Large-Scale Freeway Network Traffic Monitoring: A Map-Matching Algorithm Based on Low-Logging Frequency GPS Probe Data

Low-logging frequency GPS probe data have become a major data source for large-scale freeway network traffic monitoring. A critical step in GPS data processing is map matching. However, traditional map-matching algorithms are developed for in-vehicle navigation with high-logging frequency GPS data,...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent transportation systems Vol. 15; no. 2; pp. 63 - 74
Main Authors Wang, Wei, Jin, Jing, Ran, Bin, Guo, Xiucheng
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis Group 05.05.2011
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1547-2450
1547-2442
DOI10.1080/15472450.2011.570103

Cover

Abstract Low-logging frequency GPS probe data have become a major data source for large-scale freeway network traffic monitoring. A critical step in GPS data processing is map matching. However, traditional map-matching algorithms are developed for in-vehicle navigation with high-logging frequency GPS data, noting that high-logging frequencies can be 1 s, whereas low-logging frequencies can be a few minutes. Such algorithms map a new GPS positioning point instantaneously given its historical points and network topology. Using high-logging frequency data-based map-matching algorithms for low-logging frequency data can cause several problems. First, large mapping errors in previous GPS points can easily propagate to the current points. Second, one-point-a-time processing is not effective and not necessary for traffic monitoring. Multiple GPS points can be processed together to determine routes more effectively. In this article, the authors propose a map-matching framework for low-logging frequency GPS probe data. The proposed framework (a) incorporates curve matching and probabilistic analysis modules of high-logging frequency map-matching algorithms and (b) introduces a new route determination algorithm for multipoint processing on the basis of fuzzy logic and a concurrent version of the N-shortest path algorithm. The authors evaluated the proposed model using field GPS data sets collected in Los Angeles, California. Evaluation methods include not only traditional random mapping case inspection but also a comparison between the GPS-detected speed and the ground truth loop-detector speed to evaluate its effectiveness for traffic monitoring. The evaluation results illustrate the effectiveness and robustness of the proposed framework.
AbstractList Low-logging frequency GPS probe data have become a major data source for large-scale freeway network traffic monitoring. A critical step in GPS data processing is map matching. However, traditional map-matching algorithms are developed for in-vehicle navigation with high-logging frequency GPS data, noting that high-logging frequencies can be 1 s, whereas low-logging frequencies can be a few minutes. Such algorithms map a new GPS positioning point instantaneously given its historical points and network topology. Using high-logging frequency data-based map-matching algorithms for low-logging frequency data can cause several problems. First, large mapping errors in previous GPS points can easily propagate to the current points. Second, one-point-a-time processing is not effective and not necessary for traffic monitoring. Multiple GPS points can be processed together to determine routes more effectively. In this article, the authors propose a map-matching framework for low-logging frequency GPS probe data. The proposed framework (a) incorporates curve matching and probabilistic analysis modules of high-logging frequency map-matching algorithms and (b) introduces a new route determination algorithm for multipoint processing on the basis of fuzzy logic and a concurrent version of the N-shortest path algorithm. The authors evaluated the proposed model using field GPS data sets collected in Los Angeles, California. Evaluation methods include not only traditional random mapping case inspection but also a comparison between the GPS-detected speed and the ground truth loop-detector speed to evaluate its effectiveness for traffic monitoring. The evaluation results illustrate the effectiveness and robustness of the proposed framework.
Low-logging frequency GPS probe data have become a major data source for large-scale freeway network traffic monitoring. A critical step in GPS data processing is map matching. However, traditional map-matching algorithms are developed for in-vehicle navigation with high-logging frequency GPS data, noting that high-logging frequencies can be 1 s, whereas low-logging frequencies can be a few minutes. Such algorithms map a new GPS positioning point instantaneously given its historical points and network topology. Using high-logging frequency data-based map-matching algorithms for low-logging frequency data can cause several problems. First, large mapping errors in previous GPS points can easily propagate to the current points. Second, one-point-a-time processing is not effective and not necessary for traffic monitoring. Multiple GPS points can be processed together to determine routes more effectively. In this article, the authors propose a map-matching framework for low-logging frequency GPS probe data. The proposed framework (a) incorporates curve matching and probabilistic analysis modules of high-logging frequency map-matching algorithms and (b) introduces a new route determination algorithm for multipoint processing on the basis of fuzzy logic and a concurrent version of the N-shortest path algorithm. The authors evaluated the proposed model using field GPS data sets collected in Los Angeles, California. Evaluation methods include not only traditional random mapping case inspection but also a comparison between the GPS-detected speed and the ground truth loop-detector speed to evaluate its effectiveness for traffic monitoring. The evaluation results illustrate the effectiveness and robustness of the proposed framework. [PUBLICATION ABSTRACT]
Author Ran, Bin
Wang, Wei
Guo, Xiucheng
Jin, Jing
Author_xml – sequence: 1
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: School of Transportation , Southeast University
– sequence: 2
  givenname: Jing
  surname: Jin
  fullname: Jin, Jing
  organization: Department of Civil and Environmental Engineering , University of Wisconsin-Madison
– sequence: 3
  givenname: Bin
  surname: Ran
  fullname: Ran, Bin
  organization: Department of Civil and Environmental Engineering , University of Wisconsin-Madison
– sequence: 4
  givenname: Xiucheng
  surname: Guo
  fullname: Guo, Xiucheng
  organization: School of Transportation , Southeast University
BookMark eNqFkUFv1DAQhSNUJNrCP-BgceGUxU7sxO4FLYUWpCxUajlbE-84dcnai-1ltf-eRAsceqCn8Xjee5rRd1ac-OCxKF4zumBU0ndM8Lbigi4qythCtJTR-llxOn-XFefVyb-3oC-Ks5QeKK1aSelp8auDOGB5a2BEchUR93AgXzHvQ_xB7iJY6wxZBe9yiM4PF2RJVrAtV5DN_dST5ThMg3y_IR8g4ZoET7qwL7swDPN4Svy5Q28O5PrmltzE0CP5CBleFs8tjAlf_annxferT3eXn8vu2_WXy2VXmlrJXArR8JahUTWyXq4RjBCAIAUA5cY2tjKmUdPtddNj3dhe2JpSJlG1qu9B1efF22PuNoZpkZT1xiWD4wgewy5pRVnDJW_Yk0qpGtYqXtFJ-eaR8iHsop_O0LJlohVCzqKLo8jEkFJEq43LkF3wOYIbNaN6Rqf_otMzOn1EN5n5I_M2ug3Ew1O290eb8zbEDUwMx7XOcBhDtBG8cUnX_034DSSRsCo
CitedBy_id crossref_primary_10_1080_13658816_2015_1086922
crossref_primary_10_1002_atr_1325
crossref_primary_10_1080_15472450_2013_773225
crossref_primary_10_3390_su13137131
crossref_primary_10_1080_13658816_2013_816427
crossref_primary_10_1016_j_trc_2020_02_016
crossref_primary_10_1049_iet_its_2011_0226
crossref_primary_10_3390_ijgi5110204
crossref_primary_10_3390_ijgi8090411
crossref_primary_10_1016_j_neucom_2014_10_104
crossref_primary_10_1109_TITS_2012_2219529
Cites_doi 10.1080/15472450802448179
10.1016/j.trc.2007.05.002
10.1016/S0968-090X(00)00026-7
10.3141/2024-05
10.1109/FSKD.2008.234
10.1109/ITSC.2003.1252683
10.1007/s10291-003-0069-z
10.1080/15472450903385999
10.1080/15472450600793560
10.1080/15472450802448153
10.1080/15472450903386013
10.1177/0361198196156400103
10.3141/1935-08
10.1080/15472450802448146
10.3141/1935-11
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2011
Copyright Taylor & Francis Ltd. 2011
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2011
– notice: Copyright Taylor & Francis Ltd. 2011
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/15472450.2011.570103
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
Civil Engineering Abstracts

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-2442
EndPage 74
ExternalDocumentID 2374022621
10_1080_15472450_2011_570103
570103
Genre Feature
GeographicLocations Los Angeles California
GeographicLocations_xml – name: Los Angeles California
GroupedDBID .7F
.DC
.QJ
0BK
0R~
29K
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADUMR
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGBKS
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CS3
D-I
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MS~
NA5
NX~
O9-
PQQKQ
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~S~
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c398t-556471ec93e1b8deac55aea85aa04cf6f2cc6972436be36fb5f30018e979bba93
ISSN 1547-2450
IngestDate Fri Sep 05 10:16:06 EDT 2025
Sun Aug 24 03:52:37 EDT 2025
Wed Aug 13 05:28:39 EDT 2025
Thu Apr 24 23:10:01 EDT 2025
Wed Oct 01 00:52:00 EDT 2025
Mon Oct 20 23:39:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c398t-556471ec93e1b8deac55aea85aa04cf6f2cc6972436be36fb5f30018e979bba93
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 871575580
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_896179420
crossref_citationtrail_10_1080_15472450_2011_570103
proquest_miscellaneous_901648461
crossref_primary_10_1080_15472450_2011_570103
informaworld_taylorfrancis_310_1080_15472450_2011_570103
proquest_journals_871575580
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 5/5/2011
PublicationDateYYYYMMDD 2011-05-05
PublicationDate_xml – month: 05
  year: 2011
  text: 5/5/2011
  day: 05
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Journal of intelligent transportation systems
PublicationYear 2011
Publisher Taylor & Francis Group
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis Ltd
References Yin H. (CIT0024) 2004
CIT0011
Su H. (CIT0020) 2006
Nassreddine G. (CIT0013) 2008
CIT0016
CIT0015
Ochieng W. Y. (CIT0014) 2004; 55
CIT0018
Garber N. (CIT0006) 2002
CIT0017
Dowling R. G. (CIT0005) 1996; 1564
CIT0019
CIT0021
CIT0023
CIT0022
Joshi R. R. (CIT0009) 2001
May A. (CIT0012) 1990
Zhao Y. (CIT0026) 1997
Zhang Y. (CIT0025) 2008
CIT0003
CIT0002
Kim W. (CIT0010) 2000
Bernstein D. (CIT0001) 1996
CIT0004
Greenfeld J. S. (CIT0007) 2002
CIT0008
References_xml – ident: CIT0008
  doi: 10.1080/15472450802448179
– ident: CIT0017
  doi: 10.1016/j.trc.2007.05.002
– ident: CIT0021
  doi: 10.1016/S0968-090X(00)00026-7
– ident: CIT0015
  doi: 10.3141/2024-05
– volume-title: A new approach to map matching for in-vehicle navigation systems: The rotational variation metric.
  year: 2001
  ident: CIT0009
– volume-title: A fuzzy logic map matching algorithm.
  year: 2008
  ident: CIT0025
  doi: 10.1109/FSKD.2008.234
– ident: CIT0023
  doi: 10.1109/ITSC.2003.1252683
– ident: CIT0018
  doi: 10.1007/s10291-003-0069-z
– ident: CIT0003
  doi: 10.1080/15472450903385999
– volume-title: Efficient use of digital road map in various positioning for ITS.
  year: 2000
  ident: CIT0010
– volume-title: Matching GPS observations to locations on a digital map.
  year: 2002
  ident: CIT0007
– volume: 55
  start-page: 1
  issue: 2
  year: 2004
  ident: CIT0014
  publication-title: Brazilian Journal of Cartography
– ident: CIT0016
  doi: 10.1080/15472450600793560
– ident: CIT0019
  doi: 10.1080/15472450802448153
– volume-title: Traffic and highway engineering. Third Edition
  year: 2002
  ident: CIT0006
– volume-title: Traffic flow fundamentals
  year: 1990
  ident: CIT0012
– ident: CIT0022
  doi: 10.1080/15472450903386013
– volume: 1564
  start-page: 20
  year: 1996
  ident: CIT0005
  publication-title: Transportation Research Record: Journal of the Transportation Research Board
  doi: 10.1177/0361198196156400103
– volume-title: Map matching algorithm using belief function theory.
  year: 2008
  ident: CIT0013
– ident: CIT0002
  doi: 10.3141/1935-08
– volume-title: Vehicle location and navigation systems
  year: 1997
  ident: CIT0026
– volume-title: An introduction to map-matching for personal navigation assistants
  year: 1996
  ident: CIT0001
– ident: CIT0004
  doi: 10.1080/15472450802448146
– volume-title: A integrated map matching algorithm based on fuzzy theory for vehicle navigation system.
  year: 2006
  ident: CIT0020
– volume-title: A weight-based map matching method in moving objects databases.
  year: 2004
  ident: CIT0024
– ident: CIT0011
  doi: 10.3141/1935-11
SSID ssj0027800
Score 1.9627693
Snippet Low-logging frequency GPS probe data have become a major data source for large-scale freeway network traffic monitoring. A critical step in GPS data processing...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 63
SubjectTerms Algorithms
Data processing
Freeway Traffic Monitoring
Fuzzy Logic
Geographic information systems
Global Positioning System
Global positioning systems
GPS
Map Matching
Monitoring
Networks
Roads & highways
Satellite navigation systems
Shortest Path
Traffic control
Traffic engineering
Traffic flow
Title Large-Scale Freeway Network Traffic Monitoring: A Map-Matching Algorithm Based on Low-Logging Frequency GPS Probe Data
URI https://www.tandfonline.com/doi/abs/10.1080/15472450.2011.570103
https://www.proquest.com/docview/871575580
https://www.proquest.com/docview/896179420
https://www.proquest.com/docview/901648461
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1547-2442
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027800
  issn: 1547-2450
  databaseCode: AHDZW
  dateStart: 20020101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1547-2442
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0027800
  issn: 1547-2450
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4EHxKcoA-QHxEvlkcZxmvAWYFuFsoG0Vqt4iRzXGZVGWrqUCf567mznY9rYgJeocuyk8v1yd7bvfkfIqwBJwUJPs6hQOQtyxZkMtGBSIcCKAnwCEyB7GI6nwceZmLUhQSa7pMp31K8r80r-R6rQBnLFLNl_kGzzUGiA3yBfuIKE4fpXMk4xjJsdwTRr8EA1boNhBu-5oWFaS2SHcB_t2uU1J4MDuWIHoH_NzlNyegK3qq_fBu_Ams3x5CBdnrN0eWJqF8EzTaD1z8H-5yPMKcg1wKSSf_BoFw29Z4WlJyxpugXYWYcY3WzfWxVzrBdNCI8rC1abUnP2ZGvJLxoA72_Mzu5ssQGsuY7zdg9WME90tSzSQwSWcXZHd9ss1dYlvW4DIbEPDrPMq2KENSpaO1af3R9-yvamaZpNdmeT16vvDCuM4Um8K7dym2z5YAG8HtlKxh--HLfL88gkLDV_rk60jLw3V734giNzgeb2klk3vsrkPrnnREITi5gH5JYuH5K7HerJR-RHBzvUYYc67FCHHdpi5y1NaBc5tEEONcihy5J2kEMb5FBADjXIoYicx2S6tzt5P2auBgdTPI4qJkQI7otWMdfDPJqDmRZCahkJKb1AFWHhKxXGMDk8zDUPi1wUHAs96ngU57mM-RPSK5elfkqoUMKHtZw_R_LZIIKVMvehV8FDGYgi8PuE1xOaKUdQj3VSTrOh47GtxZChGDIrhj5hzaiVJWi5oX_UlVVWmY2xwlaxyfj1Q7druWZOC5xl0WgIKx4ReX1Cm7ugovHcTZZ6uYEucYhmz7-mS4xMd7AUGD67-Snb5E77UT0nvWq90S_AM67ylw7SvwExcrQa
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3hVLefjA1SUbPzbhtjyWBbKrSm0lbpbttYtESao2C4Jfz0yclBZEkUDKzR7Lj_G8Mv4G4KkkUDCdBV5E77h0XnArg-LWE4PFiDZBlyC71PN9-e6DGrIJT_q0SvKhYwKK6GQ1XW4KRg8pcc9Q7U9yqbKEwKkmVKvgMlxRaOtTEQORLX_6XEX3CoUoOJEMr-f-MMo57XQOu_Q3Wd0poNlNcMPUU97Jp-1167b9919QHf9rbbfgRm-esmnip9twKdR34PoZ0MK78KWi5HG-i4cb2Ow4UPCNLVM2OUPVR5gULIkKInjOpmxhj_gCZT5Fu9j08AAb2o-f2QvUoCvW1KxqvvKqodj3AY3YJXd_Y292dtkOvVZir2xr78H-7PXeyznvqzdwL8qi5UppVHzBlyKMXbFCAa-UDbZQ1mbSRx1z73WJaxXaBaGjU1FQicBQTkrnbCk2YaNu6nAfmPIqRy8gXxFsqSzQxxI59opCW6mizEcghlMzvoc2pwobh2bcI6AOu2poV03a1RHwU6qjBO3xl_7FWYYwbRdSian-iREXk24NzGN6GXFi0FVFW1kV2QjYaStebvpjY-vQrLFLqUlg5hd0KQkjDY3I8YN_n94TuDrfW1Smert8vwXXUthc4fcQNtrjdXiEdlfrHnc36wdwChzJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceFdsy8MHri7Z-LEJt4WyFNiuViqVerNsr10kSrIq2SL49czESdmCKBJIudljOX7MyzPfADyTBAqms8CL6B2XzgtuZVDcejpgMaJO0AbIzvTeoXx3pI7WsvgprJJs6JiAIlpeTZd7uYh9RNxzlPqjXKosAXCqEZUquArXND2KURJHNvtpchVtEgpRcCLpk-f-MMoF4XQBuvQ3Vt3Kn8ltsP3MU9jJp51V43b8919AHf_n1-7ArU45ZeN0mu7ClVDdg5trkIX34WxKoeP8ALc2sMlpINcbm6VYcoaCjxApWGIURPCCjdm-XfJ95Pjk62Ljk2NsaD5-Zi9Rfi5YXbFp_ZVPa_J8H9OIbWj3N_ZmfsDmlKvEdm1jH8Dh5PWHV3u8q93AvSiLhiulUewFX4owdMUC2btSNthCWZtJH3XMvdcl_qvQLggdnYqCCgSGclQ6Z0uxCRtVXYWHwJRXOdoA-YJAS2WBFpbIsVcU2koVZT4A0W-a8R2wOdXXODHDDv-0X1VDq2rSqg6An1MtE7DHX_oX6-fBNK1DJabqJ0ZcTrrdnx3TcYgvBg1V1JRVkQ2Anbfi1ab3GluFeoVdSk3sMr-kS0kIaahCDrf-fXpP4fp8d2Kmb2fvt-FG8pkr_B7BRnO6Co9R6Wrck_Ze_QDGDRtt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Freeway+Network+Traffic+Monitoring%3A+A+Map-Matching+Algorithm+Based+on+Low-Logging+Frequency+GPS+Probe+Data&rft.jtitle=Journal+of+intelligent+transportation+systems&rft.au=Wang%2C+Wei&rft.au=Jin%2C+Jing&rft.au=Ran%2C+Bin&rft.au=Guo%2C+Xiucheng&rft.date=2011-05-05&rft.issn=1547-2450&rft.eissn=1547-2442&rft_id=info:doi/10.1080%2F15472450.2011.570103&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-2450&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-2450&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-2450&client=summon