22768389$$D View this record in MEDLINE/PubMed
BookMark eNqN0c9LwzAUB_AgipvTi3elHgQRqvnRH-nNIf6CiR70XF5fU81om5p0gv-9GdscioiXhPA-7yV8s0M2W9MqQvYZPWNUZOfIoWUJZ2K6QYZMJFEYx1xukiGlVIQ8iaMB2XFu6o-MxnSbDDhPEylkNiQX4-B-_BgW4FQZQP1irO5fm6AyNnCdwt4ah6bTGDjV6LCodVsGpULTvpt61mvT7pKtCmqn9pb7iDxfXz1d3oaTh5u7y_EkRJHJPkTMZBEroBCxSFQZcI6iRFVyRRFkApiUGbAIqOAyQlYVVSxiqTBViV-FGJGTxdzOmreZcn3eaIeqrqFVZuZyn4TkQkTpfyhPacSYT2xEDpd0VjSqzDurG7Af-SogD46XABxCXVloUbu1S1jGpUi9owuHPjFnVZWj7mEeUG9B1_7O-QuzfP1XvuX0R8tq6q_4YIGtwy_3rX70Vz3vykp8Ap_PqLM
CODEN ANALAO
CitedBy_id crossref_primary_10_1364_AO_412526
crossref_primary_10_1016_j_infrared_2018_06_030
crossref_primary_10_1364_PRJ_2_000168
crossref_primary_10_1016_j_infrared_2019_103156
crossref_primary_10_1016_j_ijleo_2020_164167
crossref_primary_10_1016_j_infrared_2023_104700
crossref_primary_10_1080_09500340_2020_1766590
crossref_primary_10_1016_j_infrared_2020_103211
crossref_primary_10_1016_j_infrared_2018_07_035
crossref_primary_10_1016_j_infrared_2019_103031
crossref_primary_10_1364_AO_58_002166
crossref_primary_10_1007_s00034_016_0318_3
crossref_primary_10_1364_OE_454127
crossref_primary_10_1088_0957_0233_26_8_085502
crossref_primary_10_1016_j_infrared_2024_105700
crossref_primary_10_1088_0957_0233_26_11_115502
crossref_primary_10_1103_PhysRevA_106_033115
crossref_primary_10_1016_j_sigpro_2023_109369
crossref_primary_10_1016_j_infrared_2019_103167
crossref_primary_10_1016_j_infrared_2021_103660
crossref_primary_10_1366_14_07760
crossref_primary_10_1080_09500340_2021_2011451
crossref_primary_10_1016_j_infrared_2015_06_008
crossref_primary_10_1016_j_infrared_2021_103979
crossref_primary_10_1364_JOSAA_36_000751
crossref_primary_10_1364_AO_55_002813
crossref_primary_10_1016_j_infrared_2018_02_006
crossref_primary_10_1016_j_optcom_2021_127755
crossref_primary_10_1016_j_ijleo_2020_165877
crossref_primary_10_1016_j_infrared_2015_01_030
crossref_primary_10_1364_AO_57_006461
crossref_primary_10_1364_AO_55_004085
crossref_primary_10_1016_j_infrared_2019_103011
crossref_primary_10_1016_j_infrared_2020_103594
crossref_primary_10_1016_j_infrared_2021_104005
crossref_primary_10_1364_AO_53_008240
crossref_primary_10_1016_j_infrared_2021_103823
crossref_primary_10_1016_j_aca_2014_08_007
crossref_primary_10_1364_AO_54_001770
crossref_primary_10_1088_1748_0221_14_11_P11029
crossref_primary_10_3390_coatings12081229
crossref_primary_10_1016_j_infrared_2015_02_003
crossref_primary_10_1142_S0217979219501595
crossref_primary_10_1016_j_infrared_2020_103544
crossref_primary_10_1016_j_infrared_2024_105441
crossref_primary_10_1016_j_ijleo_2014_05_017
crossref_primary_10_1016_j_infrared_2020_103464
crossref_primary_10_1016_j_infrared_2024_105640
crossref_primary_10_1016_j_infrared_2019_103029
crossref_primary_10_1016_j_infrared_2023_104850
crossref_primary_10_1007_s13320_019_0571_8
crossref_primary_10_1016_j_infrared_2019_103061
crossref_primary_10_1016_j_infrared_2019_103184
crossref_primary_10_3390_photonics9080582
crossref_primary_10_1364_OE_26_022837
crossref_primary_10_1007_s11277_016_3381_y
crossref_primary_10_1109_TMECH_2018_2870056
crossref_primary_10_1109_TII_2018_2794449
Cites_doi 10.1039/B406581F
10.1366/10-05971
10.1366/000370206777887134
10.1366/000370210793561655
10.1021/ac00232a034
10.1364/AO.23.001601
10.1103/PhysRevB.47.6119
10.1364/AO.44.007595
10.1002/(SICI)1097-4555(199705)28:5<301::AID-JRS94>3.0.CO;2-W
10.1366/000370208784658129
10.1366/000370209788701161
10.1366/0003702053641504
10.1146/annurev.aa.24.090186.001015
10.1109/TIP.2006.881971
10.1366/000370206777670648
10.1039/b000064g
10.1039/an9962100097
10.1039/an9962101015
10.1366/0003702011953225
10.1366/000370210793334945
10.1366/000370209788964575
10.1109/83.491316
10.1016/S1387-3806(01)00562-0
10.1109/83.661187
10.1109/83.503915
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright_xml – notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/c2an16213j
DatabaseName CrossRef
Pascal-Francis
PubMed
MEDLINE - Academic
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList MEDLINE - Academic
Materials Research Database

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-5528
EndPage 3873
ExternalDocumentID 22768389
26192837
10_1039_c2an16213j
c2an16213j
Genre Journal Article
GroupedDBID ---
-~X
.GJ
.HR
0-7
0R~
0UZ
186
1TJ
23M
2WC
3EH
3O-
4.4
53G
5RE
705
70~
71~
7~J
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABOCM
ABPDG
ABRYZ
ABXOH
ACGFS
ACHDF
ACIWK
ACLDK
ACRPL
ADMRA
ADNMO
ADSRN
ADXHL
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AIDUJ
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ANBJS
ANLMG
ANUXI
APEMP
AQHUZ
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C1A
C6K
CAG
CITATION
COF
CS3
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
GGIMP
GNO
H13
HZ~
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
LPU
M4U
MVM
N9A
NDZJH
O9-
P2P
R56
R7B
R7E
RAOCF
RCLXC
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RRXOS
RSCEA
SC5
SKM
SKR
SKZ
SLC
SLF
SLH
TN5
UPT
VH6
WH7
XOL
XXG
ZCG
ZKB
ZXP
~02
IQODW
RIG
NPM
7X8
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c398t-cc98b5ea0a4143f9a22c3dced2e0ca86ac6d9a14a03284c1fbf5358ec7e68ec33
ISSN 0003-2654
1364-5528
IngestDate Fri Jul 11 09:27:41 EDT 2025
Thu Jul 10 19:14:50 EDT 2025
Mon Jul 21 06:03:31 EDT 2025
Wed Apr 02 08:12:31 EDT 2025
Wed Oct 01 03:08:18 EDT 2025
Thu Apr 24 23:04:54 EDT 2025
Thu May 19 04:22:22 EDT 2016
Sat Jun 01 22:32:06 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 16
Keywords Random noise
Deconvolution
Estimation
Use
Probability density function
Peak
Method
Algorithm
Optimization
Likelihood function
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-cc98b5ea0a4143f9a22c3dced2e0ca86ac6d9a14a03284c1fbf5358ec7e68ec33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 22768389
PQID 1027041121
PQPubID 23479
PageCount 12
ParticipantIDs rsc_primary_c2an16213j
proquest_miscellaneous_1027041121
proquest_miscellaneous_1038233473
pascalfrancis_primary_26192837
pubmed_primary_22768389
crossref_citationtrail_10_1039_c2an16213j
crossref_primary_10_1039_c2an16213j
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-08-21
PublicationDateYYYYMMDD 2012-08-21
PublicationDate_xml – month: 08
  year: 2012
  text: 2012-08-21
  day: 21
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: England
PublicationTitle Analyst (London)
PublicationTitleAlternate Analyst
PublicationYear 2012
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Ottaway (c2an16213j-(cit6)/*[position()=1]) 2010; 64
KatraSnik (c2an16213j-(cit18)/*[position()=1]) 2010; 64
Lórenz-Fonfría (c2an16213j-(cit15)/*[position()=1]) 2008; 62
Mohammad-Djafari (c2an16213j-(cit19)/*[position()=1]) 2002; 215
Singh (c2an16213j-(cit13)/*[position()=1]) 1997; 28
Narayan (c2an16213j-(cit9)/*[position()=1]) 1986; 24
Ebbels (c2an16213j-(cit8)/*[position()=1]) 2001; 55
Economou (c2an16213j-(cit1)/*[position()=1]) 1996; 121
Yu-Li (c2an16213j-(cit22)/*[position()=1]) 1996; 5
Lórenz-Fonfría (c2an16213j-(cit10)/*[position()=1]) 2005; 59
Pan (c2an16213j-(cit21)/*[position()=1]) 2006; 15
Schultz (c2an16213j-(cit24)/*[position()=1]) 1996; 5
Lorenz-Fonfria (c2an16213j-(cit4)/*[position()=1]) 2004; 129
Schulze (c2an16213j-(cit27)/*[position()=1]) 2006; 60
Griffiths (c2an16213j-(cit28)/*[position()=1]) 2009; 63
Lórenz-Fonfría (c2an16213j-(cit14)/*[position()=1]) 2009; 63
Economou (c2an16213j-(cit2)/*[position()=1]) 1996; 121
Kauppinen (c2an16213j-(cit3)/*[position()=1]) 1981; 53
Wang (c2an16213j-(cit20)/*[position()=1]) 1993; 47
Zhang (c2an16213j-(cit5)/*[position()=1]) 2000; 125
Davies (c2an16213j-(cit26)/*[position()=1]) 2001; 20
Urbas (c2an16213j-(cit25)/*[position()=1]) 2011; 65
Senga (c2an16213j-(cit11)/*[position()=1]) 1984; 23
Yuan (c2an16213j-(cit7)/*[position()=1]) 2005; 44
Yuan (c2an16213j-(cit17)/*[position()=1]) 2006; 60
Chan (c2an16213j-(cit23)/*[position()=1]) 1998; 7
References_xml – publication-title: Raman Spectral of Xanthan
  doi: Engelson
– publication-title: Raman Spectral of (+)-Glucopyranose
  doi: Engelson
– issn: 2007
  publication-title: Fourier Transform Infrared Spectrometry
  doi: Griffiths de Haseth
– issn: 2007
  publication-title: Deconvolution of Images and Spectra
  doi: Jansson
– volume: 129
  start-page: 1243
  year: 2004
  ident: c2an16213j-(cit4)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/B406581F
– volume: 65
  start-page: 665
  year: 2011
  ident: c2an16213j-(cit25)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/10-05971
– volume: 60
  start-page: 820
  year: 2006
  ident: c2an16213j-(cit27)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370206777887134
– volume: 64
  start-page: 1388
  year: 2010
  ident: c2an16213j-(cit6)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370210793561655
– volume: 53
  start-page: 1454
  year: 1981
  ident: c2an16213j-(cit3)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac00232a034
– volume: 23
  start-page: 1601
  year: 1984
  ident: c2an16213j-(cit11)/*[position()=1]
  publication-title: Appl. Opt.
  doi: 10.1364/AO.23.001601
– volume: 20
  start-page: 65
  year: 2001
  ident: c2an16213j-(cit26)/*[position()=1]
  publication-title: Ann. Stat.
– volume: 47
  start-page: 6119
  year: 1993
  ident: c2an16213j-(cit20)/*[position()=1]
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.47.6119
– volume: 44
  start-page: 7595
  year: 2005
  ident: c2an16213j-(cit7)/*[position()=1]
  publication-title: Appl. Opt.
  doi: 10.1364/AO.44.007595
– volume: 28
  start-page: 301
  year: 1997
  ident: c2an16213j-(cit13)/*[position()=1]
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/(SICI)1097-4555(199705)28:5<301::AID-JRS94>3.0.CO;2-W
– volume: 62
  start-page: 689
  year: 2008
  ident: c2an16213j-(cit15)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370208784658129
– volume: 63
  start-page: 791
  year: 2009
  ident: c2an16213j-(cit14)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370209788701161
– volume: 59
  start-page: 474
  year: 2005
  ident: c2an16213j-(cit10)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702053641504
– volume: 24
  start-page: 127
  year: 1986
  ident: c2an16213j-(cit9)/*[position()=1]
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev.aa.24.090186.001015
– volume: 15
  start-page: 3728
  year: 2006
  ident: c2an16213j-(cit21)/*[position()=1]
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881971
– volume: 60
  start-page: 692
  year: 2006
  ident: c2an16213j-(cit17)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370206777670648
– volume: 125
  start-page: 915
  year: 2000
  ident: c2an16213j-(cit5)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/b000064g
– volume: 121
  start-page: 97
  year: 1996
  ident: c2an16213j-(cit2)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/an9962100097
– volume: 121
  start-page: 1015
  year: 1996
  ident: c2an16213j-(cit1)/*[position()=1]
  publication-title: Analyst
  doi: 10.1039/an9962101015
– volume: 55
  start-page: 1214
  year: 2001
  ident: c2an16213j-(cit8)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/0003702011953225
– volume: 64
  start-page: 1265
  year: 2010
  ident: c2an16213j-(cit18)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370210793334945
– volume: 63
  start-page: 916
  year: 2009
  ident: c2an16213j-(cit28)/*[position()=1]
  publication-title: Appl. Spectrosc.
  doi: 10.1366/000370209788964575
– volume: 5
  start-page: 416
  year: 1996
  ident: c2an16213j-(cit22)/*[position()=1]
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.491316
– volume: 215
  start-page: 175
  year: 2002
  ident: c2an16213j-(cit19)/*[position()=1]
  publication-title: Int. J. Mass Spectrom.
  doi: 10.1016/S1387-3806(01)00562-0
– volume: 7
  start-page: 370
  year: 1998
  ident: c2an16213j-(cit23)/*[position()=1]
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.661187
– volume: 5
  start-page: 996
  year: 1996
  ident: c2an16213j-(cit24)/*[position()=1]
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/83.503915
SSID ssj0001050
Score 2.3190088
Snippet Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be...
SourceID proquest
pubmed
pascalfrancis
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3862
SubjectTerms Algorithms
Analytical chemistry
Chemistry
Deconvolution
Estimates
Exact sciences and technology
Kernels
Mathematical models
Probability density functions
Spectra
Spectroscopy
Title A MAP-based algorithm for spectroscopic semi-blind deconvolution
URI https://www.ncbi.nlm.nih.gov/pubmed/22768389
https://www.proquest.com/docview/1027041121
https://www.proquest.com/docview/1038233473
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry P&R
  customDbUrl: https://pubs.rsc.org
  eissn: 1364-5528
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001050
  issn: 0003-2654
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wASQrwWssAqCC4oCjh26jo3IrSrFC0FiUYqXCrHcXhoN622KQd-PeMkdhKoeF2sxp0k1syX8Yw9nkHoqQLgCiaUz8BX1tuMwo-wwL5gOCJwB2F5HeU7Z0kavl5OlqPR-17U0q7Knsvve8-V_I9UoQ_kqk_J_oNk7UOhA36DfKEFCUP7VzKOvTfxO19PRLknzj-twdH_fFEHDtYHKHWiyvXmi_S26gJcYDAocy_XDvC3dlR9y7TJTlL1S3zYNYIknoGWS62XP4vny9T7mMRzW5nrLF3O5t6H2O7sJG_TmsA7NVTt2oIO0uA-6dYWmhUMEz5ah4e0RegGKpX6hDWZoK1KbRK5GOz0NSTlrfZV7WVTyeQXTY6pToQqiSgDRgL6tZuvzB79T9OYDS6sfULwu6-gAwKqHo_RQXyymJ3ZCRpMSmwKKeqRm6y1NHrRvW9gp1zfiC18MkVT62SfMwKmyaUpGVObJoub6EbrU7hxA5BbaKTK2-iq5eId9DJ2LVBcCxQXgOIOgOJ2QHEHQLmL0tOTxavEb0tn-JJGvPKljHg2UQKLEAziIhKESJpLlROFpeBMSJZHIgiFTqcYyqDIigmdcCWnikFL6SEal-tS3UcusElxNS0ynuVhFFLBRcaplByLjHEeOOiZYdRKtnnldXmT81Ud30CjVcdUBz2xtJsmm8pequMBvy2pkayDHhsBrICTeotLlGq928KTyBSH4EMEv6PRe980nFIH3Wuk170BEMPBhnfQIYjTdvfHdrT_j9UmL47-NPAH6Fr3mT1E4-pypx6BUVtlxy1IfwCqfaFK
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+MAP-based+algorithm+for+spectroscopic+semi-blind+deconvolution&rft.jtitle=Analyst+%28London%29&rft.au=HAI+LIU&rft.au=TIANXU+ZHANG&rft.au=LUXIN+YAN&rft.au=HOUZHANG+FANG&rft.date=2012-08-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=0003-2654&rft.volume=137&rft.issue=16&rft.spage=3862&rft.epage=3873&rft_id=info:doi/10.1039%2Fc2an16213j&rft.externalDBID=n%2Fa&rft.externalDocID=26192837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon