Water quality prediction of copper-molybdenum mining-beneficiation wastewater based on the PSO-SVR model
● Data acquisition and pre-processing for wastewater treatment were summarized. ● A PSO-SVR model for predicting COD eff in wastewater was proposed. ● The COD eff prediction performances of the three models in the paper were compared. ● The COD eff prediction effects of different models in other stu...
        Saved in:
      
    
          | Published in | Frontiers of environmental science & engineering Vol. 17; no. 8; p. 98 | 
|---|---|
| Main Authors | , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Beijing
          Higher Education Press
    
        01.08.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2095-2201 2095-221X  | 
| DOI | 10.1007/s11783-023-1698-9 | 
Cover
| Abstract | ● Data acquisition and pre-processing for wastewater treatment were summarized. ● A PSO-SVR model for predicting COD eff in wastewater was proposed. ● The COD eff prediction performances of the three models in the paper were compared. ● The COD eff prediction effects of different models in other studies were discussed.
The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to restrict the effluent effectiveness of mining-beneficiation wastewater treatment. Chemical oxygen demand (COD) is a crucial indicator to measure the quality of mining-beneficiation wastewater. Predicting COD concentration accurately of mining-beneficiation wastewater after treatment is essential for achieving stable and compliant discharge. This reduces environmental risk and significantly improves the discharge quality of wastewater. This paper presents a novel AI algorithm PSO-SVR, to predict water quality. Hyperparameter optimization of our proposed model PSO-SVR, uses particle swarm optimization to improve support vector regression for COD prediction. The generalization capacity tested on out-of-distribution (OOD) data for our PSO-SVR model is strong, with the following performance metrics of root means square error (RMSE) is 1.51, mean absolute error (MAE) is 1.26, and the coefficient of determination ( R 2) is 0.85. We compare the performance of PSO-SVR model with back propagation neural network (BPNN) and radial basis function neural network (RBFNN) and shows it edges over in terms of the performance metrics of RMSE, MAE and R 2, and is the best model for COD prediction of mining-beneficiation wastewater. This is because of the less overfitting tendency of PSO-SVR compared with neural network architectures. Our proposed PSO-SVR model is optimum for the prediction of COD in copper-molybdenum mining-beneficiation wastewater treatment. In addition, PSO-SVR can be used to predict COD on a wide variety of wastewater through the process of transfer learning. | 
    
|---|---|
| AbstractList | The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to restrict the effluent effectiveness of mining-beneficiation wastewater treatment. Chemical oxygen demand (COD) is a crucial indicator to measure the quality of mining-beneficiation wastewater. Predicting COD concentration accurately of mining-beneficiation wastewater after treatment is essential for achieving stable and compliant discharge. This reduces environmental risk and significantly improves the discharge quality of wastewater. This paper presents a novel AI algorithm PSO-SVR, to predict water quality. Hyperparameter optimization of our proposed model PSO-SVR, uses particle swarm optimization to improve support vector regression for COD prediction. The generalization capacity tested on out-of-distribution (OOD) data for our PSO-SVR model is strong, with the following performance metrics of root means square error (RMSE) is 1.51, mean absolute error (MAE) is 1.26, and the coefficient of determination (R2) is 0.85. We compare the performance of PSO-SVR model with back propagation neural network (BPNN) and radial basis function neural network (RBFNN) and shows it edges over in terms of the performance metrics of RMSE, MAE and R2, and is the best model for COD prediction of mining-beneficiation wastewater. This is because of the less overfitting tendency of PSO-SVR compared with neural network architectures. Our proposed PSO-SVR model is optimum for the prediction of COD in copper-molybdenum mining-beneficiation wastewater treatment. In addition, PSO-SVR can be used to predict COD on a wide variety of wastewater through the process of transfer learning. The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to restrict the effluent effectiveness of mining-beneficiation wastewater treatment. Chemical oxygen demand (COD) is a crucial indicator to measure the quality of mining-beneficiation wastewater. Predicting COD concentration accurately of mining-beneficiation wastewater after treatment is essential for achieving stable and compliant discharge. This reduces environmental risk and significantly improves the discharge quality of wastewater. This paper presents a novel AI algorithm PSO-SVR, to predict water quality. Hyperparameter optimization of our proposed model PSO-SVR, uses particle swarm optimization to improve support vector regression for COD prediction. The generalization capacity tested on out-of-distribution (OOD) data for our PSO-SVR model is strong, with the following performance metrics of root means square error (RMSE) is 1.51, mean absolute error (MAE) is 1.26, and the coefficient of determination (R²) is 0.85. We compare the performance of PSO-SVR model with back propagation neural network (BPNN) and radial basis function neural network (RBFNN) and shows it edges over in terms of the performance metrics of RMSE, MAE and R², and is the best model for COD prediction of mining-beneficiation wastewater. This is because of the less overfitting tendency of PSO-SVR compared with neural network architectures. Our proposed PSO-SVR model is optimum for the prediction of COD in copper-molybdenum mining-beneficiation wastewater treatment. In addition, PSO-SVR can be used to predict COD on a wide variety of wastewater through the process of transfer learning. ● Data acquisition and pre-processing for wastewater treatment were summarized. ● A PSO-SVR model for predicting COD eff in wastewater was proposed. ● The COD eff prediction performances of the three models in the paper were compared. ● The COD eff prediction effects of different models in other studies were discussed. The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to restrict the effluent effectiveness of mining-beneficiation wastewater treatment. Chemical oxygen demand (COD) is a crucial indicator to measure the quality of mining-beneficiation wastewater. Predicting COD concentration accurately of mining-beneficiation wastewater after treatment is essential for achieving stable and compliant discharge. This reduces environmental risk and significantly improves the discharge quality of wastewater. This paper presents a novel AI algorithm PSO-SVR, to predict water quality. Hyperparameter optimization of our proposed model PSO-SVR, uses particle swarm optimization to improve support vector regression for COD prediction. The generalization capacity tested on out-of-distribution (OOD) data for our PSO-SVR model is strong, with the following performance metrics of root means square error (RMSE) is 1.51, mean absolute error (MAE) is 1.26, and the coefficient of determination ( R 2) is 0.85. We compare the performance of PSO-SVR model with back propagation neural network (BPNN) and radial basis function neural network (RBFNN) and shows it edges over in terms of the performance metrics of RMSE, MAE and R 2, and is the best model for COD prediction of mining-beneficiation wastewater. This is because of the less overfitting tendency of PSO-SVR compared with neural network architectures. Our proposed PSO-SVR model is optimum for the prediction of COD in copper-molybdenum mining-beneficiation wastewater treatment. In addition, PSO-SVR can be used to predict COD on a wide variety of wastewater through the process of transfer learning. The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to restrict the effluent effectiveness of mining-beneficiation wastewater treatment. Chemical oxygen demand (COD) is a crucial indicator to measure the quality of mining-beneficiation wastewater. Predicting COD concentration accurately of mining-beneficiation wastewater after treatment is essential for achieving stable and compliant discharge. This reduces environmental risk and significantly improves the discharge quality of wastewater. This paper presents a novel AI algorithm PSO-SVR, to predict water quality. Hyperparameter optimization of our proposed model PSO-SVR, uses particle swarm optimization to improve support vector regression for COD prediction. The generalization capacity tested on out-of-distribution (OOD) data for our PSO-SVR model is strong, with the following performance metrics of root means square error (RMSE) is 1.51, mean absolute error (MAE) is 1.26, and the coefficient of determination ( R 2 ) is 0.85. We compare the performance of PSO-SVR model with back propagation neural network (BPNN) and radial basis function neural network (RBFNN) and shows it edges over in terms of the performance metrics of RMSE, MAE and R 2 , and is the best model for COD prediction of mining-beneficiation wastewater. This is because of the less overfitting tendency of PSO-SVR compared with neural network architectures. Our proposed PSO-SVR model is optimum for the prediction of COD in copper-molybdenum mining-beneficiation wastewater treatment. In addition, PSO-SVR can be used to predict COD on a wide variety of wastewater through the process of transfer learning.  | 
    
| ArticleNumber | 98 | 
    
| Author | Li, Kun Roy, Kallol Jiang, Guomin Huang, Lei Zheng, Qingxing Wang, Zhenxing Song, Xinyu Chen, Jianyu Fu, Xiaohua Chen, Honglei Liu, Chang  | 
    
| Author_xml | – sequence: 1 givenname: Xiaohua surname: Fu fullname: Fu, Xiaohua organization: Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China – sequence: 2 givenname: Qingxing surname: Zheng fullname: Zheng, Qingxing organization: State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China – sequence: 3 givenname: Guomin surname: Jiang fullname: Jiang, Guomin organization: Chinese Non-Ferrous Industrial Engineering Center of Pollution Control Technology & Equipment, Science Environment Protection Co., Ltd., Changsha 410036, China – sequence: 4 givenname: Kallol surname: Roy fullname: Roy, Kallol organization: Institute of Computer Science, University of Tartu, Tartu 51009, Estonia – sequence: 5 givenname: Lei surname: Huang fullname: Huang, Lei organization: School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China – sequence: 6 givenname: Chang surname: Liu fullname: Liu, Chang organization: State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China – sequence: 7 givenname: Kun surname: Li fullname: Li, Kun organization: Guangzhou Huacai Environmental Protection Technology Co., Ltd., Guangzhou 511480, China – sequence: 8 givenname: Honglei surname: Chen fullname: Chen, Honglei organization: Ecological Environment Management and Assessment Center, Central South University of Forestry and Technology, Changsha 410004, China – sequence: 9 givenname: Xinyu surname: Song fullname: Song, Xinyu organization: State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China – sequence: 10 givenname: Jianyu surname: Chen fullname: Chen, Jianyu organization: State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China – sequence: 11 givenname: Zhenxing surname: Wang fullname: Wang, Zhenxing email: wangzhenxing@scies.org organization: State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China  | 
    
| BookMark | eNp9kU1r3DAQhkVJoWmaH9CboZde1OpjLUvHEtq0EEhp-nUTsjXaVbAlR5IJ---rXZcWcljBSGJ4n5nhnZfoLMQACL2m5B0lpHufKe0kx4RxTIWSWD1D54yoFjNGf5_9-xP6Al3mfE_qkXJDJT9Hu1-mQGoeFjP6sm_mBNYPxcfQRNcMcZ4h4SmO-95CWKZm8sGHLe4hgPODN0flo8kFHo91epPBNjVXdtB8vbvFdz-_NVO0ML5Cz50ZM1z-fS_Qj08fv199xje311-uPtzggStZcGsdM1BveghlWtqSjeHMONILQZnYMNsKJzllRhFl-oFR2jInrLStZZJfoLdr3TnFhwVy0ZPPA4yjCRCXrJmUnWCy47xK3zyR3sclhTqdZorKbiNEd1DRVTWkmHMCp-fkJ5P2mhJ9sF-v9utqvz7Yr1VluifM4MvRrJKMH0-SbCVz7RK2kP7PdAqSK7Tz2x3UFdY15qxdqv08pFPoHz3ErZE | 
    
| CitedBy_id | crossref_primary_10_1016_j_jhydrol_2024_130933 crossref_primary_10_3390_min13070929 crossref_primary_10_1007_s11356_024_32061_2 crossref_primary_10_1016_j_biteb_2024_101993 crossref_primary_10_1038_s41598_024_74122_z crossref_primary_10_1016_j_cej_2024_157150 crossref_primary_10_1007_s11783_024_1791_x crossref_primary_10_3390_math12142231 crossref_primary_10_3390_su16188184 crossref_primary_10_1016_j_resourpol_2023_104462 crossref_primary_10_1080_09544828_2024_2415830 crossref_primary_10_1016_j_jics_2024_101200 crossref_primary_10_1016_j_compag_2025_110020 crossref_primary_10_1016_j_heliyon_2024_e37916 crossref_primary_10_1016_j_ijcce_2024_11_002 crossref_primary_10_1007_s12065_025_01022_0 crossref_primary_10_1016_j_jenvman_2024_121430 crossref_primary_10_1016_j_jfca_2024_106498 crossref_primary_10_1021_acsestwater_3c00543 crossref_primary_10_1007_s11783_024_1814_5  | 
    
| Cites_doi | 10.1007/s00521-020-05659-z 10.1007/s11356-021-14560-8 10.1016/j.jenvman.2021.114020 10.1016/j.cej.2018.04.087 10.1109/TEVC.2008.924428 10.1016/j.asoc.2015.09.049 10.1016/j.mineng.2018.09.009 10.1007/s00500-016-2474-6 10.1016/j.psep.2020.04.045 10.1016/j.psep.2021.05.026 10.1016/j.jwpe.2021.102033 10.1016/j.jhydrol.2019.124084 10.1016/j.jclepro.2021.126533 10.1016/j.jwpe.2021.102380 10.1016/j.resconrec.2019.01.030 10.1016/j.jclepro.2020.125772 10.1016/S0893-6080(98)00032-X 10.1155/2022/7327072 10.1016/j.jclepro.2020.121787 10.1007/s11356-022-21864-w 10.1016/j.jclepro.2018.01.139 10.1016/S1364-8152(98)00102-9 10.1016/j.neunet.2012.04.002 10.1016/j.ress.2005.12.014 10.1016/j.ecohyd.2017.02.002 10.1016/j.jenvman.2022.114642 10.1016/j.jhydrol.2015.06.007 10.1016/j.envres.2022.112942 10.1016/j.jenvman.2021.112051 10.1007/s10898-007-9149-x 10.1016/j.scitotenv.2019.134279 10.1016/j.jclepro.2020.125396 10.1016/j.procbio.2020.06.020  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright reserved, 2023, Higher Education Press Higher Education Press 2023 Higher Education Press 2023.  | 
    
| Copyright_xml | – notice: Copyright reserved, 2023, Higher Education Press – notice: Higher Education Press 2023 – notice: Higher Education Press 2023.  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V M7S PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY 7S9 L.6  | 
    
| DOI | 10.1007/s11783-023-1698-9 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability (subscription) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | ProQuest Central Student AGRICOLA  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Environmental Sciences | 
    
| EISSN | 2095-221X | 
    
| EndPage | 98 | 
    
| ExternalDocumentID | 10_1007_s11783_023_1698_9 10.1007/s11783-023-1698-9  | 
    
| GroupedDBID | -5A -5G -BR -EM -~C .VR 06D 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40E 5VS 95- 95. 96X AAAVM AABHQ AAFGU AAIAL AAJKR AANZL AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHQN ABJOX ABKAS ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABWNU ABXPI ACBMV ACBRV ACGFS ACHSB ACHXU ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTIX ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVTX AEXYK AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYLF AOCGG ARMRJ AXYYD B-. BDATZ BGNMA CSCUP DNIVK EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HZ~ IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NQJWS NU0 O9J P4S PF0 PT4 R89 ROL RSV S16 SAP SCL SEV SHX SISQX SNE SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC UG4 UNUBA UOJIU UTJUX UZXMN VFIZW W48 YLTOR Z5O Z7V Z7X Z7Y Z81 ZMTXR ~A9 0R~ AACDK AAHBH AAJBT AASML AATNV AAYZH ABAKF ABJCF ABJNI ABTKH ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AESKC AEUYN AEVLU AFBBN AFKRA AGQEE AGRTI AIGIU AMXSW ATCPS BENPR BGLVJ BHPHI CCPQU DDRTE DPUIP HCIFZ M7S NPVJJ PATMY PTHSS PYCSY SJYHP SNPRN -SB -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEB CITATION PHGZM PHGZT PQGLB PUEGO Q-- U1G U5L 8FE 8FG AZQEC DWQXO GNUQQ L6V PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c398t-5df2ae5df15df19a51504a32af0b6612642d56f8312a909abc21152f6d8d5d283 | 
    
| IEDL.DBID | AGYKE | 
    
| ISSN | 2095-2201 | 
    
| IngestDate | Wed Oct 01 13:59:06 EDT 2025 Fri Jul 25 10:59:51 EDT 2025 Wed Oct 01 02:47:51 EDT 2025 Thu Apr 24 23:12:05 EDT 2025 Fri Feb 21 02:38:31 EST 2025 Mon Apr 03 23:15:30 EDT 2023  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | Support vector regression Artificial neural network Chemical oxygen demand Particle swarm optimization Mining-beneficiation wastewater treatment  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c398t-5df2ae5df15df19a51504a32af0b6612642d56f8312a909abc21152f6d8d5d283 | 
    
| Notes | Document received on :2022-07-28 Chemical oxygen demand Document accepted on :2023-02-05 Document revised on :2023-01-31 Support vector regression Artificial neural network Particle swarm optimization Mining-beneficiation wastewater treatment ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 2918746673 | 
    
| PQPubID | 2044429 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | proquest_miscellaneous_2887628733 proquest_journals_2918746673 crossref_primary_10_1007_s11783_023_1698_9 crossref_citationtrail_10_1007_s11783_023_1698_9 springer_journals_10_1007_s11783_023_1698_9 higheredpress_frontiers_10_1007_s11783_023_1698_9  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-08-01 | 
    
| PublicationDateYYYYMMDD | 2023-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Beijing | 
    
| PublicationPlace_xml | – name: Beijing – name: Heidelberg  | 
    
| PublicationTitle | Frontiers of environmental science & engineering | 
    
| PublicationTitleAbbrev | Front. Environ. Sci. Eng | 
    
| PublicationYear | 2023 | 
    
| Publisher | Higher Education Press Springer Nature B.V  | 
    
| Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V  | 
    
| References | El-Rawy, Abd-Ellah, Fathi, Ahmed (CR7) 2021; 44 Ye, Yang, Zhong, Tu, Jia, Wang (CR33) 2020; 699 Wang, Tan, Liu (CR31) 2018; 22 Sadri Moghaddam, Mesghali (CR20) 2023; 30 Belanche, Valdés, Comas, Roda, Poch (CR3) 1999; 14 Meng, Zhang, Qiao (CR14) 2021; 33 Meng, Wu, Kang, Gao, Liu, Gao, Wang, Fan, Khoso, Sun, Hu (CR13) 2018; 128 Asami, Golabi, Albaji (CR1) 2021; 296 Shah, Javed, Alqahtani, Aldrees (CR21) 2021; 151 Shi, Xu (CR23) 2018; 347 Nourani, Asghari, Sharghi (CR19) 2021; 291 Su, He, Zhang, Chen, Li (CR27) 2022; 2022 Karaboga, Basturk (CR9) 2007; 39 Chitsazan, Nadiri, Tsai (CR5) 2015; 528 Liu, Zhang, Zhang (CR10) 2020; 97 Zhang, Yang, Shi, Liu (CR34) 2021; 282 Solgi, Pourhaghi, Bahmani, Zarei (CR25) 2017; 17 Najah Ahmed, Binti Othman, Abdulmohsin Afan, Khaleel Ibrahim, Ming Fai, Shabbir Hossain, Ehteram, Elshafie (CR16) 2019; 578 Hosseini, Mahjouri (CR8) 2016; 38 Niu, Yi, Chen, Li, Han, Yan, Huang, Ying (CR17) 2020; 265 Deng, Chau, Duan (CR6) 2021; 284 Su, Yi, Gu, Wang, Liu, Zhang (CR26) 2022; 308 Chen (CR4) 2007; 92 Smola, Schölkopf, Müller (CR24) 1998; 11 Bagherzadeh, Mehrani, Basirifard, Roostaei (CR2) 2021; 41 Vrugt, Robinson, Hyman (CR29) 2009; 13 Wang, Yu, Chen, Pan, Li, Tan, Zhang (CR32) 2022; 302 Nadiri, Shokri, Tsai, Asghari Moghaddam (CR15) 2018; 180 Nouraki, Alavi, Golabi, Albaji (CR18) 2021; 28 Wan, Li, Wang, Yi, Zhao, He, Wu, Huang (CR30) 2022; 211 Vapnik (CR28) 1999 Liu, Gao, Li (CR11) 2012; 33 Sharafati, Asadollah, Hosseinzadeh (CR22) 2020; 140 Man, Hu, Ren (CR12) 2019; 144 H Liu (1698_CR10) 2020; 97 V Vapnik (1698_CR28) 1999 Y Man (1698_CR12) 2019; 144 X Meng (1698_CR14) 2021; 33 S Sadri Moghaddam (1698_CR20) 2023; 30 J A Vrugt (1698_CR29) 2009; 13 A Sharafati (1698_CR22) 2020; 140 H Asami (1698_CR1) 2021; 296 M El-Rawy (1698_CR7) 2021; 44 T Deng (1698_CR6) 2021; 284 G Niu (1698_CR17) 2020; 265 A Solgi (1698_CR25) 2017; 17 H Su (1698_CR26) 2022; 308 S Shi (1698_CR23) 2018; 347 M I Shah (1698_CR21) 2021; 151 X Liu (1698_CR11) 2012; 33 F Bagherzadeh (1698_CR2) 2021; 41 A J Smola (1698_CR24) 1998; 11 L A Belanche (1698_CR3) 1999; 14 A Najah Ahmed (1698_CR16) 2019; 578 D Karaboga (1698_CR9) 2007; 39 A Nouraki (1698_CR18) 2021; 28 R Wang (1698_CR32) 2022; 302 A A Nadiri (1698_CR15) 2018; 180 H Zhang (1698_CR34) 2021; 282 Z Ye (1698_CR33) 2020; 699 V Nourani (1698_CR19) 2021; 291 X Wan (1698_CR30) 2022; 211 X Meng (1698_CR13) 2018; 128 D Wang (1698_CR31) 2018; 22 S M Hosseini (1698_CR8) 2016; 38 K Y Chen (1698_CR4) 2007; 92 N Chitsazan (1698_CR5) 2015; 528 X Su (1698_CR27) 2022; 2022  | 
    
| References_xml | – volume: 33 start-page: 11401 issue: 17 year: 2021 end-page: 11414 ident: CR14 article-title: An adaptive task-oriented RBF network for key water quality parameters prediction in wastewater treatment process publication-title: Neural Computing & Applications doi: 10.1007/s00521-020-05659-z – volume: 28 start-page: 57060 issue: 40 year: 2021 end-page: 57072 ident: CR18 article-title: Prediction of water quality parameters using machine learning models: a case study of the Karun River, Iran publication-title: Environmental Science and Pollution Research International doi: 10.1007/s11356-021-14560-8 – volume: 302 start-page: 114020 year: 2022 ident: CR32 article-title: Model construction and application for effluent prediction in wastewater treatment plant: data processing method optimization and process parameters integration publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2021.114020 – volume: 347 start-page: 280 year: 2018 end-page: 290 ident: CR23 article-title: Novel performance prediction model of a biofilm system treating domestic wastewater based on stacked denoising auto-encoders deep learning network publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2018.04.087 – volume: 13 start-page: 243 issue: 2 year: 2009 end-page: 259 ident: CR29 article-title: Self-adaptive multimethod search for global optimization in real-parameter spaces publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.924428 – volume: 38 start-page: 329 year: 2016 end-page: 345 ident: CR8 article-title: Integrating support vector regression and a geomorphologic artificial neural network for daily rainfall-runoff modeling publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.09.049 – volume: 128 start-page: 275 year: 2018 end-page: 283 ident: CR13 article-title: Comparison of the reduction of chemical oxygen demand in wastewater from mineral processing using the coagulation—flocculation, adsorption and Fenton processes publication-title: Minerals Engineering doi: 10.1016/j.mineng.2018.09.009 – volume: 22 start-page: 387 issue: 2 year: 2018 end-page: 408 ident: CR31 article-title: Particle swarm optimization algorithm: an overview publication-title: Soft Computing doi: 10.1007/s00500-016-2474-6 – volume: 140 start-page: 68 year: 2020 end-page: 78 ident: CR22 article-title: The potential of new ensemble machine learning models for effluent quality parameters prediction and related uncertainty publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2020.04.045 – volume: 151 start-page: 324 year: 2021 end-page: 340 ident: CR21 article-title: Environmental assessment based surface water quality prediction using hyper-parameter optimized machine learning models based on consistent big data publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2021.05.026 – volume: 41 start-page: 102033 year: 2021 ident: CR2 article-title: Comparative study on total nitrogen prediction in wastewater treatment plant and effect of various feature selection methods on machine learning algorithms performance publication-title: Journal of Water Process Engineering doi: 10.1016/j.jwpe.2021.102033 – volume: 578 start-page: 124084 year: 2019 ident: CR16 article-title: Machine learning methods for better water quality prediction publication-title: Journal of Hydrology (Amsterdam) doi: 10.1016/j.jhydrol.2019.124084 – volume: 296 start-page: 126533 year: 2021 ident: CR1 article-title: Simulation of the biochemical and chemical oxygen demand and total suspended solids in wastewater treatment plants: data-mining approach publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2021.126533 – volume: 44 start-page: 102380 year: 2021 ident: CR7 article-title: Forecasting effluent and performance of wastewater treatment plant using different machine learning techniques publication-title: Journal of Water Process Engineering doi: 10.1016/j.jwpe.2021.102380 – volume: 144 start-page: 56 year: 2019 end-page: 64 ident: CR12 article-title: Forecasting COD load in municipal sewage based on ARMA and VAR algorithms publication-title: Resources, Conservation and Recycling doi: 10.1016/j.resconrec.2019.01.030 – volume: 291 start-page: 125772 year: 2021 ident: CR19 article-title: Artificial intelligence based ensemble modeling of wastewater treatment plant using jittered data publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2020.125772 – volume: 11 start-page: 637 issue: 4 year: 1998 end-page: 649 ident: CR24 article-title: The connection between regularization operators and support vector kernels publication-title: Neural Networks doi: 10.1016/S0893-6080(98)00032-X – volume: 2022 start-page: 7327072 year: 2022 ident: CR27 article-title: Research on SVR water quality prediction model based on improved sparrow search algorithm publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2022/7327072 – volume: 265 start-page: 121787 year: 2020 ident: CR17 article-title: A novel effluent quality predicting model based on genetic-deep belief network algorithm for cleaner production in a full-scale paper-making wastewater treatment publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2020.121787 – volume: 30 start-page: 1622 issue: 1 year: 2023 end-page: 1639 ident: CR20 article-title: A new hybrid ensemble approach for the prediction of effluent total nitrogen from a full-scale wastewater treatment plant using a combined trickling filter-activated sludge system publication-title: Environmental Science and Pollution Research International doi: 10.1007/s11356-022-21864-w – year: 1999 ident: CR28 publication-title: The Nature of Statistical Learning Theory – volume: 180 start-page: 539 year: 2018 end-page: 549 ident: CR15 article-title: Prediction of effluent quality parameters of a wastewater treatment plant using a supervised committee fuzzy logic model publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.01.139 – volume: 14 start-page: 409 issue: 5 year: 1999 end-page: 419 ident: CR3 article-title: Towards a model of input-output behaviour of wastewater treatment plants using soft computing techniques publication-title: Environmental Modelling & Software doi: 10.1016/S1364-8152(98)00102-9 – volume: 33 start-page: 58 year: 2012 end-page: 66 ident: CR11 article-title: A comparative analysis of support vector machines and extreme learning machines publication-title: Neural Networks doi: 10.1016/j.neunet.2012.04.002 – volume: 92 start-page: 423 issue: 4 year: 2007 end-page: 432 ident: CR4 article-title: Forecasting systems reliability based on support vector regression with genetic algorithms publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2005.12.014 – volume: 17 start-page: 164 issue: 2 year: 2017 end-page: 175 ident: CR25 article-title: Improving SVR and ANFIS performance using wavelet transform and PCA algorithm for modeling and predicting biochemical oxygen demand (BOD) publication-title: Ecohydrology & Hydrobiology doi: 10.1016/j.ecohyd.2017.02.002 – volume: 308 start-page: 114642 year: 2022 ident: CR26 article-title: Cost of raising discharge standards: a plant-by-plant assessment from wastewater sector in China publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2022.114642 – volume: 528 start-page: 52 year: 2015 end-page: 62 ident: CR5 article-title: Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging publication-title: Journal of Hydrology (Amsterdam) doi: 10.1016/j.jhydrol.2015.06.007 – volume: 211 start-page: 112942 year: 2022 ident: CR30 article-title: Water quality prediction model using Gaussian process regression based on deep learning for carbon neutrality in papermaking wastewater treatment system publication-title: Environmental Research doi: 10.1016/j.envres.2022.112942 – volume: 284 start-page: 112051 year: 2021 ident: CR6 article-title: Machine learning based marine water quality prediction for coastal hydro-environment management publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2021.112051 – volume: 39 start-page: 459 issue: 3 year: 2007 end-page: 471 ident: CR9 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: Journal of Global Optimization doi: 10.1007/s10898-007-9149-x – volume: 699 start-page: 134279 year: 2020 ident: CR33 article-title: Tackling environmental challenges in pollution controls using artificial intelligence: a review publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2019.134279 – volume: 282 start-page: 125396 year: 2021 ident: CR34 article-title: Effluent quality prediction in papermaking wastewater treatment processes using dynamic Bayesian networks publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2020.125396 – volume: 97 start-page: 72 year: 2020 end-page: 79 ident: CR10 article-title: Prediction of effluent quality in papermaking wastewater treatment processes using dynamic kernel-based extreme learning machine publication-title: Process Biochemistry (Barking, London, England) doi: 10.1016/j.procbio.2020.06.020 – volume: 291 start-page: 125772 year: 2021 ident: 1698_CR19 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2020.125772 – volume: 44 start-page: 102380 year: 2021 ident: 1698_CR7 publication-title: Journal of Water Process Engineering doi: 10.1016/j.jwpe.2021.102380 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 1698_CR9 publication-title: Journal of Global Optimization doi: 10.1007/s10898-007-9149-x – volume: 28 start-page: 57060 issue: 40 year: 2021 ident: 1698_CR18 publication-title: Environmental Science and Pollution Research International doi: 10.1007/s11356-021-14560-8 – volume: 128 start-page: 275 year: 2018 ident: 1698_CR13 publication-title: Minerals Engineering doi: 10.1016/j.mineng.2018.09.009 – volume: 296 start-page: 126533 year: 2021 ident: 1698_CR1 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2021.126533 – volume: 151 start-page: 324 year: 2021 ident: 1698_CR21 publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2021.05.026 – volume: 347 start-page: 280 year: 2018 ident: 1698_CR23 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2018.04.087 – volume: 11 start-page: 637 issue: 4 year: 1998 ident: 1698_CR24 publication-title: Neural Networks doi: 10.1016/S0893-6080(98)00032-X – volume-title: The Nature of Statistical Learning Theory year: 1999 ident: 1698_CR28 – volume: 33 start-page: 11401 issue: 17 year: 2021 ident: 1698_CR14 publication-title: Neural Computing & Applications doi: 10.1007/s00521-020-05659-z – volume: 13 start-page: 243 issue: 2 year: 2009 ident: 1698_CR29 publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2008.924428 – volume: 265 start-page: 121787 year: 2020 ident: 1698_CR17 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2020.121787 – volume: 92 start-page: 423 issue: 4 year: 2007 ident: 1698_CR4 publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2005.12.014 – volume: 282 start-page: 125396 year: 2021 ident: 1698_CR34 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2020.125396 – volume: 2022 start-page: 7327072 year: 2022 ident: 1698_CR27 publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2022/7327072 – volume: 14 start-page: 409 issue: 5 year: 1999 ident: 1698_CR3 publication-title: Environmental Modelling & Software doi: 10.1016/S1364-8152(98)00102-9 – volume: 97 start-page: 72 year: 2020 ident: 1698_CR10 publication-title: Process Biochemistry (Barking, London, England) doi: 10.1016/j.procbio.2020.06.020 – volume: 211 start-page: 112942 year: 2022 ident: 1698_CR30 publication-title: Environmental Research doi: 10.1016/j.envres.2022.112942 – volume: 140 start-page: 68 year: 2020 ident: 1698_CR22 publication-title: Process Safety and Environmental Protection doi: 10.1016/j.psep.2020.04.045 – volume: 284 start-page: 112051 year: 2021 ident: 1698_CR6 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2021.112051 – volume: 22 start-page: 387 issue: 2 year: 2018 ident: 1698_CR31 publication-title: Soft Computing doi: 10.1007/s00500-016-2474-6 – volume: 578 start-page: 124084 year: 2019 ident: 1698_CR16 publication-title: Journal of Hydrology (Amsterdam) doi: 10.1016/j.jhydrol.2019.124084 – volume: 41 start-page: 102033 year: 2021 ident: 1698_CR2 publication-title: Journal of Water Process Engineering doi: 10.1016/j.jwpe.2021.102033 – volume: 302 start-page: 114020 year: 2022 ident: 1698_CR32 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2021.114020 – volume: 144 start-page: 56 year: 2019 ident: 1698_CR12 publication-title: Resources, Conservation and Recycling doi: 10.1016/j.resconrec.2019.01.030 – volume: 33 start-page: 58 year: 2012 ident: 1698_CR11 publication-title: Neural Networks doi: 10.1016/j.neunet.2012.04.002 – volume: 308 start-page: 114642 year: 2022 ident: 1698_CR26 publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2022.114642 – volume: 17 start-page: 164 issue: 2 year: 2017 ident: 1698_CR25 publication-title: Ecohydrology & Hydrobiology doi: 10.1016/j.ecohyd.2017.02.002 – volume: 38 start-page: 329 year: 2016 ident: 1698_CR8 publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2015.09.049 – volume: 30 start-page: 1622 issue: 1 year: 2023 ident: 1698_CR20 publication-title: Environmental Science and Pollution Research International doi: 10.1007/s11356-022-21864-w – volume: 699 start-page: 134279 year: 2020 ident: 1698_CR33 publication-title: Science of the Total Environment doi: 10.1016/j.scitotenv.2019.134279 – volume: 180 start-page: 539 year: 2018 ident: 1698_CR15 publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.01.139 – volume: 528 start-page: 52 year: 2015 ident: 1698_CR5 publication-title: Journal of Hydrology (Amsterdam) doi: 10.1016/j.jhydrol.2015.06.007  | 
    
| SSID | ssj0000884183 | 
    
| Score | 2.4285903 | 
    
| Snippet | ● Data acquisition and pre-processing for wastewater treatment were summarized. ● A PSO-SVR model for predicting COD eff in wastewater was proposed. ● The COD... The mining-beneficiation wastewater treatment is highly complex and nonlinear. Various factors like influent quality, flow rate, pH and chemical dose, tend to...  | 
    
| SourceID | proquest crossref springer higheredpress  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 98 | 
    
| SubjectTerms | Algorithms Artificial Intelligence/Machine Learning on Environmental Science & Engineering Artificial neural network Artificial neural networks Back propagation networks Beneficiation Business metrics Chemical oxygen demand Copper Discharge Earth and Environmental Science Environment Environmental risk Flow rates Mining-beneficiation wastewater treatment Molybdenum Neural networks Particle swarm optimization Performance measurement prediction Predictions Radial basis function regression analysis Research Article risk Root-mean-square errors Support vector machines Support vector regression Transfer learning wastewater Wastewater treatment Water quality Water treatment  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9swFD506UthjHVrWbauqLCnFTFb8kV-GGMtKaWwrPSy9c3oWBYdtHGWpIz--52j2AkpNA_2g3UDH0nnk87lA_hUKZ04ZSKZItIBJc-1RIteKu9VYupYY87ByT-G2el1cnaT3mzAsIuFYbfKbk8MG7VrKr4j_6IKZo9jkspv47-SWaPYutpRaNiWWsF9DSnGXsCm4sxYPdg8GgzPLxa3LrSmkjjk5lSELaQi9deZOkM8XZwbNmtqGWcFbQQryurlbfC8qF3wUF1BpE-MqEE3nbyGVy2oFN_ns2AbNurRG9gdLGPYqLBdxNO3cPub8OVEzMMpHwWN4_6E6AbReFE143E9kffN3SM6dpMX94FCQiJtiiHbRKj5z0751o37YT3oBH0jKCnOL3_Ky18XIhDs7MD1yeDq-FS2hAuy0oWZydR5ZWt6x_wUlrBOlFitrI-Q9DhhJ-XSzBsdK1tEhcWKjo-p8pkzLiWJ613ojZpR_Q4EnVTQeawwNkVS6QxRI3qLhH98hirvQ9T92bJqs5EzKcZducyjzMIoSRglC6Ms-vB50WQ8T8WxrnK8Iq7Scz4IZhdf12avE2nZruRpuZx3fThYFNMaZMOKHdXNA9UxrFNMrqnOYTcVll08O-D79QN-gC0mt5-7G-5BbzZ5qD8SBJrhfjuv_wM1TAL2 priority: 102 providerName: ProQuest  | 
    
| Title | Water quality prediction of copper-molybdenum mining-beneficiation wastewater based on the PSO-SVR model | 
    
| URI | https://journal.hep.com.cn/fese/EN/10.1007/s11783-023-1698-9 https://link.springer.com/article/10.1007/s11783-023-1698-9 https://www.proquest.com/docview/2918746673 https://www.proquest.com/docview/2887628733  | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2095-221X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000884183 issn: 2095-2201 databaseCode: AFBBN dateStart: 20070201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2095-221X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0000884183 issn: 2095-2201 databaseCode: BENPR dateStart: 20070201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2095-221X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000884183 issn: 2095-2201 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZT9wwEB7B8lKpokCLulxypT5RGSV2DueRVrsgUCniaOlT5IljUQGb1R6q6K_v2JsQLQIkHpJI8cRxnLHns-cC-FwIGRmhAh4j0gIlTSVHjZYLa0WkylBi6pyTv58kh5fR0VV8Vftxjxtr90Yl6Wfq1tktTJXTOUoeJhmN0kVY8uG2OrC0f_D7uN1aoYEThT4ApyAAwQXJuEaf-VQ9cxLp7bU3ryiNN0Odg52PNKVeAPXfwUXT9Jndyc3edIJ7xb9HUR1f-W0rsFwDUrY_46BVWCgHa7Dea_3fqLCeAMbv4foXYdMRm7li3jNqvvnjPSNYZVlRDYfliN9Vt_donIk9u_PpJzjShOojVXjKv3rsduxcPU6GGkb3CIay0_Mf_PznGfPJeT7AZb938e2Q18kaeCEzNeGxsUKXdA7dkWnCSUGkpdA2QMIAhLuEiROrZCh0FmQaC1p6xsImRpmYuEWuQ2dQDcqPwGiVg8ZigaHKokImiBLRaiTsZBMUaReC5oflRR3J3CXUuM3bGMyuP3Pqz9z1Z551YffhkeEsjMdLxOEcF-TWxZJwmclfemar4ZS8ngXGuchcxkOXWLULnx6Kafw6pYwelNWUaJSTRyqVRPOlYY62imdfuPEq6k14Ixx3ecvFLehMRtNym9DUBHdgUfUPduoxRNevvZPTs_-CwBha | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKewAJIV4VgQJGggvIYtfelw8V4pEqpW2o-oDejGe9VpHabEhSVflz_DZmnN1EQSK3HjaHXa-t7Izn4Xl8jL0upUqcLCKRAqCDkudKgAUvpPcyKapYQU7FyQf9rHeafD1Lz9bYn7YWhtIqW5kYBLWrSzojfy81occRSOWH4W9BqFEUXW0hNGwDreC2Q4uxprBjr5peows33t79gvR-I-VO9-RzTzQoA6JUupiI1HlpK_yN6dIWFXyUWCWtjwCVFxoM0qWZL1QsrY60hRJ9plT6zBUuxb-pcN5bbCNRiUbnb-NTt394ND_lwT2cxKEXqERbRkhUt21oNdTvxXlBYVQl4kyj4FlSjnfPQ6ZH5UJG7JIF_E_QNujCnfvsXmPE8o8zrnvA1qrBQ7bZXdTM4cNGaIwfsfMfaM-O-Kx8c8pxHfcrVFPw2vOyHg6rkbisL6bgKC2fXwbICgEohEN3izDy2o7plI_mIb3rON5D05UfHn8Tx9-PeAD0ecxOb-TTb7L1QT2onjCOnhE4DyXEhU5KlQEoAG8B7S2fgcw7LGq_rCmb7ucEwnFhFn2biRgGiWGIGEZ32Nv5K8NZ649Vg-MlchlP_ScIzXzVO1stSU0jOcZmwecd9mr-GPc8BXLsoKqvcExBOqzIFY5517LCYor_Lvh09YIv2e3eycG-2d_t7z1jdyTxZUh13GLrk9FV9RzNrwm8aHics583va3-Aib1Pzo | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaglRBSxbtioYCROIHcJnYezrGCLoVCqSiF9hQ8caxWtMlqNytUfj0zTtJoK6iEOCSHeOLIztjzjefF2ItCqshKHYgYABWUNFUCDDghnZORLkMFKQUnf9xNtg-i94fxYVfndNZ7u_cmyTamgbI0Vc3GxLqNIfAtTDXZH5UIkwxX7HW2jJpJioy-vPn2aGc4ZsFFFIU-GadEMCEkyrvetvmnfhak08qxd7UorXdJXYCgl6ymXhiNb7Pv_TBaH5Qf6_MG1otflzI8_sc477BbHVDlmy1n3WXXyuoeW90a4uKwsdsYZvfZ8TfErFPehmiecxyKPfERE7x2vKgnk3IqzurTc7Dkes_PfFkKAbjR-gwWnvKnmdFJHvVDstVyfIbwlO_tfxL7Xz9zX7TnATsYb315vS26Ig6iUJluRGydNCXeQ7oyg_gpiIySxgWA2ADxmLRx4rQKpcmCzECBKmksXWK1jZGL1CpbquqqfMg4aj9gHRQQ6iwqVAKgAJwBxFQuAZmOWND_vLzoMpxToY3TfMjNTPOZ43zmNJ95NmIvL16ZtOk9riIOFzgid5RjgiqWX_XOWs81ebc7zHKZUSVEKrg6Ys8vmnFdk7HGVGU9RxpNckqnCmle9YwydPHXDz76J-pn7Mbem3H-4d3uzmN2UxKjeefGNbbUTOflEwRcDTztFtVvVtkhnQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+quality+prediction+of+copper-molybdenum+mining-beneficiation+wastewater+based+on+the+PSO-SVR+model&rft.jtitle=Frontiers+of+environmental+science+%26+engineering&rft.au=Fu%2C+Xiaohua&rft.au=Zheng%2C+Qingxing&rft.au=Jiang%2C+Guomin&rft.au=Roy%2C+Kallol&rft.date=2023-08-01&rft.pub=Higher+Education+Press&rft.issn=2095-2201&rft.eissn=2095-221X&rft.volume=17&rft.issue=8&rft.spage=98&rft_id=info:doi/10.1007%2Fs11783-023-1698-9&rft.externalDBID=n%2Fa&rft.externalDocID=10.1007%2Fs11783-023-1698-9 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2201&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2201&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2201&client=summon |