Major depression disorder diagnosis and analysis based on structural magnetic resonance imaging and deep learning

Major depression disorder is one of the diseases with the highest rate of disability and morbidity and is associated with numerous structural and functional differences in neural systems. However, it is difficult to analyze digital medical imaging data without computational intervention. A voxel-wis...

Full description

Saved in:
Bibliographic Details
Published inJournal of integrative neuroscience Vol. 20; no. 4; pp. 977 - 984
Main Authors Wang, Yu, Gong, Ning, Fu, Changyang
Format Journal Article
LanguageEnglish
Published Singapore IMR Press 30.12.2021
Subjects
Online AccessGet full text
ISSN0219-6352
1757-448X
1757-448X
DOI10.31083/j.jin2004098

Cover

Abstract Major depression disorder is one of the diseases with the highest rate of disability and morbidity and is associated with numerous structural and functional differences in neural systems. However, it is difficult to analyze digital medical imaging data without computational intervention. A voxel-wise densely connected convolutional neural network, Three-dimensional Densenet (3D-DenseNet), is proposed to mine the feature differences. In addition, a novel transfer learning method, called Alzheimer’s Disease Neuroimaging Initiative Transfer (ADNI-Transfer), is designed and combined with the proposed 3D-DenseNet. The experimental results on a database that contains 174 subjects, including 99 patients with major depression disorder and 75 healthy controls, show that large changes in brain structures between major depressive disorder patients and healthy controls mainly are located in the regions including superior frontal gyrus, dorsolateral, middle temporal gyrus, middle frontal gyrus, postcentral gyrus, inferior temporal gyrus. In addition, the proposed deep learning network can better extract different features of brain structures between major depressive disorder patients and healthy controls and achieve excellent classification results of major depressive disorder. At the same time, the designed transfer learning method can further improve classification performance. These results verify that our proposed method is feasible and valid for diagnosing and analyzing major depression disorder.
AbstractList Major depression disorder is one of the diseases with the highest rate of disability and morbidity and is associated with numerous structural and functional differences in neural systems. However, it is difficult to analyze digital medical imaging data without computational intervention. A voxel-wise densely connected convolutional neural network, Three-dimensional Densenet (3D-DenseNet), is proposed to mine the feature differences. In addition, a novel transfer learning method, called Alzheimer's Disease Neuroimaging Initiative Transfer (ADNI-Transfer), is designed and combined with the proposed 3D-DenseNet. The experimental results on a database that contains 174 subjects, including 99 patients with major depression disorder and 75 healthy controls, show that large changes in brain structures between major depressive disorder patients and healthy controls mainly are located in the regions including superior frontal gyrus, dorsolateral, middle temporal gyrus, middle frontal gyrus, postcentral gyrus, inferior temporal gyrus. In addition, the proposed deep learning network can better extract different features of brain structures between major depressive disorder patients and healthy controls and achieve excellent classification results of major depressive disorder. At the same time, the designed transfer learning method can further improve classification performance. These results verify that our proposed method is feasible and valid for diagnosing and analyzing major depression disorder.Major depression disorder is one of the diseases with the highest rate of disability and morbidity and is associated with numerous structural and functional differences in neural systems. However, it is difficult to analyze digital medical imaging data without computational intervention. A voxel-wise densely connected convolutional neural network, Three-dimensional Densenet (3D-DenseNet), is proposed to mine the feature differences. In addition, a novel transfer learning method, called Alzheimer's Disease Neuroimaging Initiative Transfer (ADNI-Transfer), is designed and combined with the proposed 3D-DenseNet. The experimental results on a database that contains 174 subjects, including 99 patients with major depression disorder and 75 healthy controls, show that large changes in brain structures between major depressive disorder patients and healthy controls mainly are located in the regions including superior frontal gyrus, dorsolateral, middle temporal gyrus, middle frontal gyrus, postcentral gyrus, inferior temporal gyrus. In addition, the proposed deep learning network can better extract different features of brain structures between major depressive disorder patients and healthy controls and achieve excellent classification results of major depressive disorder. At the same time, the designed transfer learning method can further improve classification performance. These results verify that our proposed method is feasible and valid for diagnosing and analyzing major depression disorder.
Major depression disorder is one of the diseases with the highest rate of disability and morbidity and is associated with numerous structural and functional differences in neural systems. However, it is difficult to analyze digital medical imaging data without computational intervention. A voxel-wise densely connected convolutional neural network, Three-dimensional Densenet (3D-DenseNet), is proposed to mine the feature differences. In addition, a novel transfer learning method, called Alzheimer's Disease Neuroimaging Initiative Transfer (ADNI-Transfer), is designed and combined with the proposed 3D-DenseNet. The experimental results on a database that contains 174 subjects, including 99 patients with major depression disorder and 75 healthy controls, show that large changes in brain structures between major depressive disorder patients and healthy controls mainly are located in the regions including superior frontal gyrus, dorsolateral, middle temporal gyrus, middle frontal gyrus, postcentral gyrus, inferior temporal gyrus. In addition, the proposed deep learning network can better extract different features of brain structures between major depressive disorder patients and healthy controls and achieve excellent classification results of major depressive disorder. At the same time, the designed transfer learning method can further improve classification performance. These results verify that our proposed method is feasible and valid for diagnosing and analyzing major depression disorder.
Author Wang, Yu
Fu, Changyang
Gong, Ning
Author_xml – sequence: 1
  givenname: Yu
  surname: Wang
  fullname: Wang, Yu
– sequence: 2
  givenname: Ning
  surname: Gong
  fullname: Gong, Ning
– sequence: 3
  givenname: Changyang
  surname: Fu
  fullname: Fu, Changyang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34997720$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1rHSEUxSWkNC9pl9mWWXYzr47Ohy5LaJtASjdZdCdXvfNw8OlEZyjvv695L0mhULoQ8XDO7148l-Q8xICEXDd0yxsq-KdpO7nAKG2pFGdk0wzdULet-HlONpQ1su55xy7IZc4TLW8u6VtywVsph4HRDXn8DlNMlcU5Yc4uhsq6HJPFojnYhZhdriDYcsAfnh4aMtqqGPOSVrOsCXy1L05cnKkKJAYIBitXNBd2x6xFnCuPkEJR3pE3I_iM75_vK_Lw9cvDzW19_-Pb3c3n-9pwKZZaS9Z2MIIdBqtNOxpkUqIeh16DHJkBzpABxZGLXgvR9ICjZLajFiiXA78idyesjTCpOZV90kFFcOooxLRTkMrKHlWnWzlyqZtGlo_TWlOrtaB9YdOn6YW1PbHWMMPhF3j_CmyoOtagJvWnhhL4eArMKT6umBe1d9mg9xAwrlmxvhGMdW1Hi_XDs3XVe7Sv4JeKiqE-GUyKOScc_zub_-U3boGlVLskcP4fqd8IWLbI
CitedBy_id crossref_primary_10_1038_s41598_023_41359_z
crossref_primary_10_1088_1741_2552_ad038c
crossref_primary_10_1016_j_bspc_2023_105046
crossref_primary_10_3390_brainsci13111590
crossref_primary_10_1155_2022_8619690
crossref_primary_10_3389_fpsyg_2024_1375294
Cites_doi 10.1109/BIBM.2017.8217822
10.1002/brb3.633
10.1109/CVPR.2015.7298594
10.1109/CVPR.2017.243
10.1192/bjpo.bp.115.002493
10.1038/nature14539
10.31083/j.jin.2020.01.24
10.1109/TPAMI.2016.2599174
10.1016/j.cell.2018.02.010
10.31083/j.jin.2018.04.0410
10.3390/diagnostics11010019
10.2147/NDT.S50156
10.1109/CBMS.2018.00050
10.1038/mp.2012.150
10.1109/TMI.2016.2535302
10.1111/cns.13048
10.1109/ICIP.2016.7532332
10.1016/j.jad.2017.11.043
10.1016/j.neuroimage.2017.04.041
10.1109/CVPR.2016.90
10.1155/2015/386326
ContentType Journal Article
Copyright 2021 The Author(s). Published by IMR Press.
Copyright_xml – notice: 2021 The Author(s). Published by IMR Press.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOA
DOI 10.31083/j.jin2004098
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1757-448X
EndPage 984
ExternalDocumentID oai_doaj_org_article_5b49f39b119448bbb0dbb806ef3077db
10.31083/j.jin2004098
34997720
10_31083_j_jin2004098
Genre Journal Article
GrantInformation_xml – fundername: Joint Project of Beijing Natural Science Foundation and Beijing Municipal Education Commission
  grantid: KZ202110011015
GroupedDBID ---
0R~
36B
4.4
53G
5GY
AAFWJ
AAYXX
ACIWK
ACPQW
ACPRK
AENEX
AFKRA
AFPKN
AFRAH
AFRHK
AJNRN
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BENPR
BHPHI
CAG
CCPQU
CITATION
COF
CS3
DU5
EBS
EJD
EMOBN
F5P
GROUPED_DOAJ
H13
HCIFZ
HZ~
IL9
IOS
J8X
M7P
O9-
P2P
P71
PHGZM
PHGZT
PIMPY
PQGLB
RWJ
SAUOL
SCNPE
SFC
SJN
W2D
ADZMO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c398t-b9245afad77dbc4fce299ebf76ba9f2ca32e2a0ef386b8816aef92d50da03973
IEDL.DBID DOA
ISSN 0219-6352
1757-448X
IngestDate Fri Oct 03 12:53:44 EDT 2025
Tue Aug 19 18:20:03 EDT 2025
Thu Sep 04 17:14:32 EDT 2025
Thu Apr 03 07:06:45 EDT 2025
Wed Oct 01 04:46:41 EDT 2025
Thu Apr 24 23:03:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Major depression disorder
Computational neuroscience
3D-DenseNet
Structural magnetic resonance imaging
ADNI-transfer
Machine learning algorithm
Language English
License https://creativecommons.org/licenses/by/4.0
2021 The Author(s). Published by IMR Press.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-b9245afad77dbc4fce299ebf76ba9f2ca32e2a0ef386b8816aef92d50da03973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/5b49f39b119448bbb0dbb806ef3077db
PMID 34997720
PQID 2618225450
PQPubID 23479
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_5b49f39b119448bbb0dbb806ef3077db
unpaywall_primary_10_31083_j_jin2004098
proquest_miscellaneous_2618225450
pubmed_primary_34997720
crossref_primary_10_31083_j_jin2004098
crossref_citationtrail_10_31083_j_jin2004098
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-30
PublicationDateYYYYMMDD 2021-12-30
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-30
  day: 30
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of integrative neuroscience
PublicationTitleAlternate J Integr Neurosci
PublicationYear 2021
Publisher IMR Press
Publisher_xml – name: IMR Press
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref7
– ident: ref21
  doi: 10.1109/BIBM.2017.8217822
– ident: ref3
  doi: 10.1002/brb3.633
– ident: ref12
  doi: 10.1109/CVPR.2015.7298594
– ident: ref15
  doi: 10.1109/CVPR.2017.243
– ident: ref29
– ident: ref4
  doi: 10.1192/bjpo.bp.115.002493
– ident: ref24
– ident: ref22
– ident: ref6
  doi: 10.1038/nature14539
– ident: ref8
  doi: 10.31083/j.jin.2020.01.24
– ident: ref27
– ident: ref9
  doi: 10.1109/TPAMI.2016.2599174
– ident: ref10
  doi: 10.1016/j.cell.2018.02.010
– ident: ref11
  doi: 10.31083/j.jin.2018.04.0410
– ident: ref5
  doi: 10.3390/diagnostics11010019
– ident: ref1
  doi: 10.2147/NDT.S50156
– ident: ref23
  doi: 10.1109/CBMS.2018.00050
– ident: ref26
  doi: 10.1038/mp.2012.150
– ident: ref20
  doi: 10.1109/TMI.2016.2535302
– ident: ref13
– ident: ref17
  doi: 10.1111/cns.13048
– ident: ref19
  doi: 10.1109/ICIP.2016.7532332
– ident: ref28
– ident: ref2
  doi: 10.1016/j.jad.2017.11.043
– ident: ref18
  doi: 10.1016/j.neuroimage.2017.04.041
– ident: ref14
  doi: 10.1109/CVPR.2016.90
– ident: ref16
– ident: ref25
  doi: 10.1155/2015/386326
SSID ssj0021390
Score 2.2965415
Snippet Major depression disorder is one of the diseases with the highest rate of disability and morbidity and is associated with numerous structural and functional...
SourceID doaj
unpaywall
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 977
SubjectTerms 3d-densenet
adni-transfer
Adult
Cerebral Cortex - diagnostic imaging
computational neuroscience
Deep Learning
Depressive Disorder, Major - diagnostic imaging
Feasibility Studies
Female
Humans
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
machine learning algorithm
Magnetic Resonance Imaging - methods
Magnetic Resonance Imaging - standards
major depression disorder
Male
Middle Aged
Neuroimaging - methods
Neuroimaging - standards
Reproducibility of Results
structural magnetic resonance imaging
Young Adult
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAceBVoeGmRULng-LV-7DFUVKVSIw6tFE7Wzj6qhMRO00So_Hpm1054IyQOlizveO3dnfV8nz3-FuCVTYUUBOUDkWARcKExECXGQRzLODeGZ9w6ong6yo_P-ck4G-_A4eZfGJdWOZkvfRKof1B3XRqevB8RUQ956HkmAYdwOphOajfIkSjDhbY3YDfPCJD3YPd89GH40b9diUVAIdV_8ywyuhlejlulzV_r-CEyeQH_36HO23BzXS_k9Wc5m30XiY7ugt60oU1A-TRYr3Cgvvwk7_ifjbwHdzqkyoata92HHVM_gL1hTSx9fs0OmM8d9S_l9-DyVE6bJdum1dZMd6qetONz-SZXTNaatlYDhbnoqRkZtgK2TvyDzcnS_VPJqJLGCYEYNpn7VZT8udqYBetWubh4CGdH784Oj4NuMYdApaJcBUhEL5NW6qLQqLhVhgKhQVvkKIVNlEwTk8jI2LTMsSzjXBorEp1FWkaEmdJH0Kub2uwD48rGuSJSL0zBs4TKlUWFKimlpCqLPrzZjGOlOqFzt97GrCLC43uVGM-3Xu3DwdZ80Sp8_MnwrXOKrZET5vYHmuVF1c3zKkMuyP8xjgX5GiJGGrGMcmpX5Freh5cbl6poIruvM7I2zfqqIipLYI0AbdSHx62vbS-VEi8lGkQlr7fO9_ebffLPlk_hVuLydJx4ZfQMejTq5jkBrRW-6CbSV6k0JgA
  priority: 102
  providerName: Unpaywall
Title Major depression disorder diagnosis and analysis based on structural magnetic resonance imaging and deep learning
URI https://www.ncbi.nlm.nih.gov/pubmed/34997720
https://www.proquest.com/docview/2618225450
https://www.imrpress.com/journal/JIN/20/4/10.31083/j.jin2004098/pdf
https://doaj.org/article/5b49f39b119448bbb0dbb806ef3077db
UnpaywallVersion publishedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1757-448X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021390
  issn: 0219-6352
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hcgAOCCiP5VEZCZULoU7iJPZxQVQVUisOrbScIo8faFe73oW2Qv33jO1sKBKPC4dIUTLrWPaX9fclk28AXvlaaUVUvlAVdoVQFgslsSzKUpetc6IRPgrF45P26Ex8nDWza6W-Yk5YtgfOA3fQoFDUIJaktoVERG4RJW-dJ3R2FuO_L5dqK6YGqUW8Jn8K2VAHhJxld02iMrI-WLxdzEMEB1fyl9Uomfb_jmnegVuXYaOvvuvl8trqc3gP7g60kU1zd-_DDRcewO40kGReXbF9lhI50xPyXfh6rBfrb2zMcQ3MDhabtJMS6-bnTAdLWzYkYXEps4wCs5tsdOJgK4qMHzgyamQdXTkcm69SSaP0W-vchg0lJ748hNPDD6fvj4qhskJhaiUvCiTV1WivbRxBI7xxtCo59F2LWvnK6LpyleY0xrJFKctWO68q23CrORGY-hHshHVwT4AJ48vWkMJWrhNNReeNR4OmklpTk90E3mwHuDeD63gsfrHsSX2k-SD58XM-JrA_hm-y3cafAt_F2RqDokt2OkDY6Qfs9P_CzgRebue6p7sqvirRwa0vz3vSlcSciF3yCTzOIBgvVZNIJE1CZ16PqPh7Z5_-j84-g9tVzKeJJpP8OewQINwLIkQXuJewvwc3z04-TT__ADAuC_I
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB6V9AAceBVoeGmRULng-LV-7DFUVKVSIw6tFE7Wzj6qhMRO00So_Hpm1054IyQOlizveO3dnfV8nz3-FuCVTYUUBOUDkWARcKExECXGQRzLODeGZ9w6ong6yo_P-ck4G-_A4eZfGJdWOZkvfRKof1B3XRqevB8RUQ956HkmAYdwOphOajfIkSjDhbY3YDfPCJD3YPd89GH40b9diUVAIdV_8ywyuhlejlulzV_r-CEyeQH_36HO23BzXS_k9Wc5m30XiY7ugt60oU1A-TRYr3Cgvvwk7_ifjbwHdzqkyoata92HHVM_gL1hTSx9fs0OmM8d9S_l9-DyVE6bJdum1dZMd6qetONz-SZXTNaatlYDhbnoqRkZtgK2TvyDzcnS_VPJqJLGCYEYNpn7VZT8udqYBetWubh4CGdH784Oj4NuMYdApaJcBUhEL5NW6qLQqLhVhgKhQVvkKIVNlEwTk8jI2LTMsSzjXBorEp1FWkaEmdJH0Kub2uwD48rGuSJSL0zBs4TKlUWFKimlpCqLPrzZjGOlOqFzt97GrCLC43uVGM-3Xu3DwdZ80Sp8_MnwrXOKrZET5vYHmuVF1c3zKkMuyP8xjgX5GiJGGrGMcmpX5Freh5cbl6poIruvM7I2zfqqIipLYI0AbdSHx62vbS-VEi8lGkQlr7fO9_ebffLPlk_hVuLydJx4ZfQMejTq5jkBrRW-6CbSV6k0JgA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Major+depression+disorder+diagnosis+and+analysis+based+on+structural+magnetic+resonance+imaging+and+deep+learning&rft.jtitle=Journal+of+integrative+neuroscience&rft.au=Wang%2C+Yu&rft.au=Gong%2C+Ning&rft.au=Fu%2C+Changyang&rft.date=2021-12-30&rft.issn=0219-6352&rft.volume=20&rft.issue=4&rft.spage=977&rft_id=info:doi/10.31083%2Fj.jin2004098&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-6352&client=summon