Screening for pesticide residues in cocoa (Theobroma cacao L.) by portable infrared spectroscopy
Rapid assessment of pesticide residues ensures cocoa bean quality and marketability. In this study, a portable FTIR instrument equipped with a triple reflection attenuated total reflectance (ATR) accessory was used to screen cocoa beans for pesticide residues. Cocoa beans (n = 75) were obtained from...
        Saved in:
      
    
          | Published in | Talanta (Oxford) Vol. 257; p. 124386 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Netherlands
          Elsevier B.V
    
        15.05.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0039-9140 1873-3573 1873-3573  | 
| DOI | 10.1016/j.talanta.2023.124386 | 
Cover
| Abstract | Rapid assessment of pesticide residues ensures cocoa bean quality and marketability. In this study, a portable FTIR instrument equipped with a triple reflection attenuated total reflectance (ATR) accessory was used to screen cocoa beans for pesticide residues. Cocoa beans (n = 75) were obtained from major cocoa growing regions of Peru and were quantified for pesticides by gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS). The FTIR spectra were used to detect the presence of pesticides in cocoa beans or lipid fraction (butter) by using a pattern recognition (Soft Independent Modeling by Class Analogy, SIMCA) algorithm, which produced a significant discrimination for cocoa nibs (free or with pesticides). The variables related to the class grouping were assigned to the aliphatic (3200–2800 cm−1) region with an interclass distance (ICD) of 3.3. Subsequently, the concentration of pesticides in cocoa beans was predicted using a partial least squares regression analysis (PLSR), using an internal validation of the PLRS model, the cross-validation correlation coefficient (Rval = 0.954) and the cross-validation standard error (SECV = 14.9 mg/kg) were obtained. Additionally, an external validation was performed, obtaining the prediction correlation coefficient (Rpre = 0.940) and the standard error of prediction (SEP = 16.0 μg/kg) with high statistical performances, which demonstrates the excellent predictability of the PLSR model in a similar real application. The developed FTIR method presented limits of detection and quantification (LOD = 9.8 μg/kg; LOQ = 23.1 μg/kg) with four optimum factors (PC). Mid-infrared spectroscopy (MIR) offered a viable alternative for field screening of cocoa.
[Display omitted]
•FTIR and chemometrics are a fast and economic way to determine pesticides in cocoa.•Portable FTIR instruments could monitor cocoa pesticides in the field.•SIMCA was used to classify cocoa beans for pesticide presence.•PLSR was used to quantify pesticide residues in cocoa beans. | 
    
|---|---|
| AbstractList | Rapid assessment of pesticide residues ensures cocoa bean quality and marketability. In this study, a portable FTIR instrument equipped with a triple reflection attenuated total reflectance (ATR) accessory was used to screen cocoa beans for pesticide residues. Cocoa beans (n = 75) were obtained from major cocoa growing regions of Peru and were quantified for pesticides by gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS). The FTIR spectra were used to detect the presence of pesticides in cocoa beans or lipid fraction (butter) by using a pattern recognition (Soft Independent Modeling by Class Analogy, SIMCA) algorithm, which produced a significant discrimination for cocoa nibs (free or with pesticides). The variables related to the class grouping were assigned to the aliphatic (3200–2800 cm−1) region with an interclass distance (ICD) of 3.3. Subsequently, the concentration of pesticides in cocoa beans was predicted using a partial least squares regression analysis (PLSR), using an internal validation of the PLRS model, the cross-validation correlation coefficient (Rval = 0.954) and the cross-validation standard error (SECV = 14.9 mg/kg) were obtained. Additionally, an external validation was performed, obtaining the prediction correlation coefficient (Rpre = 0.940) and the standard error of prediction (SEP = 16.0 μg/kg) with high statistical performances, which demonstrates the excellent predictability of the PLSR model in a similar real application. The developed FTIR method presented limits of detection and quantification (LOD = 9.8 μg/kg; LOQ = 23.1 μg/kg) with four optimum factors (PC). Mid-infrared spectroscopy (MIR) offered a viable alternative for field screening of cocoa.
[Display omitted]
•FTIR and chemometrics are a fast and economic way to determine pesticides in cocoa.•Portable FTIR instruments could monitor cocoa pesticides in the field.•SIMCA was used to classify cocoa beans for pesticide presence.•PLSR was used to quantify pesticide residues in cocoa beans. Rapid assessment of pesticide residues ensures cocoa bean quality and marketability. In this study, a portable FTIR instrument equipped with a triple reflection attenuated total reflectance (ATR) accessory was used to screen cocoa beans for pesticide residues. Cocoa beans (n = 75) were obtained from major cocoa growing regions of Peru and were quantified for pesticides by gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS). The FTIR spectra were used to detect the presence of pesticides in cocoa beans or lipid fraction (butter) by using a pattern recognition (Soft Independent Modeling by Class Analogy, SIMCA) algorithm, which produced a significant discrimination for cocoa nibs (free or with pesticides). The variables related to the class grouping were assigned to the aliphatic (3200–2800 cm⁻¹) region with an interclass distance (ICD) of 3.3. Subsequently, the concentration of pesticides in cocoa beans was predicted using a partial least squares regression analysis (PLSR), using an internal validation of the PLRS model, the cross-validation correlation coefficient (Rval = 0.954) and the cross-validation standard error (SECV = 14.9 mg/kg) were obtained. Additionally, an external validation was performed, obtaining the prediction correlation coefficient (Rpre = 0.940) and the standard error of prediction (SEP = 16.0 μg/kg) with high statistical performances, which demonstrates the excellent predictability of the PLSR model in a similar real application. The developed FTIR method presented limits of detection and quantification (LOD = 9.8 μg/kg; LOQ = 23.1 μg/kg) with four optimum factors (PC). Mid-infrared spectroscopy (MIR) offered a viable alternative for field screening of cocoa. Rapid assessment of pesticide residues ensures cocoa bean quality and marketability. In this study, a portable FTIR instrument equipped with a triple reflection attenuated total reflectance (ATR) accessory was used to screen cocoa beans for pesticide residues. Cocoa beans (n = 75) were obtained from major cocoa growing regions of Peru and were quantified for pesticides by gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS). The FTIR spectra were used to detect the presence of pesticides in cocoa beans or lipid fraction (butter) by using a pattern recognition (Soft Independent Modeling by Class Analogy, SIMCA) algorithm, which produced a significant discrimination for cocoa nibs (free or with pesticides). The variables related to the class grouping were assigned to the aliphatic (3200-2800 cm-1) region with an interclass distance (ICD) of 3.3. Subsequently, the concentration of pesticides in cocoa beans was predicted using a partial least squares regression analysis (PLSR), using an internal validation of the PLRS model, the cross-validation correlation coefficient (Rval = 0.954) and the cross-validation standard error (SECV = 14.9 mg/kg) were obtained. Additionally, an external validation was performed, obtaining the prediction correlation coefficient (Rpre = 0.940) and the standard error of prediction (SEP = 16.0 μg/kg) with high statistical performances, which demonstrates the excellent predictability of the PLSR model in a similar real application. The developed FTIR method presented limits of detection and quantification (LOD = 9.8 μg/kg; LOQ = 23.1 μg/kg) with four optimum factors (PC). Mid-infrared spectroscopy (MIR) offered a viable alternative for field screening of cocoa.Rapid assessment of pesticide residues ensures cocoa bean quality and marketability. In this study, a portable FTIR instrument equipped with a triple reflection attenuated total reflectance (ATR) accessory was used to screen cocoa beans for pesticide residues. Cocoa beans (n = 75) were obtained from major cocoa growing regions of Peru and were quantified for pesticides by gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS). The FTIR spectra were used to detect the presence of pesticides in cocoa beans or lipid fraction (butter) by using a pattern recognition (Soft Independent Modeling by Class Analogy, SIMCA) algorithm, which produced a significant discrimination for cocoa nibs (free or with pesticides). The variables related to the class grouping were assigned to the aliphatic (3200-2800 cm-1) region with an interclass distance (ICD) of 3.3. Subsequently, the concentration of pesticides in cocoa beans was predicted using a partial least squares regression analysis (PLSR), using an internal validation of the PLRS model, the cross-validation correlation coefficient (Rval = 0.954) and the cross-validation standard error (SECV = 14.9 mg/kg) were obtained. Additionally, an external validation was performed, obtaining the prediction correlation coefficient (Rpre = 0.940) and the standard error of prediction (SEP = 16.0 μg/kg) with high statistical performances, which demonstrates the excellent predictability of the PLSR model in a similar real application. The developed FTIR method presented limits of detection and quantification (LOD = 9.8 μg/kg; LOQ = 23.1 μg/kg) with four optimum factors (PC). Mid-infrared spectroscopy (MIR) offered a viable alternative for field screening of cocoa. Rapid assessment of pesticide residues ensures cocoa bean quality and marketability. In this study, a portable FTIR instrument equipped with a triple reflection attenuated total reflectance (ATR) accessory was used to screen cocoa beans for pesticide residues. Cocoa beans (n = 75) were obtained from major cocoa growing regions of Peru and were quantified for pesticides by gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS). The FTIR spectra were used to detect the presence of pesticides in cocoa beans or lipid fraction (butter) by using a pattern recognition (Soft Independent Modeling by Class Analogy, SIMCA) algorithm, which produced a significant discrimination for cocoa nibs (free or with pesticides). The variables related to the class grouping were assigned to the aliphatic (3200-2800 cm ) region with an interclass distance (ICD) of 3.3. Subsequently, the concentration of pesticides in cocoa beans was predicted using a partial least squares regression analysis (PLSR), using an internal validation of the PLRS model, the cross-validation correlation coefficient (R = 0.954) and the cross-validation standard error (SECV = 14.9 mg/kg) were obtained. Additionally, an external validation was performed, obtaining the prediction correlation coefficient (R = 0.940) and the standard error of prediction (SEP = 16.0 μg/kg) with high statistical performances, which demonstrates the excellent predictability of the PLSR model in a similar real application. The developed FTIR method presented limits of detection and quantification (LOD = 9.8 μg/kg; LOQ = 23.1 μg/kg) with four optimum factors (PC). Mid-infrared spectroscopy (MIR) offered a viable alternative for field screening of cocoa.  | 
    
| ArticleNumber | 124386 | 
    
| Author | Sigurdson, Gregory T. Yao, Siyu Rodríguez-Saona, Luis E. Giusti, M. Monica Villanueva, Eudes Glorio-Paulet, Patricia  | 
    
| Author_xml | – sequence: 1 givenname: Eudes orcidid: 0000-0001-9737-5156 surname: Villanueva fullname: Villanueva, Eudes organization: Universidad Nacional Agraria La Molina, Graduate School (UNALM-EPG) Av. La Molina s/n, Lima 12, Peru – sequence: 2 givenname: Patricia orcidid: 0000-0001-9236-8141 surname: Glorio-Paulet fullname: Glorio-Paulet, Patricia organization: Universidad Nacional Agraria La Molina, Instituto de Investigación de Bioquímica y Biología Molecular (UNALM - IIBBM), Av. La Molina s/n, Lima 12, Peru – sequence: 3 givenname: M. Monica surname: Giusti fullname: Giusti, M. Monica organization: Department of Food Science and Technology, The Ohio State University (OSU). 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH, USA – sequence: 4 givenname: Gregory T. surname: Sigurdson fullname: Sigurdson, Gregory T. organization: Department of Food Science and Technology, The Ohio State University (OSU). 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH, USA – sequence: 5 givenname: Siyu surname: Yao fullname: Yao, Siyu organization: Department of Food Science and Technology, The Ohio State University (OSU). 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH, USA – sequence: 6 givenname: Luis E. surname: Rodríguez-Saona fullname: Rodríguez-Saona, Luis E. email: rodriguez-saona.1@osu.edu organization: Department of Food Science and Technology, The Ohio State University (OSU). 110 Parker Food Science and Technology Building, 2015 Fyffe Road, Columbus, OH, USA  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36858014$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkU1vEzEQhi1URNPCTwD5WA672OusP8QBVRUtSJE4UM5m1p4FR5v1YjtI-fe4SuDAJae5PO9o5nmvyMUcZyTkNWctZ1y-27YFJpgLtB3rRMu7tdDyGVlxrUQjeiUuyIoxYRrD1-ySXOW8ZaySTLwgl0LqXjO-XpHvX11CnMP8g44x0QVzCS54pAlz8HvMNMzURReB3jz-xDikuAPqwEGkm_YtHQ50ianAMGElxwQJPc0LupJidnE5vCTPR5gyvjrNa_Lt_uPj3adm8-Xh893tpnHC6NJwLoViCqAf1Og7zoBxLY3zqHDspAE9MI18VEqBGZRE57Vm0HeS99wYLa7JzXHvkuKvenexu5AdTtURxn22gq2Z6I00_Vm0U5pLboQRFX1zQvfDDr1dUthBOti_AivQHwFX_80Jx38IZ_apKLu1p6LsU1H2WFTNvf8v50KBEuJcEoTpbPrDMY3V6O-AyWYXcHboQ6rqrY_hzIY_FaiwtA | 
    
| CitedBy_id | crossref_primary_10_1016_j_trac_2024_117944 crossref_primary_10_1021_acsomega_3c07831 crossref_primary_10_14710_jksa_27_2_45_52 crossref_primary_10_1016_j_jfca_2024_106635 crossref_primary_10_1080_14735903_2024_2379863 crossref_primary_10_1016_j_fochx_2025_102162 crossref_primary_10_3389_fsufs_2024_1401825 crossref_primary_10_3390_foods13050669 crossref_primary_10_3390_resources13100141 crossref_primary_10_1016_j_cej_2025_161496  | 
    
| Cites_doi | 10.1002/ps.1910 10.1016/j.proeng.2012.01.631 10.1002/ansa.202200003 10.1080/00032710902961032 10.1016/j.aca.2010.12.037 10.3390/s21093032 10.1016/j.trac.2016.06.017 10.1080/0306731031000149697 10.1016/j.vibspec.2006.12.005 10.1016/j.aca.2007.08.039 10.1002/fes3.259 10.1080/03601234.2017.1301755 10.1021/acs.jafc.9b05077 10.1007/s12161-014-0015-4 10.1016/j.vibspec.2007.10.005 10.1007/s11746-012-2193-9 10.1021/acsomega.1c03674 10.1016/j.talanta.2005.03.008 10.1016/j.foodcont.2020.107670 10.1016/j.foodchem.2014.09.123 10.1016/j.clay.2005.04.004 10.1255/jnirs.740 10.1016/j.foodcont.2020.107466 10.3389/fpls.2019.00329 10.1016/S0169-7439(98)00159-2 10.1016/j.foodcont.2012.07.045 10.1021/acs.jafc.7b02504 10.1016/j.reffit.2016.11.001 10.1016/j.foodchem.2019.04.008 10.1155/2016/9492030 10.1111/j.1750-3841.2009.01188.x 10.1016/j.foodcont.2016.11.004 10.1016/j.jfca.2015.09.002 10.1109/TIM.2002.807791 10.1016/j.scitotenv.2017.06.122 10.1016/j.ecoenv.2013.11.006 10.1016/j.cofs.2020.04.008 10.1016/j.tifs.2017.03.007 10.3168/jds.2008-1939 10.1016/j.foodres.2018.08.057 10.1002/jsfa.10211 10.1016/j.saa.2021.119759 10.1016/j.foodchem.2021.129095  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved.  | 
    
| Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6  | 
    
| DOI | 10.1016/j.talanta.2023.124386 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1873-3573 | 
    
| ExternalDocumentID | 36858014 10_1016_j_talanta_2023_124386 S0039914023001376  | 
    
| Genre | Journal Article | 
    
| GeographicLocations | Peru | 
    
| GeographicLocations_xml | – name: Peru | 
    
| GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K TN5 TWZ WH7 XPP YK3 YNT ZMT ~02 ~G- 29Q 3O- 53G AAHBH AAQXK AATTM AAXKI AAYJJ AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HMU HVGLF HZ~ R2- SCB WUQ XOL ~HD CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c398t-1163707aa5b7fd210a01869cde7ef269a8b08e1f777a9b76ecd880a5261519983 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0039-9140 1873-3573  | 
    
| IngestDate | Thu Oct 02 21:40:44 EDT 2025 Thu Oct 02 06:15:04 EDT 2025 Wed Feb 19 02:24:26 EST 2025 Thu Apr 24 23:00:17 EDT 2025 Wed Oct 01 05:16:46 EDT 2025 Fri Feb 23 02:35:18 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Herbicides Mid-infrared Cocoa nibs Field portable Organic production  | 
    
| Language | English | 
    
| License | Copyright © 2023 Elsevier B.V. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c398t-1163707aa5b7fd210a01869cde7ef269a8b08e1f777a9b76ecd880a5261519983 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0001-9236-8141 0000-0001-9737-5156  | 
    
| PMID | 36858014 | 
    
| PQID | 2781619393 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_3040359695 proquest_miscellaneous_2781619393 pubmed_primary_36858014 crossref_primary_10_1016_j_talanta_2023_124386 crossref_citationtrail_10_1016_j_talanta_2023_124386 elsevier_sciencedirect_doi_10_1016_j_talanta_2023_124386  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-05-15 | 
    
| PublicationDateYYYYMMDD | 2023-05-15 | 
    
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-15 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Netherlands | 
    
| PublicationPlace_xml | – name: Netherlands | 
    
| PublicationTitle | Talanta (Oxford) | 
    
| PublicationTitleAlternate | Talanta | 
    
| PublicationYear | 2023 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Morgera, Caro, Durán (bib6) 2012 Khanmohammadi, Armenta, Garrigues, de la Guardia (bib52) 2008; 46 Kocaoglu-Vurma, Eliardi, Drake, Rodriguez-Saona, Harper (bib31) 2009; 74 Pang, Yang, He (bib25) 2016; 85 Wu, Liu, Chen, Chen, Xu (bib53) 2008 Dankyi, Carboo, Gordon, Fomsgaard (bib4) 2015; 44 Gonzálvez, Garrigues, Armenta, de la Guardia (bib49) 2011; 688 Arévalo-Gardini, Arévalo-Hernández, Baligar, He (bib5) 2017; 605–606 Aykas, Menevseoglu (bib32) 2021; 121 Yazici, Tiryaki, Ayvaz (bib14) 2020; 100 Santos, Conceição, Viana, Silva, Santos, Ferrão (bib27) 2021; 349 Xue, Cai, Li, Liu (bib17) 2012; 29 Rungchang, Numthuam, Charoensook, Thongkum, Junmatong (bib55) 2018; 14 Zhou, Xiang, Wang, Chen (bib54) 2009; 42 Rodriguez-Saona, Aykas, Borba, Urtubia (bib11) 2020; 31 Trivedi, Kharkar, Mandavgane (bib33) 2016; 2 Shannon, Rein (bib29) 2013 Saxena, Gupta, Murthy (bib48) 2014; 100 Saranwong (bib50) 2007; 15 Nazarloo, R Sharabiani, Gilandeh, Taghinezhad, Szymanek (bib12) 2021; 21 Xu, Gao, Han, Zhao (bib24) 2017; 65 Okiyama, Navarro, Rodrigues (bib38) 2017; 63 Salguero-Chaparro, Gaitán-Jurado, Ortiz-Somovilla, Peña-Rodríguez (bib16) 2013; 30 Armenta, Quintás, Garrigues, de la Guardia (bib46) 2005; 67 Sankom, Mahakarnchanakul, Rittiron, Sajjaanantakul, Thongket (bib56) 2021; 6 Nair (bib35) 2010 Pavlovic, Barriga, Hermosín, Cornejo, Ulibarri (bib47) 2005; 30 Yusiasih, Pitoi, Endah, Ariyani, Koesmawati (bib10) 2021; 119 Zainudin, Salleh, Mohamed, Yap, Muhamad (bib9) 2015; 172 Lu, Li, Li, Shen, He, Zhang, Zhang, Sun, Liu (bib13) 2021; 257 Stachniuk, Szmagara, Czeczko, Fornal (bib8) 2017; 52 Chávez-Dulanto, Thiry, Glorio-Paulet, Vögler, Carvalho (bib3) 2021; 10 Ihedioha, Ejalonibu, Ekere (bib43) 2020; 21 Grillo, Boffa, Binello, Mantegna, Cravotto, Chemat, Dizhbite, Lauberte, Telysheva (bib37) 2019; 115 Xiao, Dong, Liao, Li, Zheng, Zhang, Zhao (bib19) 2015; 8 Nitta, Ishizawa, Goto, Miyahara, Komatus (bib22) 2006 Sánchez, Flores-Rojas, Guerrero, Garrido-Varo, Pérez-Marín (bib15) 2010; 66 (bib36) 2023 Veselá, Barros, Synytsya, Delgadillo, Čopíková, Coimbra (bib40) 2007; 601 Yang, Zhou, Jiang, Fu, Su, Liu, Su (bib20) 2016 Terry, Sanders, Potoff, Kruel, Jain, Guo (bib26) 2022; 3 Bernat, Samiwala, Albo, Jiang, Rao (bib23) 2019; 67 Armenta, Garrigues, de la Guardia (bib51) 2007; 44 Voora, Bermúdez, Larrea (bib1) 2019 Lebecque, Lins, Dayan, Fauconnier, Deleu (bib45) 2019; 10 Rubio-Diaz, Rodriguez-Saona (bib41) 2010 Idowu, Aiyesanmi, Oyegoke (bib44) 2021; 7 Mandrile, Barbosa-Pereira, Sorensen, Giovannozzi, Zeppa, Engelsen, Rossi (bib39) 2019; 292 Maurer, Rodriguez-Saona (bib28) 2013; 90 De Maesschalck, Candolfi, Massart, Heuerding (bib30) 1999; 47 Columé, Diewok, Lendl (bib18) 2004; 84 Hiroaki, Toyonori, Eiji (bib21) 2002; 51 (bib7) 2010 - 2011 (bib2) 2021 Okoffo, Fosu-Mensah, Gordon (bib34) 2017; 73 Chen, Kocaoglu-Vurma, Harper, Rodriguez-Saona (bib42) 2009; 92 Hiroaki (10.1016/j.talanta.2023.124386_bib21) 2002; 51 Chávez-Dulanto (10.1016/j.talanta.2023.124386_bib3) 2021; 10 Xu (10.1016/j.talanta.2023.124386_bib24) 2017; 65 Kocaoglu-Vurma (10.1016/j.talanta.2023.124386_bib31) 2009; 74 (10.1016/j.talanta.2023.124386_bib2) 2021 Saranwong (10.1016/j.talanta.2023.124386_bib50) 2007; 15 Morgera (10.1016/j.talanta.2023.124386_bib6) 2012 Saxena (10.1016/j.talanta.2023.124386_bib48) 2014; 100 Rubio-Diaz (10.1016/j.talanta.2023.124386_bib41) 2010 Zhou (10.1016/j.talanta.2023.124386_bib54) 2009; 42 Lu (10.1016/j.talanta.2023.124386_bib13) 2021; 257 Aykas (10.1016/j.talanta.2023.124386_bib32) 2021; 121 Arévalo-Gardini (10.1016/j.talanta.2023.124386_bib5) 2017; 605–606 Sankom (10.1016/j.talanta.2023.124386_bib56) 2021; 6 Nitta (10.1016/j.talanta.2023.124386_bib22) 2006 Voora (10.1016/j.talanta.2023.124386_bib1) 2019 Idowu (10.1016/j.talanta.2023.124386_bib44) 2021; 7 Yusiasih (10.1016/j.talanta.2023.124386_bib10) 2021; 119 Lebecque (10.1016/j.talanta.2023.124386_bib45) 2019; 10 Okiyama (10.1016/j.talanta.2023.124386_bib38) 2017; 63 Bernat (10.1016/j.talanta.2023.124386_bib23) 2019; 67 (10.1016/j.talanta.2023.124386_bib7) 2010 Stachniuk (10.1016/j.talanta.2023.124386_bib8) 2017; 52 Rungchang (10.1016/j.talanta.2023.124386_bib55) 2018; 14 Khanmohammadi (10.1016/j.talanta.2023.124386_bib52) 2008; 46 Santos (10.1016/j.talanta.2023.124386_bib27) 2021; 349 Zainudin (10.1016/j.talanta.2023.124386_bib9) 2015; 172 Xue (10.1016/j.talanta.2023.124386_bib17) 2012; 29 Columé (10.1016/j.talanta.2023.124386_bib18) 2004; 84 Maurer (10.1016/j.talanta.2023.124386_bib28) 2013; 90 Okoffo (10.1016/j.talanta.2023.124386_bib34) 2017; 73 Ihedioha (10.1016/j.talanta.2023.124386_bib43) 2020; 21 Armenta (10.1016/j.talanta.2023.124386_bib46) 2005; 67 Trivedi (10.1016/j.talanta.2023.124386_bib33) 2016; 2 Yazici (10.1016/j.talanta.2023.124386_bib14) 2020; 100 Armenta (10.1016/j.talanta.2023.124386_bib51) 2007; 44 Terry (10.1016/j.talanta.2023.124386_bib26) 2022; 3 Gonzálvez (10.1016/j.talanta.2023.124386_bib49) 2011; 688 Xiao (10.1016/j.talanta.2023.124386_bib19) 2015; 8 Yang (10.1016/j.talanta.2023.124386_bib20) 2016 Grillo (10.1016/j.talanta.2023.124386_bib37) 2019; 115 Dankyi (10.1016/j.talanta.2023.124386_bib4) 2015; 44 Mandrile (10.1016/j.talanta.2023.124386_bib39) 2019; 292 Nair (10.1016/j.talanta.2023.124386_bib35) 2010 (10.1016/j.talanta.2023.124386_bib36) 2023 Wu (10.1016/j.talanta.2023.124386_bib53) 2008 Salguero-Chaparro (10.1016/j.talanta.2023.124386_bib16) 2013; 30 Sánchez (10.1016/j.talanta.2023.124386_bib15) 2010; 66 Shannon (10.1016/j.talanta.2023.124386_bib29) 2013 Pang (10.1016/j.talanta.2023.124386_bib25) 2016; 85 De Maesschalck (10.1016/j.talanta.2023.124386_bib30) 1999; 47 Veselá (10.1016/j.talanta.2023.124386_bib40) 2007; 601 Pavlovic (10.1016/j.talanta.2023.124386_bib47) 2005; 30 Rodriguez-Saona (10.1016/j.talanta.2023.124386_bib11) 2020; 31 Chen (10.1016/j.talanta.2023.124386_bib42) 2009; 92 Nazarloo (10.1016/j.talanta.2023.124386_bib12) 2021; 21  | 
    
| References_xml | – volume: 172 start-page: 585 year: 2015 end-page: 595 ident: bib9 article-title: Development, validation and determination of multiclass pesticide residues in cocoa beans using gas chromatography and liquid chromatography tandem mass spectrometry publication-title: Food Chem. – volume: 601 start-page: 77 year: 2007 end-page: 86 ident: bib40 article-title: Infrared spectroscopy and outer product analysis for quantification of fat, nitrogen, and moisture of cocoa powder publication-title: Anal. Chim. Acta – volume: 688 start-page: 191 year: 2011 end-page: 196 ident: bib49 article-title: Determination at low ppm levels of dithiocarbamate residues in foodstuff by vapour phase-liquid phase microextraction-infrared spectroscopy publication-title: Anal. Chim. Acta – volume: 63 start-page: 103 year: 2017 end-page: 112 ident: bib38 article-title: Cocoa shell and its compounds: applications in the food industry publication-title: Trends Food Sci. Technol. – volume: 30 start-page: 125 year: 2005 end-page: 133 ident: bib47 article-title: Adsorption of acidic pesticides 2,4-D, Clopyralid and Picloram on calcined hydrotalcite publication-title: Appl. Clay Sci. – volume: 349 year: 2021 ident: bib27 article-title: NIR and MIR spectroscopy for quick detection of the adulteration of cocoa content in chocolates publication-title: Food Chem. – volume: 73 start-page: 1371 year: 2017 end-page: 1378 ident: bib34 article-title: Contamination levels of organophosphorus and synthetic pyrethroid pesticides in cocoa beans from Ghana publication-title: Food Control – volume: 2 start-page: S39 year: 2016 end-page: S46 ident: bib33 article-title: Utilization of cotton plant ash and char for removal of 2, 4-dichlorophenoxyacetic acid publication-title: Resource-Efficient Technologies – volume: 85 start-page: 73 year: 2016 end-page: 82 ident: bib25 article-title: Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides publication-title: Trends Anal. Chem. – volume: 44 start-page: 273 year: 2007 end-page: 278 ident: bib51 article-title: Partial least squares-near infrared determination of pesticides in commercial formulations publication-title: Vib. Spectrosc. – volume: 100 start-page: 218 year: 2014 end-page: 225 ident: bib48 article-title: Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida —a possible mechanism publication-title: Ecotoxicol. Environ. Saf. – volume: 10 start-page: e259 year: 2021 ident: bib3 article-title: Increasing the impact of science and technology to provide more people with healthier and safer food publication-title: Food and Energy Security – start-page: 3901 year: 2006 end-page: 3904 ident: bib22 article-title: A rapid measurement of pesticides residues in broccoli based on IR spectroscopy publication-title: SICE-ICASE International Joint Conference – volume: 47 start-page: 65 year: 1999 end-page: 77 ident: bib30 article-title: Decision criteria for soft independent modelling of class analogy applied to near infrared data publication-title: Chemometr. Intell. Lab. Syst. – volume: 67 start-page: 634 year: 2005 end-page: 639 ident: bib46 article-title: A validated and fast procedure for FTIR determination of Cypermethrin and Chlorpyrifos publication-title: Talanta – year: 2019 ident: bib1 article-title: Global Market Report Cocoa – volume: 46 start-page: 82 year: 2008 end-page: 88 ident: bib52 article-title: Mid- and near-infrared determination of metribuzin in agrochemicals publication-title: Vib. Spectrosc. – year: 2012 ident: bib6 article-title: Organic agriculture and the law publication-title: FAO Legislative Study – volume: 66 start-page: 580 year: 2010 end-page: 586 ident: bib15 article-title: Measurement of pesticide residues in peppers by near-infrared reflectance spectroscopy publication-title: Pest Manag. Sci. – volume: 67 start-page: 12341 year: 2019 end-page: 12347 ident: bib23 article-title: Challenges in SERS-based pesticide detection and plausible solutions publication-title: J. Agric. Food Chem. – volume: 6 start-page: 26404 year: 2021 end-page: 26415 ident: bib56 article-title: Detection of profenofos in Chinese kale, cabbage, and chili spur pepper using fourier transform near-infrared and fourier transform mid-infrared spectroscopies publication-title: ACS Omega – year: 2013 ident: bib29 article-title: Pesticide Authentication by Portable FTIR Spectroscopy – start-page: 131 year: 2010 end-page: 180 ident: bib35 article-title: 5 - cocoa (theobroma cacao L.) publication-title: The Agronomy and Economy of Important Tree Crops of the Developing World – volume: 52 start-page: 446 year: 2017 end-page: 457 ident: bib8 article-title: LC-MS/MS determination of pesticide residues in fruits and vegetables publication-title: Journal of Environmental Science and Health, Part B. – volume: 74 start-page: S232 year: 2009 end-page: S239 ident: bib31 article-title: Rapid profiling of Swiss cheese by attenuated total reflectance (ATR) infrared spectroscopy and descriptive sensory analysis publication-title: J. Food Sci. – volume: 31 start-page: 136 year: 2020 end-page: 150 ident: bib11 article-title: Miniaturization of optical sensors and their potential for high-throughput screening of foods publication-title: Curr. Opin. Food Sci. – volume: 30 start-page: 504 year: 2013 end-page: 509 ident: bib16 article-title: Feasibility of using NIR spectroscopy to detect herbicide residues in intact olives publication-title: Food Control – volume: 51 start-page: 886 year: 2002 end-page: 890 ident: bib21 article-title: Measurement of pesticide residues in food based on diffuse reflectance IR spectroscopy publication-title: IEEE Trans. Instrum. Meas. – volume: 44 start-page: 149 year: 2015 end-page: 157 ident: bib4 article-title: Application of the QuEChERS procedure and LC–MS/MS for the assessment of neonicotinoid insecticide residues in cocoa beans and shells publication-title: J. Food Compos. Anal. – volume: 8 start-page: 1341 year: 2015 end-page: 1346 ident: bib19 article-title: Detection of pesticide (chlorpyrifos) residues on fruit peels through spectra of volatiles by FTIR publication-title: Food Anal. Methods – volume: 14 start-page: 123 year: 2018 end-page: 129 ident: bib55 article-title: Method development for pesticide determination in paddy rice using near infrared spectroscopy publication-title: International Journal of Agricultural Technology – volume: 119 year: 2021 ident: bib10 article-title: Pyrethroid residues in Indonesian cocoa powder: method development, analysis and risk assessment publication-title: Food Control – year: 2023 ident: bib36 article-title: Code of Federal Regulations. A point in time eCFR sustem – volume: 100 start-page: 1980 year: 2020 end-page: 1989 ident: bib14 article-title: Determination of pesticide residual levels in strawberry (Fragaria) by near-infrared spectroscopy publication-title: J. Sci. Food Agric. – volume: 29 start-page: 4124 year: 2012 end-page: 4128 ident: bib17 article-title: Application of particle swarm optimization (PSO) algorithm to determine dichlorvos residue on the surface of navel orange with vis-NIR spectroscopy publication-title: Procedia Eng. – volume: 3 start-page: 113 year: 2022 end-page: 145 ident: bib26 article-title: Applications of surface-enhanced Raman spectroscopy in environmental detection publication-title: Anal Sci Adv – volume: 42 start-page: 1518 year: 2009 end-page: 1526 ident: bib54 article-title: Determination of chlorpyrifos residue by near-infrared spectroscopy in white radish based on interval partial least square (iPLS) model publication-title: Anal. Lett. – volume: 90 start-page: 475 year: 2013 end-page: 481 ident: bib28 article-title: Rapid assessment of quality parameters in cocoa butter using ATR-MIR spectroscopy and multivariate analysis publication-title: J. Am. Oil Chem. Soc. – volume: 84 start-page: 835 year: 2004 end-page: 844 ident: bib18 article-title: Assessment of ftir spectrometry for pesticide screening of aqueous samples publication-title: Int. J. Environ. Anal. Chem. – volume: 21 year: 2020 ident: bib43 article-title: Multi-residue analysis of organochlorine pesticides in cocoa beans (theobroma cacao) and soils from ondo, Nigeria publication-title: Pakistan Journal of Analytical & Environmental Chemistry – volume: 10 start-page: 329 year: 2019 ident: bib45 article-title: Interactions between natural herbicides and lipid bilayers mimicking the plant plasma membrane publication-title: Front. Plant Sci. – volume: 121 year: 2021 ident: bib32 article-title: Rapid method to detect green pea and peanut adulteration in pistachio by using portable FT-MIR and FT-NIR spectroscopy combined with chemometrics publication-title: Food Control – volume: 605–606 start-page: 792 year: 2017 end-page: 800 ident: bib5 article-title: Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru publication-title: Sci. Total Environ. – volume: 292 start-page: 47 year: 2019 end-page: 57 ident: bib39 article-title: Authentication of cocoa bean shells by near- and mid-infrared spectroscopy and inductively coupled plasma-optical emission spectroscopy publication-title: Food Chem. – volume: 7 year: 2021 ident: bib44 article-title: Organochlorine pesticide residues in pods and beans of cocoa (Theobroma cacao L) from Ondo State Central District, Nigeria publication-title: Environmental Advances – start-page: 213 year: 2010 end-page: 228 ident: bib41 article-title: Application of vibrational spectroscopy for the study of heat-induced changes in food components publication-title: Handbook of Vibrational Spectroscopy – year: 2016 ident: bib20 article-title: Rapid detection of pesticide residues in Chinese herbal medicines by fourier transform infrared spectroscopy coupled with partial least squares regression publication-title: J Spectroscopy – volume: 65 start-page: 6719 year: 2017 end-page: 6726 ident: bib24 article-title: Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review publication-title: J. Agric. Food Chem. – year: 2021 ident: bib2 article-title: Quarterly Bulletin of Cocoa Statistics – Cocoa Year 2020/21 – volume: 15 start-page: 227 year: 2007 end-page: 236 ident: bib50 article-title: The reliability of pesticide determinations using near infrared spectroscopy and the dry-extract system for infrared (DESIR) technique publication-title: J. Near Infrared Spectrosc. – volume: 92 start-page: 3575 year: 2009 end-page: 3584 ident: bib42 article-title: Application of infrared microspectroscopy and multivariate analysis for monitoring the effect of adjunct cultures during Swiss cheese ripening publication-title: J. Dairy Sci. – volume: 115 start-page: 200 year: 2019 end-page: 208 ident: bib37 article-title: Cocoa bean shell waste valorisation; extraction from lab to pilot-scale cavitational reactors publication-title: Food Res. Int. – year: 2010 - 2011 ident: bib7 article-title: Pilot study: pesticide residue testing of organic produce publication-title: United States Department of Agriculture – volume: 21 start-page: 3032 year: 2021 ident: bib12 article-title: Evaluation of different models for non-destructive detection of tomato pesticide residues based on near-infrared spectroscopy publication-title: Sensors – volume: 257 year: 2021 ident: bib13 article-title: Detection of chlorpyrifos and carbendazim residues in the cabbage using visible/near-infrared spectroscopy combined with chemometrics publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. – start-page: 2217 year: 2008 end-page: 2222 ident: bib53 article-title: Study on detection technology of pesticide residues in vegetables based on NIR publication-title: Proceedings of International Conference on Computer and Computing Technologies in Agriculture II – volume: 66 start-page: 580 year: 2010 ident: 10.1016/j.talanta.2023.124386_bib15 article-title: Measurement of pesticide residues in peppers by near-infrared reflectance spectroscopy publication-title: Pest Manag. Sci. doi: 10.1002/ps.1910 – volume: 29 start-page: 4124 year: 2012 ident: 10.1016/j.talanta.2023.124386_bib17 article-title: Application of particle swarm optimization (PSO) algorithm to determine dichlorvos residue on the surface of navel orange with vis-NIR spectroscopy publication-title: Procedia Eng. doi: 10.1016/j.proeng.2012.01.631 – volume: 14 start-page: 123 year: 2018 ident: 10.1016/j.talanta.2023.124386_bib55 article-title: Method development for pesticide determination in paddy rice using near infrared spectroscopy publication-title: International Journal of Agricultural Technology – volume: 3 start-page: 113 year: 2022 ident: 10.1016/j.talanta.2023.124386_bib26 article-title: Applications of surface-enhanced Raman spectroscopy in environmental detection publication-title: Anal Sci Adv doi: 10.1002/ansa.202200003 – volume: 42 start-page: 1518 year: 2009 ident: 10.1016/j.talanta.2023.124386_bib54 article-title: Determination of chlorpyrifos residue by near-infrared spectroscopy in white radish based on interval partial least square (iPLS) model publication-title: Anal. Lett. doi: 10.1080/00032710902961032 – year: 2013 ident: 10.1016/j.talanta.2023.124386_bib29 – volume: 688 start-page: 191 year: 2011 ident: 10.1016/j.talanta.2023.124386_bib49 article-title: Determination at low ppm levels of dithiocarbamate residues in foodstuff by vapour phase-liquid phase microextraction-infrared spectroscopy publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2010.12.037 – start-page: 213 year: 2010 ident: 10.1016/j.talanta.2023.124386_bib41 article-title: Application of vibrational spectroscopy for the study of heat-induced changes in food components – volume: 21 start-page: 3032 year: 2021 ident: 10.1016/j.talanta.2023.124386_bib12 article-title: Evaluation of different models for non-destructive detection of tomato pesticide residues based on near-infrared spectroscopy publication-title: Sensors doi: 10.3390/s21093032 – volume: 85 start-page: 73 year: 2016 ident: 10.1016/j.talanta.2023.124386_bib25 article-title: Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides publication-title: Trends Anal. Chem. doi: 10.1016/j.trac.2016.06.017 – volume: 84 start-page: 835 year: 2004 ident: 10.1016/j.talanta.2023.124386_bib18 article-title: Assessment of ftir spectrometry for pesticide screening of aqueous samples publication-title: Int. J. Environ. Anal. Chem. doi: 10.1080/0306731031000149697 – volume: 44 start-page: 273 year: 2007 ident: 10.1016/j.talanta.2023.124386_bib51 article-title: Partial least squares-near infrared determination of pesticides in commercial formulations publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2006.12.005 – year: 2012 ident: 10.1016/j.talanta.2023.124386_bib6 article-title: Organic agriculture and the law – volume: 601 start-page: 77 year: 2007 ident: 10.1016/j.talanta.2023.124386_bib40 article-title: Infrared spectroscopy and outer product analysis for quantification of fat, nitrogen, and moisture of cocoa powder publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2007.08.039 – volume: 10 start-page: e259 year: 2021 ident: 10.1016/j.talanta.2023.124386_bib3 article-title: Increasing the impact of science and technology to provide more people with healthier and safer food publication-title: Food and Energy Security doi: 10.1002/fes3.259 – start-page: 3901 year: 2006 ident: 10.1016/j.talanta.2023.124386_bib22 article-title: A rapid measurement of pesticides residues in broccoli based on IR spectroscopy – volume: 52 start-page: 446 year: 2017 ident: 10.1016/j.talanta.2023.124386_bib8 article-title: LC-MS/MS determination of pesticide residues in fruits and vegetables publication-title: Journal of Environmental Science and Health, Part B. doi: 10.1080/03601234.2017.1301755 – volume: 67 start-page: 12341 year: 2019 ident: 10.1016/j.talanta.2023.124386_bib23 article-title: Challenges in SERS-based pesticide detection and plausible solutions publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b05077 – volume: 8 start-page: 1341 year: 2015 ident: 10.1016/j.talanta.2023.124386_bib19 article-title: Detection of pesticide (chlorpyrifos) residues on fruit peels through spectra of volatiles by FTIR publication-title: Food Anal. Methods doi: 10.1007/s12161-014-0015-4 – volume: 46 start-page: 82 year: 2008 ident: 10.1016/j.talanta.2023.124386_bib52 article-title: Mid- and near-infrared determination of metribuzin in agrochemicals publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2007.10.005 – volume: 90 start-page: 475 year: 2013 ident: 10.1016/j.talanta.2023.124386_bib28 article-title: Rapid assessment of quality parameters in cocoa butter using ATR-MIR spectroscopy and multivariate analysis publication-title: J. Am. Oil Chem. Soc. doi: 10.1007/s11746-012-2193-9 – volume: 6 start-page: 26404 year: 2021 ident: 10.1016/j.talanta.2023.124386_bib56 article-title: Detection of profenofos in Chinese kale, cabbage, and chili spur pepper using fourier transform near-infrared and fourier transform mid-infrared spectroscopies publication-title: ACS Omega doi: 10.1021/acsomega.1c03674 – volume: 67 start-page: 634 year: 2005 ident: 10.1016/j.talanta.2023.124386_bib46 article-title: A validated and fast procedure for FTIR determination of Cypermethrin and Chlorpyrifos publication-title: Talanta doi: 10.1016/j.talanta.2005.03.008 – volume: 121 year: 2021 ident: 10.1016/j.talanta.2023.124386_bib32 article-title: Rapid method to detect green pea and peanut adulteration in pistachio by using portable FT-MIR and FT-NIR spectroscopy combined with chemometrics publication-title: Food Control doi: 10.1016/j.foodcont.2020.107670 – volume: 172 start-page: 585 year: 2015 ident: 10.1016/j.talanta.2023.124386_bib9 article-title: Development, validation and determination of multiclass pesticide residues in cocoa beans using gas chromatography and liquid chromatography tandem mass spectrometry publication-title: Food Chem. doi: 10.1016/j.foodchem.2014.09.123 – volume: 21 year: 2020 ident: 10.1016/j.talanta.2023.124386_bib43 article-title: Multi-residue analysis of organochlorine pesticides in cocoa beans (theobroma cacao) and soils from ondo, Nigeria publication-title: Pakistan Journal of Analytical & Environmental Chemistry – volume: 30 start-page: 125 year: 2005 ident: 10.1016/j.talanta.2023.124386_bib47 article-title: Adsorption of acidic pesticides 2,4-D, Clopyralid and Picloram on calcined hydrotalcite publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2005.04.004 – volume: 15 start-page: 227 year: 2007 ident: 10.1016/j.talanta.2023.124386_bib50 article-title: The reliability of pesticide determinations using near infrared spectroscopy and the dry-extract system for infrared (DESIR) technique publication-title: J. Near Infrared Spectrosc. doi: 10.1255/jnirs.740 – volume: 119 year: 2021 ident: 10.1016/j.talanta.2023.124386_bib10 article-title: Pyrethroid residues in Indonesian cocoa powder: method development, analysis and risk assessment publication-title: Food Control doi: 10.1016/j.foodcont.2020.107466 – volume: 10 start-page: 329 year: 2019 ident: 10.1016/j.talanta.2023.124386_bib45 article-title: Interactions between natural herbicides and lipid bilayers mimicking the plant plasma membrane publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00329 – volume: 47 start-page: 65 year: 1999 ident: 10.1016/j.talanta.2023.124386_bib30 article-title: Decision criteria for soft independent modelling of class analogy applied to near infrared data publication-title: Chemometr. Intell. Lab. Syst. doi: 10.1016/S0169-7439(98)00159-2 – volume: 30 start-page: 504 year: 2013 ident: 10.1016/j.talanta.2023.124386_bib16 article-title: Feasibility of using NIR spectroscopy to detect herbicide residues in intact olives publication-title: Food Control doi: 10.1016/j.foodcont.2012.07.045 – volume: 65 start-page: 6719 year: 2017 ident: 10.1016/j.talanta.2023.124386_bib24 article-title: Detection of pesticide residues in food using surface-enhanced Raman spectroscopy: a review publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.7b02504 – volume: 2 start-page: S39 year: 2016 ident: 10.1016/j.talanta.2023.124386_bib33 article-title: Utilization of cotton plant ash and char for removal of 2, 4-dichlorophenoxyacetic acid publication-title: Resource-Efficient Technologies doi: 10.1016/j.reffit.2016.11.001 – start-page: 2217 year: 2008 ident: 10.1016/j.talanta.2023.124386_bib53 article-title: Study on detection technology of pesticide residues in vegetables based on NIR – year: 2023 ident: 10.1016/j.talanta.2023.124386_bib36 – volume: 292 start-page: 47 year: 2019 ident: 10.1016/j.talanta.2023.124386_bib39 article-title: Authentication of cocoa bean shells by near- and mid-infrared spectroscopy and inductively coupled plasma-optical emission spectroscopy publication-title: Food Chem. doi: 10.1016/j.foodchem.2019.04.008 – year: 2016 ident: 10.1016/j.talanta.2023.124386_bib20 article-title: Rapid detection of pesticide residues in Chinese herbal medicines by fourier transform infrared spectroscopy coupled with partial least squares regression publication-title: J Spectroscopy doi: 10.1155/2016/9492030 – year: 2021 ident: 10.1016/j.talanta.2023.124386_bib2 – volume: 74 start-page: S232 year: 2009 ident: 10.1016/j.talanta.2023.124386_bib31 article-title: Rapid profiling of Swiss cheese by attenuated total reflectance (ATR) infrared spectroscopy and descriptive sensory analysis publication-title: J. Food Sci. doi: 10.1111/j.1750-3841.2009.01188.x – volume: 73 start-page: 1371 year: 2017 ident: 10.1016/j.talanta.2023.124386_bib34 article-title: Contamination levels of organophosphorus and synthetic pyrethroid pesticides in cocoa beans from Ghana publication-title: Food Control doi: 10.1016/j.foodcont.2016.11.004 – volume: 44 start-page: 149 year: 2015 ident: 10.1016/j.talanta.2023.124386_bib4 article-title: Application of the QuEChERS procedure and LC–MS/MS for the assessment of neonicotinoid insecticide residues in cocoa beans and shells publication-title: J. Food Compos. Anal. doi: 10.1016/j.jfca.2015.09.002 – volume: 51 start-page: 886 year: 2002 ident: 10.1016/j.talanta.2023.124386_bib21 article-title: Measurement of pesticide residues in food based on diffuse reflectance IR spectroscopy publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2002.807791 – volume: 605–606 start-page: 792 year: 2017 ident: 10.1016/j.talanta.2023.124386_bib5 article-title: Heavy metal accumulation in leaves and beans of cacao (Theobroma cacao L.) in major cacao growing regions in Peru publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.06.122 – start-page: 131 year: 2010 ident: 10.1016/j.talanta.2023.124386_bib35 article-title: 5 - cocoa (theobroma cacao L.) – volume: 100 start-page: 218 year: 2014 ident: 10.1016/j.talanta.2023.124386_bib48 article-title: Comparative toxicity of carbaryl, carbofuran, cypermethrin and fenvalerate in Metaphire posthuma and Eisenia fetida —a possible mechanism publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2013.11.006 – volume: 7 year: 2021 ident: 10.1016/j.talanta.2023.124386_bib44 article-title: Organochlorine pesticide residues in pods and beans of cocoa (Theobroma cacao L) from Ondo State Central District, Nigeria publication-title: Environmental Advances – year: 2010 ident: 10.1016/j.talanta.2023.124386_bib7 article-title: Pilot study: pesticide residue testing of organic produce – volume: 31 start-page: 136 year: 2020 ident: 10.1016/j.talanta.2023.124386_bib11 article-title: Miniaturization of optical sensors and their potential for high-throughput screening of foods publication-title: Curr. Opin. Food Sci. doi: 10.1016/j.cofs.2020.04.008 – volume: 63 start-page: 103 year: 2017 ident: 10.1016/j.talanta.2023.124386_bib38 article-title: Cocoa shell and its compounds: applications in the food industry publication-title: Trends Food Sci. Technol. doi: 10.1016/j.tifs.2017.03.007 – volume: 92 start-page: 3575 year: 2009 ident: 10.1016/j.talanta.2023.124386_bib42 article-title: Application of infrared microspectroscopy and multivariate analysis for monitoring the effect of adjunct cultures during Swiss cheese ripening publication-title: J. Dairy Sci. doi: 10.3168/jds.2008-1939 – volume: 115 start-page: 200 year: 2019 ident: 10.1016/j.talanta.2023.124386_bib37 article-title: Cocoa bean shell waste valorisation; extraction from lab to pilot-scale cavitational reactors publication-title: Food Res. Int. doi: 10.1016/j.foodres.2018.08.057 – year: 2019 ident: 10.1016/j.talanta.2023.124386_bib1 – volume: 100 start-page: 1980 year: 2020 ident: 10.1016/j.talanta.2023.124386_bib14 article-title: Determination of pesticide residual levels in strawberry (Fragaria) by near-infrared spectroscopy publication-title: J. Sci. Food Agric. doi: 10.1002/jsfa.10211 – volume: 257 year: 2021 ident: 10.1016/j.talanta.2023.124386_bib13 article-title: Detection of chlorpyrifos and carbendazim residues in the cabbage using visible/near-infrared spectroscopy combined with chemometrics publication-title: Spectrochim. Acta Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2021.119759 – volume: 349 year: 2021 ident: 10.1016/j.talanta.2023.124386_bib27 article-title: NIR and MIR spectroscopy for quick detection of the adulteration of cocoa content in chocolates publication-title: Food Chem. doi: 10.1016/j.foodchem.2021.129095  | 
    
| SSID | ssj0002303 | 
    
| Score | 2.5162966 | 
    
| Snippet | Rapid assessment of pesticide residues ensures cocoa bean quality and marketability. In this study, a portable FTIR instrument equipped with a triple... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 124386 | 
    
| SubjectTerms | algorithms butter Cacao - chemistry Chocolate - analysis class cocoa beans Cocoa nibs Field portable gas chromatography Gas Chromatography-Mass Spectrometry - methods Herbicides infrared spectroscopy lipids liquid chromatography mass spectrometry Mid-infrared Organic production Peru Pesticide Residues - analysis pesticides prediction rapid methods reflectance regression analysis Spectrophotometry, Infrared Theobroma cacao  | 
    
| Title | Screening for pesticide residues in cocoa (Theobroma cacao L.) by portable infrared spectroscopy | 
    
| URI | https://dx.doi.org/10.1016/j.talanta.2023.124386 https://www.ncbi.nlm.nih.gov/pubmed/36858014 https://www.proquest.com/docview/2781619393 https://www.proquest.com/docview/3040359695  | 
    
| Volume | 257 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3573 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002303 issn: 0039-9140 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-3573 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002303 issn: 0039-9140 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3573 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002303 issn: 0039-9140 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3573 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002303 issn: 0039-9140 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3573 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002303 issn: 0039-9140 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6LHvQivl0fSwQPeug-mrZJjrIo62svKniLeRUq2i7revDib3emDxdBETy2nZRhks58Q2e-IeTICA5ZsokDroUMopQlgdTOBmmqQ-nFwPKSielmnIzuo8uH-KFFhk0vDJZV1r6_8umlt67v9Gpr9iZZhj2-EFwhPwAQjbx5SLsdRRynGHQ_5mUe8LQm3pUBSs-7eHpPSDII-iP9UMi6EOkYtlT_HJ9-w59lHDpfJSs1gKSnlY5rpOXzdbI0bOa2bZDHW4u1NBCSKABSOkEaDZs5TyGxzhy8m2Y5BTdYaHqMnflmWrxoarXVBb3unlDzTktMbp49SKZTrFCnZUMmEl8Wk_dNcn9-djccBfUchcAyKWbBADAX73OtY8NTBzme7uMgKus892mYSC1MX_hByjnX0vDEWwdftY5DRDuQjrEtspAXud8h1HAb-hJVRSkSz0iXaCe45xZs60LTJlFjPWVrknGcdfGsmmqyJ1UbXaHRVWX0Nul-LZtULBt_LRDN1qhvx0VBJPhr6WGzlQp2Bv-P6NwXb68q5ALwr2SS_S7DwOmxWCYybpPt6hx8aVxy-UPKuft_5fbIMl5hecIg3icLs-mbPwDUMzOd8lh3yOLpxdVo_AneEQBk | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPcAFteW10IeReiiH7CNOYvtYrYq2ZeECSNyMX5GygmS1LAcu_HZm8gBVAiH1mtiRM3Zmvk-Z-Qbgh5UCWbJNI2GkipKcZ5Ey3kV5bmIV5MiJWonp9CybXCZ_r9KrFRh3tTCUVtn6_san1966vTJorTmYFwXV-GJwRX6AIJp087JV-JCksSAG1n98yfPA263yropo-EsZz2BGKoP4AqQ_FPM-hjpONdWvB6i3AGgdiI4_wmaLINmvZpGfYCWUn2F93DVu24Lrc0fJNBiTGCJSNicdDVf4wJBZFx6fzYqSoR-sDPtJpfl2Ud0a5owzFZv2j5h9YDUotzcBR-YLSlFndUUmKV9W84dtuDz-fTGeRG0jhchxJZfRCEGXGApjUityjyTPDKkTlfNBhDzOlJF2KMMoF0IYZUUWnMfP2qQxwR3kY3wH1sqqDHvArHBxqGFVkpPyjPKZ8VIE4dC2PrY9SDrradeqjFOzixvdpZPNdGt0TUbXjdF70H-eNm9kNt6bILut0f-cF42h4L2ph91WatwZ-kFiylDd3-lYSATAiiv-9hiOXo-nKlNpD3abc_C84lrMHznn_v8v7jusTy5Op3r65-zkADboDuUqjNIvsLZc3IevCIGW9lt9xJ8AvxIB-Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+for+pesticide+residues+in+cocoa+%28Theobroma+cacao+L.%29+by+portable+infrared+spectroscopy&rft.jtitle=Talanta+%28Oxford%29&rft.au=Villanueva%2C+Eudes&rft.au=Glorio-Paulet%2C+Patricia&rft.au=Giusti%2C+M.+Monica&rft.au=Sigurdson%2C+Gregory+T.&rft.date=2023-05-15&rft.pub=Elsevier+B.V&rft.issn=0039-9140&rft.eissn=1873-3573&rft.volume=257&rft_id=info:doi/10.1016%2Fj.talanta.2023.124386&rft.externalDocID=S0039914023001376 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon |