Meta-tuning and fast optimization of machine learning models for dynamic methane prediction in anaerobic digestion
[Display omitted] •Bayesian Search is recommended for general biogas prediction routine optimization.•Simple optimization scenarios can be optimized with a 50-step optimization process.•Complex scenarios including neural networks require more effective optimization.•Meta-tuning has a positive influe...
Saved in:
| Published in | Bioresource technology Vol. 432; p. 132654 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0960-8524 1873-2976 1873-2976 |
| DOI | 10.1016/j.biortech.2025.132654 |
Cover
| Abstract | [Display omitted]
•Bayesian Search is recommended for general biogas prediction routine optimization.•Simple optimization scenarios can be optimized with a 50-step optimization process.•Complex scenarios including neural networks require more effective optimization.•Meta-tuning has a positive influence on prediction results in complex scenarios.
This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to machine and deep learning models predicting methane production. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic datasets. Results show that 50 optimization steps are sufficient for optimal performance in simpler cases (62.8 % model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta-tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages in challenging cases. Improved accuracy can increase revenue in flexible biogas operations. |
|---|---|
| AbstractList | This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to machine and deep learning models predicting methane production. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic datasets. Results show that 50 optimization steps are sufficient for optimal performance in simpler cases (62.8 % model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta-tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages in challenging cases. Improved accuracy can increase revenue in flexible biogas operations. This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to machine and deep learning models predicting methane production. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic datasets. Results show that 50 optimization steps are sufficient for optimal performance in simpler cases (62.8 % model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta-tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages in challenging cases. Improved accuracy can increase revenue in flexible biogas operations. [Display omitted] •Bayesian Search is recommended for general biogas prediction routine optimization.•Simple optimization scenarios can be optimized with a 50-step optimization process.•Complex scenarios including neural networks require more effective optimization.•Meta-tuning has a positive influence on prediction results in complex scenarios. This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to machine and deep learning models predicting methane production. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic datasets. Results show that 50 optimization steps are sufficient for optimal performance in simpler cases (62.8 % model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta-tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages in challenging cases. Improved accuracy can increase revenue in flexible biogas operations. This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to machine and deep learning models predicting methane production. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic datasets. Results show that 50 optimization steps aresufficient for optimal performance in simpler cases (62.8 % model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta-tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages in challenging cases. Improved accuracy can increase revenue in flexible biogas operations.This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to machine and deep learning models predicting methane production. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic datasets. Results show that 50 optimization steps aresufficient for optimal performance in simpler cases (62.8 % model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta-tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages in challenging cases. Improved accuracy can increase revenue in flexible biogas operations. |
| ArticleNumber | 132654 |
| Author | Wolf, Klara Meola, Alberto Weinrich, Sören |
| Author_xml | – sequence: 1 givenname: Alberto orcidid: 0000-0002-9393-7542 surname: Meola fullname: Meola, Alberto organization: DBFZ, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Straße 116, Leipzig 04347, Germany – sequence: 2 givenname: Klara surname: Wolf fullname: Wolf, Klara organization: DBFZ, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Straße 116, Leipzig 04347, Germany – sequence: 3 givenname: Sören orcidid: 0000-0002-5789-6923 surname: Weinrich fullname: Weinrich, Sören email: soeren.weinrich@dbfz.de organization: DBFZ, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Straße 116, Leipzig 04347, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40355002$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkUtv3CAUhVGVqpmk_QsRy2484WWwd62iPiKl6qZdIwYuGUY2uGC3mvz6MnHSbcMGCb5zde45F-gspggIXVGypYTK68N2F1Kewe63jLB2SzmTrXiFNrRTvGG9kmdoQ3pJmq5l4hxdlHIghHCq2Bt0LghvW0LYBuVvMJtmXmKI99hEh70pM07THMbwYOaQIk4ej8buQwQ8gMmP5JgcDAX7lLE7RjMGi0eY96YyUwYX7KMyxDrSQE67-u_CPZTT81v02puhwLun-xL9_Pzpx83X5u77l9ubj3eN5X03N7JzlIOT1AkrVOedtL1gxhtPnbOWC08M3znVC7CctlYJrmTfUwOdg751_BKpde4SJ3P8Y4ZBTzmMJh81JfqUoj7o5xT1KUW9pliV71fllNOvpbrWYygWhqHul5aiOROMKNZ17AUo4Zy09VT06glddiO4f2aey6iAXAGbUykZ_Mv9fliFtRP4HSDrYgNEW4vIYGftUvjfiL_QQrk- |
| Cites_doi | 10.1080/0952813X.2013.782347 10.1007/BF01584660 10.1016/j.biortech.2016.04.068 10.1021/acsestengg.1c00316 10.1016/j.scitotenv.2024.172291 10.1038/s41592-019-0686-2 10.1038/s41586-020-2649-2 10.1023/A:1008202821328 10.1126/science.220.4598.671 10.1093/bioinformatics/btz470 10.1021/acssuschemeng.1c04612 10.1162/089976600300015187 10.1109/IISA.2019.8900675 10.1016/j.biosystemseng.2016.01.006 10.1016/j.neunet.2020.06.001 10.1016/j.apenergy.2024.124447 10.1162/neco.1997.9.8.1735 10.1186/s13705-023-00389-1 10.1109/ICNN.1995.488968 10.1016/j.anaerobe.2017.03.010 10.1007/s11356-024-32435-6 10.1061/(ASCE)CO.1943-7862.0001548 10.1016/j.biortech.2023.128604 10.1016/j.aej.2016.08.010 10.2166/wst.2002.0292 10.25080/Majora-92bf1922-00a 10.1016/j.ijforecast.2006.03.001 10.1007/s11042-020-10139-6 10.1002/0470018860.s00015 10.1109/TEVC.2004.826071 10.1109/SPEEDAM.2016.7526003 10.1016/j.biortech.2021.125829 10.1002/wer.10893 10.1007/978-1-4612-2876-9 10.1016/j.resconrec.2009.08.012 10.1147/JRD.2017.2709578 10.1016/j.biortech.2021.125124 10.1016/j.chemosphere.2023.138976 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved. Copyright © 2025. Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2025 The Authors – notice: Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved. – notice: Copyright © 2025. Published by Elsevier Ltd. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ADTOC UNPAY |
| DOI | 10.1016/j.biortech.2025.132654 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE AGRICOLA MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Agriculture |
| EISSN | 1873-2976 |
| ExternalDocumentID | 10.1016/j.biortech.2025.132654 40355002 10_1016_j_biortech_2025_132654 S0960852425006200 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AAEDT AAEDW AAFTH AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABWVN ABXDB ACDAQ ACGFS ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEWK ADEZE ADMUD ADNMO ADQTV ADUVX AEBSH AEGFY AEHWI AEIPS AEKER AENEX AEQOU AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGEKW AGHFR AGQPQ AGRDE AGRNS AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKURH AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC BNPGV CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSH SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAYXX ACLOT CITATION EFKBS EFLBG ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c398t-68d13ed61d4c478fd6c942afaf1ddcc34f0a3bd794ec315c74376991ae8de95d3 |
| IEDL.DBID | .~1 |
| ISSN | 0960-8524 1873-2976 |
| IngestDate | Tue Aug 19 23:25:11 EDT 2025 Thu Oct 02 21:45:07 EDT 2025 Sun Sep 28 06:15:45 EDT 2025 Mon Jul 21 06:06:21 EDT 2025 Wed Oct 01 06:01:32 EDT 2025 Sat Jun 28 18:16:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Process modelling Data processing Parameter estimation Biogas technology Artificial intelligence |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c398t-68d13ed61d4c478fd6c942afaf1ddcc34f0a3bd794ec315c74376991ae8de95d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9393-7542 0000-0002-5789-6923 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0960852425006200 |
| PMID | 40355002 |
| PQID | 3203305555 |
| PQPubID | 23479 |
| ParticipantIDs | unpaywall_primary_10_1016_j_biortech_2025_132654 proquest_miscellaneous_3242072882 proquest_miscellaneous_3203305555 pubmed_primary_40355002 crossref_primary_10_1016_j_biortech_2025_132654 elsevier_sciencedirect_doi_10_1016_j_biortech_2025_132654 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Bioresource technology |
| PublicationTitleAlternate | Bioresour Technol |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Beltramo, Klocke, Hitzmann (b0025) 2019; 6 Deng, Zhang, Zhao (b0055) 2024; 927 Storn, Price (b0220) 1997; 11 Cheng, Huang, Hutomo (b0045) 2018; 144 Putra, Köstler, Grundwürmer, Li, Huber, Gaderer (b0180) 2025; 377 Meola, Winkler, Weinrich (b0160) 2023; 372 Sun, Xu, Nairat, Zhou, He (b0225) 2023; 95 Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (b0080) 2020; 585 McKinney (b0150) 2010 Russell, Norvig (b0190) 2016 Gogna, Tayal (b0070) 2013; 25 Ratnaweera, Halgamuge, Watson (b0185) 2004; 8 Ling, Chan, Chen, Chong, Tan, Arumugasamy, Lau (b0135) 2024; 31 Hochreiter, Schmidhuber (b0085) 1997; 9 Lo Sciuto, G., Susi, G., Cammarata, G., Capizzi, G., 2016. A spiking neural network-based model for anaerobic digestion process. In: 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). Presented at the 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). pp. 996–1003. Li, Zhang, Li, Tian, Ning, Zhang, Tong, Wang (b0125) 2022; 2 Aarts, Lenstra (b0005) 2003 Diaz, G.I., Fokoue-Nkoutche, A., Nannicini, G., Samulowitz, H., 2017. An effective algorithm for hyperparameter optimization of neural networks. IBM J. Res. Dev. 61, 9:1–9:11. Wang, Huntington, Scown (b0240) 2021; 9 Kirkpatrick, Gelatt, Vecchi (b0115) 1983; 220 Jacob, Banerjee (b0100) 2016; 214 Simon Blanke, 2020. Gradient-Free-Optimizers: Simple and reliable optimization with local, global, population-based and sequential techniques in numerical search spaces. Weinrich, S., Nelles, M., 2021. Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) – Model development and stoichiometric analysis. Bioresour. Technol. 333, 125124. Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95 – International Conference on Neural Networks. Presented at the Proceedings of ICNN’95 – International Conference on Neural Networks. pp. 1942–1948 vol.4. Powell (b0170) 1973; 4 Beltramo, Ranzan, Hinrichs, Hitzmann (b0030) 2016; 143 Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (b0130) 2018; 18 Shi, Eberhart (b0210) 1998 Hyndman, Koehler (b0090) 2006; 22 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0165) 2011; 12 Yildirim, Ozkaya (b0250) 2023; 335 Price, Storn, Lampinen (b0175) 2005 Selman, B., Gomes, C.P., 2006. Hill-climbing search. In: Encyclopedia of Cognitive Science. John Wiley & Sons, Ltd. doi: 10.1002/0470018860.s00015. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. {TensorFlow}: a system for {Large-Scale} machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). pp. 265–283. Sathish, Vivekanandan (b0195) 2016; 55 Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt (b0235) 2020; 17 Gorgolis, N., Hatzilygeroudis, I., Istenes, Z., Gyenne, L.- G., 2019. Hyperparameter optimization of LSTM network models through genetic algorithm. In: 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA). Presented at the 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA). pp. 1–4. Cho, van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (b0050) 2014 Batstone, Keller, Angelidaki, Kalyuzhnyi, Pavlostathis, Rozzi, Sanders, Siegrist, Vavilin (b0020) 2002; 45 Iida (b0095) 1992 Capizzi, Lo Sciuto, Napoli, Woźniak, Susi (b0040) 2020; 129 Thrän, Deprie, Dotzauer, Kornatz, Nelles, Radtke, Schindler (b0230) 2023; 13 Le, Fu, Moore (b0120) 2020; 36 Meola, Weinrich (b0155) 2024 Mauky, Weinrich, Jacobi, Nägele, Liebetrau, Nelles (b0145) 2017; 2016 Katoch, Chauhan, Kumar (b0105) 2021; 80 Seo, Seo, Kim, Ji Lim, Chung (b0205) 2021; 341 Abu Qdais, Bani Hani, Shatnawi (b0015) 2010; 54 Bengio (b0035) 2000; 12 Gelman, Carlin, Stern, Dunson, Vehtari, Rubin (b0065) 2013 Kirkpatrick (10.1016/j.biortech.2025.132654_b0115) 1983; 220 Yildirim (10.1016/j.biortech.2025.132654_b0250) 2023; 335 Wang (10.1016/j.biortech.2025.132654_b0240) 2021; 9 10.1016/j.biortech.2025.132654_b0060 10.1016/j.biortech.2025.132654_b0140 Sun (10.1016/j.biortech.2025.132654_b0225) 2023; 95 Thrän (10.1016/j.biortech.2025.132654_b0230) 2023; 13 Abu Qdais (10.1016/j.biortech.2025.132654_b0015) 2010; 54 Katoch (10.1016/j.biortech.2025.132654_b0105) 2021; 80 Russell (10.1016/j.biortech.2025.132654_b0190) 2016 Price (10.1016/j.biortech.2025.132654_b0175) 2005 Beltramo (10.1016/j.biortech.2025.132654_b0025) 2019; 6 Hochreiter (10.1016/j.biortech.2025.132654_b0085) 1997; 9 Aarts (10.1016/j.biortech.2025.132654_b0005) 2003 10.1016/j.biortech.2025.132654_b0010 Harris (10.1016/j.biortech.2025.132654_b0080) 2020; 585 Ling (10.1016/j.biortech.2025.132654_b0135) 2024; 31 Powell (10.1016/j.biortech.2025.132654_b0170) 1973; 4 Jacob (10.1016/j.biortech.2025.132654_b0100) 2016; 214 10.1016/j.biortech.2025.132654_b0215 Le (10.1016/j.biortech.2025.132654_b0120) 2020; 36 Li (10.1016/j.biortech.2025.132654_b0130) 2018; 18 Meola (10.1016/j.biortech.2025.132654_b0155) 2024 Bengio (10.1016/j.biortech.2025.132654_b0035) 2000; 12 Iida (10.1016/j.biortech.2025.132654_b0095) 1992 Shi (10.1016/j.biortech.2025.132654_b0210) 1998 Gelman (10.1016/j.biortech.2025.132654_b0065) 2013 Sathish (10.1016/j.biortech.2025.132654_b0195) 2016; 55 10.1016/j.biortech.2025.132654_b0200 Mauky (10.1016/j.biortech.2025.132654_b0145) 2017; 2016 10.1016/j.biortech.2025.132654_b0245 Capizzi (10.1016/j.biortech.2025.132654_b0040) 2020; 129 Seo (10.1016/j.biortech.2025.132654_b0205) 2021; 341 Batstone (10.1016/j.biortech.2025.132654_b0020) 2002; 45 Cho (10.1016/j.biortech.2025.132654_b0050) 2014 McKinney (10.1016/j.biortech.2025.132654_b0150) 2010 Virtanen (10.1016/j.biortech.2025.132654_b0235) 2020; 17 Pedregosa (10.1016/j.biortech.2025.132654_b0165) 2011; 12 Storn (10.1016/j.biortech.2025.132654_b0220) 1997; 11 Putra (10.1016/j.biortech.2025.132654_b0180) 2025; 377 Gogna (10.1016/j.biortech.2025.132654_b0070) 2013; 25 Ratnaweera (10.1016/j.biortech.2025.132654_b0185) 2004; 8 Hyndman (10.1016/j.biortech.2025.132654_b0090) 2006; 22 Meola (10.1016/j.biortech.2025.132654_b0160) 2023; 372 10.1016/j.biortech.2025.132654_b0075 10.1016/j.biortech.2025.132654_b0110 Deng (10.1016/j.biortech.2025.132654_b0055) 2024; 927 Beltramo (10.1016/j.biortech.2025.132654_b0030) 2016; 143 Cheng (10.1016/j.biortech.2025.132654_b0045) 2018; 144 Li (10.1016/j.biortech.2025.132654_b0125) 2022; 2 |
| References_xml | – volume: 45 start-page: 65 year: 2002 end-page: 73 ident: b0020 article-title: The IWA anaerobic digestion model No 1 (ADM1) publication-title: Water Sci. Technol. – reference: Lo Sciuto, G., Susi, G., Cammarata, G., Capizzi, G., 2016. A spiking neural network-based model for anaerobic digestion process. In: 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). Presented at the 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). pp. 996–1003. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b0165 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 12990 year: 2021 end-page: 13000 ident: b0240 article-title: Tree-based automated machine learning to predict biogas production for anaerobic co-digestion of organic waste publication-title: ACS Sustain. Chem. Eng. – volume: 585 start-page: 357 year: 2020 end-page: 362 ident: b0080 article-title: Array programming with NumPy publication-title: Nature – year: 2024 ident: b0155 article-title: Full-scale dynamic anaerobic digestion process simulation with machine and deep learning algorithms at intra-day resolution publication-title: Review at Applied Energy – volume: 31 start-page: 19085 year: 2024 end-page: 19104 ident: b0135 article-title: Machine learning methods for the modelling and optimisation of biogas production from anaerobic digestion: a review publication-title: Environ. Sci. Pollut. Res. – volume: 341 year: 2021 ident: b0205 article-title: Prediction of biogas production rate from dry anaerobic digestion of food waste: process-based approach vs. recurrent neural network black-box model publication-title: Bioresour. Technol. – volume: 4 start-page: 193 year: 1973 end-page: 201 ident: b0170 article-title: On search directions for minimization algorithms publication-title: Math. Program. – volume: 377 year: 2025 ident: b0180 article-title: State estimation of a biogas plant based on spectral analysis using a combination of machine learning and metaheuristic algorithms publication-title: Appl. Energy – volume: 13 start-page: 12 year: 2023 ident: b0230 article-title: The potential contribution of biogas to the security of gas supply in Germany publication-title: Energy Sustain. Soc. – reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95 – International Conference on Neural Networks. Presented at the Proceedings of ICNN’95 – International Conference on Neural Networks. pp. 1942–1948 vol.4. – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b0115 article-title: Optimization by simulated annealing publication-title: Science – reference: Gorgolis, N., Hatzilygeroudis, I., Istenes, Z., Gyenne, L.- G., 2019. Hyperparameter optimization of LSTM network models through genetic algorithm. In: 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA). Presented at the 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA). pp. 1–4. – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b0220 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – volume: 129 start-page: 271 year: 2020 end-page: 279 ident: b0040 article-title: A spiking neural network-based long-term prediction system for biogas production publication-title: Neural Netw. – volume: 55 start-page: 3297 year: 2016 end-page: 3307 ident: b0195 article-title: Parametric optimization for floating drum anaerobic bio-digester using Response Surface Methodology and Artificial Neural Network publication-title: Alex. Eng. J. – year: 2005 ident: b0175 article-title: Differential evolution-a practical approach to global optimization publication-title: Natural Computing – NC – volume: 6 start-page: 349 year: 2019 end-page: 356 ident: b0025 article-title: Prediction of the biogas production using GA and ACO input features selection method for ANN model publication-title: Inf. Process. Agric. – volume: 927 year: 2024 ident: b0055 article-title: A data-driven approach for revealing the linkages between differences in electrochemical properties of biochar during anaerobic digestion using automated machine learning publication-title: Sci. Total Environ. – volume: 18 start-page: 1 year: 2018 end-page: 52 ident: b0130 article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization publication-title: J. Mach. Learn. Res. – volume: 2016 start-page: 86 year: 2017 end-page: 95 ident: b0145 article-title: Demand-driven biogas production by flexible feeding in full-scale – process stability and flexibility potentials publication-title: Anaerobe Biogas Sci. – volume: 8 start-page: 240 year: 2004 end-page: 255 ident: b0185 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. – volume: 17 start-page: 261 year: 2020 end-page: 272 ident: b0235 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods – volume: 36 start-page: 250 year: 2020 end-page: 256 ident: b0120 article-title: Scaling tree-based automated machine learning to biomedical big data with a feature set selector publication-title: Bioinformatics – volume: 22 start-page: 679 year: 2006 end-page: 688 ident: b0090 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast. – volume: 2 start-page: 642 year: 2022 end-page: 652 ident: b0125 article-title: Data-driven based in-depth interpretation and inverse design of anaerobic digestion for CH4-rich biogas production publication-title: ACS EST Eng. – year: 2013 ident: b0065 article-title: Bayesian Data Analysis – start-page: 1724 year: 2014 end-page: 1734 ident: b0050 article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Presented at the EMNLP 2014 – volume: 95 year: 2023 ident: b0225 article-title: Prediction of biogas production in anaerobic digestion of a full-scale wastewater treatment plant using ensembled machine learning models publication-title: Water Environ. Res. – volume: 214 start-page: 386 year: 2016 end-page: 395 ident: b0100 article-title: Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm publication-title: Bioresour. Technol. – reference: Selman, B., Gomes, C.P., 2006. Hill-climbing search. In: Encyclopedia of Cognitive Science. John Wiley & Sons, Ltd. doi: 10.1002/0470018860.s00015. – volume: 144 year: 2018 ident: b0045 article-title: Multiobjective dynamic-guiding PSO for optimizing work shift schedules publication-title: J. Constr. Eng. Manag. – year: 1992 ident: b0095 article-title: Studies on the Optimal Search Plan, Lecture Notes in Statistics – volume: 25 start-page: 503 year: 2013 end-page: 526 ident: b0070 article-title: Metaheuristics: review and application publication-title: J. Exp. Theor. Artif. Intell. – start-page: 69 year: 1998 end-page: 73 ident: b0210 article-title: A modified particle swarm optimizer publication-title: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). Presented at the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence – volume: 335 year: 2023 ident: b0250 article-title: Prediction of biogas production of industrial scale anaerobic digestion plant by machine learning algorithms publication-title: Chemosphere – year: 2016 ident: b0190 article-title: Artificial Intelligence: A Modern Approach – volume: 54 start-page: 359 year: 2010 end-page: 363 ident: b0015 article-title: Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm publication-title: Resour. Conserv. Recycl. – volume: 80 start-page: 8091 year: 2021 end-page: 8126 ident: b0105 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed. Tools Appl. – reference: Simon Blanke, 2020. Gradient-Free-Optimizers: Simple and reliable optimization with local, global, population-based and sequential techniques in numerical search spaces. – reference: Weinrich, S., Nelles, M., 2021. Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) – Model development and stoichiometric analysis. Bioresour. Technol. 333, 125124. – volume: 143 start-page: 68 year: 2016 end-page: 78 ident: b0030 article-title: Artificial neural network prediction of the biogas flow rate optimised with an ant colony algorithm publication-title: Biosyst. Eng. – reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. {TensorFlow}: a system for {Large-Scale} machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). pp. 265–283. – volume: 372 year: 2023 ident: b0160 article-title: Metaheuristic optimization of data preparation and machine learning hyperparameters for prediction of dynamic methane production publication-title: Bioresour. Technol. – start-page: 56 year: 2010 end-page: 61 ident: b0150 article-title: Data structures for statistical computing in python publication-title: Proceedings of the 9th Python in Science Conference – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0085 article-title: Long short-term memory publication-title: Neural Comput. – year: 2003 ident: b0005 article-title: Local Search in Combinatorial Optimization – volume: 12 start-page: 1889 year: 2000 end-page: 1900 ident: b0035 article-title: Gradient-based optimization of hyperparameters publication-title: Neural Comput. – reference: Diaz, G.I., Fokoue-Nkoutche, A., Nannicini, G., Samulowitz, H., 2017. An effective algorithm for hyperparameter optimization of neural networks. IBM J. Res. Dev. 61, 9:1–9:11. – volume: 25 start-page: 503 year: 2013 ident: 10.1016/j.biortech.2025.132654_b0070 article-title: Metaheuristics: review and application publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2013.782347 – volume: 4 start-page: 193 year: 1973 ident: 10.1016/j.biortech.2025.132654_b0170 article-title: On search directions for minimization algorithms publication-title: Math. Program. doi: 10.1007/BF01584660 – volume: 214 start-page: 386 year: 2016 ident: 10.1016/j.biortech.2025.132654_b0100 article-title: Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.04.068 – volume: 2 start-page: 642 year: 2022 ident: 10.1016/j.biortech.2025.132654_b0125 article-title: Data-driven based in-depth interpretation and inverse design of anaerobic digestion for CH4-rich biogas production publication-title: ACS EST Eng. doi: 10.1021/acsestengg.1c00316 – volume: 927 year: 2024 ident: 10.1016/j.biortech.2025.132654_b0055 article-title: A data-driven approach for revealing the linkages between differences in electrochemical properties of biochar during anaerobic digestion using automated machine learning publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2024.172291 – volume: 17 start-page: 261 year: 2020 ident: 10.1016/j.biortech.2025.132654_b0235 article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python publication-title: Nat. Methods doi: 10.1038/s41592-019-0686-2 – volume: 585 start-page: 357 year: 2020 ident: 10.1016/j.biortech.2025.132654_b0080 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – volume: 11 start-page: 341 year: 1997 ident: 10.1016/j.biortech.2025.132654_b0220 article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 18 start-page: 1 year: 2018 ident: 10.1016/j.biortech.2025.132654_b0130 article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization publication-title: J. Mach. Learn. Res. – volume: 220 start-page: 671 year: 1983 ident: 10.1016/j.biortech.2025.132654_b0115 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – ident: 10.1016/j.biortech.2025.132654_b0010 – volume: 36 start-page: 250 year: 2020 ident: 10.1016/j.biortech.2025.132654_b0120 article-title: Scaling tree-based automated machine learning to biomedical big data with a feature set selector publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz470 – volume: 9 start-page: 12990 year: 2021 ident: 10.1016/j.biortech.2025.132654_b0240 article-title: Tree-based automated machine learning to predict biogas production for anaerobic co-digestion of organic waste publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.1c04612 – volume: 12 start-page: 1889 year: 2000 ident: 10.1016/j.biortech.2025.132654_b0035 article-title: Gradient-based optimization of hyperparameters publication-title: Neural Comput. doi: 10.1162/089976600300015187 – ident: 10.1016/j.biortech.2025.132654_b0075 doi: 10.1109/IISA.2019.8900675 – volume: 143 start-page: 68 year: 2016 ident: 10.1016/j.biortech.2025.132654_b0030 article-title: Artificial neural network prediction of the biogas flow rate optimised with an ant colony algorithm publication-title: Biosyst. Eng. doi: 10.1016/j.biosystemseng.2016.01.006 – volume: 129 start-page: 271 year: 2020 ident: 10.1016/j.biortech.2025.132654_b0040 article-title: A spiking neural network-based long-term prediction system for biogas production publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.06.001 – year: 2005 ident: 10.1016/j.biortech.2025.132654_b0175 article-title: Differential evolution-a practical approach to global optimization publication-title: Natural Computing – NC – year: 2003 ident: 10.1016/j.biortech.2025.132654_b0005 – start-page: 1724 year: 2014 ident: 10.1016/j.biortech.2025.132654_b0050 article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation – volume: 377 year: 2025 ident: 10.1016/j.biortech.2025.132654_b0180 article-title: State estimation of a biogas plant based on spectral analysis using a combination of machine learning and metaheuristic algorithms publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.124447 – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.biortech.2025.132654_b0085 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 13 start-page: 12 year: 2023 ident: 10.1016/j.biortech.2025.132654_b0230 article-title: The potential contribution of biogas to the security of gas supply in Germany publication-title: Energy Sustain. Soc. doi: 10.1186/s13705-023-00389-1 – ident: 10.1016/j.biortech.2025.132654_b0110 doi: 10.1109/ICNN.1995.488968 – volume: 2016 start-page: 86 issue: 46 year: 2017 ident: 10.1016/j.biortech.2025.132654_b0145 article-title: Demand-driven biogas production by flexible feeding in full-scale – process stability and flexibility potentials publication-title: Anaerobe Biogas Sci. doi: 10.1016/j.anaerobe.2017.03.010 – volume: 31 start-page: 19085 year: 2024 ident: 10.1016/j.biortech.2025.132654_b0135 article-title: Machine learning methods for the modelling and optimisation of biogas production from anaerobic digestion: a review publication-title: Environ. Sci. Pollut. Res. doi: 10.1007/s11356-024-32435-6 – volume: 6 start-page: 349 year: 2019 ident: 10.1016/j.biortech.2025.132654_b0025 article-title: Prediction of the biogas production using GA and ACO input features selection method for ANN model publication-title: Inf. Process. Agric. – volume: 144 year: 2018 ident: 10.1016/j.biortech.2025.132654_b0045 article-title: Multiobjective dynamic-guiding PSO for optimizing work shift schedules publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0001548 – volume: 12 start-page: 2825 year: 2011 ident: 10.1016/j.biortech.2025.132654_b0165 article-title: Scikit-learn: machine learning in python publication-title: J. Mach. Learn. Res. – start-page: 69 year: 1998 ident: 10.1016/j.biortech.2025.132654_b0210 article-title: A modified particle swarm optimizer – volume: 372 year: 2023 ident: 10.1016/j.biortech.2025.132654_b0160 article-title: Metaheuristic optimization of data preparation and machine learning hyperparameters for prediction of dynamic methane production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2023.128604 – volume: 55 start-page: 3297 year: 2016 ident: 10.1016/j.biortech.2025.132654_b0195 article-title: Parametric optimization for floating drum anaerobic bio-digester using Response Surface Methodology and Artificial Neural Network publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2016.08.010 – volume: 45 start-page: 65 year: 2002 ident: 10.1016/j.biortech.2025.132654_b0020 article-title: The IWA anaerobic digestion model No 1 (ADM1) publication-title: Water Sci. Technol. doi: 10.2166/wst.2002.0292 – year: 2016 ident: 10.1016/j.biortech.2025.132654_b0190 – start-page: 56 year: 2010 ident: 10.1016/j.biortech.2025.132654_b0150 article-title: Data structures for statistical computing in python doi: 10.25080/Majora-92bf1922-00a – volume: 22 start-page: 679 year: 2006 ident: 10.1016/j.biortech.2025.132654_b0090 article-title: Another look at measures of forecast accuracy publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2006.03.001 – ident: 10.1016/j.biortech.2025.132654_b0215 – volume: 80 start-page: 8091 year: 2021 ident: 10.1016/j.biortech.2025.132654_b0105 article-title: A review on genetic algorithm: past, present, and future publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-10139-6 – year: 2013 ident: 10.1016/j.biortech.2025.132654_b0065 – ident: 10.1016/j.biortech.2025.132654_b0200 doi: 10.1002/0470018860.s00015 – volume: 8 start-page: 240 year: 2004 ident: 10.1016/j.biortech.2025.132654_b0185 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826071 – ident: 10.1016/j.biortech.2025.132654_b0140 doi: 10.1109/SPEEDAM.2016.7526003 – volume: 341 year: 2021 ident: 10.1016/j.biortech.2025.132654_b0205 article-title: Prediction of biogas production rate from dry anaerobic digestion of food waste: process-based approach vs. recurrent neural network black-box model publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2021.125829 – volume: 95 year: 2023 ident: 10.1016/j.biortech.2025.132654_b0225 article-title: Prediction of biogas production in anaerobic digestion of a full-scale wastewater treatment plant using ensembled machine learning models publication-title: Water Environ. Res. doi: 10.1002/wer.10893 – year: 2024 ident: 10.1016/j.biortech.2025.132654_b0155 article-title: Full-scale dynamic anaerobic digestion process simulation with machine and deep learning algorithms at intra-day resolution – year: 1992 ident: 10.1016/j.biortech.2025.132654_b0095 doi: 10.1007/978-1-4612-2876-9 – volume: 54 start-page: 359 year: 2010 ident: 10.1016/j.biortech.2025.132654_b0015 article-title: Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm publication-title: Resour. Conserv. Recycl. doi: 10.1016/j.resconrec.2009.08.012 – ident: 10.1016/j.biortech.2025.132654_b0060 doi: 10.1147/JRD.2017.2709578 – ident: 10.1016/j.biortech.2025.132654_b0245 doi: 10.1016/j.biortech.2021.125124 – volume: 335 year: 2023 ident: 10.1016/j.biortech.2025.132654_b0250 article-title: Prediction of biogas production of industrial scale anaerobic digestion plant by machine learning algorithms publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.138976 |
| SSID | ssj0003172 |
| Score | 2.487693 |
| Snippet | [Display omitted]
•Bayesian Search is recommended for general biogas prediction routine optimization.•Simple optimization scenarios can be optimized with a... This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 132654 |
| SubjectTerms | Algorithms anaerobic digestion Anaerobiosis Artificial intelligence Bayes Theorem Bayesian theory Biofuels biogas Biogas technology data collection Data processing income Machine Learning methane Methane - biosynthesis Methane - metabolism methane production Neural Networks, Computer Parameter estimation prediction Process modelling |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5B-lD6wFGucGmReHVw9vQ-RhVVhUThgUjlydqzCjROlNhC5dcz66MKd3m0vbvyzox3vvXMfgPwimpu0a3rTCGYz9BCbGZF5JnyVNPoFHW2Zfs8lSdz_vZMnPUbxXQW5of4fZuHZRcp67QNHFAxwc2TFPwm7EmB2HsEe_PTD7NPLaGezLNCdFVsC5UKlCm5cyT49wP9yRv9ijYPYL-p1ubyq7m42PFAx3fg_fDuXeLJl0lT24n79hOt4_Undxdu92CUzDrruQc3QnUIB7PzTU_IEQ5h_2ioCIdPdsgL78PmXahNVjfpxwoxlSfRbGuywiVo2Z_tJKtIlm2yZiB9dYpz0pbe2RLEysRfVma5cCRVsTbYZr1JUaO256LCIU1IJFGO-DYIhrcfwPz4zcejk6yv4JA5pos6k4WfsuDl1HPHVRG9dJpTE02ceu8c4zE3zHpcE4JjU-EQziiJiNWEwgctPHsIo2pVhcdAghcqsmiMZ5Y7TQ3XNirpUM3O09yN4fWgyXLdEXWUQwbb53KQc5nkXHZyHoMeFF72cKODESXq6Z99Xw4WUqISUpAF5bRqtiWjOWtZ1MTf2nCaK4qbmzE86szr6p15jggQ3dQY8it7u-aEnvx_l6dwK111SXPPYFRvmvAcUVZtX_Sf1ndjpCO_ priority: 102 providerName: Unpaywall |
| Title | Meta-tuning and fast optimization of machine learning models for dynamic methane prediction in anaerobic digestion |
| URI | https://dx.doi.org/10.1016/j.biortech.2025.132654 https://www.ncbi.nlm.nih.gov/pubmed/40355002 https://www.proquest.com/docview/3203305555 https://www.proquest.com/docview/3242072882 https://doi.org/10.1016/j.biortech.2025.132654 |
| UnpaywallVersion | publishedVersion |
| Volume | 432 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AKRWK dateStart: 19910101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6tlsOyBwTLY8tjZSSuaVPbieNjVbEqICokqLScLD9XXe2mVZsKceG3M3aSpQjxkDhFScaR7Rl7PmdeAK-o5AbVuswEgvkMJcRkpgg8E45KGqyg1qRsn_NytuBvL4qLA5j2sTDRrbLb-9s9Pe3W3ZNRN5uj9XI5-hjBd1VEyBwDAfN4budcxCoGw28_3DxQPyZLAhJnkXovSvhqaJbRozUZJWgxxINZWfDfKahfAegxHO3qtf76RV9f7yml8_twr0OTZNJ2-AEc-PoEjieXmy6jhj-Bo2lf0g3f7GUffAib977RWbOLf0aIrh0JetuQFe4hN11wJlkFcpO8LT3pyktcklQ7Z0sQ7BLXlrMnsQy1Rpr1Jpp9UstljZ_UPmZ5ssQlKxY-fgSL89efprOsK8GQWSarJisrN2belWPHLRdVcKWVnOqgw9g5axkPuWbG4aL2lo0Li3hElAg5ta-cl4Vjj-GwXtX-FIh3hQgsaO2Y4VZSzaUJorRUCutobgcw6uddrdtMG6p3QbtSPadU5JRqOTUA2bNH_SQzCtXBX9u-7PmpkAnRSoLztNptFaM5S2nQij_RcJoLiqeTATxpheG2zzxHCId6ZgD5rXT844Ce_seAnsHdeNe6vz2Hw2az8y8QLzXmLC2IM7gzefNuNsfrYv5h8vk7TnwYmA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5V5RB6QFAeTXkZiesmGz_W62MVUQVoe6GVerO8flSp2k2UbIR64bcz9u6WIMRD4mqPV7bH9nyz8wJ4TxWvUKyrTCKYz_CEVFklAs-ko4oGK6mtUrbPs2J2wT9dissdmPaxMNGtsnv72zc9vdZdy7jbzfFyPh9_ieC7FBEyx0DAHPX2B1xQGTWw0bcffh4oIJMpAamzSL4VJnw9qubRpTVZJagYoWZWCP47CfUrAt2DwaZemruv5uZmSyodP4ZHHZwkR-2Mn8COr_dh7-hq1aXU8PswmPY13bBnK_3gU1id-sZkzSb-GiGmdiSYdUMW-IjcdtGZZBHIbXK39KSrL3FFUvGcNUG0S1xbz57EOtQGaZaraPdJI-c1ftL4mObJEpfMWNj8DC6OP5xPZ1lXgyGzTJVNVpRuwrwrJo5bLsvgCqs4NcGEiXPWMh5ywyqHt9pbNhEWAYksEHMaXzqvhGPPYbde1P4AiHdCBhaMcaziVlHDVRVkYamS1tHcDmHc77tetqk2dO-Ddq17TunIKd1yagiqZ4_-6dBolAd_Hfuu56dGJkQzCe7TYrPWjOYs5UETf6LhNJcU1ZMhvGgPw_2ceY4YDgXNEPL70_GPCzr8jwW9hcHs_PREn3w8-_wSHsae1hfuFew2q41_jeCpqd6ky_Ed2N8YfQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5B-lD6wFGucGmReHVw9vQ-RhVVhUThgUjlydqzCjROlNhC5dcz66MKd3m0vbvyzox3vvXMfgPwimpu0a3rTCGYz9BCbGZF5JnyVNPoFHW2Zfs8lSdz_vZMnPUbxXQW5of4fZuHZRcp67QNHFAxwc2TFPwm7EmB2HsEe_PTD7NPLaGezLNCdFVsC5UKlCm5cyT49wP9yRv9ijYPYL-p1ubyq7m42PFAx3fg_fDuXeLJl0lT24n79hOt4_Undxdu92CUzDrruQc3QnUIB7PzTU_IEQ5h_2ioCIdPdsgL78PmXahNVjfpxwoxlSfRbGuywiVo2Z_tJKtIlm2yZiB9dYpz0pbe2RLEysRfVma5cCRVsTbYZr1JUaO256LCIU1IJFGO-DYIhrcfwPz4zcejk6yv4JA5pos6k4WfsuDl1HPHVRG9dJpTE02ceu8c4zE3zHpcE4JjU-EQziiJiNWEwgctPHsIo2pVhcdAghcqsmiMZ5Y7TQ3XNirpUM3O09yN4fWgyXLdEXWUQwbb53KQc5nkXHZyHoMeFF72cKODESXq6Z99Xw4WUqISUpAF5bRqtiWjOWtZ1MTf2nCaK4qbmzE86szr6p15jggQ3dQY8it7u-aEnvx_l6dwK111SXPPYFRvmvAcUVZtX_Sf1ndjpCO_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-tuning+and+fast+optimization+of+machine+learning+models+for+dynamic+methane+prediction+in+anaerobic+digestion&rft.jtitle=Bioresource+technology&rft.au=Meola%2C+Alberto&rft.au=Wolf%2C+Klara&rft.au=Weinrich%2C+S%C3%B6ren&rft.date=2025-09-01&rft.eissn=1873-2976&rft.volume=432&rft.spage=132654&rft_id=info:doi/10.1016%2Fj.biortech.2025.132654&rft_id=info%3Apmid%2F40355002&rft.externalDocID=40355002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |