Meta-tuning and fast optimization of machine learning models for dynamic methane prediction in anaerobic digestion

[Display omitted] •Bayesian Search is recommended for general biogas prediction routine optimization.•Simple optimization scenarios can be optimized with a 50-step optimization process.•Complex scenarios including neural networks require more effective optimization.•Meta-tuning has a positive influe...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 432; p. 132654
Main Authors Meola, Alberto, Wolf, Klara, Weinrich, Sören
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.09.2025
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2025.132654

Cover

Abstract [Display omitted] •Bayesian Search is recommended for general biogas prediction routine optimization.•Simple optimization scenarios can be optimized with a 50-step optimization process.•Complex scenarios including neural networks require more effective optimization.•Meta-tuning has a positive influence on prediction results in complex scenarios. This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to machine and deep learning models predicting methane production. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic datasets. Results show that 50 optimization steps are sufficient for optimal performance in simpler cases (62.8 % model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta-tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages in challenging cases. Improved accuracy can increase revenue in flexible biogas operations.
AbstractList This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to machine and deep learning models predicting methane production. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic datasets. Results show that 50 optimization steps are sufficient for optimal performance in simpler cases (62.8 % model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta-tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages in challenging cases. Improved accuracy can increase revenue in flexible biogas operations.
This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to machine and deep learning models predicting methane production. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic datasets. Results show that 50 optimization steps are sufficient for optimal performance in simpler cases (62.8 % model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta-tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages in challenging cases. Improved accuracy can increase revenue in flexible biogas operations.
[Display omitted] •Bayesian Search is recommended for general biogas prediction routine optimization.•Simple optimization scenarios can be optimized with a 50-step optimization process.•Complex scenarios including neural networks require more effective optimization.•Meta-tuning has a positive influence on prediction results in complex scenarios. This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to machine and deep learning models predicting methane production. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic datasets. Results show that 50 optimization steps are sufficient for optimal performance in simpler cases (62.8 % model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta-tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages in challenging cases. Improved accuracy can increase revenue in flexible biogas operations.
This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to machine and deep learning models predicting methane production. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic datasets. Results show that 50 optimization steps aresufficient for optimal performance in simpler cases (62.8 % model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta-tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages in challenging cases. Improved accuracy can increase revenue in flexible biogas operations.This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to machine and deep learning models predicting methane production. Bayesian ridge regression and recurrent neural networks were applied to steady-state and dynamic datasets. Results show that 50 optimization steps aresufficient for optimal performance in simpler cases (62.8 % model accuracy). For complex scenarios, such as recurrent neural networks on dynamic datasets, extended optimization processes improve accuracy. Among the tested algorithms, Bayesian Search performed well without meta-tuning. However, meta-tuned Genetic Algorithm performed better (94.4 % vs 99.2 % baseline). Meta-tuning improves tuning parameter selection and model precision. Differential Evolution and Particle Swarm Optimization with time-varying acceleration also performed well, particularly in steady-state. These findings highlight the need to match optimization to dataset and model complexity, with meta-tuning offering advantages in challenging cases. Improved accuracy can increase revenue in flexible biogas operations.
ArticleNumber 132654
Author Wolf, Klara
Meola, Alberto
Weinrich, Sören
Author_xml – sequence: 1
  givenname: Alberto
  orcidid: 0000-0002-9393-7542
  surname: Meola
  fullname: Meola, Alberto
  organization: DBFZ, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Straße 116, Leipzig 04347, Germany
– sequence: 2
  givenname: Klara
  surname: Wolf
  fullname: Wolf, Klara
  organization: DBFZ, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Straße 116, Leipzig 04347, Germany
– sequence: 3
  givenname: Sören
  orcidid: 0000-0002-5789-6923
  surname: Weinrich
  fullname: Weinrich, Sören
  email: soeren.weinrich@dbfz.de
  organization: DBFZ, Deutsches Biomasseforschungszentrum gemeinnützige GmbH, Biochemical Conversion Department, Torgauer Straße 116, Leipzig 04347, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40355002$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtv3CAUhVGVqpmk_QsRy2484WWwd62iPiKl6qZdIwYuGUY2uGC3mvz6MnHSbcMGCb5zde45F-gspggIXVGypYTK68N2F1Kewe63jLB2SzmTrXiFNrRTvGG9kmdoQ3pJmq5l4hxdlHIghHCq2Bt0LghvW0LYBuVvMJtmXmKI99hEh70pM07THMbwYOaQIk4ej8buQwQ8gMmP5JgcDAX7lLE7RjMGi0eY96YyUwYX7KMyxDrSQE67-u_CPZTT81v02puhwLun-xL9_Pzpx83X5u77l9ubj3eN5X03N7JzlIOT1AkrVOedtL1gxhtPnbOWC08M3znVC7CctlYJrmTfUwOdg751_BKpde4SJ3P8Y4ZBTzmMJh81JfqUoj7o5xT1KUW9pliV71fllNOvpbrWYygWhqHul5aiOROMKNZ17AUo4Zy09VT06glddiO4f2aey6iAXAGbUykZ_Mv9fliFtRP4HSDrYgNEW4vIYGftUvjfiL_QQrk-
Cites_doi 10.1080/0952813X.2013.782347
10.1007/BF01584660
10.1016/j.biortech.2016.04.068
10.1021/acsestengg.1c00316
10.1016/j.scitotenv.2024.172291
10.1038/s41592-019-0686-2
10.1038/s41586-020-2649-2
10.1023/A:1008202821328
10.1126/science.220.4598.671
10.1093/bioinformatics/btz470
10.1021/acssuschemeng.1c04612
10.1162/089976600300015187
10.1109/IISA.2019.8900675
10.1016/j.biosystemseng.2016.01.006
10.1016/j.neunet.2020.06.001
10.1016/j.apenergy.2024.124447
10.1162/neco.1997.9.8.1735
10.1186/s13705-023-00389-1
10.1109/ICNN.1995.488968
10.1016/j.anaerobe.2017.03.010
10.1007/s11356-024-32435-6
10.1061/(ASCE)CO.1943-7862.0001548
10.1016/j.biortech.2023.128604
10.1016/j.aej.2016.08.010
10.2166/wst.2002.0292
10.25080/Majora-92bf1922-00a
10.1016/j.ijforecast.2006.03.001
10.1007/s11042-020-10139-6
10.1002/0470018860.s00015
10.1109/TEVC.2004.826071
10.1109/SPEEDAM.2016.7526003
10.1016/j.biortech.2021.125829
10.1002/wer.10893
10.1007/978-1-4612-2876-9
10.1016/j.resconrec.2009.08.012
10.1147/JRD.2017.2709578
10.1016/j.biortech.2021.125124
10.1016/j.chemosphere.2023.138976
ContentType Journal Article
Copyright 2025 The Authors
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright © 2025. Published by Elsevier Ltd.
Copyright_xml – notice: 2025 The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
– notice: Copyright © 2025. Published by Elsevier Ltd.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ADTOC
UNPAY
DOI 10.1016/j.biortech.2025.132654
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE
AGRICOLA

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 10.1016/j.biortech.2025.132654
40355002
10_1016_j_biortech_2025_132654
S0960852425006200
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AAEDT
AAEDW
AAFTH
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEWK
ADEZE
ADMUD
ADNMO
ADQTV
ADUVX
AEBSH
AEGFY
AEHWI
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGEKW
AGHFR
AGQPQ
AGRDE
AGRNS
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
BNPGV
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSH
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ADTOC
UNPAY
ID FETCH-LOGICAL-c398t-68d13ed61d4c478fd6c942afaf1ddcc34f0a3bd794ec315c74376991ae8de95d3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Tue Aug 19 23:25:11 EDT 2025
Thu Oct 02 21:45:07 EDT 2025
Sun Sep 28 06:15:45 EDT 2025
Mon Jul 21 06:06:21 EDT 2025
Wed Oct 01 06:01:32 EDT 2025
Sat Jun 28 18:16:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Process modelling
Data processing
Parameter estimation
Biogas technology
Artificial intelligence
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-68d13ed61d4c478fd6c942afaf1ddcc34f0a3bd794ec315c74376991ae8de95d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9393-7542
0000-0002-5789-6923
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0960852425006200
PMID 40355002
PQID 3203305555
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_biortech_2025_132654
proquest_miscellaneous_3242072882
proquest_miscellaneous_3203305555
pubmed_primary_40355002
crossref_primary_10_1016_j_biortech_2025_132654
elsevier_sciencedirect_doi_10_1016_j_biortech_2025_132654
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Beltramo, Klocke, Hitzmann (b0025) 2019; 6
Deng, Zhang, Zhao (b0055) 2024; 927
Storn, Price (b0220) 1997; 11
Cheng, Huang, Hutomo (b0045) 2018; 144
Putra, Köstler, Grundwürmer, Li, Huber, Gaderer (b0180) 2025; 377
Meola, Winkler, Weinrich (b0160) 2023; 372
Sun, Xu, Nairat, Zhou, He (b0225) 2023; 95
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (b0080) 2020; 585
McKinney (b0150) 2010
Russell, Norvig (b0190) 2016
Gogna, Tayal (b0070) 2013; 25
Ratnaweera, Halgamuge, Watson (b0185) 2004; 8
Ling, Chan, Chen, Chong, Tan, Arumugasamy, Lau (b0135) 2024; 31
Hochreiter, Schmidhuber (b0085) 1997; 9
Lo Sciuto, G., Susi, G., Cammarata, G., Capizzi, G., 2016. A spiking neural network-based model for anaerobic digestion process. In: 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). Presented at the 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). pp. 996–1003.
Li, Zhang, Li, Tian, Ning, Zhang, Tong, Wang (b0125) 2022; 2
Aarts, Lenstra (b0005) 2003
Diaz, G.I., Fokoue-Nkoutche, A., Nannicini, G., Samulowitz, H., 2017. An effective algorithm for hyperparameter optimization of neural networks. IBM J. Res. Dev. 61, 9:1–9:11.
Wang, Huntington, Scown (b0240) 2021; 9
Kirkpatrick, Gelatt, Vecchi (b0115) 1983; 220
Jacob, Banerjee (b0100) 2016; 214
Simon Blanke, 2020. Gradient-Free-Optimizers: Simple and reliable optimization with local, global, population-based and sequential techniques in numerical search spaces.
Weinrich, S., Nelles, M., 2021. Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) – Model development and stoichiometric analysis. Bioresour. Technol. 333, 125124.
Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95 – International Conference on Neural Networks. Presented at the Proceedings of ICNN’95 – International Conference on Neural Networks. pp. 1942–1948 vol.4.
Powell (b0170) 1973; 4
Beltramo, Ranzan, Hinrichs, Hitzmann (b0030) 2016; 143
Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (b0130) 2018; 18
Shi, Eberhart (b0210) 1998
Hyndman, Koehler (b0090) 2006; 22
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0165) 2011; 12
Yildirim, Ozkaya (b0250) 2023; 335
Price, Storn, Lampinen (b0175) 2005
Selman, B., Gomes, C.P., 2006. Hill-climbing search. In: Encyclopedia of Cognitive Science. John Wiley & Sons, Ltd. doi: 10.1002/0470018860.s00015.
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. {TensorFlow}: a system for {Large-Scale} machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). pp. 265–283.
Sathish, Vivekanandan (b0195) 2016; 55
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt (b0235) 2020; 17
Gorgolis, N., Hatzilygeroudis, I., Istenes, Z., Gyenne, L.- G., 2019. Hyperparameter optimization of LSTM network models through genetic algorithm. In: 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA). Presented at the 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA). pp. 1–4.
Cho, van Merriënboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (b0050) 2014
Batstone, Keller, Angelidaki, Kalyuzhnyi, Pavlostathis, Rozzi, Sanders, Siegrist, Vavilin (b0020) 2002; 45
Iida (b0095) 1992
Capizzi, Lo Sciuto, Napoli, Woźniak, Susi (b0040) 2020; 129
Thrän, Deprie, Dotzauer, Kornatz, Nelles, Radtke, Schindler (b0230) 2023; 13
Le, Fu, Moore (b0120) 2020; 36
Meola, Weinrich (b0155) 2024
Mauky, Weinrich, Jacobi, Nägele, Liebetrau, Nelles (b0145) 2017; 2016
Katoch, Chauhan, Kumar (b0105) 2021; 80
Seo, Seo, Kim, Ji Lim, Chung (b0205) 2021; 341
Abu Qdais, Bani Hani, Shatnawi (b0015) 2010; 54
Bengio (b0035) 2000; 12
Gelman, Carlin, Stern, Dunson, Vehtari, Rubin (b0065) 2013
Kirkpatrick (10.1016/j.biortech.2025.132654_b0115) 1983; 220
Yildirim (10.1016/j.biortech.2025.132654_b0250) 2023; 335
Wang (10.1016/j.biortech.2025.132654_b0240) 2021; 9
10.1016/j.biortech.2025.132654_b0060
10.1016/j.biortech.2025.132654_b0140
Sun (10.1016/j.biortech.2025.132654_b0225) 2023; 95
Thrän (10.1016/j.biortech.2025.132654_b0230) 2023; 13
Abu Qdais (10.1016/j.biortech.2025.132654_b0015) 2010; 54
Katoch (10.1016/j.biortech.2025.132654_b0105) 2021; 80
Russell (10.1016/j.biortech.2025.132654_b0190) 2016
Price (10.1016/j.biortech.2025.132654_b0175) 2005
Beltramo (10.1016/j.biortech.2025.132654_b0025) 2019; 6
Hochreiter (10.1016/j.biortech.2025.132654_b0085) 1997; 9
Aarts (10.1016/j.biortech.2025.132654_b0005) 2003
10.1016/j.biortech.2025.132654_b0010
Harris (10.1016/j.biortech.2025.132654_b0080) 2020; 585
Ling (10.1016/j.biortech.2025.132654_b0135) 2024; 31
Powell (10.1016/j.biortech.2025.132654_b0170) 1973; 4
Jacob (10.1016/j.biortech.2025.132654_b0100) 2016; 214
10.1016/j.biortech.2025.132654_b0215
Le (10.1016/j.biortech.2025.132654_b0120) 2020; 36
Li (10.1016/j.biortech.2025.132654_b0130) 2018; 18
Meola (10.1016/j.biortech.2025.132654_b0155) 2024
Bengio (10.1016/j.biortech.2025.132654_b0035) 2000; 12
Iida (10.1016/j.biortech.2025.132654_b0095) 1992
Shi (10.1016/j.biortech.2025.132654_b0210) 1998
Gelman (10.1016/j.biortech.2025.132654_b0065) 2013
Sathish (10.1016/j.biortech.2025.132654_b0195) 2016; 55
10.1016/j.biortech.2025.132654_b0200
Mauky (10.1016/j.biortech.2025.132654_b0145) 2017; 2016
10.1016/j.biortech.2025.132654_b0245
Capizzi (10.1016/j.biortech.2025.132654_b0040) 2020; 129
Seo (10.1016/j.biortech.2025.132654_b0205) 2021; 341
Batstone (10.1016/j.biortech.2025.132654_b0020) 2002; 45
Cho (10.1016/j.biortech.2025.132654_b0050) 2014
McKinney (10.1016/j.biortech.2025.132654_b0150) 2010
Virtanen (10.1016/j.biortech.2025.132654_b0235) 2020; 17
Pedregosa (10.1016/j.biortech.2025.132654_b0165) 2011; 12
Storn (10.1016/j.biortech.2025.132654_b0220) 1997; 11
Putra (10.1016/j.biortech.2025.132654_b0180) 2025; 377
Gogna (10.1016/j.biortech.2025.132654_b0070) 2013; 25
Ratnaweera (10.1016/j.biortech.2025.132654_b0185) 2004; 8
Hyndman (10.1016/j.biortech.2025.132654_b0090) 2006; 22
Meola (10.1016/j.biortech.2025.132654_b0160) 2023; 372
10.1016/j.biortech.2025.132654_b0075
10.1016/j.biortech.2025.132654_b0110
Deng (10.1016/j.biortech.2025.132654_b0055) 2024; 927
Beltramo (10.1016/j.biortech.2025.132654_b0030) 2016; 143
Cheng (10.1016/j.biortech.2025.132654_b0045) 2018; 144
Li (10.1016/j.biortech.2025.132654_b0125) 2022; 2
References_xml – volume: 45
  start-page: 65
  year: 2002
  end-page: 73
  ident: b0020
  article-title: The IWA anaerobic digestion model No 1 (ADM1)
  publication-title: Water Sci. Technol.
– reference: Lo Sciuto, G., Susi, G., Cammarata, G., Capizzi, G., 2016. A spiking neural network-based model for anaerobic digestion process. In: 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). Presented at the 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM). pp. 996–1003.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0165
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 12990
  year: 2021
  end-page: 13000
  ident: b0240
  article-title: Tree-based automated machine learning to predict biogas production for anaerobic co-digestion of organic waste
  publication-title: ACS Sustain. Chem. Eng.
– volume: 585
  start-page: 357
  year: 2020
  end-page: 362
  ident: b0080
  article-title: Array programming with NumPy
  publication-title: Nature
– year: 2024
  ident: b0155
  article-title: Full-scale dynamic anaerobic digestion process simulation with machine and deep learning algorithms at intra-day resolution
  publication-title: Review at Applied Energy
– volume: 31
  start-page: 19085
  year: 2024
  end-page: 19104
  ident: b0135
  article-title: Machine learning methods for the modelling and optimisation of biogas production from anaerobic digestion: a review
  publication-title: Environ. Sci. Pollut. Res.
– volume: 341
  year: 2021
  ident: b0205
  article-title: Prediction of biogas production rate from dry anaerobic digestion of food waste: process-based approach vs. recurrent neural network black-box model
  publication-title: Bioresour. Technol.
– volume: 4
  start-page: 193
  year: 1973
  end-page: 201
  ident: b0170
  article-title: On search directions for minimization algorithms
  publication-title: Math. Program.
– volume: 377
  year: 2025
  ident: b0180
  article-title: State estimation of a biogas plant based on spectral analysis using a combination of machine learning and metaheuristic algorithms
  publication-title: Appl. Energy
– volume: 13
  start-page: 12
  year: 2023
  ident: b0230
  article-title: The potential contribution of biogas to the security of gas supply in Germany
  publication-title: Energy Sustain. Soc.
– reference: Kennedy, J., Eberhart, R., 1995. Particle swarm optimization. In: Proceedings of ICNN’95 – International Conference on Neural Networks. Presented at the Proceedings of ICNN’95 – International Conference on Neural Networks. pp. 1942–1948 vol.4.
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b0115
  article-title: Optimization by simulated annealing
  publication-title: Science
– reference: Gorgolis, N., Hatzilygeroudis, I., Istenes, Z., Gyenne, L.- G., 2019. Hyperparameter optimization of LSTM network models through genetic algorithm. In: 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA). Presented at the 2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA). pp. 1–4.
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b0220
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– volume: 129
  start-page: 271
  year: 2020
  end-page: 279
  ident: b0040
  article-title: A spiking neural network-based long-term prediction system for biogas production
  publication-title: Neural Netw.
– volume: 55
  start-page: 3297
  year: 2016
  end-page: 3307
  ident: b0195
  article-title: Parametric optimization for floating drum anaerobic bio-digester using Response Surface Methodology and Artificial Neural Network
  publication-title: Alex. Eng. J.
– year: 2005
  ident: b0175
  article-title: Differential evolution-a practical approach to global optimization
  publication-title: Natural Computing – NC
– volume: 6
  start-page: 349
  year: 2019
  end-page: 356
  ident: b0025
  article-title: Prediction of the biogas production using GA and ACO input features selection method for ANN model
  publication-title: Inf. Process. Agric.
– volume: 927
  year: 2024
  ident: b0055
  article-title: A data-driven approach for revealing the linkages between differences in electrochemical properties of biochar during anaerobic digestion using automated machine learning
  publication-title: Sci. Total Environ.
– volume: 18
  start-page: 1
  year: 2018
  end-page: 52
  ident: b0130
  article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 2016
  start-page: 86
  year: 2017
  end-page: 95
  ident: b0145
  article-title: Demand-driven biogas production by flexible feeding in full-scale – process stability and flexibility potentials
  publication-title: Anaerobe Biogas Sci.
– volume: 8
  start-page: 240
  year: 2004
  end-page: 255
  ident: b0185
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: b0235
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
– volume: 36
  start-page: 250
  year: 2020
  end-page: 256
  ident: b0120
  article-title: Scaling tree-based automated machine learning to biomedical big data with a feature set selector
  publication-title: Bioinformatics
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: b0090
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
– volume: 2
  start-page: 642
  year: 2022
  end-page: 652
  ident: b0125
  article-title: Data-driven based in-depth interpretation and inverse design of anaerobic digestion for CH4-rich biogas production
  publication-title: ACS EST Eng.
– year: 2013
  ident: b0065
  article-title: Bayesian Data Analysis
– start-page: 1724
  year: 2014
  end-page: 1734
  ident: b0050
  article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation
  publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Presented at the EMNLP 2014
– volume: 95
  year: 2023
  ident: b0225
  article-title: Prediction of biogas production in anaerobic digestion of a full-scale wastewater treatment plant using ensembled machine learning models
  publication-title: Water Environ. Res.
– volume: 214
  start-page: 386
  year: 2016
  end-page: 395
  ident: b0100
  article-title: Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm
  publication-title: Bioresour. Technol.
– reference: Selman, B., Gomes, C.P., 2006. Hill-climbing search. In: Encyclopedia of Cognitive Science. John Wiley & Sons, Ltd. doi: 10.1002/0470018860.s00015.
– volume: 144
  year: 2018
  ident: b0045
  article-title: Multiobjective dynamic-guiding PSO for optimizing work shift schedules
  publication-title: J. Constr. Eng. Manag.
– year: 1992
  ident: b0095
  article-title: Studies on the Optimal Search Plan, Lecture Notes in Statistics
– volume: 25
  start-page: 503
  year: 2013
  end-page: 526
  ident: b0070
  article-title: Metaheuristics: review and application
  publication-title: J. Exp. Theor. Artif. Intell.
– start-page: 69
  year: 1998
  end-page: 73
  ident: b0210
  article-title: A modified particle swarm optimizer
  publication-title: 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). Presented at the 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence
– volume: 335
  year: 2023
  ident: b0250
  article-title: Prediction of biogas production of industrial scale anaerobic digestion plant by machine learning algorithms
  publication-title: Chemosphere
– year: 2016
  ident: b0190
  article-title: Artificial Intelligence: A Modern Approach
– volume: 54
  start-page: 359
  year: 2010
  end-page: 363
  ident: b0015
  article-title: Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm
  publication-title: Resour. Conserv. Recycl.
– volume: 80
  start-page: 8091
  year: 2021
  end-page: 8126
  ident: b0105
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed. Tools Appl.
– reference: Simon Blanke, 2020. Gradient-Free-Optimizers: Simple and reliable optimization with local, global, population-based and sequential techniques in numerical search spaces.
– reference: Weinrich, S., Nelles, M., 2021. Systematic simplification of the Anaerobic Digestion Model No. 1 (ADM1) – Model development and stoichiometric analysis. Bioresour. Technol. 333, 125124.
– volume: 143
  start-page: 68
  year: 2016
  end-page: 78
  ident: b0030
  article-title: Artificial neural network prediction of the biogas flow rate optimised with an ant colony algorithm
  publication-title: Biosyst. Eng.
– reference: Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., et al., 2016. {TensorFlow}: a system for {Large-Scale} machine learning. In: 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16). pp. 265–283.
– volume: 372
  year: 2023
  ident: b0160
  article-title: Metaheuristic optimization of data preparation and machine learning hyperparameters for prediction of dynamic methane production
  publication-title: Bioresour. Technol.
– start-page: 56
  year: 2010
  end-page: 61
  ident: b0150
  article-title: Data structures for statistical computing in python
  publication-title: Proceedings of the 9th Python in Science Conference
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0085
  article-title: Long short-term memory
  publication-title: Neural Comput.
– year: 2003
  ident: b0005
  article-title: Local Search in Combinatorial Optimization
– volume: 12
  start-page: 1889
  year: 2000
  end-page: 1900
  ident: b0035
  article-title: Gradient-based optimization of hyperparameters
  publication-title: Neural Comput.
– reference: Diaz, G.I., Fokoue-Nkoutche, A., Nannicini, G., Samulowitz, H., 2017. An effective algorithm for hyperparameter optimization of neural networks. IBM J. Res. Dev. 61, 9:1–9:11.
– volume: 25
  start-page: 503
  year: 2013
  ident: 10.1016/j.biortech.2025.132654_b0070
  article-title: Metaheuristics: review and application
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2013.782347
– volume: 4
  start-page: 193
  year: 1973
  ident: 10.1016/j.biortech.2025.132654_b0170
  article-title: On search directions for minimization algorithms
  publication-title: Math. Program.
  doi: 10.1007/BF01584660
– volume: 214
  start-page: 386
  year: 2016
  ident: 10.1016/j.biortech.2025.132654_b0100
  article-title: Modeling and optimization of anaerobic codigestion of potato waste and aquatic weed by response surface methodology and artificial neural network coupled genetic algorithm
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.04.068
– volume: 2
  start-page: 642
  year: 2022
  ident: 10.1016/j.biortech.2025.132654_b0125
  article-title: Data-driven based in-depth interpretation and inverse design of anaerobic digestion for CH4-rich biogas production
  publication-title: ACS EST Eng.
  doi: 10.1021/acsestengg.1c00316
– volume: 927
  year: 2024
  ident: 10.1016/j.biortech.2025.132654_b0055
  article-title: A data-driven approach for revealing the linkages between differences in electrochemical properties of biochar during anaerobic digestion using automated machine learning
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2024.172291
– volume: 17
  start-page: 261
  year: 2020
  ident: 10.1016/j.biortech.2025.132654_b0235
  article-title: SciPy 1.0: fundamental algorithms for scientific computing in Python
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 585
  start-page: 357
  year: 2020
  ident: 10.1016/j.biortech.2025.132654_b0080
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– volume: 11
  start-page: 341
  year: 1997
  ident: 10.1016/j.biortech.2025.132654_b0220
  article-title: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 18
  start-page: 1
  year: 2018
  ident: 10.1016/j.biortech.2025.132654_b0130
  article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization
  publication-title: J. Mach. Learn. Res.
– volume: 220
  start-page: 671
  year: 1983
  ident: 10.1016/j.biortech.2025.132654_b0115
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– ident: 10.1016/j.biortech.2025.132654_b0010
– volume: 36
  start-page: 250
  year: 2020
  ident: 10.1016/j.biortech.2025.132654_b0120
  article-title: Scaling tree-based automated machine learning to biomedical big data with a feature set selector
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz470
– volume: 9
  start-page: 12990
  year: 2021
  ident: 10.1016/j.biortech.2025.132654_b0240
  article-title: Tree-based automated machine learning to predict biogas production for anaerobic co-digestion of organic waste
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.1c04612
– volume: 12
  start-page: 1889
  year: 2000
  ident: 10.1016/j.biortech.2025.132654_b0035
  article-title: Gradient-based optimization of hyperparameters
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015187
– ident: 10.1016/j.biortech.2025.132654_b0075
  doi: 10.1109/IISA.2019.8900675
– volume: 143
  start-page: 68
  year: 2016
  ident: 10.1016/j.biortech.2025.132654_b0030
  article-title: Artificial neural network prediction of the biogas flow rate optimised with an ant colony algorithm
  publication-title: Biosyst. Eng.
  doi: 10.1016/j.biosystemseng.2016.01.006
– volume: 129
  start-page: 271
  year: 2020
  ident: 10.1016/j.biortech.2025.132654_b0040
  article-title: A spiking neural network-based long-term prediction system for biogas production
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.06.001
– year: 2005
  ident: 10.1016/j.biortech.2025.132654_b0175
  article-title: Differential evolution-a practical approach to global optimization
  publication-title: Natural Computing – NC
– year: 2003
  ident: 10.1016/j.biortech.2025.132654_b0005
– start-page: 1724
  year: 2014
  ident: 10.1016/j.biortech.2025.132654_b0050
  article-title: Learning phrase representations using RNN encoder–decoder for statistical machine translation
– volume: 377
  year: 2025
  ident: 10.1016/j.biortech.2025.132654_b0180
  article-title: State estimation of a biogas plant based on spectral analysis using a combination of machine learning and metaheuristic algorithms
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.124447
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.biortech.2025.132654_b0085
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 13
  start-page: 12
  year: 2023
  ident: 10.1016/j.biortech.2025.132654_b0230
  article-title: The potential contribution of biogas to the security of gas supply in Germany
  publication-title: Energy Sustain. Soc.
  doi: 10.1186/s13705-023-00389-1
– ident: 10.1016/j.biortech.2025.132654_b0110
  doi: 10.1109/ICNN.1995.488968
– volume: 2016
  start-page: 86
  issue: 46
  year: 2017
  ident: 10.1016/j.biortech.2025.132654_b0145
  article-title: Demand-driven biogas production by flexible feeding in full-scale – process stability and flexibility potentials
  publication-title: Anaerobe Biogas Sci.
  doi: 10.1016/j.anaerobe.2017.03.010
– volume: 31
  start-page: 19085
  year: 2024
  ident: 10.1016/j.biortech.2025.132654_b0135
  article-title: Machine learning methods for the modelling and optimisation of biogas production from anaerobic digestion: a review
  publication-title: Environ. Sci. Pollut. Res.
  doi: 10.1007/s11356-024-32435-6
– volume: 6
  start-page: 349
  year: 2019
  ident: 10.1016/j.biortech.2025.132654_b0025
  article-title: Prediction of the biogas production using GA and ACO input features selection method for ANN model
  publication-title: Inf. Process. Agric.
– volume: 144
  year: 2018
  ident: 10.1016/j.biortech.2025.132654_b0045
  article-title: Multiobjective dynamic-guiding PSO for optimizing work shift schedules
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001548
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.biortech.2025.132654_b0165
  article-title: Scikit-learn: machine learning in python
  publication-title: J. Mach. Learn. Res.
– start-page: 69
  year: 1998
  ident: 10.1016/j.biortech.2025.132654_b0210
  article-title: A modified particle swarm optimizer
– volume: 372
  year: 2023
  ident: 10.1016/j.biortech.2025.132654_b0160
  article-title: Metaheuristic optimization of data preparation and machine learning hyperparameters for prediction of dynamic methane production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2023.128604
– volume: 55
  start-page: 3297
  year: 2016
  ident: 10.1016/j.biortech.2025.132654_b0195
  article-title: Parametric optimization for floating drum anaerobic bio-digester using Response Surface Methodology and Artificial Neural Network
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2016.08.010
– volume: 45
  start-page: 65
  year: 2002
  ident: 10.1016/j.biortech.2025.132654_b0020
  article-title: The IWA anaerobic digestion model No 1 (ADM1)
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2002.0292
– year: 2016
  ident: 10.1016/j.biortech.2025.132654_b0190
– start-page: 56
  year: 2010
  ident: 10.1016/j.biortech.2025.132654_b0150
  article-title: Data structures for statistical computing in python
  doi: 10.25080/Majora-92bf1922-00a
– volume: 22
  start-page: 679
  year: 2006
  ident: 10.1016/j.biortech.2025.132654_b0090
  article-title: Another look at measures of forecast accuracy
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2006.03.001
– ident: 10.1016/j.biortech.2025.132654_b0215
– volume: 80
  start-page: 8091
  year: 2021
  ident: 10.1016/j.biortech.2025.132654_b0105
  article-title: A review on genetic algorithm: past, present, and future
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10139-6
– year: 2013
  ident: 10.1016/j.biortech.2025.132654_b0065
– ident: 10.1016/j.biortech.2025.132654_b0200
  doi: 10.1002/0470018860.s00015
– volume: 8
  start-page: 240
  year: 2004
  ident: 10.1016/j.biortech.2025.132654_b0185
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826071
– ident: 10.1016/j.biortech.2025.132654_b0140
  doi: 10.1109/SPEEDAM.2016.7526003
– volume: 341
  year: 2021
  ident: 10.1016/j.biortech.2025.132654_b0205
  article-title: Prediction of biogas production rate from dry anaerobic digestion of food waste: process-based approach vs. recurrent neural network black-box model
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2021.125829
– volume: 95
  year: 2023
  ident: 10.1016/j.biortech.2025.132654_b0225
  article-title: Prediction of biogas production in anaerobic digestion of a full-scale wastewater treatment plant using ensembled machine learning models
  publication-title: Water Environ. Res.
  doi: 10.1002/wer.10893
– year: 2024
  ident: 10.1016/j.biortech.2025.132654_b0155
  article-title: Full-scale dynamic anaerobic digestion process simulation with machine and deep learning algorithms at intra-day resolution
– year: 1992
  ident: 10.1016/j.biortech.2025.132654_b0095
  doi: 10.1007/978-1-4612-2876-9
– volume: 54
  start-page: 359
  year: 2010
  ident: 10.1016/j.biortech.2025.132654_b0015
  article-title: Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/j.resconrec.2009.08.012
– ident: 10.1016/j.biortech.2025.132654_b0060
  doi: 10.1147/JRD.2017.2709578
– ident: 10.1016/j.biortech.2025.132654_b0245
  doi: 10.1016/j.biortech.2021.125124
– volume: 335
  year: 2023
  ident: 10.1016/j.biortech.2025.132654_b0250
  article-title: Prediction of biogas production of industrial scale anaerobic digestion plant by machine learning algorithms
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.138976
SSID ssj0003172
Score 2.487693
Snippet [Display omitted] •Bayesian Search is recommended for general biogas prediction routine optimization.•Simple optimization scenarios can be optimized with a...
This study evaluates the performance of several optimization algorithms for tuning a data preparation and hyperparameter optimization pipeline applied to...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 132654
SubjectTerms Algorithms
anaerobic digestion
Anaerobiosis
Artificial intelligence
Bayes Theorem
Bayesian theory
Biofuels
biogas
Biogas technology
data collection
Data processing
income
Machine Learning
methane
Methane - biosynthesis
Methane - metabolism
methane production
Neural Networks, Computer
Parameter estimation
prediction
Process modelling
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5B-lD6wFGucGmReHVw9vQ-RhVVhUThgUjlydqzCjROlNhC5dcz66MKd3m0vbvyzox3vvXMfgPwimpu0a3rTCGYz9BCbGZF5JnyVNPoFHW2Zfs8lSdz_vZMnPUbxXQW5of4fZuHZRcp67QNHFAxwc2TFPwm7EmB2HsEe_PTD7NPLaGezLNCdFVsC5UKlCm5cyT49wP9yRv9ijYPYL-p1ubyq7m42PFAx3fg_fDuXeLJl0lT24n79hOt4_Undxdu92CUzDrruQc3QnUIB7PzTU_IEQ5h_2ioCIdPdsgL78PmXahNVjfpxwoxlSfRbGuywiVo2Z_tJKtIlm2yZiB9dYpz0pbe2RLEysRfVma5cCRVsTbYZr1JUaO256LCIU1IJFGO-DYIhrcfwPz4zcejk6yv4JA5pos6k4WfsuDl1HPHVRG9dJpTE02ceu8c4zE3zHpcE4JjU-EQziiJiNWEwgctPHsIo2pVhcdAghcqsmiMZ5Y7TQ3XNirpUM3O09yN4fWgyXLdEXWUQwbb53KQc5nkXHZyHoMeFF72cKODESXq6Z99Xw4WUqISUpAF5bRqtiWjOWtZ1MTf2nCaK4qbmzE86szr6p15jggQ3dQY8it7u-aEnvx_l6dwK111SXPPYFRvmvAcUVZtX_Sf1ndjpCO_
  priority: 102
  providerName: Unpaywall
Title Meta-tuning and fast optimization of machine learning models for dynamic methane prediction in anaerobic digestion
URI https://dx.doi.org/10.1016/j.biortech.2025.132654
https://www.ncbi.nlm.nih.gov/pubmed/40355002
https://www.proquest.com/docview/3203305555
https://www.proquest.com/docview/3242072882
https://doi.org/10.1016/j.biortech.2025.132654
UnpaywallVersion publishedVersion
Volume 432
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB6tlsOyBwTLY8tjZSSuaVPbieNjVbEqICokqLScLD9XXe2mVZsKceG3M3aSpQjxkDhFScaR7Rl7PmdeAK-o5AbVuswEgvkMJcRkpgg8E45KGqyg1qRsn_NytuBvL4qLA5j2sTDRrbLb-9s9Pe3W3ZNRN5uj9XI5-hjBd1VEyBwDAfN4budcxCoGw28_3DxQPyZLAhJnkXovSvhqaJbRozUZJWgxxINZWfDfKahfAegxHO3qtf76RV9f7yml8_twr0OTZNJ2-AEc-PoEjieXmy6jhj-Bo2lf0g3f7GUffAib977RWbOLf0aIrh0JetuQFe4hN11wJlkFcpO8LT3pyktcklQ7Z0sQ7BLXlrMnsQy1Rpr1Jpp9UstljZ_UPmZ5ssQlKxY-fgSL89efprOsK8GQWSarJisrN2belWPHLRdVcKWVnOqgw9g5axkPuWbG4aL2lo0Li3hElAg5ta-cl4Vjj-GwXtX-FIh3hQgsaO2Y4VZSzaUJorRUCutobgcw6uddrdtMG6p3QbtSPadU5JRqOTUA2bNH_SQzCtXBX9u-7PmpkAnRSoLztNptFaM5S2nQij_RcJoLiqeTATxpheG2zzxHCId6ZgD5rXT844Ce_seAnsHdeNe6vz2Hw2az8y8QLzXmLC2IM7gzefNuNsfrYv5h8vk7TnwYmA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB5V5RB6QFAeTXkZiesmGz_W62MVUQVoe6GVerO8flSp2k2UbIR64bcz9u6WIMRD4mqPV7bH9nyz8wJ4TxWvUKyrTCKYz_CEVFklAs-ko4oGK6mtUrbPs2J2wT9dissdmPaxMNGtsnv72zc9vdZdy7jbzfFyPh9_ieC7FBEyx0DAHPX2B1xQGTWw0bcffh4oIJMpAamzSL4VJnw9qubRpTVZJagYoWZWCP47CfUrAt2DwaZemruv5uZmSyodP4ZHHZwkR-2Mn8COr_dh7-hq1aXU8PswmPY13bBnK_3gU1id-sZkzSb-GiGmdiSYdUMW-IjcdtGZZBHIbXK39KSrL3FFUvGcNUG0S1xbz57EOtQGaZaraPdJI-c1ftL4mObJEpfMWNj8DC6OP5xPZ1lXgyGzTJVNVpRuwrwrJo5bLsvgCqs4NcGEiXPWMh5ywyqHt9pbNhEWAYksEHMaXzqvhGPPYbde1P4AiHdCBhaMcaziVlHDVRVkYamS1tHcDmHc77tetqk2dO-Ddq17TunIKd1yagiqZ4_-6dBolAd_Hfuu56dGJkQzCe7TYrPWjOYs5UETf6LhNJcU1ZMhvGgPw_2ceY4YDgXNEPL70_GPCzr8jwW9hcHs_PREn3w8-_wSHsae1hfuFew2q41_jeCpqd6ky_Ed2N8YfQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9NAEB5B-lD6wFGucGmReHVw9vQ-RhVVhUThgUjlydqzCjROlNhC5dcz66MKd3m0vbvyzox3vvXMfgPwimpu0a3rTCGYz9BCbGZF5JnyVNPoFHW2Zfs8lSdz_vZMnPUbxXQW5of4fZuHZRcp67QNHFAxwc2TFPwm7EmB2HsEe_PTD7NPLaGezLNCdFVsC5UKlCm5cyT49wP9yRv9ijYPYL-p1ubyq7m42PFAx3fg_fDuXeLJl0lT24n79hOt4_Undxdu92CUzDrruQc3QnUIB7PzTU_IEQ5h_2ioCIdPdsgL78PmXahNVjfpxwoxlSfRbGuywiVo2Z_tJKtIlm2yZiB9dYpz0pbe2RLEysRfVma5cCRVsTbYZr1JUaO256LCIU1IJFGO-DYIhrcfwPz4zcejk6yv4JA5pos6k4WfsuDl1HPHVRG9dJpTE02ceu8c4zE3zHpcE4JjU-EQziiJiNWEwgctPHsIo2pVhcdAghcqsmiMZ5Y7TQ3XNirpUM3O09yN4fWgyXLdEXWUQwbb53KQc5nkXHZyHoMeFF72cKODESXq6Z99Xw4WUqISUpAF5bRqtiWjOWtZ1MTf2nCaK4qbmzE86szr6p15jggQ3dQY8it7u-aEnvx_l6dwK111SXPPYFRvmvAcUVZtX_Sf1ndjpCO_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Meta-tuning+and+fast+optimization+of+machine+learning+models+for+dynamic+methane+prediction+in+anaerobic+digestion&rft.jtitle=Bioresource+technology&rft.au=Meola%2C+Alberto&rft.au=Wolf%2C+Klara&rft.au=Weinrich%2C+S%C3%B6ren&rft.date=2025-09-01&rft.eissn=1873-2976&rft.volume=432&rft.spage=132654&rft_id=info:doi/10.1016%2Fj.biortech.2025.132654&rft_id=info%3Apmid%2F40355002&rft.externalDocID=40355002
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon