A MAP-based algorithm for spectroscopic semi-blind deconvolution
Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior (MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two pri...
Saved in:
| Published in | Analyst (London) Vol. 137; no. 16; pp. 3862 - 3873 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge
Royal Society of Chemistry
21.08.2012
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0003-2654 1364-5528 1364-5528 |
| DOI | 10.1039/c2an16213j |
Cover
| Abstract | Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a
maximum a posterior
(MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two
prior
terms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a spectral observation model, a robust Huber-Markov model is used as spectra
prior
PDF, and the kernel
prior
is described based on a parametric Gaussian function. Moreover, we describe an efficient optimization scheme that alternates between latent spectrum recovery and blur kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution methods suggest that the proposed method can recover spectral structural details as well as suppress noise effectively.
Overlapping bands and random noise create problems in spectroscopy. We describe an algorithm that estimates kernel slit width and latent spectrum simultaneously. |
|---|---|
| AbstractList | Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior (MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two prior terms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a spectral observation model, a robust Huber-Markov model is used as spectra prior PDF, and the kernel prior is described based on a parametric Gaussian function. Moreover, we describe an efficient optimization scheme that alternates between latent spectrum recovery and blur kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution methods suggest that the proposed method can recover spectral structural details as well as suppress noise effectively.Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior (MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two prior terms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a spectral observation model, a robust Huber-Markov model is used as spectra prior PDF, and the kernel prior is described based on a parametric Gaussian function. Moreover, we describe an efficient optimization scheme that alternates between latent spectrum recovery and blur kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution methods suggest that the proposed method can recover spectral structural details as well as suppress noise effectively. Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior(MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two priorterms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a spectral observation model, a robust Huber-Markov model is used as spectra priorPDF, and the kernel prioris described based on a parametric Gaussian function. Moreover, we describe an efficient optimization scheme that alternates between latent spectrum recovery and blur kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution methods suggest that the proposed method can recover spectral structural details as well as suppress noise effectively. Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior (MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two prior terms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a spectral observation model, a robust Huber-Markov model is used as spectra prior PDF, and the kernel prior is described based on a parametric Gaussian function. Moreover, we describe an efficient optimization scheme that alternates between latent spectrum recovery and blur kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution methods suggest that the proposed method can recover spectral structural details as well as suppress noise effectively. Overlapping bands and random noise create problems in spectroscopy. We describe an algorithm that estimates kernel slit width and latent spectrum simultaneously. Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be considered as a maximum a posterior (MAP) problem and be solved by minimizing an object functional that includes a likelihood term and two prior terms. In the MAP framework, the likelihood probability density function (PDF) is constructed based on a spectral observation model, a robust Huber-Markov model is used as spectra prior PDF, and the kernel prior is described based on a parametric Gaussian function. Moreover, we describe an efficient optimization scheme that alternates between latent spectrum recovery and blur kernel estimation until convergence. The major novelty of the proposed algorithm is that it can estimate the kernel slit width and latent spectrum simultaneously. Comparative results with other deconvolution methods suggest that the proposed method can recover spectral structural details as well as suppress noise effectively. |
| Author | Yan, Luxin Chang, Yi Zhang, Tianxu Fang, Houzhang Liu, Hai |
| AuthorAffiliation | Science and Technology on Multi-spectral Information Processing Laboratory Huazhong University of Science and Technology Institute for Pattern Recognition and Artificial Intelligence |
| AuthorAffiliation_xml | – name: Science and Technology on Multi-spectral Information Processing Laboratory – name: Huazhong University of Science and Technology – name: Institute for Pattern Recognition and Artificial Intelligence |
| Author_xml | – sequence: 1 givenname: Hai surname: Liu fullname: Liu, Hai – sequence: 2 givenname: Tianxu surname: Zhang fullname: Zhang, Tianxu – sequence: 3 givenname: Luxin surname: Yan fullname: Yan, Luxin – sequence: 4 givenname: Houzhang surname: Fang fullname: Fang, Houzhang – sequence: 5 givenname: Yi surname: Chang fullname: Chang, Yi |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26192837$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22768389$$D View this record in MEDLINE/PubMed |
| BookMark | eNqN0c9LwzAUB_AgipvTi3elHgQRqvnRH-nNIf6CiR70XF5fU81om5p0gv-9GdscioiXhPA-7yV8s0M2W9MqQvYZPWNUZOfIoWUJZ2K6QYZMJFEYx1xukiGlVIQ8iaMB2XFu6o-MxnSbDDhPEylkNiQX4-B-_BgW4FQZQP1irO5fm6AyNnCdwt4ah6bTGDjV6LCodVsGpULTvpt61mvT7pKtCmqn9pb7iDxfXz1d3oaTh5u7y_EkRJHJPkTMZBEroBCxSFQZcI6iRFVyRRFkApiUGbAIqOAyQlYVVSxiqTBViV-FGJGTxdzOmreZcn3eaIeqrqFVZuZyn4TkQkTpfyhPacSYT2xEDpd0VjSqzDurG7Af-SogD46XABxCXVloUbu1S1jGpUi9owuHPjFnVZWj7mEeUG9B1_7O-QuzfP1XvuX0R8tq6q_4YIGtwy_3rX70Vz3vykp8Ap_PqLM |
| CODEN | ANALAO |
| CitedBy_id | crossref_primary_10_1364_AO_412526 crossref_primary_10_1016_j_infrared_2018_06_030 crossref_primary_10_1364_PRJ_2_000168 crossref_primary_10_1016_j_infrared_2019_103156 crossref_primary_10_1016_j_ijleo_2020_164167 crossref_primary_10_1016_j_infrared_2023_104700 crossref_primary_10_1080_09500340_2020_1766590 crossref_primary_10_1016_j_infrared_2020_103211 crossref_primary_10_1016_j_infrared_2018_07_035 crossref_primary_10_1016_j_infrared_2019_103031 crossref_primary_10_1364_AO_58_002166 crossref_primary_10_1007_s00034_016_0318_3 crossref_primary_10_1364_OE_454127 crossref_primary_10_1088_0957_0233_26_8_085502 crossref_primary_10_1016_j_infrared_2024_105700 crossref_primary_10_1088_0957_0233_26_11_115502 crossref_primary_10_1103_PhysRevA_106_033115 crossref_primary_10_1016_j_sigpro_2023_109369 crossref_primary_10_1016_j_infrared_2019_103167 crossref_primary_10_1016_j_infrared_2021_103660 crossref_primary_10_1366_14_07760 crossref_primary_10_1080_09500340_2021_2011451 crossref_primary_10_1016_j_infrared_2015_06_008 crossref_primary_10_1016_j_infrared_2021_103979 crossref_primary_10_1364_JOSAA_36_000751 crossref_primary_10_1364_AO_55_002813 crossref_primary_10_1016_j_infrared_2018_02_006 crossref_primary_10_1016_j_optcom_2021_127755 crossref_primary_10_1016_j_ijleo_2020_165877 crossref_primary_10_1016_j_infrared_2015_01_030 crossref_primary_10_1364_AO_57_006461 crossref_primary_10_1364_AO_55_004085 crossref_primary_10_1016_j_infrared_2019_103011 crossref_primary_10_1016_j_infrared_2020_103594 crossref_primary_10_1016_j_infrared_2021_104005 crossref_primary_10_1364_AO_53_008240 crossref_primary_10_1016_j_infrared_2021_103823 crossref_primary_10_1016_j_aca_2014_08_007 crossref_primary_10_1364_AO_54_001770 crossref_primary_10_1088_1748_0221_14_11_P11029 crossref_primary_10_3390_coatings12081229 crossref_primary_10_1016_j_infrared_2015_02_003 crossref_primary_10_1142_S0217979219501595 crossref_primary_10_1016_j_infrared_2020_103544 crossref_primary_10_1016_j_infrared_2024_105441 crossref_primary_10_1016_j_ijleo_2014_05_017 crossref_primary_10_1016_j_infrared_2020_103464 crossref_primary_10_1016_j_infrared_2024_105640 crossref_primary_10_1016_j_infrared_2019_103029 crossref_primary_10_1016_j_infrared_2023_104850 crossref_primary_10_1007_s13320_019_0571_8 crossref_primary_10_1016_j_infrared_2019_103061 crossref_primary_10_1016_j_infrared_2019_103184 crossref_primary_10_3390_photonics9080582 crossref_primary_10_1364_OE_26_022837 crossref_primary_10_1007_s11277_016_3381_y crossref_primary_10_1109_TMECH_2018_2870056 crossref_primary_10_1109_TII_2018_2794449 |
| Cites_doi | 10.1039/B406581F 10.1366/10-05971 10.1366/000370206777887134 10.1366/000370210793561655 10.1021/ac00232a034 10.1364/AO.23.001601 10.1103/PhysRevB.47.6119 10.1364/AO.44.007595 10.1002/(SICI)1097-4555(199705)28:5<301::AID-JRS94>3.0.CO;2-W 10.1366/000370208784658129 10.1366/000370209788701161 10.1366/0003702053641504 10.1146/annurev.aa.24.090186.001015 10.1109/TIP.2006.881971 10.1366/000370206777670648 10.1039/b000064g 10.1039/an9962100097 10.1039/an9962101015 10.1366/0003702011953225 10.1366/000370210793334945 10.1366/000370209788964575 10.1109/83.491316 10.1016/S1387-3806(01)00562-0 10.1109/83.661187 10.1109/83.503915 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS |
| Copyright_xml | – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1039/c2an16213j |
| DatabaseName | CrossRef Pascal-Francis PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1364-5528 |
| EndPage | 3873 |
| ExternalDocumentID | 22768389 26192837 10_1039_c2an16213j c2an16213j |
| Genre | Journal Article |
| GroupedDBID | --- -~X .GJ .HR 0-7 0R~ 0UZ 186 1TJ 23M 2WC 3EH 3O- 4.4 53G 5RE 705 70~ 71~ 7~J AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABOCM ABPDG ABRYZ ABXOH ACGFS ACHDF ACIWK ACLDK ACRPL ADMRA ADNMO ADSRN ADXHL AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AIDUJ AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ANBJS ANLMG ANUXI APEMP AQHUZ ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C1A C6K CAG CITATION COF CS3 EBS ECGLT EE0 EEHRC EF- EJD F5P GGIMP GNO H13 HZ~ H~N IDY IDZ J3G J3H J3I L-8 LPU M4U MVM N9A NDZJH O9- P2P R56 R7B R7E RAOCF RCLXC RCNCU RNS ROL RPMJG RRA RRC RRXOS RSCEA SC5 SKM SKR SKZ SLC SLF SLH TN5 UPT VH6 WH7 XOL XXG ZCG ZKB ZXP ~02 IQODW RIG NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c398t-cc98b5ea0a4143f9a22c3dced2e0ca86ac6d9a14a03284c1fbf5358ec7e68ec33 |
| ISSN | 0003-2654 1364-5528 |
| IngestDate | Fri Jul 11 09:27:41 EDT 2025 Thu Jul 10 19:14:50 EDT 2025 Mon Jul 21 06:03:31 EDT 2025 Wed Apr 02 08:12:31 EDT 2025 Wed Oct 01 03:08:18 EDT 2025 Thu Apr 24 23:04:54 EDT 2025 Thu May 19 04:22:22 EDT 2016 Sat Jun 01 22:32:06 EDT 2019 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 16 |
| Keywords | Random noise Deconvolution Estimation Use Probability density function Peak Method Algorithm Optimization Likelihood function |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c398t-cc98b5ea0a4143f9a22c3dced2e0ca86ac6d9a14a03284c1fbf5358ec7e68ec33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 22768389 |
| PQID | 1027041121 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | rsc_primary_c2an16213j proquest_miscellaneous_1027041121 proquest_miscellaneous_1038233473 pascalfrancis_primary_26192837 pubmed_primary_22768389 crossref_citationtrail_10_1039_c2an16213j crossref_primary_10_1039_c2an16213j |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2012-08-21 |
| PublicationDateYYYYMMDD | 2012-08-21 |
| PublicationDate_xml | – month: 08 year: 2012 text: 2012-08-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge – name: England |
| PublicationTitle | Analyst (London) |
| PublicationTitleAlternate | Analyst |
| PublicationYear | 2012 |
| Publisher | Royal Society of Chemistry |
| Publisher_xml | – name: Royal Society of Chemistry |
| References | Ottaway (c2an16213j-(cit6)/*[position()=1]) 2010; 64 KatraSnik (c2an16213j-(cit18)/*[position()=1]) 2010; 64 Lórenz-Fonfría (c2an16213j-(cit15)/*[position()=1]) 2008; 62 Mohammad-Djafari (c2an16213j-(cit19)/*[position()=1]) 2002; 215 Singh (c2an16213j-(cit13)/*[position()=1]) 1997; 28 Narayan (c2an16213j-(cit9)/*[position()=1]) 1986; 24 Ebbels (c2an16213j-(cit8)/*[position()=1]) 2001; 55 Economou (c2an16213j-(cit1)/*[position()=1]) 1996; 121 Yu-Li (c2an16213j-(cit22)/*[position()=1]) 1996; 5 Lórenz-Fonfría (c2an16213j-(cit10)/*[position()=1]) 2005; 59 Pan (c2an16213j-(cit21)/*[position()=1]) 2006; 15 Schultz (c2an16213j-(cit24)/*[position()=1]) 1996; 5 Lorenz-Fonfria (c2an16213j-(cit4)/*[position()=1]) 2004; 129 Schulze (c2an16213j-(cit27)/*[position()=1]) 2006; 60 Griffiths (c2an16213j-(cit28)/*[position()=1]) 2009; 63 Lórenz-Fonfría (c2an16213j-(cit14)/*[position()=1]) 2009; 63 Economou (c2an16213j-(cit2)/*[position()=1]) 1996; 121 Kauppinen (c2an16213j-(cit3)/*[position()=1]) 1981; 53 Wang (c2an16213j-(cit20)/*[position()=1]) 1993; 47 Zhang (c2an16213j-(cit5)/*[position()=1]) 2000; 125 Davies (c2an16213j-(cit26)/*[position()=1]) 2001; 20 Urbas (c2an16213j-(cit25)/*[position()=1]) 2011; 65 Senga (c2an16213j-(cit11)/*[position()=1]) 1984; 23 Yuan (c2an16213j-(cit7)/*[position()=1]) 2005; 44 Yuan (c2an16213j-(cit17)/*[position()=1]) 2006; 60 Chan (c2an16213j-(cit23)/*[position()=1]) 1998; 7 |
| References_xml | – publication-title: Raman Spectral of Xanthan doi: Engelson – publication-title: Raman Spectral of (+)-Glucopyranose doi: Engelson – issn: 2007 publication-title: Fourier Transform Infrared Spectrometry doi: Griffiths de Haseth – issn: 2007 publication-title: Deconvolution of Images and Spectra doi: Jansson – volume: 129 start-page: 1243 year: 2004 ident: c2an16213j-(cit4)/*[position()=1] publication-title: Analyst doi: 10.1039/B406581F – volume: 65 start-page: 665 year: 2011 ident: c2an16213j-(cit25)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/10-05971 – volume: 60 start-page: 820 year: 2006 ident: c2an16213j-(cit27)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370206777887134 – volume: 64 start-page: 1388 year: 2010 ident: c2an16213j-(cit6)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370210793561655 – volume: 53 start-page: 1454 year: 1981 ident: c2an16213j-(cit3)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac00232a034 – volume: 23 start-page: 1601 year: 1984 ident: c2an16213j-(cit11)/*[position()=1] publication-title: Appl. Opt. doi: 10.1364/AO.23.001601 – volume: 20 start-page: 65 year: 2001 ident: c2an16213j-(cit26)/*[position()=1] publication-title: Ann. Stat. – volume: 47 start-page: 6119 year: 1993 ident: c2an16213j-(cit20)/*[position()=1] publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.47.6119 – volume: 44 start-page: 7595 year: 2005 ident: c2an16213j-(cit7)/*[position()=1] publication-title: Appl. Opt. doi: 10.1364/AO.44.007595 – volume: 28 start-page: 301 year: 1997 ident: c2an16213j-(cit13)/*[position()=1] publication-title: J. Raman Spectrosc. doi: 10.1002/(SICI)1097-4555(199705)28:5<301::AID-JRS94>3.0.CO;2-W – volume: 62 start-page: 689 year: 2008 ident: c2an16213j-(cit15)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370208784658129 – volume: 63 start-page: 791 year: 2009 ident: c2an16213j-(cit14)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370209788701161 – volume: 59 start-page: 474 year: 2005 ident: c2an16213j-(cit10)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702053641504 – volume: 24 start-page: 127 year: 1986 ident: c2an16213j-(cit9)/*[position()=1] publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev.aa.24.090186.001015 – volume: 15 start-page: 3728 year: 2006 ident: c2an16213j-(cit21)/*[position()=1] publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881971 – volume: 60 start-page: 692 year: 2006 ident: c2an16213j-(cit17)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370206777670648 – volume: 125 start-page: 915 year: 2000 ident: c2an16213j-(cit5)/*[position()=1] publication-title: Analyst doi: 10.1039/b000064g – volume: 121 start-page: 97 year: 1996 ident: c2an16213j-(cit2)/*[position()=1] publication-title: Analyst doi: 10.1039/an9962100097 – volume: 121 start-page: 1015 year: 1996 ident: c2an16213j-(cit1)/*[position()=1] publication-title: Analyst doi: 10.1039/an9962101015 – volume: 55 start-page: 1214 year: 2001 ident: c2an16213j-(cit8)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/0003702011953225 – volume: 64 start-page: 1265 year: 2010 ident: c2an16213j-(cit18)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370210793334945 – volume: 63 start-page: 916 year: 2009 ident: c2an16213j-(cit28)/*[position()=1] publication-title: Appl. Spectrosc. doi: 10.1366/000370209788964575 – volume: 5 start-page: 416 year: 1996 ident: c2an16213j-(cit22)/*[position()=1] publication-title: IEEE Trans. Image Process. doi: 10.1109/83.491316 – volume: 215 start-page: 175 year: 2002 ident: c2an16213j-(cit19)/*[position()=1] publication-title: Int. J. Mass Spectrom. doi: 10.1016/S1387-3806(01)00562-0 – volume: 7 start-page: 370 year: 1998 ident: c2an16213j-(cit23)/*[position()=1] publication-title: IEEE Trans. Image Process. doi: 10.1109/83.661187 – volume: 5 start-page: 996 year: 1996 ident: c2an16213j-(cit24)/*[position()=1] publication-title: IEEE Trans. Image Process. doi: 10.1109/83.503915 |
| SSID | ssj0001050 |
| Score | 2.3190088 |
| Snippet | Spectroscopic data often suffer from common problems of bands overlapping and random noise. In this paper, we show that the issue of overlapping peaks can be... |
| SourceID | proquest pubmed pascalfrancis crossref rsc |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3862 |
| SubjectTerms | Algorithms Analytical chemistry Chemistry Deconvolution Estimates Exact sciences and technology Kernels Mathematical models Probability density functions Spectra Spectroscopy |
| Title | A MAP-based algorithm for spectroscopic semi-blind deconvolution |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/22768389 https://www.proquest.com/docview/1027041121 https://www.proquest.com/docview/1038233473 |
| Volume | 137 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry P&R customDbUrl: https://pubs.rsc.org eissn: 1364-5528 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001050 issn: 0003-2654 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wASQrwWssAqCC4oCjh26jo3IrSrFC0FiUYqXCrHcXhoN622KQd-PeMkdhKoeF2sxp0k1syX8Yw9nkHoqQLgCiaUz8BX1tuMwo-wwL5gOCJwB2F5HeU7Z0kavl5OlqPR-17U0q7Knsvve8-V_I9UoQ_kqk_J_oNk7UOhA36DfKEFCUP7VzKOvTfxO19PRLknzj-twdH_fFEHDtYHKHWiyvXmi_S26gJcYDAocy_XDvC3dlR9y7TJTlL1S3zYNYIknoGWS62XP4vny9T7mMRzW5nrLF3O5t6H2O7sJG_TmsA7NVTt2oIO0uA-6dYWmhUMEz5ah4e0RegGKpX6hDWZoK1KbRK5GOz0NSTlrfZV7WVTyeQXTY6pToQqiSgDRgL6tZuvzB79T9OYDS6sfULwu6-gAwKqHo_RQXyymJ3ZCRpMSmwKKeqRm6y1NHrRvW9gp1zfiC18MkVT62SfMwKmyaUpGVObJoub6EbrU7hxA5BbaKTK2-iq5eId9DJ2LVBcCxQXgOIOgOJ2QHEHQLmL0tOTxavEb0tn-JJGvPKljHg2UQKLEAziIhKESJpLlROFpeBMSJZHIgiFTqcYyqDIigmdcCWnikFL6SEal-tS3UcusElxNS0ynuVhFFLBRcaplByLjHEeOOiZYdRKtnnldXmT81Ud30CjVcdUBz2xtJsmm8pequMBvy2pkayDHhsBrICTeotLlGq928KTyBSH4EMEv6PRe980nFIH3Wuk170BEMPBhnfQIYjTdvfHdrT_j9UmL47-NPAH6Fr3mT1E4-pypx6BUVtlxy1IfwCqfaFK |
| linkProvider | Royal Society of Chemistry |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+MAP-based+algorithm+for+spectroscopic+semi-blind+deconvolution&rft.jtitle=Analyst+%28London%29&rft.au=HAI+LIU&rft.au=TIANXU+ZHANG&rft.au=LUXIN+YAN&rft.au=HOUZHANG+FANG&rft.date=2012-08-21&rft.pub=Royal+Society+of+Chemistry&rft.issn=0003-2654&rft.volume=137&rft.issue=16&rft.spage=3862&rft.epage=3873&rft_id=info:doi/10.1039%2Fc2an16213j&rft.externalDBID=n%2Fa&rft.externalDocID=26192837 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-2654&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-2654&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-2654&client=summon |