Large-Scale Freeway Network Traffic Monitoring: A Map-Matching Algorithm Based on Low-Logging Frequency GPS Probe Data
Low-logging frequency GPS probe data have become a major data source for large-scale freeway network traffic monitoring. A critical step in GPS data processing is map matching. However, traditional map-matching algorithms are developed for in-vehicle navigation with high-logging frequency GPS data,...
        Saved in:
      
    
          | Published in | Journal of intelligent transportation systems Vol. 15; no. 2; pp. 63 - 74 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Philadelphia
          Taylor & Francis Group
    
        05.05.2011
     Taylor & Francis Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1547-2450 1547-2442  | 
| DOI | 10.1080/15472450.2011.570103 | 
Cover
| Abstract | Low-logging frequency GPS probe data have become a major data source for large-scale freeway network traffic monitoring. A critical step in GPS data processing is map matching. However, traditional map-matching algorithms are developed for in-vehicle navigation with high-logging frequency GPS data, noting that high-logging frequencies can be 1 s, whereas low-logging frequencies can be a few minutes. Such algorithms map a new GPS positioning point instantaneously given its historical points and network topology. Using high-logging frequency data-based map-matching algorithms for low-logging frequency data can cause several problems. First, large mapping errors in previous GPS points can easily propagate to the current points. Second, one-point-a-time processing is not effective and not necessary for traffic monitoring. Multiple GPS points can be processed together to determine routes more effectively. In this article, the authors propose a map-matching framework for low-logging frequency GPS probe data. The proposed framework (a) incorporates curve matching and probabilistic analysis modules of high-logging frequency map-matching algorithms and (b) introduces a new route determination algorithm for multipoint processing on the basis of fuzzy logic and a concurrent version of the N-shortest path algorithm. The authors evaluated the proposed model using field GPS data sets collected in Los Angeles, California. Evaluation methods include not only traditional random mapping case inspection but also a comparison between the GPS-detected speed and the ground truth loop-detector speed to evaluate its effectiveness for traffic monitoring. The evaluation results illustrate the effectiveness and robustness of the proposed framework. | 
    
|---|---|
| AbstractList | Low-logging frequency GPS probe data have become a major data source for large-scale freeway network traffic monitoring. A critical step in GPS data processing is map matching. However, traditional map-matching algorithms are developed for in-vehicle navigation with high-logging frequency GPS data, noting that high-logging frequencies can be 1 s, whereas low-logging frequencies can be a few minutes. Such algorithms map a new GPS positioning point instantaneously given its historical points and network topology. Using high-logging frequency data-based map-matching algorithms for low-logging frequency data can cause several problems. First, large mapping errors in previous GPS points can easily propagate to the current points. Second, one-point-a-time processing is not effective and not necessary for traffic monitoring. Multiple GPS points can be processed together to determine routes more effectively. In this article, the authors propose a map-matching framework for low-logging frequency GPS probe data. The proposed framework (a) incorporates curve matching and probabilistic analysis modules of high-logging frequency map-matching algorithms and (b) introduces a new route determination algorithm for multipoint processing on the basis of fuzzy logic and a concurrent version of the N-shortest path algorithm. The authors evaluated the proposed model using field GPS data sets collected in Los Angeles, California. Evaluation methods include not only traditional random mapping case inspection but also a comparison between the GPS-detected speed and the ground truth loop-detector speed to evaluate its effectiveness for traffic monitoring. The evaluation results illustrate the effectiveness and robustness of the proposed framework. Low-logging frequency GPS probe data have become a major data source for large-scale freeway network traffic monitoring. A critical step in GPS data processing is map matching. However, traditional map-matching algorithms are developed for in-vehicle navigation with high-logging frequency GPS data, noting that high-logging frequencies can be 1 s, whereas low-logging frequencies can be a few minutes. Such algorithms map a new GPS positioning point instantaneously given its historical points and network topology. Using high-logging frequency data-based map-matching algorithms for low-logging frequency data can cause several problems. First, large mapping errors in previous GPS points can easily propagate to the current points. Second, one-point-a-time processing is not effective and not necessary for traffic monitoring. Multiple GPS points can be processed together to determine routes more effectively. In this article, the authors propose a map-matching framework for low-logging frequency GPS probe data. The proposed framework (a) incorporates curve matching and probabilistic analysis modules of high-logging frequency map-matching algorithms and (b) introduces a new route determination algorithm for multipoint processing on the basis of fuzzy logic and a concurrent version of the N-shortest path algorithm. The authors evaluated the proposed model using field GPS data sets collected in Los Angeles, California. Evaluation methods include not only traditional random mapping case inspection but also a comparison between the GPS-detected speed and the ground truth loop-detector speed to evaluate its effectiveness for traffic monitoring. The evaluation results illustrate the effectiveness and robustness of the proposed framework. [PUBLICATION ABSTRACT]  | 
    
| Author | Ran, Bin Wang, Wei Guo, Xiucheng Jin, Jing  | 
    
| Author_xml | – sequence: 1 givenname: Wei surname: Wang fullname: Wang, Wei organization: School of Transportation , Southeast University – sequence: 2 givenname: Jing surname: Jin fullname: Jin, Jing organization: Department of Civil and Environmental Engineering , University of Wisconsin-Madison – sequence: 3 givenname: Bin surname: Ran fullname: Ran, Bin organization: Department of Civil and Environmental Engineering , University of Wisconsin-Madison – sequence: 4 givenname: Xiucheng surname: Guo fullname: Guo, Xiucheng organization: School of Transportation , Southeast University  | 
    
| BookMark | eNqFkUFv1DAQhSNUJNrCP-BgceGUxU7sxO4FLYUWpCxUajlbE-84dcnai-1ltf-eRAsceqCn8Xjee5rRd1ac-OCxKF4zumBU0ndM8Lbigi4qythCtJTR-llxOn-XFefVyb-3oC-Ks5QeKK1aSelp8auDOGB5a2BEchUR93AgXzHvQ_xB7iJY6wxZBe9yiM4PF2RJVrAtV5DN_dST5ThMg3y_IR8g4ZoET7qwL7swDPN4Svy5Q28O5PrmltzE0CP5CBleFs8tjAlf_annxferT3eXn8vu2_WXy2VXmlrJXArR8JahUTWyXq4RjBCAIAUA5cY2tjKmUdPtddNj3dhe2JpSJlG1qu9B1efF22PuNoZpkZT1xiWD4wgewy5pRVnDJW_Yk0qpGtYqXtFJ-eaR8iHsop_O0LJlohVCzqKLo8jEkFJEq43LkF3wOYIbNaN6Rqf_otMzOn1EN5n5I_M2ug3Ew1O290eb8zbEDUwMx7XOcBhDtBG8cUnX_034DSSRsCo | 
    
| CitedBy_id | crossref_primary_10_1080_13658816_2015_1086922 crossref_primary_10_1002_atr_1325 crossref_primary_10_1080_15472450_2013_773225 crossref_primary_10_3390_su13137131 crossref_primary_10_1080_13658816_2013_816427 crossref_primary_10_1016_j_trc_2020_02_016 crossref_primary_10_1049_iet_its_2011_0226 crossref_primary_10_3390_ijgi5110204 crossref_primary_10_3390_ijgi8090411 crossref_primary_10_1016_j_neucom_2014_10_104 crossref_primary_10_1109_TITS_2012_2219529  | 
    
| Cites_doi | 10.1080/15472450802448179 10.1016/j.trc.2007.05.002 10.1016/S0968-090X(00)00026-7 10.3141/2024-05 10.1109/FSKD.2008.234 10.1109/ITSC.2003.1252683 10.1007/s10291-003-0069-z 10.1080/15472450903385999 10.1080/15472450600793560 10.1080/15472450802448153 10.1080/15472450903386013 10.1177/0361198196156400103 10.3141/1935-08 10.1080/15472450802448146 10.3141/1935-11  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright Taylor & Francis Group, LLC 2011 Copyright Taylor & Francis Ltd. 2011  | 
    
| Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2011 – notice: Copyright Taylor & Francis Ltd. 2011  | 
    
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| DOI | 10.1080/15472450.2011.570103 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts Civil Engineering Abstracts Civil Engineering Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1547-2442 | 
    
| EndPage | 74 | 
    
| ExternalDocumentID | 2374022621 10_1080_15472450_2011_570103 570103  | 
    
| Genre | Feature | 
    
| GeographicLocations | Los Angeles California | 
    
| GeographicLocations_xml | – name: Los Angeles California | 
    
| GroupedDBID | .7F .DC .QJ 0BK 0R~ 29K 30N 4.4 5GY 5VS 8VB AAENE AAGDL AAHIA AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACGOD ACIWK ACTIO ADCVX ADGTB ADUMR ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AFRVT AGBKS AGDLA AGMYJ AHDZW AIJEM AIYEW AJWEG AKBVH AKOOK AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CS3 D-I DGEBU DKSSO DU5 EBS EJD E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM M4Z MS~ NA5 NX~ O9- PQQKQ QWB RIG RNANH ROSJB RTWRZ S-T SNACF TASJS TBQAZ TEN TFL TFT TFW TN5 TNC TTHFI TUROJ TWF UT5 UU3 ZGOLN ZL0 ~S~ AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c398t-556471ec93e1b8deac55aea85aa04cf6f2cc6972436be36fb5f30018e979bba93 | 
    
| ISSN | 1547-2450 | 
    
| IngestDate | Fri Sep 05 10:16:06 EDT 2025 Sun Aug 24 03:52:37 EDT 2025 Wed Aug 13 05:28:39 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Wed Oct 01 00:52:00 EDT 2025 Mon Oct 20 23:39:34 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c398t-556471ec93e1b8deac55aea85aa04cf6f2cc6972436be36fb5f30018e979bba93 | 
    
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23  | 
    
| PQID | 871575580 | 
    
| PQPubID | 23500 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_miscellaneous_896179420 crossref_citationtrail_10_1080_15472450_2011_570103 proquest_miscellaneous_901648461 crossref_primary_10_1080_15472450_2011_570103 informaworld_taylorfrancis_310_1080_15472450_2011_570103 proquest_journals_871575580  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 5/5/2011 | 
    
| PublicationDateYYYYMMDD | 2011-05-05 | 
    
| PublicationDate_xml | – month: 05 year: 2011 text: 5/5/2011 day: 05  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Philadelphia | 
    
| PublicationPlace_xml | – name: Philadelphia | 
    
| PublicationTitle | Journal of intelligent transportation systems | 
    
| PublicationYear | 2011 | 
    
| Publisher | Taylor & Francis Group Taylor & Francis Ltd  | 
    
| Publisher_xml | – name: Taylor & Francis Group – name: Taylor & Francis Ltd  | 
    
| References | Yin H. (CIT0024) 2004 CIT0011 Su H. (CIT0020) 2006 Nassreddine G. (CIT0013) 2008 CIT0016 CIT0015 Ochieng W. Y. (CIT0014) 2004; 55 CIT0018 Garber N. (CIT0006) 2002 CIT0017 Dowling R. G. (CIT0005) 1996; 1564 CIT0019 CIT0021 CIT0023 CIT0022 Joshi R. R. (CIT0009) 2001 May A. (CIT0012) 1990 Zhao Y. (CIT0026) 1997 Zhang Y. (CIT0025) 2008 CIT0003 CIT0002 Kim W. (CIT0010) 2000 Bernstein D. (CIT0001) 1996 CIT0004 Greenfeld J. S. (CIT0007) 2002 CIT0008  | 
    
| References_xml | – ident: CIT0008 doi: 10.1080/15472450802448179 – ident: CIT0017 doi: 10.1016/j.trc.2007.05.002 – ident: CIT0021 doi: 10.1016/S0968-090X(00)00026-7 – ident: CIT0015 doi: 10.3141/2024-05 – volume-title: A new approach to map matching for in-vehicle navigation systems: The rotational variation metric. year: 2001 ident: CIT0009 – volume-title: A fuzzy logic map matching algorithm. year: 2008 ident: CIT0025 doi: 10.1109/FSKD.2008.234 – ident: CIT0023 doi: 10.1109/ITSC.2003.1252683 – ident: CIT0018 doi: 10.1007/s10291-003-0069-z – ident: CIT0003 doi: 10.1080/15472450903385999 – volume-title: Efficient use of digital road map in various positioning for ITS. year: 2000 ident: CIT0010 – volume-title: Matching GPS observations to locations on a digital map. year: 2002 ident: CIT0007 – volume: 55 start-page: 1 issue: 2 year: 2004 ident: CIT0014 publication-title: Brazilian Journal of Cartography – ident: CIT0016 doi: 10.1080/15472450600793560 – ident: CIT0019 doi: 10.1080/15472450802448153 – volume-title: Traffic and highway engineering. Third Edition year: 2002 ident: CIT0006 – volume-title: Traffic flow fundamentals year: 1990 ident: CIT0012 – ident: CIT0022 doi: 10.1080/15472450903386013 – volume: 1564 start-page: 20 year: 1996 ident: CIT0005 publication-title: Transportation Research Record: Journal of the Transportation Research Board doi: 10.1177/0361198196156400103 – volume-title: Map matching algorithm using belief function theory. year: 2008 ident: CIT0013 – ident: CIT0002 doi: 10.3141/1935-08 – volume-title: Vehicle location and navigation systems year: 1997 ident: CIT0026 – volume-title: An introduction to map-matching for personal navigation assistants year: 1996 ident: CIT0001 – ident: CIT0004 doi: 10.1080/15472450802448146 – volume-title: A integrated map matching algorithm based on fuzzy theory for vehicle navigation system. year: 2006 ident: CIT0020 – volume-title: A weight-based map matching method in moving objects databases. year: 2004 ident: CIT0024 – ident: CIT0011 doi: 10.3141/1935-11  | 
    
| SSID | ssj0027800 | 
    
| Score | 1.9627693 | 
    
| Snippet | Low-logging frequency GPS probe data have become a major data source for large-scale freeway network traffic monitoring. A critical step in GPS data processing... | 
    
| SourceID | proquest crossref informaworld  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 63 | 
    
| SubjectTerms | Algorithms Data processing Freeway Traffic Monitoring Fuzzy Logic Geographic information systems Global Positioning System Global positioning systems GPS Map Matching Monitoring Networks Roads & highways Satellite navigation systems Shortest Path Traffic control Traffic engineering Traffic flow  | 
    
| Title | Large-Scale Freeway Network Traffic Monitoring: A Map-Matching Algorithm Based on Low-Logging Frequency GPS Probe Data | 
    
| URI | https://www.tandfonline.com/doi/abs/10.1080/15472450.2011.570103 https://www.proquest.com/docview/871575580 https://www.proquest.com/docview/896179420 https://www.proquest.com/docview/901648461  | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: aylor and Francis Online customDbUrl: mediaType: online eissn: 1547-2442 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027800 issn: 1547-2450 databaseCode: AHDZW dateStart: 20020101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAWR databaseName: Taylor & Francis Science and Technology Library-DRAA customDbUrl: eissn: 1547-2442 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0027800 issn: 1547-2450 databaseCode: 30N dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.tandfonline.com/page/title-lists providerName: Taylor & Francis  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELege4EHxKcoA-QHxEvlkcZxmvAWYFuFsoG0Vqt4iRzXGZVGWrqUCf567mznY9rYgJeocuyk8v1yd7bvfkfIqwBJwUJPs6hQOQtyxZkMtGBSIcCKAnwCEyB7GI6nwceZmLUhQSa7pMp31K8r80r-R6rQBnLFLNl_kGzzUGiA3yBfuIKE4fpXMk4xjJsdwTRr8EA1boNhBu-5oWFaS2SHcB_t2uU1J4MDuWIHoH_NzlNyegK3qq_fBu_Ams3x5CBdnrN0eWJqF8EzTaD1z8H-5yPMKcg1wKSSf_BoFw29Z4WlJyxpugXYWYcY3WzfWxVzrBdNCI8rC1abUnP2ZGvJLxoA72_Mzu5ssQGsuY7zdg9WME90tSzSQwSWcXZHd9ss1dYlvW4DIbEPDrPMq2KENSpaO1af3R9-yvamaZpNdmeT16vvDCuM4Um8K7dym2z5YAG8HtlKxh--HLfL88gkLDV_rk60jLw3V734giNzgeb2klk3vsrkPrnnREITi5gH5JYuH5K7HerJR-RHBzvUYYc67FCHHdpi5y1NaBc5tEEONcihy5J2kEMb5FBADjXIoYicx2S6tzt5P2auBgdTPI4qJkQI7otWMdfDPJqDmRZCahkJKb1AFWHhKxXGMDk8zDUPi1wUHAs96ngU57mM-RPSK5elfkqoUMKHtZw_R_LZIIKVMvehV8FDGYgi8PuE1xOaKUdQj3VSTrOh47GtxZChGDIrhj5hzaiVJWi5oX_UlVVWmY2xwlaxyfj1Q7druWZOC5xl0WgIKx4ReX1Cm7ugovHcTZZ6uYEucYhmz7-mS4xMd7AUGD67-Snb5E77UT0nvWq90S_AM67ylw7SvwExcrQa | 
    
| linkProvider | Library Specific Holdings | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3hVLefjA1SUbPzbhtjyWBbKrSm0lbpbttYtESao2C4Jfz0yclBZEkUDKzR7Lj_G8Mv4G4KkkUDCdBV5E77h0XnArg-LWE4PFiDZBlyC71PN9-e6DGrIJT_q0SvKhYwKK6GQ1XW4KRg8pcc9Q7U9yqbKEwKkmVKvgMlxRaOtTEQORLX_6XEX3CoUoOJEMr-f-MMo57XQOu_Q3Wd0poNlNcMPUU97Jp-1167b9919QHf9rbbfgRm-esmnip9twKdR34PoZ0MK78KWi5HG-i4cb2Ow4UPCNLVM2OUPVR5gULIkKInjOpmxhj_gCZT5Fu9j08AAb2o-f2QvUoCvW1KxqvvKqodj3AY3YJXd_Y292dtkOvVZir2xr78H-7PXeyznvqzdwL8qi5UppVHzBlyKMXbFCAa-UDbZQ1mbSRx1z73WJaxXaBaGjU1FQicBQTkrnbCk2YaNu6nAfmPIqRy8gXxFsqSzQxxI59opCW6mizEcghlMzvoc2pwobh2bcI6AOu2poV03a1RHwU6qjBO3xl_7FWYYwbRdSian-iREXk24NzGN6GXFi0FVFW1kV2QjYaStebvpjY-vQrLFLqUlg5hd0KQkjDY3I8YN_n94TuDrfW1Smert8vwXXUthc4fcQNtrjdXiEdlfrHnc36wdwChzJ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceFdsy8MHri7Z-LEJt4WyFNiuViqVerNsr10kSrIq2SL49czESdmCKBJIudljOX7MyzPfADyTBAqms8CL6B2XzgtuZVDcejpgMaJO0AbIzvTeoXx3pI7WsvgprJJs6JiAIlpeTZd7uYh9RNxzlPqjXKosAXCqEZUquArXND2KURJHNvtpchVtEgpRcCLpk-f-MMoF4XQBuvQ3Vt3Kn8ltsP3MU9jJp51V43b8919AHf_n1-7ArU45ZeN0mu7ClVDdg5trkIX34WxKoeP8ALc2sMlpINcbm6VYcoaCjxApWGIURPCCjdm-XfJ95Pjk62Ljk2NsaD5-Zi9Rfi5YXbFp_ZVPa_J8H9OIbWj3N_ZmfsDmlKvEdm1jH8Dh5PWHV3u8q93AvSiLhiulUewFX4owdMUC2btSNthCWZtJH3XMvdcl_qvQLggdnYqCCgSGclQ6Z0uxCRtVXYWHwJRXOdoA-YJAS2WBFpbIsVcU2koVZT4A0W-a8R2wOdXXODHDDv-0X1VDq2rSqg6An1MtE7DHX_oX6-fBNK1DJabqJ0ZcTrrdnx3TcYgvBg1V1JRVkQ2Anbfi1ab3GluFeoVdSk3sMr-kS0kIaahCDrf-fXpP4fp8d2Kmb2fvt-FG8pkr_B7BRnO6Co9R6Wrck_Ze_QDGDRtt | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large-Scale+Freeway+Network+Traffic+Monitoring%3A+A+Map-Matching+Algorithm+Based+on+Low-Logging+Frequency+GPS+Probe+Data&rft.jtitle=Journal+of+intelligent+transportation+systems&rft.au=Wang%2C+Wei&rft.au=Jin%2C+Jing&rft.au=Ran%2C+Bin&rft.au=Guo%2C+Xiucheng&rft.date=2011-05-05&rft.issn=1547-2450&rft.eissn=1547-2442&rft_id=info:doi/10.1080%2F15472450.2011.570103&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1547-2450&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1547-2450&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1547-2450&client=summon |