A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment
The paper considers a variational formulation of brittle fracture in elastic solids and proposes a numerical implementation by a finite element method. On the theoretical side, we outline a consistent thermodynamic framework for crack propagation in an elastic solid. It is shown that both the elasti...
Saved in:
| Published in | International journal for numerical methods in engineering Vol. 72; no. 2; pp. 127 - 155 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester, UK
John Wiley & Sons, Ltd
08.10.2007
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0029-5981 1097-0207 1097-0207 |
| DOI | 10.1002/nme.1999 |
Cover
| Abstract | The paper considers a variational formulation of brittle fracture in elastic solids and proposes a numerical implementation by a finite element method. On the theoretical side, we outline a consistent thermodynamic framework for crack propagation in an elastic solid. It is shown that both the elastic equilibrium response as well as the local crack evolution follow in a natural format by exploitation of a global Clausius–Planck inequality in the sense of Coleman's method. Here, the canonical direction of the crack propagation associated with the classical Griffith criterion is the direction of the material configurational force which maximizes the local dissipation at the crack tip and minimizes the incremental energy release. On the numerical side, we exploit this variational structure in terms of crack‐driving configurational forces. First, a standard finite element discretization in space yields a discrete formulation of the global dissipation in terms configurational nodal forces. As a consequence, the constitutive setting of crack propagation in the space‐discretized finite element context is naturally related to discrete nodes of a typical finite element mesh. Next, consistent with the node‐based setting, the discretization of the evolving crack discontinuity is performed by the doubling of critical nodes and interface segments of the mesh. Critical for the success of this procedure is its embedding into an r‐adaptive crack‐segment reorientation procedure with configurational‐force‐based directional indicator. Here, successive crack releases appear in discrete steps associated with the given space discretization. These are performed by a staggered loading–release algorithm of energy minimization at frozen crack state followed by the successive crack releases at frozen deformation. This constitutes a sequence of positive‐definite discrete subproblems with successively decreasing overall stiffness, providing an extremely robust algorithmic setting in the postcritical range. We demonstrate the performance of the formulation by means of representative numerical simulations. Copyright © 2007 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | The paper considers a variational formulation of brittle fracture in elastic solids and proposes a numerical implementation by a finite element method. On the theoretical side, we outline a consistent thermodynamic framework for crack propagation in an elastic solid. It is shown that both the elastic equilibrium response as well as the local crack evolution follow in a natural format by exploitation of a global Clausius–Planck inequality in the sense of Coleman's method. Here, the canonical direction of the crack propagation associated with the classical Griffith criterion is the direction of the material configurational force which maximizes the local dissipation at the crack tip and minimizes the incremental energy release. On the numerical side, we exploit this variational structure in terms of crack‐driving configurational forces. First, a standard finite element discretization in space yields a discrete formulation of the global dissipation in terms configurational nodal forces. As a consequence, the constitutive setting of crack propagation in the space‐discretized finite element context is naturally related to discrete nodes of a typical finite element mesh. Next, consistent with the node‐based setting, the discretization of the evolving crack discontinuity is performed by the doubling of critical nodes and interface segments of the mesh. Critical for the success of this procedure is its embedding into an r‐adaptive crack‐segment reorientation procedure with configurational‐force‐based directional indicator. Here, successive crack releases appear in discrete steps associated with the given space discretization. These are performed by a staggered loading–release algorithm of energy minimization at frozen crack state followed by the successive crack releases at frozen deformation. This constitutes a sequence of positive‐definite discrete subproblems with successively decreasing overall stiffness, providing an extremely robust algorithmic setting in the postcritical range. We demonstrate the performance of the formulation by means of representative numerical simulations. Copyright © 2007 John Wiley & Sons, Ltd. The paper considers a variational formulation of brittle fracture in elastic solids and proposes a numerical implementation by a finite element method. On the theoretical side, we outline a consistent thermodynamic framework for crack propagation in an elastic solid. It is shown that both the elastic equilibrium response as well as the local crack evolution follow in a natural format by exploitation of a global Clausius-Planck inequality in the sense of Coleman's method. Here, the canonical direction of the crack propagation associated with the classical Griffith criterion is the direction of the material configurational force which maximizes the local dissipation at the crack tip and minimizes the incremental energy release. On the numerical side, we exploit this variational structure in terms of crack-driving configurational forces. First, a standard finite element discretization in space yields a discrete formulation of the global dissipation in terms configurational nodal forces. As a consequence, the constitutive setting of crack propagation in the space-discretized finite element context is naturally related to discrete nodes of a typical finite element mesh. Next, consistent with the node-based setting, the discretization of the evolving crack discontinuity is performed by the doubling of critical nodes and interface segments of the mesh. Critical for the success of this procedure is its embedding into an r-adaptive crack-segment reorientation procedure with configurational-force-based directional indicator. Here, successive crack releases appear in discrete steps associated with the given space discretization. These are performed by a staggered loading-release algorithm of energy minimization at frozen crack state followed by the successive crack releases at frozen deformation. This constitutes a sequence of positive-definite discrete subproblems with successively decreasing overall stiffness, providing an extremely robust algorithmic setting in the postcritical range. We demonstrate the performance of the formulation by means of representative numerical simulations. |
| Author | Miehe, C. Gürses, E. |
| Author_xml | – sequence: 1 givenname: C. surname: Miehe fullname: Miehe, C. email: cm@mechbau.uni-stuttgart.de organization: Institut für Mechanik (Bauwesen) Lehrstuhl I, Universität Stuttgart, Stuttgart 70550, Pfaffenwaldring 7, Germany – sequence: 2 givenname: E. surname: Gürses fullname: Gürses, E. organization: Institut für Mechanik (Bauwesen) Lehrstuhl I, Universität Stuttgart, Stuttgart 70550, Pfaffenwaldring 7, Germany |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19109499$$DView record in Pascal Francis |
| BookMark | eNp90F1rFDEUBuAgFdxWwZ-QG0UvZk0yn-eyLLUVagVRhN6EM9lkG5vJjEnGdf99092iKOpV4OTJy5tzTI786DUhzzlbcsbEGz_oJQeAR2TBGbQFE6w9Iot8BUUNHX9CjmP8yhjnNSsXxJ3SMPZzTBTdZgw23QzUjIGq0Ru7mQMmO3p0RZ4pXayD_a497bNLTlMVUN3SKYwTbvaQbnMA_VjgGqeUKR10vMnJdpNr-fSUPDboon72cJ6Qz2_PPq0uissP5-9Wp5eFKqGDAmHdGTAIYDj0UPGqbSuhu16XDeoGRF_1uq47lqe1RtEpQME7w6DrGyP68oS8PuTOfsLdFp2TU7ADhp3kTN6vSeY-8n5N2b482PyNb7OOSQ42Ku0cej3OUZaMi7Jp6gxfPECMCp0J6JWNv4Ihr7vaBy4PToUxxqCNVDbtt5MCWve3Bq_-ePCfssWBbq3Tu386efX-7HdvY9I_fnoMt7Jpy7aWX67OZduBWInraynKOz4ds8U |
| CODEN | IJNMBH |
| CitedBy_id | crossref_primary_10_1002_nme_2620 crossref_primary_10_1109_TCPMT_2022_3149809 crossref_primary_10_1002_nme_2861 crossref_primary_10_1002_nme_5699 crossref_primary_10_1002_nme_2468 crossref_primary_10_1002_pamm_201800414 crossref_primary_10_1016_j_ijrmms_2018_10_001 crossref_primary_10_2208_jscejam_70_I_297 crossref_primary_10_1007_s41745_017_0041_5 crossref_primary_10_1186_s40323_017_0088_x crossref_primary_10_1002_nme_6271 crossref_primary_10_1016_j_cma_2012_07_005 crossref_primary_10_1016_j_cma_2016_09_018 crossref_primary_10_1016_j_enganabound_2019_03_008 crossref_primary_10_1016_j_tafmec_2024_104452 crossref_primary_10_1016_j_wear_2013_12_009 crossref_primary_10_1007_s10704_019_00353_1 crossref_primary_10_1016_j_engfracmech_2022_108403 crossref_primary_10_12989_cac_2015_16_4_587 crossref_primary_10_1016_j_engfracmech_2015_10_042 crossref_primary_10_1016_j_cma_2010_04_011 crossref_primary_10_1007_s00226_017_0943_4 crossref_primary_10_1016_j_cma_2016_09_028 crossref_primary_10_1002_pamm_200700171 crossref_primary_10_1002_pamm_200910078 crossref_primary_10_1016_j_ijplas_2015_10_007 crossref_primary_10_1016_j_tafmec_2024_104723 crossref_primary_10_1007_s10704_016_0125_7 crossref_primary_10_1007_s10704_022_00633_3 crossref_primary_10_1016_j_apm_2017_11_015 crossref_primary_10_1016_j_engfracmech_2024_109996 crossref_primary_10_1007_s00466_009_0418_z crossref_primary_10_1016_j_tafmec_2021_103186 crossref_primary_10_1002_nme_7414 crossref_primary_10_1007_s00466_017_1530_0 crossref_primary_10_1002_pamm_200810305 crossref_primary_10_1002_nme_4546 crossref_primary_10_1016_j_cma_2008_12_028 crossref_primary_10_1016_j_taml_2020_01_022 crossref_primary_10_1016_j_cma_2015_03_009 crossref_primary_10_1007_s00466_013_0855_6 crossref_primary_10_1007_s11709_018_0477_3 crossref_primary_10_1002_pamm_201610069 crossref_primary_10_1016_j_engfracmech_2017_11_017 crossref_primary_10_1007_s10704_012_9753_8 crossref_primary_10_1016_j_prostr_2024_11_102 crossref_primary_10_1155_2018_4081264 crossref_primary_10_1080_0305215X_2019_1609466 crossref_primary_10_1016_j_engfracmech_2024_109918 crossref_primary_10_1007_s10704_021_00541_y crossref_primary_10_1016_j_tafmec_2024_104434 crossref_primary_10_1002_nme_3061 crossref_primary_10_1002_nme_5484 crossref_primary_10_1002_nme_4774 crossref_primary_10_1016_j_cma_2022_114880 crossref_primary_10_1016_j_cma_2022_115851 crossref_primary_10_1016_j_engfracmech_2013_11_001 crossref_primary_10_1016_j_engfracmech_2019_02_029 crossref_primary_10_1007_s00466_016_1328_5 crossref_primary_10_1016_j_ijplas_2016_04_011 crossref_primary_10_1007_s11440_019_00880_0 crossref_primary_10_1002_nme_3210 crossref_primary_10_1002_nme_4387 crossref_primary_10_1002_zamm_200800132 crossref_primary_10_1016_j_jmps_2013_06_007 crossref_primary_10_1016_j_cma_2023_116336 crossref_primary_10_1016_j_ijplas_2018_11_010 crossref_primary_10_2208_jscejam_68_31 crossref_primary_10_1016_j_cma_2019_03_029 crossref_primary_10_1007_s11831_016_9169_0 crossref_primary_10_1016_j_compgeo_2019_04_014 crossref_primary_10_1016_j_ijsolstr_2023_112551 crossref_primary_10_1016_j_engfracmech_2024_110241 crossref_primary_10_1016_j_engfracmech_2013_06_006 crossref_primary_10_1016_j_ijsolstr_2014_12_004 crossref_primary_10_1007_s00466_017_1438_8 crossref_primary_10_1016_j_jmps_2010_06_013 crossref_primary_10_1016_j_engfracmech_2023_109782 crossref_primary_10_1007_s10704_019_00349_x crossref_primary_10_2208_jsceja_65_165 crossref_primary_10_1111_ffe_14155 crossref_primary_10_1177_10812865211071088 crossref_primary_10_1016_j_ijfatigue_2012_06_002 crossref_primary_10_1016_j_cma_2019_06_014 crossref_primary_10_1007_s00419_014_0882_6 crossref_primary_10_1002_nme_5133 crossref_primary_10_1016_j_cma_2014_01_021 crossref_primary_10_1016_j_engfracmech_2018_12_006 crossref_primary_10_1016_j_cma_2017_05_012 crossref_primary_10_1088_1361_665X_ab7145 crossref_primary_10_1016_j_engfracmech_2016_02_017 crossref_primary_10_1007_s00466_015_1172_z crossref_primary_10_1016_j_tafmec_2014_06_006 crossref_primary_10_1155_2013_849231 crossref_primary_10_1002_gamm_201610003 crossref_primary_10_1016_j_mspro_2014_06_334 crossref_primary_10_1016_j_finel_2019_03_001 crossref_primary_10_1017_jmech_2017_85 crossref_primary_10_1177_1081286517724607 crossref_primary_10_1016_j_ijsolstr_2023_112456 crossref_primary_10_1002_nme_5282 crossref_primary_10_1002_nme_6653 crossref_primary_10_1016_j_physd_2009_02_008 crossref_primary_10_1007_s10704_015_0067_5 crossref_primary_10_1016_j_cma_2010_07_021 crossref_primary_10_1016_j_compstruct_2015_08_051 crossref_primary_10_3390_ma17153786 crossref_primary_10_1002_pamm_201310034 crossref_primary_10_1002_nme_4731 crossref_primary_10_1002_nme_6911 crossref_primary_10_1016_j_compstruct_2024_118652 crossref_primary_10_1016_j_ngib_2022_07_001 crossref_primary_10_1016_j_cma_2017_08_031 crossref_primary_10_1002_pamm_200700620 crossref_primary_10_1007_s00366_023_01840_9 crossref_primary_10_1016_j_cma_2014_11_016 crossref_primary_10_1007_s00466_010_0542_9 |
| Cites_doi | 10.1007/s003660200013 10.1002/nme.1620090302 10.1016/j.cma.2005.09.020 10.1115/1.3601206 10.1023/A:1018672922734 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J 10.1002/nme.1620100103 10.1002/nme.1007 10.1016/0022-5096(94)90003-5 10.1007/BF01174730 10.1002/nme.1246 10.1016/j.cma.2003.12.041 10.1002/nme.273 10.1016/S0045-7825(02)00524-8 10.1007/b137232 10.1016/0013-7944(95)00247-2 10.1002/(SICI)1097-0207(19961115)39:21<3601::AID-NME64>3.0.CO;2-4 10.1016/j.cma.2004.07.025 10.1002/nme.143 10.1002/nme.1445 10.1002/nme.1620110109 10.1016/0008-8846(76)90007-7 10.1016/0022-5096(96)00014-2 10.1016/S0065-2156(08)70121-2 10.1002/nme.1573 10.1016/0022-5096(60)90013-2 10.1088/0965-0393/1/2/001 10.1016/0013-7944(85)90029-3 10.1007/978-1-4899-4481-8 10.1007/BF00041325 10.1002/nme.351 10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E 10.1007/s00211-003-0456-y 10.1098/rsta.1951.0016 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7 10.1007/s002050100187 10.1007/s00466-002-0322-2 10.1007/BF00372173 10.1063/1.1711937 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S 10.1016/S0022-5096(98)00034-9 10.1002/nme.834 10.1016/j.finel.2004.01.002 10.1098/rsta.1921.0006 10.1016/S0022-5096(98)00002-7 10.1007/BF01177002 10.1016/S0022-5096(99)00028-9 10.1002/(SICI)1097-0207(20000710)48:7<963::AID-NME908>3.0.CO;2-X 10.1016/S0020-7683(99)00155-9 10.1016/S0020-7683(00)00381-4 |
| ContentType | Journal Article |
| Copyright | Copyright © 2007 John Wiley & Sons, Ltd. 2007 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2007 John Wiley & Sons, Ltd. – notice: 2007 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1002/nme.1999 |
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics Physics |
| EISSN | 1097-0207 |
| EndPage | 155 |
| ExternalDocumentID | oai:https://open.metu.edu.tr:11511/35424 19109499 10_1002_nme_1999 NME1999 ark_67375_WNG_7892C2ZZ_2 |
| Genre | article |
| GrantInformation_xml | – fundername: Deutsche Forschungsgesellschaft (DFG) funderid: Mi 295/10 |
| GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX CITATION .4S 6TJ ABDPE ABEML ACKIV ACSCC AGHNM AI. ARCSS GBZZK HF~ IQODW M6O PALCI RIWAO SAMSI TUS VH1 VOH ZY4 ~A~ 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D ADTOC AIQQE UNPAY |
| ID | FETCH-LOGICAL-c3989-a9d8f9fa99f19b94147742e8be36ae692b4be55807425ea28c9a218f098b6f2b3 |
| IEDL.DBID | DR2 |
| ISSN | 0029-5981 1097-0207 |
| IngestDate | Sun Oct 26 04:01:56 EDT 2025 Thu Oct 02 06:31:58 EDT 2025 Mon Jul 21 09:15:37 EDT 2025 Wed Oct 01 05:10:24 EDT 2025 Thu Apr 24 23:08:27 EDT 2025 Wed Aug 20 07:25:54 EDT 2025 Tue Sep 09 05:31:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Constitutive equation Discontinuity Energy release Brittle fracture Brittle material Minimization Modeling Adaptive method Crack propagation crack simulations fracture Staggered arrangement Finite element method Thermodynamics Alignment configurational forces Post critical range Positive definite matrix Variational calculus Griffith crack Crack tip Mesh generation finite elements energy minimization |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3989-a9d8f9fa99f19b94147742e8be36ae692b4be55807425ea28c9a218f098b6f2b3 |
| Notes | ark:/67375/WNG-7892C2ZZ-2 Deutsche Forschungsgesellschaft (DFG) - No. Mi 295/10 ArticleID:NME1999 istex:39F0359E8EB2332CB781B29E9671F5B73D1D7F01 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hdl.handle.net/11511/35424 |
| PQID | 30123665 |
| PQPubID | 23500 |
| PageCount | 29 |
| ParticipantIDs | unpaywall_primary_10_1002_nme_1999 proquest_miscellaneous_30123665 pascalfrancis_primary_19109499 crossref_citationtrail_10_1002_nme_1999 crossref_primary_10_1002_nme_1999 wiley_primary_10_1002_nme_1999_NME1999 istex_primary_ark_67375_WNG_7892C2ZZ_2 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 8 October 2007 |
| PublicationDateYYYYMMDD | 2007-10-08 |
| PublicationDate_xml | – month: 10 year: 2007 text: 8 October 2007 day: 08 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationTitleAlternate | Int. J. Numer. Meth. Engng |
| PublicationYear | 2007 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Oliver J. Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part2: numerical simulation. International Journal for Numerical Methods in Engineering 1996; 39:3601-3623. Barsoum RS. On the use of isoparemetric finite elements linear fracture mechanics. International Journal for Numerical Methods in Engineering 1976; 10:25-37. Francfort GA, Marigo JJ. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 1998; 46:1319-1342. Ruiz G, Pandolfi A, Ortiz M. Three dimensional cohesive modeling of dynamic mix-mode fracture. International Journal for Numerical Methods in Engineering 2001; 52:97-120. Rooke DP, Cartwright DJ. Compendium of Stress Intensity Factors. Hillingdon Press: Uxbridge, 1976. Fagerström M, Larsson R. Theory and numerics for finite deformation fracture modelling using strong discontinuities. International Journal for Numerical Methods in Engineering 2006; 66:911-948. Phongthanapanich S, Dechaumphai P. Adaptive delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Elements in Analysis and Design 2004; 40:1753-1771. Belytschko T, Black T. Elastic crack growth in finite element with minimal remeshing. International Journal for Numerical Methods in Engineering 1999; 45:601-620. Coleman B, Gurtin ME. Thermodynamics with internal state variables. The Journal of Chemical Physics 1967; 47:597-613. Gasser TC, Holzapfel GA. Modelling 3D crack propagation in unreinforced concrete using PUFEM. Computer Methods in Applied Mechanics and Engineering 2005; 194:2859-2896. Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 1968; 35:379-386. Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 1960; 8:100-104. Larsson R, Fagerström M. A framework for fracture modelling based on the material forces concept with XFEM kinematics. International Journal for Numerical Methods in Engineering 2005; 62:1763-1788. Ruiz G, Ortiz M, Pandolfi A. Three dimensional finite element simulation of the dynamic Brazilian test on concrete cylinders. International Journal for Numerical Methods in Engineering 2000; 48:963-994. Heintz P, Larsson F, Hansbo P, Runesson K. Adaptive strategies and error control for computing material forces in fracture mechanics. International Journal for Numerical Methods in Engineering 2004; 60:1287-1299. Mueller R, Kolling S, Gross D. On configurational forces in the context of the finite element method. International Journal for Numerical Methods in Engineering 2002; 53:1557-1574. HillerborgA, Modeer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 1976; 6:773-782. Henshell RD, Shaw KG. Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering 1975; 9:495-507. Gurtin ME, Podio-Guidugli P. Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving. Journal of the Mechanics and Physics of Solids 1998; 46:1343-1378. Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 2000; 48:797-826. Xu XP, Needleman A. Void nucleation by inclusion debonding in a crystal matrix. Modelling and Simulation in Materials Science and Engineering 1993; 1:111-132. Pandolfi A, Ortiz M. An efficient adaptive procedure for three-dimensional fragmentation simulations. Engineering with Computers 2002; 18:148-159. Griffith AA. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 1921; 221:163-198. Mueller R, Maugin GA. On material forces and finite element discretization. Computational Mechanics 2002; 29:52-60. Gurtin ME. On the energy release rate in quasistatic elastic crack propagation. Journal of Elasticity 1979; 9:187-195. Li FZ, Shih CF, Needleman A. A comparison methods for calculating energy release rates. Engineering Fracture Mechanics 1985; 21:405-421. Steinmann P, Ackermann D, Barth FJ. Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting. International Journal of Solids and Structures 2001; 38:5509-5526. Eshelby JD. The force on an elastic singularity. Philosophical Transactions of the Royal Society London A 1951; 224:87-112. Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering 1999; 44:1267-1282. Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Computer Methods in Applied Mechanics and Engineering 2002; 191:5537-5552. Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 1999; 46:131-150. Maugin GA. Material Inhomogeneities in Elasticity. Chapman & Hall: London, 1993. Stumpf H, Le KC. Variational principles of nonlinear fracture mechanics. Acta Mechanica 1990; 83:25-37. Barenblatt GI. Mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 1962; 7:55-129. Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL. Quasi-automatic simulation of crack propagation for 2D LEFM problems. Engineering Fracture Mechanics 1996; 55:321-334. Pandolfi A, Guduru PR, Ortiz M, Rosakis AJ. Three-dimensional cohesive elements analysis and experiments of dynamic fracture in C300 steels. International Journal of Solids and Structures 2000; 37:3733-3760. Maugin GA, Trimarco C. Pseudomomentum and material forces in nonlinear elasticity: variational formulations and applications to brittle fracture. Acta Mechanica 1992; 94:1-28. Oliver J, Huespe AE, Sanchez PJ. A comperative study on finite elements for capturing strong discontinuities: E-FEM vs. X-FEM. Computer Methods in Applied Mechanics and Engineering 2006, in press. Denzer R, Barth FJ, Steinmann P. Studies in elastic fracture mechanics based on the material force method. International Journal for Numerical Methods in Engineering 2003; 58:1817-1835. Hansbo A, Hansbo P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 2004; 193:3523-3540. Heintz P. On the numerical modelling of quasi-static crack growth in linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering 2006; 65:174-189. Barsoum RS. Triangular quarter point elements as elastic and perfectly-plastic crack tip elements. International Journal for Numerical Methods in Engineering 1977; 11:85-98. Kienzler R, Herrmann G. Mechanics in Material Space with Applications to Defect and Fracture Mechanics. Springer: Berlin, Heidelberg, 2000. Pandolfi A, Krysl P, Ortiz M. Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. International Journal of Fracture 1999; 95:279-297. Dal Maso G, Toader R. A model for the quasistatic growth of brittle fractures: existence and approximation results. Archive for Rational Mechanics and Analysis 2002; 162:101-135. Gurtin ME, Podio-Guidugli P. Configurational forces and the basic laws for crack propagation. Journal of the Mechanics and Physics of Solids 1996; 44:905-927. Wells GN, Sluys LJ. A new method for modeling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering 2001; 50:2667-2682. Simo JC, Oliver J, Armero F. An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Computational Mechanics 1993; 12:277-296. Xu XP, Needleman A. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 1994; 42:1397-1434. Gurtin ME. Configurational Forces as Basic Concepts of Continuum Physics. Springer: New York, 2000. Oliver J. Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part1: fundamentals. International Journal for Numerical Methods in Engineering 1996; 39:3575-3600. Steinmann P, Maugin GA (eds). Mechanics of Material Forces. Springer: Berlin, 2005. Negri M. A finite element approximation of the Griffith's model in fracture mechanics. Numerische Mathematik 2003; 95:653-687. 2001; 50 1996; 39 2002; 191 2002; 18 2004; 60 2000; 48 2002; 53 1999; 46 2005; 62 1976 1999; 45 2003; 58 1999; 44 1960; 8 1970 1951; 224 1921; 221 1993; 1 2003; 95 1985; 21 1992; 94 1998; 46 2000 2006; 65 2006; 66 1999; 95 1975; 9 1958; 6 1979; 9 2001; 52 2005; 194 2004; 40 1962; 7 2006 2005 1993 1967; 47 1976; 6 1990; 83 1994; 42 1996; 55 1976; 10 1968; 35 1993; 12 2002; 29 2000; 37 2002; 162 2004; 193 1977; 11 2001; 38 1924 1996; 44 e_1_2_1_41_2 e_1_2_1_22_2 e_1_2_1_45_2 e_1_2_1_20_2 e_1_2_1_43_2 e_1_2_1_26_2 e_1_2_1_49_2 e_1_2_1_24_2 e_1_2_1_47_2 e_1_2_1_28_2 Rooke DP (e_1_2_1_51_2) 1976 Kienzler R (e_1_2_1_14_2) 2000 e_1_2_1_6_2 e_1_2_1_54_2 e_1_2_1_56_2 e_1_2_1_2_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_50_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_52_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_35_2 e_1_2_1_8_2 Gurtin ME (e_1_2_1_13_2) 2000 e_1_2_1_18_2 e_1_2_1_39_2 e_1_2_1_40_2 e_1_2_1_23_2 e_1_2_1_44_2 e_1_2_1_21_2 e_1_2_1_42_2 e_1_2_1_27_2 e_1_2_1_48_2 e_1_2_1_25_2 e_1_2_1_46_2 Irwin GR (e_1_2_1_4_2) 1958 e_1_2_1_29_2 e_1_2_1_30_2 e_1_2_1_53_2 e_1_2_1_7_2 e_1_2_1_55_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_32_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_36_2 e_1_2_1_19_2 e_1_2_1_57_2 e_1_2_1_17_2 e_1_2_1_9_2 |
| References_xml | – reference: Heintz P. On the numerical modelling of quasi-static crack growth in linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering 2006; 65:174-189. – reference: Griffith AA. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 1921; 221:163-198. – reference: Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL. Quasi-automatic simulation of crack propagation for 2D LEFM problems. Engineering Fracture Mechanics 1996; 55:321-334. – reference: Wells GN, Sluys LJ. A new method for modeling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering 2001; 50:2667-2682. – reference: Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Computer Methods in Applied Mechanics and Engineering 2002; 191:5537-5552. – reference: Barsoum RS. On the use of isoparemetric finite elements linear fracture mechanics. International Journal for Numerical Methods in Engineering 1976; 10:25-37. – reference: Gurtin ME, Podio-Guidugli P. Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving. Journal of the Mechanics and Physics of Solids 1998; 46:1343-1378. – reference: Gasser TC, Holzapfel GA. Modelling 3D crack propagation in unreinforced concrete using PUFEM. Computer Methods in Applied Mechanics and Engineering 2005; 194:2859-2896. – reference: Mueller R, Maugin GA. On material forces and finite element discretization. Computational Mechanics 2002; 29:52-60. – reference: Dal Maso G, Toader R. A model for the quasistatic growth of brittle fractures: existence and approximation results. Archive for Rational Mechanics and Analysis 2002; 162:101-135. – reference: Fagerström M, Larsson R. Theory and numerics for finite deformation fracture modelling using strong discontinuities. International Journal for Numerical Methods in Engineering 2006; 66:911-948. – reference: Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 2000; 48:797-826. – reference: Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 1999; 46:131-150. – reference: Kienzler R, Herrmann G. Mechanics in Material Space with Applications to Defect and Fracture Mechanics. Springer: Berlin, Heidelberg, 2000. – reference: Francfort GA, Marigo JJ. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 1998; 46:1319-1342. – reference: Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 1960; 8:100-104. – reference: Pandolfi A, Guduru PR, Ortiz M, Rosakis AJ. Three-dimensional cohesive elements analysis and experiments of dynamic fracture in C300 steels. International Journal of Solids and Structures 2000; 37:3733-3760. – reference: Coleman B, Gurtin ME. Thermodynamics with internal state variables. The Journal of Chemical Physics 1967; 47:597-613. – reference: Henshell RD, Shaw KG. Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering 1975; 9:495-507. – reference: Xu XP, Needleman A. Void nucleation by inclusion debonding in a crystal matrix. Modelling and Simulation in Materials Science and Engineering 1993; 1:111-132. – reference: Heintz P, Larsson F, Hansbo P, Runesson K. Adaptive strategies and error control for computing material forces in fracture mechanics. International Journal for Numerical Methods in Engineering 2004; 60:1287-1299. – reference: Li FZ, Shih CF, Needleman A. A comparison methods for calculating energy release rates. Engineering Fracture Mechanics 1985; 21:405-421. – reference: Oliver J. Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part1: fundamentals. International Journal for Numerical Methods in Engineering 1996; 39:3575-3600. – reference: Pandolfi A, Krysl P, Ortiz M. Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. International Journal of Fracture 1999; 95:279-297. – reference: Steinmann P, Maugin GA (eds). Mechanics of Material Forces. Springer: Berlin, 2005. – reference: Hansbo A, Hansbo P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 2004; 193:3523-3540. – reference: Oliver J. Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part2: numerical simulation. International Journal for Numerical Methods in Engineering 1996; 39:3601-3623. – reference: Larsson R, Fagerström M. A framework for fracture modelling based on the material forces concept with XFEM kinematics. International Journal for Numerical Methods in Engineering 2005; 62:1763-1788. – reference: Pandolfi A, Ortiz M. An efficient adaptive procedure for three-dimensional fragmentation simulations. Engineering with Computers 2002; 18:148-159. – reference: Rooke DP, Cartwright DJ. Compendium of Stress Intensity Factors. Hillingdon Press: Uxbridge, 1976. – reference: Xu XP, Needleman A. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 1994; 42:1397-1434. – reference: Barsoum RS. Triangular quarter point elements as elastic and perfectly-plastic crack tip elements. International Journal for Numerical Methods in Engineering 1977; 11:85-98. – reference: Ruiz G, Ortiz M, Pandolfi A. Three dimensional finite element simulation of the dynamic Brazilian test on concrete cylinders. International Journal for Numerical Methods in Engineering 2000; 48:963-994. – reference: Barenblatt GI. Mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 1962; 7:55-129. – reference: Maugin GA. Material Inhomogeneities in Elasticity. Chapman & Hall: London, 1993. – reference: Mueller R, Kolling S, Gross D. On configurational forces in the context of the finite element method. International Journal for Numerical Methods in Engineering 2002; 53:1557-1574. – reference: Phongthanapanich S, Dechaumphai P. Adaptive delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Elements in Analysis and Design 2004; 40:1753-1771. – reference: Gurtin ME. On the energy release rate in quasistatic elastic crack propagation. Journal of Elasticity 1979; 9:187-195. – reference: Maugin GA, Trimarco C. Pseudomomentum and material forces in nonlinear elasticity: variational formulations and applications to brittle fracture. Acta Mechanica 1992; 94:1-28. – reference: HillerborgA, Modeer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 1976; 6:773-782. – reference: Eshelby JD. The force on an elastic singularity. Philosophical Transactions of the Royal Society London A 1951; 224:87-112. – reference: Simo JC, Oliver J, Armero F. An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Computational Mechanics 1993; 12:277-296. – reference: Gurtin ME. Configurational Forces as Basic Concepts of Continuum Physics. Springer: New York, 2000. – reference: Oliver J, Huespe AE, Sanchez PJ. A comperative study on finite elements for capturing strong discontinuities: E-FEM vs. X-FEM. Computer Methods in Applied Mechanics and Engineering 2006, in press. – reference: Steinmann P, Ackermann D, Barth FJ. Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting. International Journal of Solids and Structures 2001; 38:5509-5526. – reference: Denzer R, Barth FJ, Steinmann P. Studies in elastic fracture mechanics based on the material force method. International Journal for Numerical Methods in Engineering 2003; 58:1817-1835. – reference: Stumpf H, Le KC. Variational principles of nonlinear fracture mechanics. Acta Mechanica 1990; 83:25-37. – reference: Ruiz G, Pandolfi A, Ortiz M. Three dimensional cohesive modeling of dynamic mix-mode fracture. International Journal for Numerical Methods in Engineering 2001; 52:97-120. – reference: Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 1968; 35:379-386. – reference: Gurtin ME, Podio-Guidugli P. Configurational forces and the basic laws for crack propagation. Journal of the Mechanics and Physics of Solids 1996; 44:905-927. – reference: Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering 1999; 44:1267-1282. – reference: Belytschko T, Black T. Elastic crack growth in finite element with minimal remeshing. International Journal for Numerical Methods in Engineering 1999; 45:601-620. – reference: Negri M. A finite element approximation of the Griffith's model in fracture mechanics. Numerische Mathematik 2003; 95:653-687. – volume: 1 start-page: 111 year: 1993 end-page: 132 article-title: Void nucleation by inclusion debonding in a crystal matrix publication-title: Modelling and Simulation in Materials Science and Engineering – year: 2006 article-title: A comperative study on finite elements for capturing strong discontinuities: E‐FEM vs. X‐FEM publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 35 start-page: 379 year: 1968 end-page: 386 article-title: A path independent integral and the approximate analysis of strain concentration by notches and cracks publication-title: Journal of Applied Mechanics – volume: 6 start-page: 551 year: 1958 end-page: 590 – year: 2005 – volume: 7 start-page: 55 year: 1962 end-page: 129 article-title: Mathematical theory of equilibrium cracks in brittle fracture publication-title: Advances in Applied Mechanics – volume: 9 start-page: 495 year: 1975 end-page: 507 article-title: Crack tip finite elements are unnecessary publication-title: International Journal for Numerical Methods in Engineering – volume: 95 start-page: 653 year: 2003 end-page: 687 article-title: A finite element approximation of the Griffith's model in fracture mechanics publication-title: Numerische Mathematik – volume: 94 start-page: 1 year: 1992 end-page: 28 article-title: Pseudomomentum and material forces in nonlinear elasticity: variational formulations and applications to brittle fracture publication-title: Acta Mechanica – volume: 55 start-page: 321 year: 1996 end-page: 334 article-title: Quasi‐automatic simulation of crack propagation for 2D LEFM problems publication-title: Engineering Fracture Mechanics – start-page: 55 year: 1924 end-page: 63 – volume: 9 start-page: 187 year: 1979 end-page: 195 article-title: On the energy release rate in quasistatic elastic crack propagation publication-title: Journal of Elasticity – volume: 47 start-page: 597 year: 1967 end-page: 613 article-title: Thermodynamics with internal state variables publication-title: The Journal of Chemical Physics – volume: 40 start-page: 1753 year: 2004 end-page: 1771 article-title: Adaptive delaunay triangulation with object‐oriented programming for crack propagation analysis publication-title: Finite Elements in Analysis and Design – volume: 37 start-page: 3733 year: 2000 end-page: 3760 article-title: Three‐dimensional cohesive elements analysis and experiments of dynamic fracture in C300 steels publication-title: International Journal of Solids and Structures – volume: 162 start-page: 101 year: 2002 end-page: 135 article-title: A model for the quasistatic growth of brittle fractures: existence and approximation results publication-title: Archive for Rational Mechanics and Analysis – volume: 95 start-page: 279 year: 1999 end-page: 297 article-title: Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture publication-title: International Journal of Fracture – volume: 46 start-page: 131 year: 1999 end-page: 150 article-title: A finite element method for crack growth without remeshing publication-title: International Journal for Numerical Methods in Engineering – volume: 46 start-page: 1343 year: 1998 end-page: 1378 article-title: Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving publication-title: Journal of the Mechanics and Physics of Solids – volume: 221 start-page: 163 year: 1921 end-page: 198 article-title: The phenomena of rupture and flow in solids publication-title: Philosophical Transactions of the Royal Society of London – volume: 8 start-page: 100 year: 1960 end-page: 104 article-title: Yielding of steel sheets containing slits publication-title: Journal of the Mechanics and Physics of Solids – volume: 18 start-page: 148 year: 2002 end-page: 159 article-title: An efficient adaptive procedure for three‐dimensional fragmentation simulations publication-title: Engineering with Computers – volume: 53 start-page: 1557 year: 2002 end-page: 1574 article-title: On configurational forces in the context of the finite element method publication-title: International Journal for Numerical Methods in Engineering – volume: 66 start-page: 911 year: 2006 end-page: 948 article-title: Theory and numerics for finite deformation fracture modelling using strong discontinuities publication-title: International Journal for Numerical Methods in Engineering – volume: 52 start-page: 97 year: 2001 end-page: 120 article-title: Three dimensional cohesive modeling of dynamic mix‐mode fracture publication-title: International Journal for Numerical Methods in Engineering – year: 1993 – year: 1976 – volume: 11 start-page: 85 year: 1977 end-page: 98 article-title: Triangular quarter point elements as elastic and perfectly–plastic crack tip elements publication-title: International Journal for Numerical Methods in Engineering – volume: 21 start-page: 405 year: 1985 end-page: 421 article-title: A comparison methods for calculating energy release rates publication-title: Engineering Fracture Mechanics – volume: 50 start-page: 2667 year: 2001 end-page: 2682 article-title: A new method for modeling cohesive cracks using finite elements publication-title: International Journal for Numerical Methods in Engineering – volume: 38 start-page: 5509 year: 2001 end-page: 5526 article-title: Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting publication-title: International Journal of Solids and Structures – volume: 48 start-page: 963 year: 2000 end-page: 994 article-title: Three dimensional finite element simulation of the dynamic Brazilian test on concrete cylinders publication-title: International Journal for Numerical Methods in Engineering – volume: 83 start-page: 25 year: 1990 end-page: 37 article-title: Variational principles of nonlinear fracture mechanics publication-title: Acta Mechanica – volume: 58 start-page: 1817 year: 2003 end-page: 1835 article-title: Studies in elastic fracture mechanics based on the material force method publication-title: International Journal for Numerical Methods in Engineering – volume: 45 start-page: 601 year: 1999 end-page: 620 article-title: Elastic crack growth in finite element with minimal remeshing publication-title: International Journal for Numerical Methods in Engineering – volume: 60 start-page: 1287 year: 2004 end-page: 1299 article-title: Adaptive strategies and error control for computing material forces in fracture mechanics publication-title: International Journal for Numerical Methods in Engineering – volume: 46 start-page: 1319 year: 1998 end-page: 1342 article-title: Revisiting brittle fracture as an energy minimization problem publication-title: Journal of the Mechanics and Physics of Solids – year: 2000 – start-page: 77 year: 1970 end-page: 115 – volume: 62 start-page: 1763 year: 2005 end-page: 1788 article-title: A framework for fracture modelling based on the material forces concept with XFEM kinematics publication-title: International Journal for Numerical Methods in Engineering – volume: 193 start-page: 3523 year: 2004 end-page: 3540 article-title: A finite element method for the simulation of strong and weak discontinuities in solid mechanics publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 39 start-page: 3601 year: 1996 end-page: 3623 article-title: Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part2: numerical simulation publication-title: International Journal for Numerical Methods in Engineering – volume: 29 start-page: 52 year: 2002 end-page: 60 article-title: On material forces and finite element discretization publication-title: Computational Mechanics – volume: 39 start-page: 3575 year: 1996 end-page: 3600 article-title: Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part1: fundamentals publication-title: International Journal for Numerical Methods in Engineering – volume: 44 start-page: 905 year: 1996 end-page: 927 article-title: Configurational forces and the basic laws for crack propagation publication-title: Journal of the Mechanics and Physics of Solids – volume: 48 start-page: 797 year: 2000 end-page: 826 article-title: Numerical experiments in revisited brittle fracture publication-title: Journal of the Mechanics and Physics of Solids – volume: 10 start-page: 25 year: 1976 end-page: 37 article-title: On the use of isoparemetric finite elements linear fracture mechanics publication-title: International Journal for Numerical Methods in Engineering – volume: 12 start-page: 277 year: 1993 end-page: 296 article-title: An analysis of strong discontinuities induced by strain‐softening in rate‐independent inelastic solids publication-title: Computational Mechanics – volume: 44 start-page: 1267 year: 1999 end-page: 1282 article-title: Finite‐deformation irreversible cohesive elements for three‐dimensional crack‐propagation analysis publication-title: International Journal for Numerical Methods in Engineering – volume: 65 start-page: 174 year: 2006 end-page: 189 article-title: On the numerical modelling of quasi‐static crack growth in linear elastic fracture mechanics publication-title: International Journal for Numerical Methods in Engineering – volume: 194 start-page: 2859 year: 2005 end-page: 2896 article-title: Modelling 3D crack propagation in unreinforced concrete using PUFEM publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 191 start-page: 5537 year: 2002 end-page: 5552 article-title: An unfitted finite element method, based on Nitsche's method, for elliptic interface problems publication-title: Computer Methods in Applied Mechanics and Engineering – volume: 6 start-page: 773 year: 1976 end-page: 782 article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements publication-title: Cement and Concrete Research – volume: 42 start-page: 1397 year: 1994 end-page: 1434 article-title: Numerical simulations of fast crack growth in brittle solids publication-title: Journal of the Mechanics and Physics of Solids – volume: 224 start-page: 87 year: 1951 end-page: 112 article-title: The force on an elastic singularity publication-title: Philosophical Transactions of the Royal Society London A – volume-title: Configurational Forces as Basic Concepts of Continuum Physics year: 2000 ident: e_1_2_1_13_2 – ident: e_1_2_1_45_2 doi: 10.1007/s003660200013 – ident: e_1_2_1_54_2 doi: 10.1002/nme.1620090302 – ident: e_1_2_1_32_2 doi: 10.1016/j.cma.2005.09.020 – ident: e_1_2_1_3_2 – ident: e_1_2_1_10_2 doi: 10.1115/1.3601206 – ident: e_1_2_1_47_2 doi: 10.1023/A:1018672922734 – ident: e_1_2_1_29_2 doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J – ident: e_1_2_1_52_2 doi: 10.1002/nme.1620100103 – ident: e_1_2_1_39_2 doi: 10.1002/nme.1007 – ident: e_1_2_1_46_2 doi: 10.1016/0022-5096(94)90003-5 – ident: e_1_2_1_9_2 – ident: e_1_2_1_6_2 doi: 10.1007/BF01174730 – ident: e_1_2_1_40_2 doi: 10.1002/nme.1246 – ident: e_1_2_1_34_2 doi: 10.1016/j.cma.2003.12.041 – ident: e_1_2_1_50_2 doi: 10.1002/nme.273 – ident: e_1_2_1_33_2 doi: 10.1016/S0045-7825(02)00524-8 – ident: e_1_2_1_17_2 doi: 10.1007/b137232 – volume-title: Compendium of Stress Intensity Factors year: 1976 ident: e_1_2_1_51_2 – ident: e_1_2_1_56_2 doi: 10.1016/0013-7944(95)00247-2 – ident: e_1_2_1_27_2 doi: 10.1002/(SICI)1097-0207(19961115)39:21<3601::AID-NME64>3.0.CO;2-4 – ident: e_1_2_1_31_2 doi: 10.1016/j.cma.2004.07.025 – ident: e_1_2_1_30_2 doi: 10.1002/nme.143 – ident: e_1_2_1_42_2 doi: 10.1002/nme.1445 – ident: e_1_2_1_53_2 doi: 10.1002/nme.1620110109 – ident: e_1_2_1_22_2 doi: 10.1016/0008-8846(76)90007-7 – ident: e_1_2_1_15_2 doi: 10.1016/0022-5096(96)00014-2 – ident: e_1_2_1_5_2 doi: 10.1016/S0065-2156(08)70121-2 – ident: e_1_2_1_41_2 doi: 10.1002/nme.1573 – ident: e_1_2_1_21_2 doi: 10.1016/0022-5096(60)90013-2 – ident: e_1_2_1_23_2 doi: 10.1088/0965-0393/1/2/001 – ident: e_1_2_1_55_2 doi: 10.1016/0013-7944(85)90029-3 – ident: e_1_2_1_11_2 doi: 10.1007/978-1-4899-4481-8 – ident: e_1_2_1_12_2 doi: 10.1007/BF00041325 – ident: e_1_2_1_38_2 doi: 10.1002/nme.351 – ident: e_1_2_1_26_2 doi: 10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E – ident: e_1_2_1_43_2 doi: 10.1007/s00211-003-0456-y – volume-title: Mechanics in Material Space with Applications to Defect and Fracture Mechanics year: 2000 ident: e_1_2_1_14_2 – start-page: 551 volume-title: Encyclopedia of Physics year: 1958 ident: e_1_2_1_4_2 – ident: e_1_2_1_8_2 doi: 10.1098/rsta.1951.0016 – ident: e_1_2_1_24_2 doi: 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7 – ident: e_1_2_1_19_2 doi: 10.1007/s002050100187 – ident: e_1_2_1_37_2 doi: 10.1007/s00466-002-0322-2 – ident: e_1_2_1_25_2 doi: 10.1007/BF00372173 – ident: e_1_2_1_44_2 doi: 10.1063/1.1711937 – ident: e_1_2_1_28_2 doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S – ident: e_1_2_1_18_2 doi: 10.1016/S0022-5096(98)00034-9 – ident: e_1_2_1_36_2 doi: 10.1002/nme.834 – ident: e_1_2_1_57_2 doi: 10.1016/j.finel.2004.01.002 – ident: e_1_2_1_2_2 doi: 10.1098/rsta.1921.0006 – ident: e_1_2_1_16_2 doi: 10.1016/S0022-5096(98)00002-7 – ident: e_1_2_1_7_2 doi: 10.1007/BF01177002 – ident: e_1_2_1_20_2 doi: 10.1016/S0022-5096(99)00028-9 – ident: e_1_2_1_49_2 doi: 10.1002/(SICI)1097-0207(20000710)48:7<963::AID-NME908>3.0.CO;2-X – ident: e_1_2_1_48_2 doi: 10.1016/S0020-7683(99)00155-9 – ident: e_1_2_1_35_2 doi: 10.1016/S0020-7683(00)00381-4 |
| SSID | ssj0011503 |
| Score | 2.286169 |
| Snippet | The paper considers a variational formulation of brittle fracture in elastic solids and proposes a numerical implementation by a finite element method. On the... |
| SourceID | unpaywall proquest pascalfrancis crossref wiley istex |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 127 |
| SubjectTerms | Computational techniques configurational forces crack simulations energy minimization Exact sciences and technology finite elements fracture Fracture mechanics (crack, fatigue, damage...) Fundamental areas of phenomenology (including applications) Mathematical methods in physics Physics Solid mechanics Structural and continuum mechanics |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a7QPsgcEAkQHDTAiesiVunMSPVbUxIbVCiIqxl8h27a5qm1a5iMsTP4HfyC_hOJdCJ5h4chJ9snw5tr_Yx98BeBlJX7GJZ9xQ8NhFfhu7kkUcn5BLKC4FY_ai8HAUno-DtxfsYgeO2rsw1_QFkK_4_kmPBTS4Bd2QId_uQHc8etf_1PpuMF5FIrUnqS5yn6hVmPXoSbrU9jYe31pzurb5vlgfSJFjM5g6fsUWwbxdpmvx9bNYLLYpa7XmnO3BoC1t7WoyPy4Leay-XRNyvLk69-BuQzlJv7aR-7Cj033Ya-gnaQZ3vg-7f2gT4ttwI-iaP4CsT7KVLPOCiMV0lc2KqyVBukvwb9rMpmXWbCn-_P4DvyqN6SSz8yiRiEVzJCoTak6wJjiBVWBid4DJe0SKiVjbSZcsdX6F-c-mlYfCQxifnX4YnLtNuAZX9azjleCT2HAjODc-lzzwA6SWVMdS90KhQ05lIDVjVn2HMi1orLhAgmE8HsvQUNl7BJ10lerHQIwJjS-ZYozyQPmax54SHhVMxBLxkQOv2w5NVKNlbkNqLJJahZkmWNDEdr0DLzbIda3f8RfMq8omNgCRza2_W8SSj6M3SRRzOqCXlwl14HDLaH7niKTLqvw48Ly1ogSHqT17EalelXnSq7TyQubA0ca4bipQZXX_BCSj4alND_4ntydwp9qQrhwXn0KnyEr9DJlUIQ-bofQLllwemQ priority: 102 providerName: Unpaywall |
| Title | A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment |
| URI | https://api.istex.fr/ark:/67375/WNG-7892C2ZZ-2/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.1999 https://www.proquest.com/docview/30123665 https://hdl.handle.net/11511/35424 |
| UnpaywallVersion | submittedVersion |
| Volume | 72 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1097-0207 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXQ9gA8MBighUExCMFTt8SJk_ixmjYmpFZoomKMB8t27a5qm1b50IAnfgK_kV_CtfPBigAhnpxEJ5btXF8fO9fHCL1IZKDoxDf9WLC0D_w27UuaMLgCLqGYFJTajcLDUXw6jt6c0_MmqtLuhan1IboFN9sznL-2HVzI4vCaaOhS2612du9eEMZuNnXWKUdZnhO20R2UpUGrO-uTw_bFjZFo2zbqJxsZKQpoHFOfarFBO29W2Vp8vhKLxSaRdSPRyQ762NahDkCZH1SlPFBffpF3_L9K3kV3GoKKB7VF3UM3dLaLdhqyihtXUOyi29eUDOFu2Mm_FvdRPsD5SlZFicViuspn5eUSAznGMPc2s2mVNwuQ379-g6dKQzrJrdfFErBgvFjlQs0x1BDcnQNju16MzwApJmJtXTRe6uIS8p9NXTzDAzQ-OX53dNpvDnfoq9CGaQk2SQ0zgjETMMmiIAIiSnQqdRgLHTMiI6kptVo9hGpBUsUE0BHjs1TGhsjwIdrKVpneQ9iY2ASSKkoJi1SgWeor4RNBRSoBn3joVfuhuWqUz-0BHAteazYTDgXltpk99KxDrmu1j99gXjpb6QAin9vouITy96PXPEkZOSIXF5x4qLdhTD9zBIpmNYE89LS1Lg6d2v6pEZleVQUPnbJeTD30vDO6vxXImdAfAXw0PLbpo38F7qNbbgnbhTo-RltlXuknwL1K2XO9rIe2x6O3gw8_AAR8Mao |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0a28PgYYPBRAdsBiF46pa4cRKLp2naKLD2YdrENCFZtmt3Vdu0Shrx8cRP4DfyS7jOFysChHhyEp1EtnN9c3xzfQzwPFK-ZgPPtkPJ4zby27itWMTxCLmE5koy5hYK9_ph9yJ4e8kuV-BVvRam1IdoAm5uZBT-2g1wF5A-uKEaOjVurR2_BWtBiNMUx4jOGu0ox3Q6dX4H47FfK8969KC-c-lbtOa69ZPLjZQZdo8t97VYIp7reTKXnz_KyWSZyhbfopNN-FC3okxBGe_nC7Wvv_wi8PifzbwLGxVHJYelUd2DFZNswWbFV0nlDbItuHNDzBDPeo0CbHYf0kOSzlSeLYicDGfpaHE9JciPCU6_7WiYp1UM8vvXb3hVGywHqXO8RCEW7ZfoVOoxwSaixyvAxIWMyRki5UDOnZcmU5Nd4_NHwyKl4QFcnByfH3Xb1f4Obd1xmVqSD2LLreTc-lzxwA-Qi1ITK9MJpQk5VYEyjDm5HsqMpLHmEhmJ9XisQktVZxtWk1liHgKxNrS-YpoxygPtGx57WnpUMhkrxEcteFm_aaEr8XO3B8dElLLNVGBFhevmFjxtkPNS8OM3mBeFsTQAmY5dglzExPv-axHFnB7RqytBW7C7ZE0_n4gszckCtWCvNi-B49r9rJGJmeWZ6BTieiFrwbPG6v5WocKG_ggQ_d6xK3f-FbgH693z3qk4fdN_9whuFxHtIvPxMawu0tw8QSq2ULvFkPsBWjc0Gw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amwTsgcEArVw2gxA8dWvcOInF07StjEsrNDExTUiW7dhd1TatkkZcnvgJ_EZ-Cce5sSJAiCfn8sWynePjL87xZ4AnofI0izu2HUgetZHfRm3FQo5HyCU0V5Ixt1C4PwiOT_1XZ-xsBZ7Xa2FKfYhmws31jMJfuw5u5rHdu6QaOjVurR2_Ams-45GL5zs8abSjHNPp1vEdeNurlWc7dK9-cmksWnPN-snFRsoMm8eW-1osEc9reTKXnz_KyWSZyhZjUW8DPtS1KENQxrv5Qu3qL78IPP5nNW_CjYqjkv3SqG7Bikk2YaPiq6TyBtkmrF8SM8SzfqMAm92GdJ-kM5VnCyInw1k6WlxMCfJjgp_fdjTM02oO8vvXb3hVG0zj1DleohCL9kt0KvWYYBXR4xVg4qaMyQkiZSznzkuTqckuMP_RsAhpuAOnvaN3B8ftan-Htu66SC3J48hyKzm3Hlfc93zkotREynQDaQJOla8MY06uhzIjaaS5REZiOzxSgaWqexdWk1litoBYG1hPMc0Y5b72DI86WnaoZDJSiA9b8Kx-00JX4uduD46JKGWbqcCCCtfMLXjUIOel4MdvME8LY2kAMh27ALmQifeDFyKMOD2g5-eCtmB7yZp-5ogszckCtWCnNi-B_dr9rJGJmeWZ6BbiegFrwePG6v5WoMKG_ggQg_6RS-_9K3AHrr497Ik3Lwev78P1YkK7CHx8AKuLNDcPkYkt1HbR434Avxkznw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a7QPsgcEAkQHDTAiesiVunMSPVbUxIbVCiIqxl8h27a5qm1a5iMsTP4HfyC_hOJdCJ5h4chJ9snw5tr_Yx98BeBlJX7GJZ9xQ8NhFfhu7kkUcn5BLKC4FY_ai8HAUno-DtxfsYgeO2rsw1_QFkK_4_kmPBTS4Bd2QId_uQHc8etf_1PpuMF5FIrUnqS5yn6hVmPXoSbrU9jYe31pzurb5vlgfSJFjM5g6fsUWwbxdpmvx9bNYLLYpa7XmnO3BoC1t7WoyPy4Leay-XRNyvLk69-BuQzlJv7aR-7Cj033Ya-gnaQZ3vg-7f2gT4ttwI-iaP4CsT7KVLPOCiMV0lc2KqyVBukvwb9rMpmXWbCn-_P4DvyqN6SSz8yiRiEVzJCoTak6wJjiBVWBid4DJe0SKiVjbSZcsdX6F-c-mlYfCQxifnX4YnLtNuAZX9azjleCT2HAjODc-lzzwA6SWVMdS90KhQ05lIDVjVn2HMi1orLhAgmE8HsvQUNl7BJ10lerHQIwJjS-ZYozyQPmax54SHhVMxBLxkQOv2w5NVKNlbkNqLJJahZkmWNDEdr0DLzbIda3f8RfMq8omNgCRza2_W8SSj6M3SRRzOqCXlwl14HDLaH7niKTLqvw48Ly1ogSHqT17EalelXnSq7TyQubA0ca4bipQZXX_BCSj4alND_4ntydwp9qQrhwXn0KnyEr9DJlUIQ-bofQLllwemQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+algorithm+for+configurational-force-driven+brittle+crack+propagation+with+R-adaptive+mesh+alignment&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=MIEHE%2C+C&rft.au=G%C3%9CRSES%2C+E&rft.date=2007-10-08&rft.pub=Wiley&rft.issn=0029-5981&rft.volume=72&rft.issue=2&rft.spage=127&rft.epage=155&rft_id=info:doi/10.1002%2Fnme.1999&rft.externalDBID=n%2Fa&rft.externalDocID=19109499 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |