A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment

The paper considers a variational formulation of brittle fracture in elastic solids and proposes a numerical implementation by a finite element method. On the theoretical side, we outline a consistent thermodynamic framework for crack propagation in an elastic solid. It is shown that both the elasti...

Full description

Saved in:
Bibliographic Details
Published inInternational journal for numerical methods in engineering Vol. 72; no. 2; pp. 127 - 155
Main Authors Miehe, C., Gürses, E.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 08.10.2007
Wiley
Subjects
Online AccessGet full text
ISSN0029-5981
1097-0207
1097-0207
DOI10.1002/nme.1999

Cover

Abstract The paper considers a variational formulation of brittle fracture in elastic solids and proposes a numerical implementation by a finite element method. On the theoretical side, we outline a consistent thermodynamic framework for crack propagation in an elastic solid. It is shown that both the elastic equilibrium response as well as the local crack evolution follow in a natural format by exploitation of a global Clausius–Planck inequality in the sense of Coleman's method. Here, the canonical direction of the crack propagation associated with the classical Griffith criterion is the direction of the material configurational force which maximizes the local dissipation at the crack tip and minimizes the incremental energy release. On the numerical side, we exploit this variational structure in terms of crack‐driving configurational forces. First, a standard finite element discretization in space yields a discrete formulation of the global dissipation in terms configurational nodal forces. As a consequence, the constitutive setting of crack propagation in the space‐discretized finite element context is naturally related to discrete nodes of a typical finite element mesh. Next, consistent with the node‐based setting, the discretization of the evolving crack discontinuity is performed by the doubling of critical nodes and interface segments of the mesh. Critical for the success of this procedure is its embedding into an r‐adaptive crack‐segment reorientation procedure with configurational‐force‐based directional indicator. Here, successive crack releases appear in discrete steps associated with the given space discretization. These are performed by a staggered loading–release algorithm of energy minimization at frozen crack state followed by the successive crack releases at frozen deformation. This constitutes a sequence of positive‐definite discrete subproblems with successively decreasing overall stiffness, providing an extremely robust algorithmic setting in the postcritical range. We demonstrate the performance of the formulation by means of representative numerical simulations. Copyright © 2007 John Wiley & Sons, Ltd.
AbstractList The paper considers a variational formulation of brittle fracture in elastic solids and proposes a numerical implementation by a finite element method. On the theoretical side, we outline a consistent thermodynamic framework for crack propagation in an elastic solid. It is shown that both the elastic equilibrium response as well as the local crack evolution follow in a natural format by exploitation of a global Clausius–Planck inequality in the sense of Coleman's method. Here, the canonical direction of the crack propagation associated with the classical Griffith criterion is the direction of the material configurational force which maximizes the local dissipation at the crack tip and minimizes the incremental energy release. On the numerical side, we exploit this variational structure in terms of crack‐driving configurational forces. First, a standard finite element discretization in space yields a discrete formulation of the global dissipation in terms configurational nodal forces. As a consequence, the constitutive setting of crack propagation in the space‐discretized finite element context is naturally related to discrete nodes of a typical finite element mesh. Next, consistent with the node‐based setting, the discretization of the evolving crack discontinuity is performed by the doubling of critical nodes and interface segments of the mesh. Critical for the success of this procedure is its embedding into an r‐adaptive crack‐segment reorientation procedure with configurational‐force‐based directional indicator. Here, successive crack releases appear in discrete steps associated with the given space discretization. These are performed by a staggered loading–release algorithm of energy minimization at frozen crack state followed by the successive crack releases at frozen deformation. This constitutes a sequence of positive‐definite discrete subproblems with successively decreasing overall stiffness, providing an extremely robust algorithmic setting in the postcritical range. We demonstrate the performance of the formulation by means of representative numerical simulations. Copyright © 2007 John Wiley & Sons, Ltd.
The paper considers a variational formulation of brittle fracture in elastic solids and proposes a numerical implementation by a finite element method. On the theoretical side, we outline a consistent thermodynamic framework for crack propagation in an elastic solid. It is shown that both the elastic equilibrium response as well as the local crack evolution follow in a natural format by exploitation of a global Clausius-Planck inequality in the sense of Coleman's method. Here, the canonical direction of the crack propagation associated with the classical Griffith criterion is the direction of the material configurational force which maximizes the local dissipation at the crack tip and minimizes the incremental energy release. On the numerical side, we exploit this variational structure in terms of crack-driving configurational forces. First, a standard finite element discretization in space yields a discrete formulation of the global dissipation in terms configurational nodal forces. As a consequence, the constitutive setting of crack propagation in the space-discretized finite element context is naturally related to discrete nodes of a typical finite element mesh. Next, consistent with the node-based setting, the discretization of the evolving crack discontinuity is performed by the doubling of critical nodes and interface segments of the mesh. Critical for the success of this procedure is its embedding into an r-adaptive crack-segment reorientation procedure with configurational-force-based directional indicator. Here, successive crack releases appear in discrete steps associated with the given space discretization. These are performed by a staggered loading-release algorithm of energy minimization at frozen crack state followed by the successive crack releases at frozen deformation. This constitutes a sequence of positive-definite discrete subproblems with successively decreasing overall stiffness, providing an extremely robust algorithmic setting in the postcritical range. We demonstrate the performance of the formulation by means of representative numerical simulations.
Author Miehe, C.
Gürses, E.
Author_xml – sequence: 1
  givenname: C.
  surname: Miehe
  fullname: Miehe, C.
  email: cm@mechbau.uni-stuttgart.de
  organization: Institut für Mechanik (Bauwesen) Lehrstuhl I, Universität Stuttgart, Stuttgart 70550, Pfaffenwaldring 7, Germany
– sequence: 2
  givenname: E.
  surname: Gürses
  fullname: Gürses, E.
  organization: Institut für Mechanik (Bauwesen) Lehrstuhl I, Universität Stuttgart, Stuttgart 70550, Pfaffenwaldring 7, Germany
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19109499$$DView record in Pascal Francis
BookMark eNp90F1rFDEUBuAgFdxWwZ-QG0UvZk0yn-eyLLUVagVRhN6EM9lkG5vJjEnGdf99092iKOpV4OTJy5tzTI786DUhzzlbcsbEGz_oJQeAR2TBGbQFE6w9Iot8BUUNHX9CjmP8yhjnNSsXxJ3SMPZzTBTdZgw23QzUjIGq0Ru7mQMmO3p0RZ4pXayD_a497bNLTlMVUN3SKYwTbvaQbnMA_VjgGqeUKR10vMnJdpNr-fSUPDboon72cJ6Qz2_PPq0uissP5-9Wp5eFKqGDAmHdGTAIYDj0UPGqbSuhu16XDeoGRF_1uq47lqe1RtEpQME7w6DrGyP68oS8PuTOfsLdFp2TU7ADhp3kTN6vSeY-8n5N2b482PyNb7OOSQ42Ku0cej3OUZaMi7Jp6gxfPECMCp0J6JWNv4Ihr7vaBy4PToUxxqCNVDbtt5MCWve3Bq_-ePCfssWBbq3Tu386efX-7HdvY9I_fnoMt7Jpy7aWX67OZduBWInraynKOz4ds8U
CODEN IJNMBH
CitedBy_id crossref_primary_10_1002_nme_2620
crossref_primary_10_1109_TCPMT_2022_3149809
crossref_primary_10_1002_nme_2861
crossref_primary_10_1002_nme_5699
crossref_primary_10_1002_nme_2468
crossref_primary_10_1002_pamm_201800414
crossref_primary_10_1016_j_ijrmms_2018_10_001
crossref_primary_10_2208_jscejam_70_I_297
crossref_primary_10_1007_s41745_017_0041_5
crossref_primary_10_1186_s40323_017_0088_x
crossref_primary_10_1002_nme_6271
crossref_primary_10_1016_j_cma_2012_07_005
crossref_primary_10_1016_j_cma_2016_09_018
crossref_primary_10_1016_j_enganabound_2019_03_008
crossref_primary_10_1016_j_tafmec_2024_104452
crossref_primary_10_1016_j_wear_2013_12_009
crossref_primary_10_1007_s10704_019_00353_1
crossref_primary_10_1016_j_engfracmech_2022_108403
crossref_primary_10_12989_cac_2015_16_4_587
crossref_primary_10_1016_j_engfracmech_2015_10_042
crossref_primary_10_1016_j_cma_2010_04_011
crossref_primary_10_1007_s00226_017_0943_4
crossref_primary_10_1016_j_cma_2016_09_028
crossref_primary_10_1002_pamm_200700171
crossref_primary_10_1002_pamm_200910078
crossref_primary_10_1016_j_ijplas_2015_10_007
crossref_primary_10_1016_j_tafmec_2024_104723
crossref_primary_10_1007_s10704_016_0125_7
crossref_primary_10_1007_s10704_022_00633_3
crossref_primary_10_1016_j_apm_2017_11_015
crossref_primary_10_1016_j_engfracmech_2024_109996
crossref_primary_10_1007_s00466_009_0418_z
crossref_primary_10_1016_j_tafmec_2021_103186
crossref_primary_10_1002_nme_7414
crossref_primary_10_1007_s00466_017_1530_0
crossref_primary_10_1002_pamm_200810305
crossref_primary_10_1002_nme_4546
crossref_primary_10_1016_j_cma_2008_12_028
crossref_primary_10_1016_j_taml_2020_01_022
crossref_primary_10_1016_j_cma_2015_03_009
crossref_primary_10_1007_s00466_013_0855_6
crossref_primary_10_1007_s11709_018_0477_3
crossref_primary_10_1002_pamm_201610069
crossref_primary_10_1016_j_engfracmech_2017_11_017
crossref_primary_10_1007_s10704_012_9753_8
crossref_primary_10_1016_j_prostr_2024_11_102
crossref_primary_10_1155_2018_4081264
crossref_primary_10_1080_0305215X_2019_1609466
crossref_primary_10_1016_j_engfracmech_2024_109918
crossref_primary_10_1007_s10704_021_00541_y
crossref_primary_10_1016_j_tafmec_2024_104434
crossref_primary_10_1002_nme_3061
crossref_primary_10_1002_nme_5484
crossref_primary_10_1002_nme_4774
crossref_primary_10_1016_j_cma_2022_114880
crossref_primary_10_1016_j_cma_2022_115851
crossref_primary_10_1016_j_engfracmech_2013_11_001
crossref_primary_10_1016_j_engfracmech_2019_02_029
crossref_primary_10_1007_s00466_016_1328_5
crossref_primary_10_1016_j_ijplas_2016_04_011
crossref_primary_10_1007_s11440_019_00880_0
crossref_primary_10_1002_nme_3210
crossref_primary_10_1002_nme_4387
crossref_primary_10_1002_zamm_200800132
crossref_primary_10_1016_j_jmps_2013_06_007
crossref_primary_10_1016_j_cma_2023_116336
crossref_primary_10_1016_j_ijplas_2018_11_010
crossref_primary_10_2208_jscejam_68_31
crossref_primary_10_1016_j_cma_2019_03_029
crossref_primary_10_1007_s11831_016_9169_0
crossref_primary_10_1016_j_compgeo_2019_04_014
crossref_primary_10_1016_j_ijsolstr_2023_112551
crossref_primary_10_1016_j_engfracmech_2024_110241
crossref_primary_10_1016_j_engfracmech_2013_06_006
crossref_primary_10_1016_j_ijsolstr_2014_12_004
crossref_primary_10_1007_s00466_017_1438_8
crossref_primary_10_1016_j_jmps_2010_06_013
crossref_primary_10_1016_j_engfracmech_2023_109782
crossref_primary_10_1007_s10704_019_00349_x
crossref_primary_10_2208_jsceja_65_165
crossref_primary_10_1111_ffe_14155
crossref_primary_10_1177_10812865211071088
crossref_primary_10_1016_j_ijfatigue_2012_06_002
crossref_primary_10_1016_j_cma_2019_06_014
crossref_primary_10_1007_s00419_014_0882_6
crossref_primary_10_1002_nme_5133
crossref_primary_10_1016_j_cma_2014_01_021
crossref_primary_10_1016_j_engfracmech_2018_12_006
crossref_primary_10_1016_j_cma_2017_05_012
crossref_primary_10_1088_1361_665X_ab7145
crossref_primary_10_1016_j_engfracmech_2016_02_017
crossref_primary_10_1007_s00466_015_1172_z
crossref_primary_10_1016_j_tafmec_2014_06_006
crossref_primary_10_1155_2013_849231
crossref_primary_10_1002_gamm_201610003
crossref_primary_10_1016_j_mspro_2014_06_334
crossref_primary_10_1016_j_finel_2019_03_001
crossref_primary_10_1017_jmech_2017_85
crossref_primary_10_1177_1081286517724607
crossref_primary_10_1016_j_ijsolstr_2023_112456
crossref_primary_10_1002_nme_5282
crossref_primary_10_1002_nme_6653
crossref_primary_10_1016_j_physd_2009_02_008
crossref_primary_10_1007_s10704_015_0067_5
crossref_primary_10_1016_j_cma_2010_07_021
crossref_primary_10_1016_j_compstruct_2015_08_051
crossref_primary_10_3390_ma17153786
crossref_primary_10_1002_pamm_201310034
crossref_primary_10_1002_nme_4731
crossref_primary_10_1002_nme_6911
crossref_primary_10_1016_j_compstruct_2024_118652
crossref_primary_10_1016_j_ngib_2022_07_001
crossref_primary_10_1016_j_cma_2017_08_031
crossref_primary_10_1002_pamm_200700620
crossref_primary_10_1007_s00366_023_01840_9
crossref_primary_10_1016_j_cma_2014_11_016
crossref_primary_10_1007_s00466_010_0542_9
Cites_doi 10.1007/s003660200013
10.1002/nme.1620090302
10.1016/j.cma.2005.09.020
10.1115/1.3601206
10.1023/A:1018672922734
10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
10.1002/nme.1620100103
10.1002/nme.1007
10.1016/0022-5096(94)90003-5
10.1007/BF01174730
10.1002/nme.1246
10.1016/j.cma.2003.12.041
10.1002/nme.273
10.1016/S0045-7825(02)00524-8
10.1007/b137232
10.1016/0013-7944(95)00247-2
10.1002/(SICI)1097-0207(19961115)39:21<3601::AID-NME64>3.0.CO;2-4
10.1016/j.cma.2004.07.025
10.1002/nme.143
10.1002/nme.1445
10.1002/nme.1620110109
10.1016/0008-8846(76)90007-7
10.1016/0022-5096(96)00014-2
10.1016/S0065-2156(08)70121-2
10.1002/nme.1573
10.1016/0022-5096(60)90013-2
10.1088/0965-0393/1/2/001
10.1016/0013-7944(85)90029-3
10.1007/978-1-4899-4481-8
10.1007/BF00041325
10.1002/nme.351
10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E
10.1007/s00211-003-0456-y
10.1098/rsta.1951.0016
10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
10.1007/s002050100187
10.1007/s00466-002-0322-2
10.1007/BF00372173
10.1063/1.1711937
10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
10.1016/S0022-5096(98)00034-9
10.1002/nme.834
10.1016/j.finel.2004.01.002
10.1098/rsta.1921.0006
10.1016/S0022-5096(98)00002-7
10.1007/BF01177002
10.1016/S0022-5096(99)00028-9
10.1002/(SICI)1097-0207(20000710)48:7<963::AID-NME908>3.0.CO;2-X
10.1016/S0020-7683(99)00155-9
10.1016/S0020-7683(00)00381-4
ContentType Journal Article
Copyright Copyright © 2007 John Wiley & Sons, Ltd.
2007 INIST-CNRS
Copyright_xml – notice: Copyright © 2007 John Wiley & Sons, Ltd.
– notice: 2007 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1002/nme.1999
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1097-0207
EndPage 155
ExternalDocumentID oai:https://open.metu.edu.tr:11511/35424
19109499
10_1002_nme_1999
NME1999
ark_67375_WNG_7892C2ZZ_2
Genre article
GrantInformation_xml – fundername: Deutsche Forschungsgesellschaft (DFG)
  funderid: Mi 295/10
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
.4S
6TJ
ABDPE
ABEML
ACKIV
ACSCC
AGHNM
AI.
ARCSS
GBZZK
HF~
IQODW
M6O
PALCI
RIWAO
SAMSI
TUS
VH1
VOH
ZY4
~A~
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTOC
AIQQE
UNPAY
ID FETCH-LOGICAL-c3989-a9d8f9fa99f19b94147742e8be36ae692b4be55807425ea28c9a218f098b6f2b3
IEDL.DBID DR2
ISSN 0029-5981
1097-0207
IngestDate Sun Oct 26 04:01:56 EDT 2025
Thu Oct 02 06:31:58 EDT 2025
Mon Jul 21 09:15:37 EDT 2025
Wed Oct 01 05:10:24 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Wed Aug 20 07:25:54 EDT 2025
Tue Sep 09 05:31:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Constitutive equation
Discontinuity
Energy release
Brittle fracture
Brittle material
Minimization
Modeling
Adaptive method
Crack propagation
crack simulations
fracture
Staggered arrangement
Finite element method
Thermodynamics
Alignment
configurational forces
Post critical range
Positive definite matrix
Variational calculus
Griffith crack
Crack tip
Mesh generation
finite elements
energy minimization
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3989-a9d8f9fa99f19b94147742e8be36ae692b4be55807425ea28c9a218f098b6f2b3
Notes ark:/67375/WNG-7892C2ZZ-2
Deutsche Forschungsgesellschaft (DFG) - No. Mi 295/10
ArticleID:NME1999
istex:39F0359E8EB2332CB781B29E9671F5B73D1D7F01
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hdl.handle.net/11511/35424
PQID 30123665
PQPubID 23500
PageCount 29
ParticipantIDs unpaywall_primary_10_1002_nme_1999
proquest_miscellaneous_30123665
pascalfrancis_primary_19109499
crossref_citationtrail_10_1002_nme_1999
crossref_primary_10_1002_nme_1999
wiley_primary_10_1002_nme_1999_NME1999
istex_primary_ark_67375_WNG_7892C2ZZ_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 8 October 2007
PublicationDateYYYYMMDD 2007-10-08
PublicationDate_xml – month: 10
  year: 2007
  text: 8 October 2007
  day: 08
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle International journal for numerical methods in engineering
PublicationTitleAlternate Int. J. Numer. Meth. Engng
PublicationYear 2007
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Oliver J. Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part2: numerical simulation. International Journal for Numerical Methods in Engineering 1996; 39:3601-3623.
Barsoum RS. On the use of isoparemetric finite elements linear fracture mechanics. International Journal for Numerical Methods in Engineering 1976; 10:25-37.
Francfort GA, Marigo JJ. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 1998; 46:1319-1342.
Ruiz G, Pandolfi A, Ortiz M. Three dimensional cohesive modeling of dynamic mix-mode fracture. International Journal for Numerical Methods in Engineering 2001; 52:97-120.
Rooke DP, Cartwright DJ. Compendium of Stress Intensity Factors. Hillingdon Press: Uxbridge, 1976.
Fagerström M, Larsson R. Theory and numerics for finite deformation fracture modelling using strong discontinuities. International Journal for Numerical Methods in Engineering 2006; 66:911-948.
Phongthanapanich S, Dechaumphai P. Adaptive delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Elements in Analysis and Design 2004; 40:1753-1771.
Belytschko T, Black T. Elastic crack growth in finite element with minimal remeshing. International Journal for Numerical Methods in Engineering 1999; 45:601-620.
Coleman B, Gurtin ME. Thermodynamics with internal state variables. The Journal of Chemical Physics 1967; 47:597-613.
Gasser TC, Holzapfel GA. Modelling 3D crack propagation in unreinforced concrete using PUFEM. Computer Methods in Applied Mechanics and Engineering 2005; 194:2859-2896.
Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 1968; 35:379-386.
Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 1960; 8:100-104.
Larsson R, Fagerström M. A framework for fracture modelling based on the material forces concept with XFEM kinematics. International Journal for Numerical Methods in Engineering 2005; 62:1763-1788.
Ruiz G, Ortiz M, Pandolfi A. Three dimensional finite element simulation of the dynamic Brazilian test on concrete cylinders. International Journal for Numerical Methods in Engineering 2000; 48:963-994.
Heintz P, Larsson F, Hansbo P, Runesson K. Adaptive strategies and error control for computing material forces in fracture mechanics. International Journal for Numerical Methods in Engineering 2004; 60:1287-1299.
Mueller R, Kolling S, Gross D. On configurational forces in the context of the finite element method. International Journal for Numerical Methods in Engineering 2002; 53:1557-1574.
HillerborgA, Modeer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 1976; 6:773-782.
Henshell RD, Shaw KG. Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering 1975; 9:495-507.
Gurtin ME, Podio-Guidugli P. Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving. Journal of the Mechanics and Physics of Solids 1998; 46:1343-1378.
Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 2000; 48:797-826.
Xu XP, Needleman A. Void nucleation by inclusion debonding in a crystal matrix. Modelling and Simulation in Materials Science and Engineering 1993; 1:111-132.
Pandolfi A, Ortiz M. An efficient adaptive procedure for three-dimensional fragmentation simulations. Engineering with Computers 2002; 18:148-159.
Griffith AA. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 1921; 221:163-198.
Mueller R, Maugin GA. On material forces and finite element discretization. Computational Mechanics 2002; 29:52-60.
Gurtin ME. On the energy release rate in quasistatic elastic crack propagation. Journal of Elasticity 1979; 9:187-195.
Li FZ, Shih CF, Needleman A. A comparison methods for calculating energy release rates. Engineering Fracture Mechanics 1985; 21:405-421.
Steinmann P, Ackermann D, Barth FJ. Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting. International Journal of Solids and Structures 2001; 38:5509-5526.
Eshelby JD. The force on an elastic singularity. Philosophical Transactions of the Royal Society London A 1951; 224:87-112.
Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering 1999; 44:1267-1282.
Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Computer Methods in Applied Mechanics and Engineering 2002; 191:5537-5552.
Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 1999; 46:131-150.
Maugin GA. Material Inhomogeneities in Elasticity. Chapman & Hall: London, 1993.
Stumpf H, Le KC. Variational principles of nonlinear fracture mechanics. Acta Mechanica 1990; 83:25-37.
Barenblatt GI. Mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 1962; 7:55-129.
Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL. Quasi-automatic simulation of crack propagation for 2D LEFM problems. Engineering Fracture Mechanics 1996; 55:321-334.
Pandolfi A, Guduru PR, Ortiz M, Rosakis AJ. Three-dimensional cohesive elements analysis and experiments of dynamic fracture in C300 steels. International Journal of Solids and Structures 2000; 37:3733-3760.
Maugin GA, Trimarco C. Pseudomomentum and material forces in nonlinear elasticity: variational formulations and applications to brittle fracture. Acta Mechanica 1992; 94:1-28.
Oliver J, Huespe AE, Sanchez PJ. A comperative study on finite elements for capturing strong discontinuities: E-FEM vs. X-FEM. Computer Methods in Applied Mechanics and Engineering 2006, in press.
Denzer R, Barth FJ, Steinmann P. Studies in elastic fracture mechanics based on the material force method. International Journal for Numerical Methods in Engineering 2003; 58:1817-1835.
Hansbo A, Hansbo P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 2004; 193:3523-3540.
Heintz P. On the numerical modelling of quasi-static crack growth in linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering 2006; 65:174-189.
Barsoum RS. Triangular quarter point elements as elastic and perfectly-plastic crack tip elements. International Journal for Numerical Methods in Engineering 1977; 11:85-98.
Kienzler R, Herrmann G. Mechanics in Material Space with Applications to Defect and Fracture Mechanics. Springer: Berlin, Heidelberg, 2000.
Pandolfi A, Krysl P, Ortiz M. Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. International Journal of Fracture 1999; 95:279-297.
Dal Maso G, Toader R. A model for the quasistatic growth of brittle fractures: existence and approximation results. Archive for Rational Mechanics and Analysis 2002; 162:101-135.
Gurtin ME, Podio-Guidugli P. Configurational forces and the basic laws for crack propagation. Journal of the Mechanics and Physics of Solids 1996; 44:905-927.
Wells GN, Sluys LJ. A new method for modeling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering 2001; 50:2667-2682.
Simo JC, Oliver J, Armero F. An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Computational Mechanics 1993; 12:277-296.
Xu XP, Needleman A. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 1994; 42:1397-1434.
Gurtin ME. Configurational Forces as Basic Concepts of Continuum Physics. Springer: New York, 2000.
Oliver J. Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part1: fundamentals. International Journal for Numerical Methods in Engineering 1996; 39:3575-3600.
Steinmann P, Maugin GA (eds). Mechanics of Material Forces. Springer: Berlin, 2005.
Negri M. A finite element approximation of the Griffith's model in fracture mechanics. Numerische Mathematik 2003; 95:653-687.
2001; 50
1996; 39
2002; 191
2002; 18
2004; 60
2000; 48
2002; 53
1999; 46
2005; 62
1976
1999; 45
2003; 58
1999; 44
1960; 8
1970
1951; 224
1921; 221
1993; 1
2003; 95
1985; 21
1992; 94
1998; 46
2000
2006; 65
2006; 66
1999; 95
1975; 9
1958; 6
1979; 9
2001; 52
2005; 194
2004; 40
1962; 7
2006
2005
1993
1967; 47
1976; 6
1990; 83
1994; 42
1996; 55
1976; 10
1968; 35
1993; 12
2002; 29
2000; 37
2002; 162
2004; 193
1977; 11
2001; 38
1924
1996; 44
e_1_2_1_41_2
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_20_2
e_1_2_1_43_2
e_1_2_1_26_2
e_1_2_1_49_2
e_1_2_1_24_2
e_1_2_1_47_2
e_1_2_1_28_2
Rooke DP (e_1_2_1_51_2) 1976
Kienzler R (e_1_2_1_14_2) 2000
e_1_2_1_6_2
e_1_2_1_54_2
e_1_2_1_56_2
e_1_2_1_2_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_50_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_52_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_35_2
e_1_2_1_8_2
Gurtin ME (e_1_2_1_13_2) 2000
e_1_2_1_18_2
e_1_2_1_39_2
e_1_2_1_40_2
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_21_2
e_1_2_1_42_2
e_1_2_1_27_2
e_1_2_1_48_2
e_1_2_1_25_2
e_1_2_1_46_2
Irwin GR (e_1_2_1_4_2) 1958
e_1_2_1_29_2
e_1_2_1_30_2
e_1_2_1_53_2
e_1_2_1_7_2
e_1_2_1_55_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_32_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_36_2
e_1_2_1_19_2
e_1_2_1_57_2
e_1_2_1_17_2
e_1_2_1_9_2
References_xml – reference: Heintz P. On the numerical modelling of quasi-static crack growth in linear elastic fracture mechanics. International Journal for Numerical Methods in Engineering 2006; 65:174-189.
– reference: Griffith AA. The phenomena of rupture and flow in solids. Philosophical Transactions of the Royal Society of London 1921; 221:163-198.
– reference: Bittencourt TN, Wawrzynek PA, Ingraffea AR, Sousa JL. Quasi-automatic simulation of crack propagation for 2D LEFM problems. Engineering Fracture Mechanics 1996; 55:321-334.
– reference: Wells GN, Sluys LJ. A new method for modeling cohesive cracks using finite elements. International Journal for Numerical Methods in Engineering 2001; 50:2667-2682.
– reference: Hansbo A, Hansbo P. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Computer Methods in Applied Mechanics and Engineering 2002; 191:5537-5552.
– reference: Barsoum RS. On the use of isoparemetric finite elements linear fracture mechanics. International Journal for Numerical Methods in Engineering 1976; 10:25-37.
– reference: Gurtin ME, Podio-Guidugli P. Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving. Journal of the Mechanics and Physics of Solids 1998; 46:1343-1378.
– reference: Gasser TC, Holzapfel GA. Modelling 3D crack propagation in unreinforced concrete using PUFEM. Computer Methods in Applied Mechanics and Engineering 2005; 194:2859-2896.
– reference: Mueller R, Maugin GA. On material forces and finite element discretization. Computational Mechanics 2002; 29:52-60.
– reference: Dal Maso G, Toader R. A model for the quasistatic growth of brittle fractures: existence and approximation results. Archive for Rational Mechanics and Analysis 2002; 162:101-135.
– reference: Fagerström M, Larsson R. Theory and numerics for finite deformation fracture modelling using strong discontinuities. International Journal for Numerical Methods in Engineering 2006; 66:911-948.
– reference: Bourdin B, Francfort GA, Marigo JJ. Numerical experiments in revisited brittle fracture. Journal of the Mechanics and Physics of Solids 2000; 48:797-826.
– reference: Moës N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering 1999; 46:131-150.
– reference: Kienzler R, Herrmann G. Mechanics in Material Space with Applications to Defect and Fracture Mechanics. Springer: Berlin, Heidelberg, 2000.
– reference: Francfort GA, Marigo JJ. Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids 1998; 46:1319-1342.
– reference: Dugdale DS. Yielding of steel sheets containing slits. Journal of the Mechanics and Physics of Solids 1960; 8:100-104.
– reference: Pandolfi A, Guduru PR, Ortiz M, Rosakis AJ. Three-dimensional cohesive elements analysis and experiments of dynamic fracture in C300 steels. International Journal of Solids and Structures 2000; 37:3733-3760.
– reference: Coleman B, Gurtin ME. Thermodynamics with internal state variables. The Journal of Chemical Physics 1967; 47:597-613.
– reference: Henshell RD, Shaw KG. Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering 1975; 9:495-507.
– reference: Xu XP, Needleman A. Void nucleation by inclusion debonding in a crystal matrix. Modelling and Simulation in Materials Science and Engineering 1993; 1:111-132.
– reference: Heintz P, Larsson F, Hansbo P, Runesson K. Adaptive strategies and error control for computing material forces in fracture mechanics. International Journal for Numerical Methods in Engineering 2004; 60:1287-1299.
– reference: Li FZ, Shih CF, Needleman A. A comparison methods for calculating energy release rates. Engineering Fracture Mechanics 1985; 21:405-421.
– reference: Oliver J. Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part1: fundamentals. International Journal for Numerical Methods in Engineering 1996; 39:3575-3600.
– reference: Pandolfi A, Krysl P, Ortiz M. Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture. International Journal of Fracture 1999; 95:279-297.
– reference: Steinmann P, Maugin GA (eds). Mechanics of Material Forces. Springer: Berlin, 2005.
– reference: Hansbo A, Hansbo P. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Computer Methods in Applied Mechanics and Engineering 2004; 193:3523-3540.
– reference: Oliver J. Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part2: numerical simulation. International Journal for Numerical Methods in Engineering 1996; 39:3601-3623.
– reference: Larsson R, Fagerström M. A framework for fracture modelling based on the material forces concept with XFEM kinematics. International Journal for Numerical Methods in Engineering 2005; 62:1763-1788.
– reference: Pandolfi A, Ortiz M. An efficient adaptive procedure for three-dimensional fragmentation simulations. Engineering with Computers 2002; 18:148-159.
– reference: Rooke DP, Cartwright DJ. Compendium of Stress Intensity Factors. Hillingdon Press: Uxbridge, 1976.
– reference: Xu XP, Needleman A. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 1994; 42:1397-1434.
– reference: Barsoum RS. Triangular quarter point elements as elastic and perfectly-plastic crack tip elements. International Journal for Numerical Methods in Engineering 1977; 11:85-98.
– reference: Ruiz G, Ortiz M, Pandolfi A. Three dimensional finite element simulation of the dynamic Brazilian test on concrete cylinders. International Journal for Numerical Methods in Engineering 2000; 48:963-994.
– reference: Barenblatt GI. Mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics 1962; 7:55-129.
– reference: Maugin GA. Material Inhomogeneities in Elasticity. Chapman & Hall: London, 1993.
– reference: Mueller R, Kolling S, Gross D. On configurational forces in the context of the finite element method. International Journal for Numerical Methods in Engineering 2002; 53:1557-1574.
– reference: Phongthanapanich S, Dechaumphai P. Adaptive delaunay triangulation with object-oriented programming for crack propagation analysis. Finite Elements in Analysis and Design 2004; 40:1753-1771.
– reference: Gurtin ME. On the energy release rate in quasistatic elastic crack propagation. Journal of Elasticity 1979; 9:187-195.
– reference: Maugin GA, Trimarco C. Pseudomomentum and material forces in nonlinear elasticity: variational formulations and applications to brittle fracture. Acta Mechanica 1992; 94:1-28.
– reference: HillerborgA, Modeer M, Petersson PE. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cement and Concrete Research 1976; 6:773-782.
– reference: Eshelby JD. The force on an elastic singularity. Philosophical Transactions of the Royal Society London A 1951; 224:87-112.
– reference: Simo JC, Oliver J, Armero F. An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids. Computational Mechanics 1993; 12:277-296.
– reference: Gurtin ME. Configurational Forces as Basic Concepts of Continuum Physics. Springer: New York, 2000.
– reference: Oliver J, Huespe AE, Sanchez PJ. A comperative study on finite elements for capturing strong discontinuities: E-FEM vs. X-FEM. Computer Methods in Applied Mechanics and Engineering 2006, in press.
– reference: Steinmann P, Ackermann D, Barth FJ. Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting. International Journal of Solids and Structures 2001; 38:5509-5526.
– reference: Denzer R, Barth FJ, Steinmann P. Studies in elastic fracture mechanics based on the material force method. International Journal for Numerical Methods in Engineering 2003; 58:1817-1835.
– reference: Stumpf H, Le KC. Variational principles of nonlinear fracture mechanics. Acta Mechanica 1990; 83:25-37.
– reference: Ruiz G, Pandolfi A, Ortiz M. Three dimensional cohesive modeling of dynamic mix-mode fracture. International Journal for Numerical Methods in Engineering 2001; 52:97-120.
– reference: Rice JR. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics 1968; 35:379-386.
– reference: Gurtin ME, Podio-Guidugli P. Configurational forces and the basic laws for crack propagation. Journal of the Mechanics and Physics of Solids 1996; 44:905-927.
– reference: Ortiz M, Pandolfi A. Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. International Journal for Numerical Methods in Engineering 1999; 44:1267-1282.
– reference: Belytschko T, Black T. Elastic crack growth in finite element with minimal remeshing. International Journal for Numerical Methods in Engineering 1999; 45:601-620.
– reference: Negri M. A finite element approximation of the Griffith's model in fracture mechanics. Numerische Mathematik 2003; 95:653-687.
– volume: 1
  start-page: 111
  year: 1993
  end-page: 132
  article-title: Void nucleation by inclusion debonding in a crystal matrix
  publication-title: Modelling and Simulation in Materials Science and Engineering
– year: 2006
  article-title: A comperative study on finite elements for capturing strong discontinuities: E‐FEM vs. X‐FEM
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 35
  start-page: 379
  year: 1968
  end-page: 386
  article-title: A path independent integral and the approximate analysis of strain concentration by notches and cracks
  publication-title: Journal of Applied Mechanics
– volume: 6
  start-page: 551
  year: 1958
  end-page: 590
– year: 2005
– volume: 7
  start-page: 55
  year: 1962
  end-page: 129
  article-title: Mathematical theory of equilibrium cracks in brittle fracture
  publication-title: Advances in Applied Mechanics
– volume: 9
  start-page: 495
  year: 1975
  end-page: 507
  article-title: Crack tip finite elements are unnecessary
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 95
  start-page: 653
  year: 2003
  end-page: 687
  article-title: A finite element approximation of the Griffith's model in fracture mechanics
  publication-title: Numerische Mathematik
– volume: 94
  start-page: 1
  year: 1992
  end-page: 28
  article-title: Pseudomomentum and material forces in nonlinear elasticity: variational formulations and applications to brittle fracture
  publication-title: Acta Mechanica
– volume: 55
  start-page: 321
  year: 1996
  end-page: 334
  article-title: Quasi‐automatic simulation of crack propagation for 2D LEFM problems
  publication-title: Engineering Fracture Mechanics
– start-page: 55
  year: 1924
  end-page: 63
– volume: 9
  start-page: 187
  year: 1979
  end-page: 195
  article-title: On the energy release rate in quasistatic elastic crack propagation
  publication-title: Journal of Elasticity
– volume: 47
  start-page: 597
  year: 1967
  end-page: 613
  article-title: Thermodynamics with internal state variables
  publication-title: The Journal of Chemical Physics
– volume: 40
  start-page: 1753
  year: 2004
  end-page: 1771
  article-title: Adaptive delaunay triangulation with object‐oriented programming for crack propagation analysis
  publication-title: Finite Elements in Analysis and Design
– volume: 37
  start-page: 3733
  year: 2000
  end-page: 3760
  article-title: Three‐dimensional cohesive elements analysis and experiments of dynamic fracture in C300 steels
  publication-title: International Journal of Solids and Structures
– volume: 162
  start-page: 101
  year: 2002
  end-page: 135
  article-title: A model for the quasistatic growth of brittle fractures: existence and approximation results
  publication-title: Archive for Rational Mechanics and Analysis
– volume: 95
  start-page: 279
  year: 1999
  end-page: 297
  article-title: Finite element simulation of ring expansion and fragmentation: the capturing of length and time scales through cohesive models of fracture
  publication-title: International Journal of Fracture
– volume: 46
  start-page: 131
  year: 1999
  end-page: 150
  article-title: A finite element method for crack growth without remeshing
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 46
  start-page: 1343
  year: 1998
  end-page: 1378
  article-title: Configurational forces and a constitutive theory for crack propagation that allows for kinking and curving
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 221
  start-page: 163
  year: 1921
  end-page: 198
  article-title: The phenomena of rupture and flow in solids
  publication-title: Philosophical Transactions of the Royal Society of London
– volume: 8
  start-page: 100
  year: 1960
  end-page: 104
  article-title: Yielding of steel sheets containing slits
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 18
  start-page: 148
  year: 2002
  end-page: 159
  article-title: An efficient adaptive procedure for three‐dimensional fragmentation simulations
  publication-title: Engineering with Computers
– volume: 53
  start-page: 1557
  year: 2002
  end-page: 1574
  article-title: On configurational forces in the context of the finite element method
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 66
  start-page: 911
  year: 2006
  end-page: 948
  article-title: Theory and numerics for finite deformation fracture modelling using strong discontinuities
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 52
  start-page: 97
  year: 2001
  end-page: 120
  article-title: Three dimensional cohesive modeling of dynamic mix‐mode fracture
  publication-title: International Journal for Numerical Methods in Engineering
– year: 1993
– year: 1976
– volume: 11
  start-page: 85
  year: 1977
  end-page: 98
  article-title: Triangular quarter point elements as elastic and perfectly–plastic crack tip elements
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 21
  start-page: 405
  year: 1985
  end-page: 421
  article-title: A comparison methods for calculating energy release rates
  publication-title: Engineering Fracture Mechanics
– volume: 50
  start-page: 2667
  year: 2001
  end-page: 2682
  article-title: A new method for modeling cohesive cracks using finite elements
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 38
  start-page: 5509
  year: 2001
  end-page: 5526
  article-title: Application of material forces to hyperelastostatic fracture mechanics. II. Computational setting
  publication-title: International Journal of Solids and Structures
– volume: 48
  start-page: 963
  year: 2000
  end-page: 994
  article-title: Three dimensional finite element simulation of the dynamic Brazilian test on concrete cylinders
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 83
  start-page: 25
  year: 1990
  end-page: 37
  article-title: Variational principles of nonlinear fracture mechanics
  publication-title: Acta Mechanica
– volume: 58
  start-page: 1817
  year: 2003
  end-page: 1835
  article-title: Studies in elastic fracture mechanics based on the material force method
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 45
  start-page: 601
  year: 1999
  end-page: 620
  article-title: Elastic crack growth in finite element with minimal remeshing
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 60
  start-page: 1287
  year: 2004
  end-page: 1299
  article-title: Adaptive strategies and error control for computing material forces in fracture mechanics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 46
  start-page: 1319
  year: 1998
  end-page: 1342
  article-title: Revisiting brittle fracture as an energy minimization problem
  publication-title: Journal of the Mechanics and Physics of Solids
– year: 2000
– start-page: 77
  year: 1970
  end-page: 115
– volume: 62
  start-page: 1763
  year: 2005
  end-page: 1788
  article-title: A framework for fracture modelling based on the material forces concept with XFEM kinematics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 193
  start-page: 3523
  year: 2004
  end-page: 3540
  article-title: A finite element method for the simulation of strong and weak discontinuities in solid mechanics
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 39
  start-page: 3601
  year: 1996
  end-page: 3623
  article-title: Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part2: numerical simulation
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 29
  start-page: 52
  year: 2002
  end-page: 60
  article-title: On material forces and finite element discretization
  publication-title: Computational Mechanics
– volume: 39
  start-page: 3575
  year: 1996
  end-page: 3600
  article-title: Modelling strong discontinuities in solid mechanics via strain softening constitutive equations. Part1: fundamentals
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 44
  start-page: 905
  year: 1996
  end-page: 927
  article-title: Configurational forces and the basic laws for crack propagation
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 48
  start-page: 797
  year: 2000
  end-page: 826
  article-title: Numerical experiments in revisited brittle fracture
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 10
  start-page: 25
  year: 1976
  end-page: 37
  article-title: On the use of isoparemetric finite elements linear fracture mechanics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 12
  start-page: 277
  year: 1993
  end-page: 296
  article-title: An analysis of strong discontinuities induced by strain‐softening in rate‐independent inelastic solids
  publication-title: Computational Mechanics
– volume: 44
  start-page: 1267
  year: 1999
  end-page: 1282
  article-title: Finite‐deformation irreversible cohesive elements for three‐dimensional crack‐propagation analysis
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 65
  start-page: 174
  year: 2006
  end-page: 189
  article-title: On the numerical modelling of quasi‐static crack growth in linear elastic fracture mechanics
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 194
  start-page: 2859
  year: 2005
  end-page: 2896
  article-title: Modelling 3D crack propagation in unreinforced concrete using PUFEM
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 191
  start-page: 5537
  year: 2002
  end-page: 5552
  article-title: An unfitted finite element method, based on Nitsche's method, for elliptic interface problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– volume: 6
  start-page: 773
  year: 1976
  end-page: 782
  article-title: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements
  publication-title: Cement and Concrete Research
– volume: 42
  start-page: 1397
  year: 1994
  end-page: 1434
  article-title: Numerical simulations of fast crack growth in brittle solids
  publication-title: Journal of the Mechanics and Physics of Solids
– volume: 224
  start-page: 87
  year: 1951
  end-page: 112
  article-title: The force on an elastic singularity
  publication-title: Philosophical Transactions of the Royal Society London A
– volume-title: Configurational Forces as Basic Concepts of Continuum Physics
  year: 2000
  ident: e_1_2_1_13_2
– ident: e_1_2_1_45_2
  doi: 10.1007/s003660200013
– ident: e_1_2_1_54_2
  doi: 10.1002/nme.1620090302
– ident: e_1_2_1_32_2
  doi: 10.1016/j.cma.2005.09.020
– ident: e_1_2_1_3_2
– ident: e_1_2_1_10_2
  doi: 10.1115/1.3601206
– ident: e_1_2_1_47_2
  doi: 10.1023/A:1018672922734
– ident: e_1_2_1_29_2
  doi: 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J
– ident: e_1_2_1_52_2
  doi: 10.1002/nme.1620100103
– ident: e_1_2_1_39_2
  doi: 10.1002/nme.1007
– ident: e_1_2_1_46_2
  doi: 10.1016/0022-5096(94)90003-5
– ident: e_1_2_1_9_2
– ident: e_1_2_1_6_2
  doi: 10.1007/BF01174730
– ident: e_1_2_1_40_2
  doi: 10.1002/nme.1246
– ident: e_1_2_1_34_2
  doi: 10.1016/j.cma.2003.12.041
– ident: e_1_2_1_50_2
  doi: 10.1002/nme.273
– ident: e_1_2_1_33_2
  doi: 10.1016/S0045-7825(02)00524-8
– ident: e_1_2_1_17_2
  doi: 10.1007/b137232
– volume-title: Compendium of Stress Intensity Factors
  year: 1976
  ident: e_1_2_1_51_2
– ident: e_1_2_1_56_2
  doi: 10.1016/0013-7944(95)00247-2
– ident: e_1_2_1_27_2
  doi: 10.1002/(SICI)1097-0207(19961115)39:21<3601::AID-NME64>3.0.CO;2-4
– ident: e_1_2_1_31_2
  doi: 10.1016/j.cma.2004.07.025
– ident: e_1_2_1_30_2
  doi: 10.1002/nme.143
– ident: e_1_2_1_42_2
  doi: 10.1002/nme.1445
– ident: e_1_2_1_53_2
  doi: 10.1002/nme.1620110109
– ident: e_1_2_1_22_2
  doi: 10.1016/0008-8846(76)90007-7
– ident: e_1_2_1_15_2
  doi: 10.1016/0022-5096(96)00014-2
– ident: e_1_2_1_5_2
  doi: 10.1016/S0065-2156(08)70121-2
– ident: e_1_2_1_41_2
  doi: 10.1002/nme.1573
– ident: e_1_2_1_21_2
  doi: 10.1016/0022-5096(60)90013-2
– ident: e_1_2_1_23_2
  doi: 10.1088/0965-0393/1/2/001
– ident: e_1_2_1_55_2
  doi: 10.1016/0013-7944(85)90029-3
– ident: e_1_2_1_11_2
  doi: 10.1007/978-1-4899-4481-8
– ident: e_1_2_1_12_2
  doi: 10.1007/BF00041325
– ident: e_1_2_1_38_2
  doi: 10.1002/nme.351
– ident: e_1_2_1_26_2
  doi: 10.1002/(SICI)1097-0207(19961115)39:21<3575::AID-NME65>3.0.CO;2-E
– ident: e_1_2_1_43_2
  doi: 10.1007/s00211-003-0456-y
– volume-title: Mechanics in Material Space with Applications to Defect and Fracture Mechanics
  year: 2000
  ident: e_1_2_1_14_2
– start-page: 551
  volume-title: Encyclopedia of Physics
  year: 1958
  ident: e_1_2_1_4_2
– ident: e_1_2_1_8_2
  doi: 10.1098/rsta.1951.0016
– ident: e_1_2_1_24_2
  doi: 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
– ident: e_1_2_1_19_2
  doi: 10.1007/s002050100187
– ident: e_1_2_1_37_2
  doi: 10.1007/s00466-002-0322-2
– ident: e_1_2_1_25_2
  doi: 10.1007/BF00372173
– ident: e_1_2_1_44_2
  doi: 10.1063/1.1711937
– ident: e_1_2_1_28_2
  doi: 10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
– ident: e_1_2_1_18_2
  doi: 10.1016/S0022-5096(98)00034-9
– ident: e_1_2_1_36_2
  doi: 10.1002/nme.834
– ident: e_1_2_1_57_2
  doi: 10.1016/j.finel.2004.01.002
– ident: e_1_2_1_2_2
  doi: 10.1098/rsta.1921.0006
– ident: e_1_2_1_16_2
  doi: 10.1016/S0022-5096(98)00002-7
– ident: e_1_2_1_7_2
  doi: 10.1007/BF01177002
– ident: e_1_2_1_20_2
  doi: 10.1016/S0022-5096(99)00028-9
– ident: e_1_2_1_49_2
  doi: 10.1002/(SICI)1097-0207(20000710)48:7<963::AID-NME908>3.0.CO;2-X
– ident: e_1_2_1_48_2
  doi: 10.1016/S0020-7683(99)00155-9
– ident: e_1_2_1_35_2
  doi: 10.1016/S0020-7683(00)00381-4
SSID ssj0011503
Score 2.286169
Snippet The paper considers a variational formulation of brittle fracture in elastic solids and proposes a numerical implementation by a finite element method. On the...
SourceID unpaywall
proquest
pascalfrancis
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 127
SubjectTerms Computational techniques
configurational forces
crack simulations
energy minimization
Exact sciences and technology
finite elements
fracture
Fracture mechanics (crack, fatigue, damage...)
Fundamental areas of phenomenology (including applications)
Mathematical methods in physics
Physics
Solid mechanics
Structural and continuum mechanics
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a7QPsgcEAkQHDTAiesiVunMSPVbUxIbVCiIqxl8h27a5qm1a5iMsTP4HfyC_hOJdCJ5h4chJ9snw5tr_Yx98BeBlJX7GJZ9xQ8NhFfhu7kkUcn5BLKC4FY_ai8HAUno-DtxfsYgeO2rsw1_QFkK_4_kmPBTS4Bd2QId_uQHc8etf_1PpuMF5FIrUnqS5yn6hVmPXoSbrU9jYe31pzurb5vlgfSJFjM5g6fsUWwbxdpmvx9bNYLLYpa7XmnO3BoC1t7WoyPy4Leay-XRNyvLk69-BuQzlJv7aR-7Cj033Ya-gnaQZ3vg-7f2gT4ttwI-iaP4CsT7KVLPOCiMV0lc2KqyVBukvwb9rMpmXWbCn-_P4DvyqN6SSz8yiRiEVzJCoTak6wJjiBVWBid4DJe0SKiVjbSZcsdX6F-c-mlYfCQxifnX4YnLtNuAZX9azjleCT2HAjODc-lzzwA6SWVMdS90KhQ05lIDVjVn2HMi1orLhAgmE8HsvQUNl7BJ10lerHQIwJjS-ZYozyQPmax54SHhVMxBLxkQOv2w5NVKNlbkNqLJJahZkmWNDEdr0DLzbIda3f8RfMq8omNgCRza2_W8SSj6M3SRRzOqCXlwl14HDLaH7niKTLqvw48Ly1ogSHqT17EalelXnSq7TyQubA0ca4bipQZXX_BCSj4alND_4ntydwp9qQrhwXn0KnyEr9DJlUIQ-bofQLllwemQ
  priority: 102
  providerName: Unpaywall
Title A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment
URI https://api.istex.fr/ark:/67375/WNG-7892C2ZZ-2/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.1999
https://www.proquest.com/docview/30123665
https://hdl.handle.net/11511/35424
UnpaywallVersion submittedVersion
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1097-0207
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLXQ9gA8MBighUExCMFTt8SJk_ixmjYmpFZoomKMB8t27a5qm1b50IAnfgK_kV_CtfPBigAhnpxEJ5btXF8fO9fHCL1IZKDoxDf9WLC0D_w27UuaMLgCLqGYFJTajcLDUXw6jt6c0_MmqtLuhan1IboFN9sznL-2HVzI4vCaaOhS2612du9eEMZuNnXWKUdZnhO20R2UpUGrO-uTw_bFjZFo2zbqJxsZKQpoHFOfarFBO29W2Vp8vhKLxSaRdSPRyQ762NahDkCZH1SlPFBffpF3_L9K3kV3GoKKB7VF3UM3dLaLdhqyihtXUOyi29eUDOFu2Mm_FvdRPsD5SlZFicViuspn5eUSAznGMPc2s2mVNwuQ379-g6dKQzrJrdfFErBgvFjlQs0x1BDcnQNju16MzwApJmJtXTRe6uIS8p9NXTzDAzQ-OX53dNpvDnfoq9CGaQk2SQ0zgjETMMmiIAIiSnQqdRgLHTMiI6kptVo9hGpBUsUE0BHjs1TGhsjwIdrKVpneQ9iY2ASSKkoJi1SgWeor4RNBRSoBn3joVfuhuWqUz-0BHAteazYTDgXltpk99KxDrmu1j99gXjpb6QAin9vouITy96PXPEkZOSIXF5x4qLdhTD9zBIpmNYE89LS1Lg6d2v6pEZleVQUPnbJeTD30vDO6vxXImdAfAXw0PLbpo38F7qNbbgnbhTo-RltlXuknwL1K2XO9rIe2x6O3gw8_AAR8Mao
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL0a28PgYYPBRAdsBiF46pa4cRKLp2naKLD2YdrENCFZtmt3Vdu0Shrx8cRP4DfyS7jOFysChHhyEp1EtnN9c3xzfQzwPFK-ZgPPtkPJ4zby27itWMTxCLmE5koy5hYK9_ph9yJ4e8kuV-BVvRam1IdoAm5uZBT-2g1wF5A-uKEaOjVurR2_BWtBiNMUx4jOGu0ox3Q6dX4H47FfK8969KC-c-lbtOa69ZPLjZQZdo8t97VYIp7reTKXnz_KyWSZyhbfopNN-FC3okxBGe_nC7Wvv_wi8PifzbwLGxVHJYelUd2DFZNswWbFV0nlDbItuHNDzBDPeo0CbHYf0kOSzlSeLYicDGfpaHE9JciPCU6_7WiYp1UM8vvXb3hVGywHqXO8RCEW7ZfoVOoxwSaixyvAxIWMyRki5UDOnZcmU5Nd4_NHwyKl4QFcnByfH3Xb1f4Obd1xmVqSD2LLreTc-lzxwA-Qi1ITK9MJpQk5VYEyjDm5HsqMpLHmEhmJ9XisQktVZxtWk1liHgKxNrS-YpoxygPtGx57WnpUMhkrxEcteFm_aaEr8XO3B8dElLLNVGBFhevmFjxtkPNS8OM3mBeFsTQAmY5dglzExPv-axHFnB7RqytBW7C7ZE0_n4gszckCtWCvNi-B49r9rJGJmeWZ6BTieiFrwbPG6v5WocKG_ggQ_d6xK3f-FbgH693z3qk4fdN_9whuFxHtIvPxMawu0tw8QSq2ULvFkPsBWjc0Gw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4amwTsgcEArVw2gxA8dWvcOInF07StjEsrNDExTUiW7dhd1TatkkZcnvgJ_EZ-Cce5sSJAiCfn8sWynePjL87xZ4AnofI0izu2HUgetZHfRm3FQo5HyCU0V5Ixt1C4PwiOT_1XZ-xsBZ7Xa2FKfYhmws31jMJfuw5u5rHdu6QaOjVurR2_Ams-45GL5zs8abSjHNPp1vEdeNurlWc7dK9-cmksWnPN-snFRsoMm8eW-1osEc9reTKXnz_KyWSZyhZjUW8DPtS1KENQxrv5Qu3qL78IPP5nNW_CjYqjkv3SqG7Bikk2YaPiq6TyBtkmrF8SM8SzfqMAm92GdJ-kM5VnCyInw1k6WlxMCfJjgp_fdjTM02oO8vvXb3hVG0zj1DleohCL9kt0KvWYYBXR4xVg4qaMyQkiZSznzkuTqckuMP_RsAhpuAOnvaN3B8ftan-Htu66SC3J48hyKzm3Hlfc93zkotREynQDaQJOla8MY06uhzIjaaS5REZiOzxSgaWqexdWk1litoBYG1hPMc0Y5b72DI86WnaoZDJSiA9b8Kx-00JX4uduD46JKGWbqcCCCtfMLXjUIOel4MdvME8LY2kAMh27ALmQifeDFyKMOD2g5-eCtmB7yZp-5ogszckCtWCnNi-B_dr9rJGJmeWZ6BbiegFrwePG6v5WoMKG_ggQg_6RS-_9K3AHrr497Ik3Lwev78P1YkK7CHx8AKuLNDcPkYkt1HbR434Avxkznw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD4a7QPsgcEAkQHDTAiesiVunMSPVbUxIbVCiIqxl8h27a5qm1a5iMsTP4HfyC_hOJdCJ5h4chJ9snw5tr_Yx98BeBlJX7GJZ9xQ8NhFfhu7kkUcn5BLKC4FY_ai8HAUno-DtxfsYgeO2rsw1_QFkK_4_kmPBTS4Bd2QId_uQHc8etf_1PpuMF5FIrUnqS5yn6hVmPXoSbrU9jYe31pzurb5vlgfSJFjM5g6fsUWwbxdpmvx9bNYLLYpa7XmnO3BoC1t7WoyPy4Leay-XRNyvLk69-BuQzlJv7aR-7Cj033Ya-gnaQZ3vg-7f2gT4ttwI-iaP4CsT7KVLPOCiMV0lc2KqyVBukvwb9rMpmXWbCn-_P4DvyqN6SSz8yiRiEVzJCoTak6wJjiBVWBid4DJe0SKiVjbSZcsdX6F-c-mlYfCQxifnX4YnLtNuAZX9azjleCT2HAjODc-lzzwA6SWVMdS90KhQ05lIDVjVn2HMi1orLhAgmE8HsvQUNl7BJ10lerHQIwJjS-ZYozyQPmax54SHhVMxBLxkQOv2w5NVKNlbkNqLJJahZkmWNDEdr0DLzbIda3f8RfMq8omNgCRza2_W8SSj6M3SRRzOqCXlwl14HDLaH7niKTLqvw48Ly1ogSHqT17EalelXnSq7TyQubA0ca4bipQZXX_BCSj4alND_4ntydwp9qQrhwXn0KnyEr9DJlUIQ-bofQLllwemQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+algorithm+for+configurational-force-driven+brittle+crack+propagation+with+R-adaptive+mesh+alignment&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=MIEHE%2C+C&rft.au=G%C3%9CRSES%2C+E&rft.date=2007-10-08&rft.pub=Wiley&rft.issn=0029-5981&rft.volume=72&rft.issue=2&rft.spage=127&rft.epage=155&rft_id=info:doi/10.1002%2Fnme.1999&rft.externalDBID=n%2Fa&rft.externalDocID=19109499
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon