Water quality prediction of copper-molybdenum mining-beneficiation wastewater based on the PSO-SVR model

● Data acquisition and pre-processing for wastewater treatment were summarized. ● A PSO-SVR model for predicting COD eff in wastewater was proposed. ● The COD eff prediction performances of the three models in the paper were compared. ● The COD eff prediction effects of different models in other stu...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of environmental science & engineering Vol. 17; no. 8; p. 98
Main Authors Fu, Xiaohua, Zheng, Qingxing, Jiang, Guomin, Roy, Kallol, Huang, Lei, Liu, Chang, Li, Kun, Chen, Honglei, Song, Xinyu, Chen, Jianyu, Wang, Zhenxing
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-2201
2095-221X
DOI10.1007/s11783-023-1698-9

Cover

Abstract ● Data acquisition and pre-processing for wastewater treatment were summarized. ● A PSO-SVR model for predicting COD eff in wastewater was proposed. ● The COD eff prediction performances of the three models in the paper were compared. ● The COD eff prediction effects of different models in other studies were discussed. The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to restrict the effluent effectiveness of mining-beneficiation wastewater treatment. Chemical oxygen demand (COD) is a crucial indicator to measure the quality of mining-beneficiation wastewater. Predicting COD concentration accurately of mining-beneficiation wastewater after treatment is essential for achieving stable and compliant discharge. This reduces environmental risk and significantly improves the discharge quality of wastewater. This paper presents a novel AI algorithm PSO-SVR, to predict water quality. Hyperparameter optimization of our proposed model PSO-SVR, uses particle swarm optimization to improve support vector regression for COD prediction. The generalization capacity tested on out-of-distribution (OOD) data for our PSO-SVR model is strong, with the following performance metrics of root means square error (RMSE) is 1.51, mean absolute error (MAE) is 1.26, and the coefficient of determination ( R 2) is 0.85. We compare the performance of PSO-SVR model with back propagation neural network (BPNN) and radial basis function neural network (RBFNN) and shows it edges over in terms of the performance metrics of RMSE, MAE and R 2, and is the best model for COD prediction of mining-beneficiation wastewater. This is because of the less overfitting tendency of PSO-SVR compared with neural network architectures. Our proposed PSO-SVR model is optimum for the prediction of COD in copper-molybdenum mining-beneficiation wastewater treatment. In addition, PSO-SVR can be used to predict COD on a wide variety of wastewater through the process of transfer learning.
AbstractList The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to restrict the effluent effectiveness of mining-beneficiation wastewater treatment. Chemical oxygen demand (COD) is a crucial indicator to measure the quality of mining-beneficiation wastewater. Predicting COD concentration accurately of mining-beneficiation wastewater after treatment is essential for achieving stable and compliant discharge. This reduces environmental risk and significantly improves the discharge quality of wastewater. This paper presents a novel AI algorithm PSO-SVR, to predict water quality. Hyperparameter optimization of our proposed model PSO-SVR, uses particle swarm optimization to improve support vector regression for COD prediction. The generalization capacity tested on out-of-distribution (OOD) data for our PSO-SVR model is strong, with the following performance metrics of root means square error (RMSE) is 1.51, mean absolute error (MAE) is 1.26, and the coefficient of determination (R2) is 0.85. We compare the performance of PSO-SVR model with back propagation neural network (BPNN) and radial basis function neural network (RBFNN) and shows it edges over in terms of the performance metrics of RMSE, MAE and R2, and is the best model for COD prediction of mining-beneficiation wastewater. This is because of the less overfitting tendency of PSO-SVR compared with neural network architectures. Our proposed PSO-SVR model is optimum for the prediction of COD in copper-molybdenum mining-beneficiation wastewater treatment. In addition, PSO-SVR can be used to predict COD on a wide variety of wastewater through the process of transfer learning.
The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to restrict the effluent effectiveness of mining-beneficiation wastewater treatment. Chemical oxygen demand (COD) is a crucial indicator to measure the quality of mining-beneficiation wastewater. Predicting COD concentration accurately of mining-beneficiation wastewater after treatment is essential for achieving stable and compliant discharge. This reduces environmental risk and significantly improves the discharge quality of wastewater. This paper presents a novel AI algorithm PSO-SVR, to predict water quality. Hyperparameter optimization of our proposed model PSO-SVR, uses particle swarm optimization to improve support vector regression for COD prediction. The generalization capacity tested on out-of-distribution (OOD) data for our PSO-SVR model is strong, with the following performance metrics of root means square error (RMSE) is 1.51, mean absolute error (MAE) is 1.26, and the coefficient of determination (R²) is 0.85. We compare the performance of PSO-SVR model with back propagation neural network (BPNN) and radial basis function neural network (RBFNN) and shows it edges over in terms of the performance metrics of RMSE, MAE and R², and is the best model for COD prediction of mining-beneficiation wastewater. This is because of the less overfitting tendency of PSO-SVR compared with neural network architectures. Our proposed PSO-SVR model is optimum for the prediction of COD in copper-molybdenum mining-beneficiation wastewater treatment. In addition, PSO-SVR can be used to predict COD on a wide variety of wastewater through the process of transfer learning.
● Data acquisition and pre-processing for wastewater treatment were summarized. ● A PSO-SVR model for predicting COD eff in wastewater was proposed. ● The COD eff prediction performances of the three models in the paper were compared. ● The COD eff prediction effects of different models in other studies were discussed. The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to restrict the effluent effectiveness of mining-beneficiation wastewater treatment. Chemical oxygen demand (COD) is a crucial indicator to measure the quality of mining-beneficiation wastewater. Predicting COD concentration accurately of mining-beneficiation wastewater after treatment is essential for achieving stable and compliant discharge. This reduces environmental risk and significantly improves the discharge quality of wastewater. This paper presents a novel AI algorithm PSO-SVR, to predict water quality. Hyperparameter optimization of our proposed model PSO-SVR, uses particle swarm optimization to improve support vector regression for COD prediction. The generalization capacity tested on out-of-distribution (OOD) data for our PSO-SVR model is strong, with the following performance metrics of root means square error (RMSE) is 1.51, mean absolute error (MAE) is 1.26, and the coefficient of determination ( R 2) is 0.85. We compare the performance of PSO-SVR model with back propagation neural network (BPNN) and radial basis function neural network (RBFNN) and shows it edges over in terms of the performance metrics of RMSE, MAE and R 2, and is the best model for COD prediction of mining-beneficiation wastewater. This is because of the less overfitting tendency of PSO-SVR compared with neural network architectures. Our proposed PSO-SVR model is optimum for the prediction of COD in copper-molybdenum mining-beneficiation wastewater treatment. In addition, PSO-SVR can be used to predict COD on a wide variety of wastewater through the process of transfer learning.
The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to restrict the effluent effectiveness of mining-beneficiation wastewater treatment. Chemical oxygen demand (COD) is a crucial indicator to measure the quality of mining-beneficiation wastewater. Predicting COD concentration accurately of mining-beneficiation wastewater after treatment is essential for achieving stable and compliant discharge. This reduces environmental risk and significantly improves the discharge quality of wastewater. This paper presents a novel AI algorithm PSO-SVR, to predict water quality. Hyperparameter optimization of our proposed model PSO-SVR, uses particle swarm optimization to improve support vector regression for COD prediction. The generalization capacity tested on out-of-distribution (OOD) data for our PSO-SVR model is strong, with the following performance metrics of root means square error (RMSE) is 1.51, mean absolute error (MAE) is 1.26, and the coefficient of determination ( R 2 ) is 0.85. We compare the performance of PSO-SVR model with back propagation neural network (BPNN) and radial basis function neural network (RBFNN) and shows it edges over in terms of the performance metrics of RMSE, MAE and R 2 , and is the best model for COD prediction of mining-beneficiation wastewater. This is because of the less overfitting tendency of PSO-SVR compared with neural network architectures. Our proposed PSO-SVR model is optimum for the prediction of COD in copper-molybdenum mining-beneficiation wastewater treatment. In addition, PSO-SVR can be used to predict COD on a wide variety of wastewater through the process of transfer learning.
ArticleNumber 98
Author Li, Kun
Roy, Kallol
Jiang, Guomin
Huang, Lei
Zheng, Qingxing
Wang, Zhenxing
Song, Xinyu
Chen, Jianyu
Fu, Xiaohua
Chen, Honglei
Liu, Chang
Author_xml – sequence: 1
  givenname: Xiaohua
  surname: Fu
  fullname: Fu, Xiaohua
  organization: Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 2
  givenname: Qingxing
  surname: Zheng
  fullname: Zheng, Qingxing
  organization: State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
– sequence: 3
  givenname: Guomin
  surname: Jiang
  fullname: Jiang, Guomin
  organization: Chinese Non-Ferrous Industrial Engineering Center of Pollution Control Technology & Equipment, Science Environment Protection Co., Ltd., Changsha 410036, China
– sequence: 4
  givenname: Kallol
  surname: Roy
  fullname: Roy, Kallol
  organization: Institute of Computer Science, University of Tartu, Tartu 51009, Estonia
– sequence: 5
  givenname: Lei
  surname: Huang
  fullname: Huang, Lei
  organization: School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
– sequence: 6
  givenname: Chang
  surname: Liu
  fullname: Liu, Chang
  organization: State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
– sequence: 7
  givenname: Kun
  surname: Li
  fullname: Li, Kun
  organization: Guangzhou Huacai Environmental Protection Technology Co., Ltd., Guangzhou 511480, China
– sequence: 8
  givenname: Honglei
  surname: Chen
  fullname: Chen, Honglei
  organization: Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China
– sequence: 9
  givenname: Xinyu
  surname: Song
  fullname: Song, Xinyu
  organization: State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
– sequence: 10
  givenname: Jianyu
  surname: Chen
  fullname: Chen, Jianyu
  organization: State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
– sequence: 11
  givenname: Zhenxing
  surname: Wang
  fullname: Wang, Zhenxing
  email: wangzhenxing@scies.org
  organization: State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
BookMark eNp9kU1r3DAQhkVJoWmaH9CboZde1OpjLUvHEtq0EEhp-nUTsjXaVbAlR5IJ---rXZcWcljBSGJ4n5nhnZfoLMQACL2m5B0lpHufKe0kx4RxTIWSWD1D54yoFjNGf5_9-xP6Al3mfE_qkXJDJT9Hu1-mQGoeFjP6sm_mBNYPxcfQRNcMcZ4h4SmO-95CWKZm8sGHLe4hgPODN0flo8kFHo91epPBNjVXdtB8vbvFdz-_NVO0ML5Cz50ZM1z-fS_Qj08fv199xje311-uPtzggStZcGsdM1BveghlWtqSjeHMONILQZnYMNsKJzllRhFl-oFR2jInrLStZZJfoLdr3TnFhwVy0ZPPA4yjCRCXrJmUnWCy47xK3zyR3sclhTqdZorKbiNEd1DRVTWkmHMCp-fkJ5P2mhJ9sF-v9utqvz7Yr1VluifM4MvRrJKMH0-SbCVz7RK2kP7PdAqSK7Tz2x3UFdY15qxdqv08pFPoHz3ErZE
CitedBy_id crossref_primary_10_1016_j_jhydrol_2024_130933
crossref_primary_10_3390_min13070929
crossref_primary_10_1007_s11356_024_32061_2
crossref_primary_10_1016_j_biteb_2024_101993
crossref_primary_10_1038_s41598_024_74122_z
crossref_primary_10_1016_j_cej_2024_157150
crossref_primary_10_1007_s11783_024_1791_x
crossref_primary_10_3390_math12142231
crossref_primary_10_3390_su16188184
crossref_primary_10_1016_j_resourpol_2023_104462
crossref_primary_10_1080_09544828_2024_2415830
crossref_primary_10_1016_j_jics_2024_101200
crossref_primary_10_1016_j_compag_2025_110020
crossref_primary_10_1016_j_heliyon_2024_e37916
crossref_primary_10_1016_j_ijcce_2024_11_002
crossref_primary_10_1007_s12065_025_01022_0
crossref_primary_10_1016_j_jenvman_2024_121430
crossref_primary_10_1016_j_jfca_2024_106498
crossref_primary_10_1021_acsestwater_3c00543
crossref_primary_10_1007_s11783_024_1814_5
Cites_doi 10.1007/s00521-020-05659-z
10.1007/s11356-021-14560-8
10.1016/j.jenvman.2021.114020
10.1016/j.cej.2018.04.087
10.1109/TEVC.2008.924428
10.1016/j.asoc.2015.09.049
10.1016/j.mineng.2018.09.009
10.1007/s00500-016-2474-6
10.1016/j.psep.2020.04.045
10.1016/j.psep.2021.05.026
10.1016/j.jwpe.2021.102033
10.1016/j.jhydrol.2019.124084
10.1016/j.jclepro.2021.126533
10.1016/j.jwpe.2021.102380
10.1016/j.resconrec.2019.01.030
10.1016/j.jclepro.2020.125772
10.1016/S0893-6080(98)00032-X
10.1155/2022/7327072
10.1016/j.jclepro.2020.121787
10.1007/s11356-022-21864-w
10.1016/j.jclepro.2018.01.139
10.1016/S1364-8152(98)00102-9
10.1016/j.neunet.2012.04.002
10.1016/j.ress.2005.12.014
10.1016/j.ecohyd.2017.02.002
10.1016/j.jenvman.2022.114642
10.1016/j.jhydrol.2015.06.007
10.1016/j.envres.2022.112942
10.1016/j.jenvman.2021.112051
10.1007/s10898-007-9149-x
10.1016/j.scitotenv.2019.134279
10.1016/j.jclepro.2020.125396
10.1016/j.procbio.2020.06.020
ContentType Journal Article
Copyright Copyright reserved, 2023, Higher Education Press
Higher Education Press 2023
Higher Education Press 2023.
Copyright_xml – notice: Copyright reserved, 2023, Higher Education Press
– notice: Higher Education Press 2023
– notice: Higher Education Press 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
L6V
M7S
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
7S9
L.6
DOI 10.1007/s11783-023-1698-9
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability (subscription)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList ProQuest Central Student
AGRICOLA


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2095-221X
EndPage 98
ExternalDocumentID 10_1007_s11783_023_1698_9
10.1007/s11783-023-1698-9
GroupedDBID -5A
-5G
-BR
-EM
-~C
.VR
06D
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
40E
5VS
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJOX
ABKAS
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABWNU
ABXPI
ACBMV
ACBRV
ACGFS
ACHSB
ACHXU
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACSNA
ACTTH
ACVWB
ACWMK
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADTIX
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BDATZ
BGNMA
CSCUP
DNIVK
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HZ~
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NQJWS
NU0
O9J
P4S
PF0
PT4
R89
ROL
RSV
S16
SAP
SCL
SEV
SHX
SISQX
SNE
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VFIZW
W48
YLTOR
Z5O
Z7V
Z7X
Z7Y
Z81
ZMTXR
~A9
0R~
AACDK
AAHBH
AAJBT
AASML
AATNV
AAYZH
ABAKF
ABJCF
ABJNI
ABTKH
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AESKC
AEUYN
AEVLU
AFBBN
AFKRA
AGQEE
AGRTI
AIGIU
AMXSW
ATCPS
BENPR
BGLVJ
BHPHI
CCPQU
DDRTE
DPUIP
HCIFZ
M7S
NPVJJ
PATMY
PTHSS
PYCSY
SJYHP
SNPRN
-SB
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEB
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
Q--
U1G
U5L
8FE
8FG
AZQEC
DWQXO
GNUQQ
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
ID FETCH-LOGICAL-c398t-5df2ae5df15df19a51504a32af0b6612642d56f8312a909abc21152f6d8d5d283
IEDL.DBID AGYKE
ISSN 2095-2201
IngestDate Wed Oct 01 13:59:06 EDT 2025
Fri Jul 25 10:59:51 EDT 2025
Wed Oct 01 02:47:51 EDT 2025
Thu Apr 24 23:12:05 EDT 2025
Fri Feb 21 02:38:31 EST 2025
Mon Apr 03 23:15:30 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Support vector regression
Artificial neural network
Chemical oxygen demand
Particle swarm optimization
Mining-beneficiation wastewater treatment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c398t-5df2ae5df15df19a51504a32af0b6612642d56f8312a909abc21152f6d8d5d283
Notes Document received on :2022-07-28
Chemical oxygen demand
Document accepted on :2023-02-05
Document revised on :2023-01-31
Support vector regression
Artificial neural network
Particle swarm optimization
Mining-beneficiation wastewater treatment
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2918746673
PQPubID 2044429
PageCount 1
ParticipantIDs proquest_miscellaneous_2887628733
proquest_journals_2918746673
crossref_primary_10_1007_s11783_023_1698_9
crossref_citationtrail_10_1007_s11783_023_1698_9
springer_journals_10_1007_s11783_023_1698_9
higheredpress_frontiers_10_1007_s11783_023_1698_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Frontiers of environmental science & engineering
PublicationTitleAbbrev Front. Environ. Sci. Eng
PublicationYear 2023
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References El-Rawy, Abd-Ellah, Fathi, Ahmed (CR7) 2021; 44
Ye, Yang, Zhong, Tu, Jia, Wang (CR33) 2020; 699
Wang, Tan, Liu (CR31) 2018; 22
Sadri Moghaddam, Mesghali (CR20) 2023; 30
Belanche, Valdés, Comas, Roda, Poch (CR3) 1999; 14
Meng, Zhang, Qiao (CR14) 2021; 33
Meng, Wu, Kang, Gao, Liu, Gao, Wang, Fan, Khoso, Sun, Hu (CR13) 2018; 128
Asami, Golabi, Albaji (CR1) 2021; 296
Shah, Javed, Alqahtani, Aldrees (CR21) 2021; 151
Shi, Xu (CR23) 2018; 347
Nourani, Asghari, Sharghi (CR19) 2021; 291
Su, He, Zhang, Chen, Li (CR27) 2022; 2022
Karaboga, Basturk (CR9) 2007; 39
Chitsazan, Nadiri, Tsai (CR5) 2015; 528
Liu, Zhang, Zhang (CR10) 2020; 97
Zhang, Yang, Shi, Liu (CR34) 2021; 282
Solgi, Pourhaghi, Bahmani, Zarei (CR25) 2017; 17
Najah Ahmed, Binti Othman, Abdulmohsin Afan, Khaleel Ibrahim, Ming Fai, Shabbir Hossain, Ehteram, Elshafie (CR16) 2019; 578
Hosseini, Mahjouri (CR8) 2016; 38
Niu, Yi, Chen, Li, Han, Yan, Huang, Ying (CR17) 2020; 265
Deng, Chau, Duan (CR6) 2021; 284
Su, Yi, Gu, Wang, Liu, Zhang (CR26) 2022; 308
Chen (CR4) 2007; 92
Smola, Schölkopf, Müller (CR24) 1998; 11
Bagherzadeh, Mehrani, Basirifard, Roostaei (CR2) 2021; 41
Vrugt, Robinson, Hyman (CR29) 2009; 13
Wang, Yu, Chen, Pan, Li, Tan, Zhang (CR32) 2022; 302
Nadiri, Shokri, Tsai, Asghari Moghaddam (CR15) 2018; 180
Nouraki, Alavi, Golabi, Albaji (CR18) 2021; 28
Wan, Li, Wang, Yi, Zhao, He, Wu, Huang (CR30) 2022; 211
Vapnik (CR28) 1999
Liu, Gao, Li (CR11) 2012; 33
Sharafati, Asadollah, Hosseinzadeh (CR22) 2020; 140
Man, Hu, Ren (CR12) 2019; 144
H Liu (1698_CR10) 2020; 97
V Vapnik (1698_CR28) 1999
Y Man (1698_CR12) 2019; 144
X Meng (1698_CR14) 2021; 33
S Sadri Moghaddam (1698_CR20) 2023; 30
J A Vrugt (1698_CR29) 2009; 13
A Sharafati (1698_CR22) 2020; 140
H Asami (1698_CR1) 2021; 296
M El-Rawy (1698_CR7) 2021; 44
T Deng (1698_CR6) 2021; 284
G Niu (1698_CR17) 2020; 265
A Solgi (1698_CR25) 2017; 17
H Su (1698_CR26) 2022; 308
S Shi (1698_CR23) 2018; 347
M I Shah (1698_CR21) 2021; 151
X Liu (1698_CR11) 2012; 33
F Bagherzadeh (1698_CR2) 2021; 41
A J Smola (1698_CR24) 1998; 11
L A Belanche (1698_CR3) 1999; 14
A Najah Ahmed (1698_CR16) 2019; 578
D Karaboga (1698_CR9) 2007; 39
A Nouraki (1698_CR18) 2021; 28
R Wang (1698_CR32) 2022; 302
A A Nadiri (1698_CR15) 2018; 180
H Zhang (1698_CR34) 2021; 282
Z Ye (1698_CR33) 2020; 699
V Nourani (1698_CR19) 2021; 291
X Wan (1698_CR30) 2022; 211
X Meng (1698_CR13) 2018; 128
D Wang (1698_CR31) 2018; 22
S M Hosseini (1698_CR8) 2016; 38
K Y Chen (1698_CR4) 2007; 92
N Chitsazan (1698_CR5) 2015; 528
X Su (1698_CR27) 2022; 2022
References_xml – volume: 33
  start-page: 11401
  issue: 17
  year: 2021
  end-page: 11414
  ident: CR14
  article-title: An adaptive task-oriented RBF network for key water quality parameters prediction in wastewater treatment process
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-020-05659-z
– volume: 28
  start-page: 57060
  issue: 40
  year: 2021
  end-page: 57072
  ident: CR18
  article-title: Prediction of water quality parameters using machine learning models: a case study of the Karun River, Iran
  publication-title: Environmental Science and Pollution Research International
  doi: 10.1007/s11356-021-14560-8
– volume: 302
  start-page: 114020
  year: 2022
  ident: CR32
  article-title: Model construction and application for effluent prediction in wastewater treatment plant: data processing method optimization and process parameters integration
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2021.114020
– volume: 347
  start-page: 280
  year: 2018
  end-page: 290
  ident: CR23
  article-title: Novel performance prediction model of a biofilm system treating domestic wastewater based on stacked denoising auto-encoders deep learning network
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2018.04.087
– volume: 13
  start-page: 243
  issue: 2
  year: 2009
  end-page: 259
  ident: CR29
  article-title: Self-adaptive multimethod search for global optimization in real-parameter spaces
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.924428
– volume: 38
  start-page: 329
  year: 2016
  end-page: 345
  ident: CR8
  article-title: Integrating support vector regression and a geomorphologic artificial neural network for daily rainfall-runoff modeling
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.09.049
– volume: 128
  start-page: 275
  year: 2018
  end-page: 283
  ident: CR13
  article-title: Comparison of the reduction of chemical oxygen demand in wastewater from mineral processing using the coagulation—flocculation, adsorption and Fenton processes
  publication-title: Minerals Engineering
  doi: 10.1016/j.mineng.2018.09.009
– volume: 22
  start-page: 387
  issue: 2
  year: 2018
  end-page: 408
  ident: CR31
  article-title: Particle swarm optimization algorithm: an overview
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2474-6
– volume: 140
  start-page: 68
  year: 2020
  end-page: 78
  ident: CR22
  article-title: The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2020.04.045
– volume: 151
  start-page: 324
  year: 2021
  end-page: 340
  ident: CR21
  article-title: Environmental assessment based surface water quality prediction using hyper-parameter optimized machine learning models based on consistent big data
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2021.05.026
– volume: 41
  start-page: 102033
  year: 2021
  ident: CR2
  article-title: Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance
  publication-title: Journal of Water Process Engineering
  doi: 10.1016/j.jwpe.2021.102033
– volume: 578
  start-page: 124084
  year: 2019
  ident: CR16
  article-title: Machine learning methods for better water quality prediction
  publication-title: Journal of Hydrology (Amsterdam)
  doi: 10.1016/j.jhydrol.2019.124084
– volume: 296
  start-page: 126533
  year: 2021
  ident: CR1
  article-title: Simulation of the biochemical and chemical oxygen demand and total suspended solids in wastewater treatment plants: data-mining approach
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2021.126533
– volume: 44
  start-page: 102380
  year: 2021
  ident: CR7
  article-title: Forecasting effluent and performance of wastewater treatment plant using different machine learning techniques
  publication-title: Journal of Water Process Engineering
  doi: 10.1016/j.jwpe.2021.102380
– volume: 144
  start-page: 56
  year: 2019
  end-page: 64
  ident: CR12
  article-title: Forecasting COD load in municipal sewage based on ARMA and VAR algorithms
  publication-title: Resources, Conservation and Recycling
  doi: 10.1016/j.resconrec.2019.01.030
– volume: 291
  start-page: 125772
  year: 2021
  ident: CR19
  article-title: Artificial intelligence based ensemble modeling of wastewater treatment plant using jittered data
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.125772
– volume: 11
  start-page: 637
  issue: 4
  year: 1998
  end-page: 649
  ident: CR24
  article-title: The connection between regularization operators and support vector kernels
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(98)00032-X
– volume: 2022
  start-page: 7327072
  year: 2022
  ident: CR27
  article-title: Research on SVR water quality prediction model based on improved sparrow search algorithm
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2022/7327072
– volume: 265
  start-page: 121787
  year: 2020
  ident: CR17
  article-title: A novel effluent quality predicting model based on genetic-deep belief network algorithm for cleaner production in a full-scale paper-making wastewater treatment
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.121787
– volume: 30
  start-page: 1622
  issue: 1
  year: 2023
  end-page: 1639
  ident: CR20
  article-title: A new hybrid ensemble approach for the prediction of effluent total nitrogen from a full-scale wastewater treatment plant using a combined trickling filter-activated sludge system
  publication-title: Environmental Science and Pollution Research International
  doi: 10.1007/s11356-022-21864-w
– year: 1999
  ident: CR28
  publication-title: The Nature of Statistical Learning Theory
– volume: 180
  start-page: 539
  year: 2018
  end-page: 549
  ident: CR15
  article-title: Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.01.139
– volume: 14
  start-page: 409
  issue: 5
  year: 1999
  end-page: 419
  ident: CR3
  article-title: Towards a model of input-output behaviour of wastewater treatment plants using soft computing techniques
  publication-title: Environmental Modelling & Software
  doi: 10.1016/S1364-8152(98)00102-9
– volume: 33
  start-page: 58
  year: 2012
  end-page: 66
  ident: CR11
  article-title: A comparative analysis of support vector machines and extreme learning machines
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.04.002
– volume: 92
  start-page: 423
  issue: 4
  year: 2007
  end-page: 432
  ident: CR4
  article-title: Forecasting systems reliability based on support vector regression with genetic algorithms
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2005.12.014
– volume: 17
  start-page: 164
  issue: 2
  year: 2017
  end-page: 175
  ident: CR25
  article-title: Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD)
  publication-title: Ecohydrology & Hydrobiology
  doi: 10.1016/j.ecohyd.2017.02.002
– volume: 308
  start-page: 114642
  year: 2022
  ident: CR26
  article-title: Cost of raising discharge standards: a plant-by-plant assessment from wastewater sector in China
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2022.114642
– volume: 528
  start-page: 52
  year: 2015
  end-page: 62
  ident: CR5
  article-title: Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging
  publication-title: Journal of Hydrology (Amsterdam)
  doi: 10.1016/j.jhydrol.2015.06.007
– volume: 211
  start-page: 112942
  year: 2022
  ident: CR30
  article-title: Water quality prediction model using Gaussian process regression based on deep learning for carbon neutrality in papermaking wastewater treatment system
  publication-title: Environmental Research
  doi: 10.1016/j.envres.2022.112942
– volume: 284
  start-page: 112051
  year: 2021
  ident: CR6
  article-title: Machine learning based marine water quality prediction for coastal hydro-environment management
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2021.112051
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  end-page: 471
  ident: CR9
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-007-9149-x
– volume: 699
  start-page: 134279
  year: 2020
  ident: CR33
  article-title: Tackling environmental challenges in pollution controls using artificial intelligence: a review
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2019.134279
– volume: 282
  start-page: 125396
  year: 2021
  ident: CR34
  article-title: Effluent quality prediction in papermaking wastewater treatment processes using dynamic Bayesian networks
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.125396
– volume: 97
  start-page: 72
  year: 2020
  end-page: 79
  ident: CR10
  article-title: Prediction of effluent quality in papermaking wastewater treatment processes using dynamic kernel-based extreme learning machine
  publication-title: Process Biochemistry (Barking, London, England)
  doi: 10.1016/j.procbio.2020.06.020
– volume: 291
  start-page: 125772
  year: 2021
  ident: 1698_CR19
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.125772
– volume: 44
  start-page: 102380
  year: 2021
  ident: 1698_CR7
  publication-title: Journal of Water Process Engineering
  doi: 10.1016/j.jwpe.2021.102380
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 1698_CR9
  publication-title: Journal of Global Optimization
  doi: 10.1007/s10898-007-9149-x
– volume: 28
  start-page: 57060
  issue: 40
  year: 2021
  ident: 1698_CR18
  publication-title: Environmental Science and Pollution Research International
  doi: 10.1007/s11356-021-14560-8
– volume: 128
  start-page: 275
  year: 2018
  ident: 1698_CR13
  publication-title: Minerals Engineering
  doi: 10.1016/j.mineng.2018.09.009
– volume: 296
  start-page: 126533
  year: 2021
  ident: 1698_CR1
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2021.126533
– volume: 151
  start-page: 324
  year: 2021
  ident: 1698_CR21
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2021.05.026
– volume: 347
  start-page: 280
  year: 2018
  ident: 1698_CR23
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2018.04.087
– volume: 11
  start-page: 637
  issue: 4
  year: 1998
  ident: 1698_CR24
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(98)00032-X
– volume-title: The Nature of Statistical Learning Theory
  year: 1999
  ident: 1698_CR28
– volume: 33
  start-page: 11401
  issue: 17
  year: 2021
  ident: 1698_CR14
  publication-title: Neural Computing & Applications
  doi: 10.1007/s00521-020-05659-z
– volume: 13
  start-page: 243
  issue: 2
  year: 2009
  ident: 1698_CR29
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2008.924428
– volume: 265
  start-page: 121787
  year: 2020
  ident: 1698_CR17
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.121787
– volume: 92
  start-page: 423
  issue: 4
  year: 2007
  ident: 1698_CR4
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2005.12.014
– volume: 282
  start-page: 125396
  year: 2021
  ident: 1698_CR34
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2020.125396
– volume: 2022
  start-page: 7327072
  year: 2022
  ident: 1698_CR27
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2022/7327072
– volume: 14
  start-page: 409
  issue: 5
  year: 1999
  ident: 1698_CR3
  publication-title: Environmental Modelling & Software
  doi: 10.1016/S1364-8152(98)00102-9
– volume: 97
  start-page: 72
  year: 2020
  ident: 1698_CR10
  publication-title: Process Biochemistry (Barking, London, England)
  doi: 10.1016/j.procbio.2020.06.020
– volume: 211
  start-page: 112942
  year: 2022
  ident: 1698_CR30
  publication-title: Environmental Research
  doi: 10.1016/j.envres.2022.112942
– volume: 140
  start-page: 68
  year: 2020
  ident: 1698_CR22
  publication-title: Process Safety and Environmental Protection
  doi: 10.1016/j.psep.2020.04.045
– volume: 284
  start-page: 112051
  year: 2021
  ident: 1698_CR6
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2021.112051
– volume: 22
  start-page: 387
  issue: 2
  year: 2018
  ident: 1698_CR31
  publication-title: Soft Computing
  doi: 10.1007/s00500-016-2474-6
– volume: 578
  start-page: 124084
  year: 2019
  ident: 1698_CR16
  publication-title: Journal of Hydrology (Amsterdam)
  doi: 10.1016/j.jhydrol.2019.124084
– volume: 41
  start-page: 102033
  year: 2021
  ident: 1698_CR2
  publication-title: Journal of Water Process Engineering
  doi: 10.1016/j.jwpe.2021.102033
– volume: 302
  start-page: 114020
  year: 2022
  ident: 1698_CR32
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2021.114020
– volume: 144
  start-page: 56
  year: 2019
  ident: 1698_CR12
  publication-title: Resources, Conservation and Recycling
  doi: 10.1016/j.resconrec.2019.01.030
– volume: 33
  start-page: 58
  year: 2012
  ident: 1698_CR11
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2012.04.002
– volume: 308
  start-page: 114642
  year: 2022
  ident: 1698_CR26
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2022.114642
– volume: 17
  start-page: 164
  issue: 2
  year: 2017
  ident: 1698_CR25
  publication-title: Ecohydrology & Hydrobiology
  doi: 10.1016/j.ecohyd.2017.02.002
– volume: 38
  start-page: 329
  year: 2016
  ident: 1698_CR8
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2015.09.049
– volume: 30
  start-page: 1622
  issue: 1
  year: 2023
  ident: 1698_CR20
  publication-title: Environmental Science and Pollution Research International
  doi: 10.1007/s11356-022-21864-w
– volume: 699
  start-page: 134279
  year: 2020
  ident: 1698_CR33
  publication-title: Science of the Total Environment
  doi: 10.1016/j.scitotenv.2019.134279
– volume: 180
  start-page: 539
  year: 2018
  ident: 1698_CR15
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.01.139
– volume: 528
  start-page: 52
  year: 2015
  ident: 1698_CR5
  publication-title: Journal of Hydrology (Amsterdam)
  doi: 10.1016/j.jhydrol.2015.06.007
SSID ssj0000884183
Score 2.4285903
Snippet ● Data acquisition and pre-processing for wastewater treatment were summarized. ● A PSO-SVR model for predicting COD eff in wastewater was proposed. ● The COD...
The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to...
SourceID proquest
crossref
springer
higheredpress
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 98
SubjectTerms Algorithms
Artificial Intelligence/Machine Learning on Environmental Science & Engineering
Artificial neural network
Artificial neural networks
Back propagation networks
Beneficiation
Business metrics
Chemical oxygen demand
Copper
Discharge
Earth and Environmental Science
Environment
Environmental risk
Flow rates
Mining-beneficiation wastewater treatment
Molybdenum
Neural networks
Particle swarm optimization
Performance measurement
prediction
Predictions
Radial basis function
regression analysis
Research Article
risk
Root-mean-square errors
Support vector machines
Support vector regression
Transfer learning
wastewater
Wastewater treatment
Water quality
Water treatment
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD506UthjHVrWbauqLCnFTFb8kV-GGMtKaWwrPSy9c3oWBYdtHGWpIz--52j2AkpNA_2g3UDH0nnk87lA_hUKZ04ZSKZItIBJc-1RIteKu9VYupYY87ByT-G2el1cnaT3mzAsIuFYbfKbk8MG7VrKr4j_6IKZo9jkspv47-SWaPYutpRaNiWWsF9DSnGXsCm4sxYPdg8GgzPLxa3LrSmkjjk5lSELaQi9deZOkM8XZwbNmtqGWcFbQQryurlbfC8qF3wUF1BpE-MqEE3nbyGVy2oFN_ns2AbNurRG9gdLGPYqLBdxNO3cPub8OVEzMMpHwWN4_6E6AbReFE143E9kffN3SM6dpMX94FCQiJtiiHbRKj5z0751o37YT3oBH0jKCnOL3_Ky18XIhDs7MD1yeDq-FS2hAuy0oWZydR5ZWt6x_wUlrBOlFitrI-Q9DhhJ-XSzBsdK1tEhcWKjo-p8pkzLiWJ613ojZpR_Q4EnVTQeawwNkVS6QxRI3qLhH98hirvQ9T92bJqs5EzKcZducyjzMIoSRglC6Ms-vB50WQ8T8WxrnK8Iq7Scz4IZhdf12avE2nZruRpuZx3fThYFNMaZMOKHdXNA9UxrFNMrqnOYTcVll08O-D79QN-gC0mt5-7G-5BbzZ5qD8SBJrhfjuv_wM1TAL2
  priority: 102
  providerName: ProQuest
Title Water quality prediction of copper-molybdenum mining-beneficiation wastewater based on the PSO-SVR model
URI https://journal.hep.com.cn/fese/EN/10.1007/s11783-023-1698-9
https://link.springer.com/article/10.1007/s11783-023-1698-9
https://www.proquest.com/docview/2918746673
https://www.proquest.com/docview/2887628733
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2095-221X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000884183
  issn: 2095-2201
  databaseCode: AFBBN
  dateStart: 20070201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2095-221X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0000884183
  issn: 2095-2201
  databaseCode: BENPR
  dateStart: 20070201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2095-221X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000884183
  issn: 2095-2201
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9wwEB7B8lKpokCLulxypT5RGSV2DueRVrsgUCniaOlT5IljUQGb1R6q6K_v2JsQLQIkHpJI8cRxnLHns-cC-FwIGRmhAh4j0gIlTSVHjZYLa0WkylBi6pyTv58kh5fR0VV8Vftxjxtr90Yl6Wfq1tktTJXTOUoeJhmN0kVY8uG2OrC0f_D7uN1aoYEThT4ApyAAwQXJuEaf-VQ9cxLp7bU3ryiNN0Odg52PNKVeAPXfwUXT9Jndyc3edIJ7xb9HUR1f-W0rsFwDUrY_46BVWCgHa7Dea_3fqLCeAMbv4foXYdMRm7li3jNqvvnjPSNYZVlRDYfliN9Vt_donIk9u_PpJzjShOojVXjKv3rsduxcPU6GGkb3CIay0_Mf_PznGfPJeT7AZb938e2Q18kaeCEzNeGxsUKXdA7dkWnCSUGkpdA2QMIAhLuEiROrZCh0FmQaC1p6xsImRpmYuEWuQ2dQDcqPwGiVg8ZigaHKokImiBLRaiTsZBMUaReC5oflRR3J3CXUuM3bGMyuP3Pqz9z1Z551YffhkeEsjMdLxOEcF-TWxZJwmclfemar4ZS8ngXGuchcxkOXWLULnx6Kafw6pYwelNWUaJSTRyqVRPOlYY62imdfuPEq6k14Ixx3ecvFLehMRtNym9DUBHdgUfUPduoxRNevvZPTs_-CwBha
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKewAJIV4VgQJGggvIYtfelw8V4pEqpW2o-oDejGe9VpHabEhSVflz_DZmnN1EQSK3HjaHXa-t7Izn4Xl8jL0upUqcLCKRAqCDkudKgAUvpPcyKapYQU7FyQf9rHeafD1Lz9bYn7YWhtIqW5kYBLWrSzojfy81occRSOWH4W9BqFEUXW0hNGwDreC2Q4uxprBjr5peows33t79gvR-I-VO9-RzTzQoA6JUupiI1HlpK_yN6dIWFXyUWCWtjwCVFxoM0qWZL1QsrY60hRJ9plT6zBUuxb-pcN5bbCNRiUbnb-NTt394ND_lwT2cxKEXqERbRkhUt21oNdTvxXlBYVQl4kyj4FlSjnfPQ6ZH5UJG7JIF_E_QNujCnfvsXmPE8o8zrnvA1qrBQ7bZXdTM4cNGaIwfsfMfaM-O-Kx8c8pxHfcrVFPw2vOyHg6rkbisL6bgKC2fXwbICgEohEN3izDy2o7plI_mIb3rON5D05UfHn8Tx9-PeAD0ecxOb-TTb7L1QT2onjCOnhE4DyXEhU5KlQEoAG8B7S2fgcw7LGq_rCmb7ucEwnFhFn2biRgGiWGIGEZ32Nv5K8NZ649Vg-MlchlP_ScIzXzVO1stSU0jOcZmwecd9mr-GPc8BXLsoKqvcExBOqzIFY5517LCYor_Lvh09YIv2e3eycG-2d_t7z1jdyTxZUh13GLrk9FV9RzNrwm8aHics583va3-Aib1Pzo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglRBSxbtioYCROIHcJnYezrGCLoVCqSiF9hQ8caxWtMlqNytUfj0zTtJoK6iEOCSHeOLIztjzjefF2ItCqshKHYgYABWUNFUCDDghnZORLkMFKQUnf9xNtg-i94fxYVfndNZ7u_cmyTamgbI0Vc3GxLqNIfAtTDXZH5UIkwxX7HW2jJpJioy-vPn2aGc4ZsFFFIU-GadEMCEkyrvetvmnfhak08qxd7UorXdJXYCgl6ymXhiNb7Pv_TBaH5Qf6_MG1otflzI8_sc477BbHVDlmy1n3WXXyuoeW90a4uKwsdsYZvfZ8TfErFPehmiecxyKPfERE7x2vKgnk3IqzurTc7Dkes_PfFkKAbjR-gwWnvKnmdFJHvVDstVyfIbwlO_tfxL7Xz9zX7TnATsYb315vS26Ig6iUJluRGydNCXeQ7oyg_gpiIySxgWA2ADxmLRx4rQKpcmCzECBKmksXWK1jZGL1CpbquqqfMg4aj9gHRQQ6iwqVAKgAJwBxFQuAZmOWND_vLzoMpxToY3TfMjNTPOZ43zmNJ95NmIvL16ZtOk9riIOFzgid5RjgiqWX_XOWs81ebc7zHKZUSVEKrg6Ys8vmnFdk7HGVGU9RxpNckqnCmle9YwydPHXDz76J-pn7Mbem3H-4d3uzmN2UxKjeefGNbbUTOflEwRcDTztFtVvVtkhnQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+quality+prediction+of+copper-molybdenum+mining-beneficiation+wastewater+based+on+the+PSO-SVR+model&rft.jtitle=Frontiers+of+environmental+science+%26+engineering&rft.au=Fu%2C+Xiaohua&rft.au=Zheng%2C+Qingxing&rft.au=Jiang%2C+Guomin&rft.au=Roy%2C+Kallol&rft.date=2023-08-01&rft.pub=Higher+Education+Press&rft.issn=2095-2201&rft.eissn=2095-221X&rft.volume=17&rft.issue=8&rft.spage=98&rft_id=info:doi/10.1007%2Fs11783-023-1698-9&rft.externalDBID=n%2Fa&rft.externalDocID=10.1007%2Fs11783-023-1698-9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2201&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2201&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2201&client=summon