A Fuzzy Bayesian Classifier with Learned Mahalanobis Distance
Recent developments show that naive Bayesian classifier (NBC) performs significantly better in applications, although it is based on the assumption that all attributes are independent of each other. However, in the NBC each variable has a finite number of values, which means that in large data sets...
        Saved in:
      
    
          | Published in | International journal of intelligent systems Vol. 29; no. 8; pp. 713 - 726 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Hoboken, NJ
          Blackwell Publishing Ltd
    
        01.08.2014
     Wiley John Wiley & Sons, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0884-8173 1098-111X  | 
| DOI | 10.1002/int.21659 | 
Cover
| Abstract | Recent developments show that naive Bayesian classifier (NBC) performs significantly better in applications, although it is based on the assumption that all attributes are independent of each other. However, in the NBC each variable has a finite number of values, which means that in large data sets NBC may not be so effective in classifications. For example, variables may take continuous values. To overcome this issue, many researchers used fuzzy naive Bayesian classification for partitioning the continuous values. On the other hand, the choice of the distance function is an important subject that should be taken into consideration in fuzzy partitioning or clustering. In this study, a new fuzzy Bayes classifier is proposed for numerical attributes without the independency assumption. To get high accuracy in classification, membership functions are constructed by using the fuzzy C‐means clustering (FCM). The main objective of using FCM is to obtain membership functions directly from the data set instead of consulting to an expert. The proposed method is demonstrated on the basis of two well‐known data sets from the literature, which consist of numerical attributes only. The results show that the proposed the fuzzy Bayes classification is at least comparable to other methods. | 
    
|---|---|
| AbstractList | Recent developments show that naive Bayesian classifier (NBC) performs significantly better in applications, although it is based on the assumption that all attributes are independent of each other. However, in the NBC each variable has a finite number of values, which means that in large data sets NBC may not be so effective in classifications. For example, variables may take continuous values. To overcome this issue, many researchers used fuzzy naive Bayesian classification for partitioning the continuous values. On the other hand, the choice of the distance function is an important subject that should be taken into consideration in fuzzy partitioning or clustering. In this study, a new fuzzy Bayes classifier is proposed for numerical attributes without the independency assumption. To get high accuracy in classification, membership functions are constructed by using the fuzzy C-means clustering (FCM). The main objective of using FCM is to obtain membership functions directly from the data set instead of consulting to an expert. The proposed method is demonstrated on the basis of two well-known data sets from the literature, which consist of numerical attributes only. The results show that the proposed the fuzzy Bayes classification is at least comparable to other methods. Recent developments show that naive Bayesian classifier (NBC) performs significantly better in applications, although it is based on the assumption that all attributes are independent of each other. However, in the NBC each variable has a finite number of values, which means that in large data sets NBC may not be so effective in classifications. For example, variables may take continuous values. To overcome this issue, many researchers used fuzzy naive Bayesian classification for partitioning the continuous values. On the other hand, the choice of the distance function is an important subject that should be taken into consideration in fuzzy partitioning or clustering. In this study, a new fuzzy Bayes classifier is proposed for numerical attributes without the independency assumption. To get high accuracy in classification, membership functions are constructed by using the fuzzy C-means clustering (FCM). The main objective of using FCM is to obtain membership functions directly from the data set instead of consulting to an expert. The proposed method is demonstrated on the basis of two well-known data sets from the literature, which consist of numerical attributes only. The results show that the proposed the fuzzy Bayes classification is at least comparable to other methods. [PUBLICATION ABSTRACT]  | 
    
| Author | Arslan, Guvenc Kayaalp, Necla  | 
    
| Author_xml | – sequence: 1 givenname: Necla surname: Kayaalp fullname: Kayaalp, Necla email: necla.kayaalp@ieu.edu.tr organization: Department of Mathematics, Izmir University of Economics, 35330, Izmir, Turkey – sequence: 2 givenname: Guvenc surname: Arslan fullname: Arslan, Guvenc organization: Department of Mathematics, Izmir University of Economics, 35330, Izmir, Turkey  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28609674$$DView record in Pascal Francis | 
    
| BookMark | eNp1kT1PHDEQhi1EpBwkRf7BSlGkpFjw2OuvIgVcwkd0uVCAoLNmfV5hsnjB3hM5fn1M7kiBksrN87yeeWeHbMchekLeAd0DStl-iOMeAynMFpkANboGgKttMqFaN7UGxV-TnZxvKAVQjZiQzwfV0fLxcVUd4srngLGa9phz6IJP1UMYr6uZxxT9ovqO19hjHNqQqy8hjxidf0Neddhn_3bz7pKLo6_n05N69uP4dHowqx032tTATcuRdth42jbg3IK1ygjDOUjQXDHdCU6FAm28bNEtRKfAm9Z0jWOONXyXfFzn3qXhfunzaG9Ddr4v8_hhmS0IUfaUlJuCvn-B3gzLFMt0heLSSMaoKNSHDYXZYd-lsk3I9i6FW0wry7SkRqqnj_fXnEtDzsl31oURxzDEMWHoLVD7VLsttds_tRfj0wvjOfRf7Cb9IfR-9X_Qns7Pn416bZQD-F9_DUw_rVRcCXs5P7bfrg5PWDM_s5r_BttvoDU | 
    
| CODEN | IJISED | 
    
| CitedBy_id | crossref_primary_10_1007_s13369_021_06177_3 crossref_primary_10_1155_2014_470758 crossref_primary_10_1016_j_measurement_2019_106886 crossref_primary_10_18466_cbayarfbe_618964 crossref_primary_10_70030_sjmakeu_1460760 crossref_primary_10_3390_math10010128  | 
    
| Cites_doi | 10.1016/S0377-2217(00)00167-3 10.1016/j.patcog.2008.05.018 10.1016/j.camwa.2006.03.033 10.1016/j.patcog.2008.07.017 10.1016/j.ins.2004.12.006  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2014 Wiley Periodicals, Inc. 2015 INIST-CNRS Copyright © 2014 Wiley Periodicals, Inc.  | 
    
| Copyright_xml | – notice: 2014 Wiley Periodicals, Inc. – notice: 2015 INIST-CNRS – notice: Copyright © 2014 Wiley Periodicals, Inc.  | 
    
| DBID | BSCLL AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1002/int.21659 | 
    
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science Applied Sciences  | 
    
| EISSN | 1098-111X | 
    
| EndPage | 726 | 
    
| ExternalDocumentID | 3337146971 28609674 10_1002_int_21659 INT21659 ark_67375_WNG_JXBH24NP_8  | 
    
| Genre | article | 
    
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAMMB AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIMD AENEX AFBPY AFGKR AFKRA AFZJQ AGQPQ AGXDD AI. AIDQK AIDYY AIQQE AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CCPQU CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQGLB PQQKQ PTHSS PUEGO Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT AAYXX CITATION AAHHS AAJEY AAYOK ABTAH ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE IQODW 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c3989-139b3a0fa4e0b41ccd2b79593316183728f53057189e6bacd5f71e9b9f4c2c243 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0884-8173 | 
    
| IngestDate | Sun Sep 28 05:03:36 EDT 2025 Sun Aug 17 00:11:01 EDT 2025 Wed Apr 02 07:24:48 EDT 2025 Wed Oct 01 03:27:26 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Wed Aug 20 07:24:51 EDT 2025 Sun Sep 21 06:25:28 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Keywords | Cluster analysis Bayes estimation Data analysis Membership function Statistical analysis Expert High precision Very large databases Multivariate analysis Fuzzy set Fuzzy logic Partitioning Center of mass Classification Metric Mahalanobis distance  | 
    
| Language | English | 
    
| License | http://doi.wiley.com/10.1002/tdm_license_1.1 CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3989-139b3a0fa4e0b41ccd2b79593316183728f53057189e6bacd5f71e9b9f4c2c243 | 
    
| Notes | ark:/67375/WNG-JXBH24NP-8 ArticleID:INT21659 istex:B6F77C9F8337CDE9F72A69CFC3A4249B01F4A9E5 e‐mail guvenc.arslan@ieu.edu.tr ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 1536962205 | 
    
| PQPubID | 1026350 | 
    
| PageCount | 14 | 
    
| ParticipantIDs | proquest_miscellaneous_1551116039 proquest_journals_1536962205 pascalfrancis_primary_28609674 crossref_citationtrail_10_1002_int_21659 crossref_primary_10_1002_int_21659 wiley_primary_10_1002_int_21659_INT21659 istex_primary_ark_67375_WNG_JXBH24NP_8  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | August 2014 | 
    
| PublicationDateYYYYMMDD | 2014-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2014 text: August 2014  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Hoboken, NJ | 
    
| PublicationPlace_xml | – name: Hoboken, NJ – name: New York  | 
    
| PublicationTitle | International journal of intelligent systems | 
    
| PublicationTitleAlternate | Int. J. Intell. Syst | 
    
| PublicationYear | 2014 | 
    
| Publisher | Blackwell Publishing Ltd Wiley John Wiley & Sons, Inc  | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley – name: John Wiley & Sons, Inc  | 
    
| References | Pekelska E, Paclik P, Duin RPW. A generalized kernel approach to dissimilarity-based classification. Eur J Oper Res 2001;2:175-211. Xiang S, Nie F, Zhang C. Learning Mahalanobis distance metric for data clustering and classification. Pattern Recog 2008;41:3600-3612. Li J, Lu BL. An adaptive Euclidean distance. Pattern Recog 2009;42:349-357. Greco S, Matarazzo B, Slowinski R. Rough sets theory for multicriteria analysis. Eur J Oper Res 2001;129:1-47. Chen CB, Wang LY. Rough set-based clustering with refinement using Shannon's entropy theory. Comput Math Appl 2006;56:1563-1576. Khemchandani R, Jayadeva, Chandra S. Learning the optimal kernel for Fisher discriminant analysis via second order cone programming. J Mach Learn Res 2010;203:692-697. Yager RR. An extension of the naive Bayesian classifier. Inform Sci 2006;176:577-588. Duda RO, Hart PE. Pattern Classification and Scene Analysis. Wiley: New York; 1973. Störr HP. A compact fuzzy extension of the naive Bayes classifier based on fuzzy clustering. IEEE Int Conf on Syst Man Cybernet 2002;176:1-6. Tang Y, Pan W, Li H, Xu Y. Fuzzy naive Bayes extension of the naive Bayes classifier based on fuzzy clustering. IEEE Int Conf Syste Man Cybernet 2002;56:1-6. 2006; 176 1973 2001; 2 2004 2008; 41 2009; 42 2006; 56 2001; 129 2002; 176 2002; 56 2010; 203 Xiang (10.1002/int.21659-BIB0004|int21659-cit-0004) 2008; 41 Yager (10.1002/int.21659-BIB0008|int21659-cit-0008) 2006; 176 Greco (10.1002/int.21659-BIB0005|int21659-cit-0005) 2001; 129 Pekelska (10.1002/int.21659-BIB0001|int21659-cit-0001) 2001; 2 Khemchandani (10.1002/int.21659-BIB0002|int21659-cit-0002) 2010; 203 Störr (10.1002/int.21659-BIB0009|int21659-cit-0009) 2002; 176 Tang (10.1002/int.21659-BIB0010|int21659-cit-0010) 2002; 56 10.1002/int.21659-BIB0007|int21659-cit-0007 Li (10.1002/int.21659-BIB0003|int21659-cit-0003) 2009; 42 Duda (10.1002/int.21659-BIB0006|int21659-cit-0006) 1973 Chen (10.1002/int.21659-BIB0011|int21659-cit-0011) 2006; 56  | 
    
| References_xml | – reference: Duda RO, Hart PE. Pattern Classification and Scene Analysis. Wiley: New York; 1973. – reference: Chen CB, Wang LY. Rough set-based clustering with refinement using Shannon's entropy theory. Comput Math Appl 2006;56:1563-1576. – reference: Greco S, Matarazzo B, Slowinski R. Rough sets theory for multicriteria analysis. Eur J Oper Res 2001;129:1-47. – reference: Khemchandani R, Jayadeva, Chandra S. Learning the optimal kernel for Fisher discriminant analysis via second order cone programming. J Mach Learn Res 2010;203:692-697. – reference: Störr HP. A compact fuzzy extension of the naive Bayes classifier based on fuzzy clustering. IEEE Int Conf on Syst Man Cybernet 2002;176:1-6. – reference: Yager RR. An extension of the naive Bayesian classifier. Inform Sci 2006;176:577-588. – reference: Tang Y, Pan W, Li H, Xu Y. Fuzzy naive Bayes extension of the naive Bayes classifier based on fuzzy clustering. IEEE Int Conf Syste Man Cybernet 2002;56:1-6. – reference: Pekelska E, Paclik P, Duin RPW. A generalized kernel approach to dissimilarity-based classification. Eur J Oper Res 2001;2:175-211. – reference: Li J, Lu BL. An adaptive Euclidean distance. Pattern Recog 2009;42:349-357. – reference: Xiang S, Nie F, Zhang C. Learning Mahalanobis distance metric for data clustering and classification. Pattern Recog 2008;41:3600-3612. – year: 1973 – volume: 176 start-page: 1 year: 2002 end-page: 6 article-title: A compact fuzzy extension of the naive Bayes classifier based on fuzzy clustering publication-title: IEEE Int Conf on Syst Man Cybernet – volume: 176 start-page: 577 year: 2006 end-page: 588 article-title: An extension of the naive Bayesian classifier publication-title: Inform Sci – volume: 129 start-page: 1 year: 2001 end-page: 47 article-title: Rough sets theory for multicriteria analysis publication-title: Eur J Oper Res – volume: 56 start-page: 1563 year: 2006 end-page: 1576 article-title: Rough set‐based clustering with refinement using Shannon's entropy theory publication-title: Comput Math Appl – volume: 41 start-page: 3600 year: 2008 end-page: 3612 article-title: Learning Mahalanobis distance metric for data clustering and classification publication-title: Pattern Recog – volume: 56 start-page: 1 year: 2002 end-page: 6 article-title: Fuzzy naive Bayes extension of the naive Bayes classifier based on fuzzy clustering publication-title: IEEE Int Conf Syste Man Cybernet – start-page: 567 year: 2004 end-page: 570 article-title: Learning weighted naive Bayes with accurate ranking – volume: 203 start-page: 692 year: 2010 end-page: 697 article-title: Learning the optimal kernel for Fisher discriminant analysis via second order cone programming publication-title: J Mach Learn Res – volume: 42 start-page: 349 year: 2009 end-page: 357 article-title: An adaptive Euclidean distance publication-title: Pattern Recog – volume: 2 start-page: 175 year: 2001 end-page: 211 article-title: A generalized kernel approach to dissimilarity‐based classification publication-title: Eur J Oper Res – volume: 129 start-page: 1 year: 2001 ident: 10.1002/int.21659-BIB0005|int21659-cit-0005 article-title: Rough sets theory for multicriteria analysis publication-title: Eur J Oper Res doi: 10.1016/S0377-2217(00)00167-3 – volume: 41 start-page: 3600 year: 2008 ident: 10.1002/int.21659-BIB0004|int21659-cit-0004 article-title: Learning Mahalanobis distance metric for data clustering and classification publication-title: Pattern Recog doi: 10.1016/j.patcog.2008.05.018 – ident: 10.1002/int.21659-BIB0007|int21659-cit-0007 – volume: 56 start-page: 1563 year: 2006 ident: 10.1002/int.21659-BIB0011|int21659-cit-0011 article-title: Rough set-based clustering with refinement using Shannon's entropy theory publication-title: Comput Math Appl doi: 10.1016/j.camwa.2006.03.033 – volume: 2 start-page: 175 year: 2001 ident: 10.1002/int.21659-BIB0001|int21659-cit-0001 article-title: A generalized kernel approach to dissimilarity-based classification publication-title: Eur J Oper Res – volume: 203 start-page: 692 year: 2010 ident: 10.1002/int.21659-BIB0002|int21659-cit-0002 article-title: Learning the optimal kernel for Fisher discriminant analysis via second order cone programming publication-title: J Mach Learn Res – volume: 42 start-page: 349 year: 2009 ident: 10.1002/int.21659-BIB0003|int21659-cit-0003 article-title: An adaptive Euclidean distance publication-title: Pattern Recog doi: 10.1016/j.patcog.2008.07.017 – volume: 176 start-page: 1 year: 2002 ident: 10.1002/int.21659-BIB0009|int21659-cit-0009 article-title: A compact fuzzy extension of the naive Bayes classifier based on fuzzy clustering publication-title: IEEE Int Conf on Syst Man Cybernet – volume-title: Pattern Classification and Scene Analysis year: 1973 ident: 10.1002/int.21659-BIB0006|int21659-cit-0006 – volume: 176 start-page: 577 year: 2006 ident: 10.1002/int.21659-BIB0008|int21659-cit-0008 article-title: An extension of the naive Bayesian classifier publication-title: Inform Sci doi: 10.1016/j.ins.2004.12.006 – volume: 56 start-page: 1 year: 2002 ident: 10.1002/int.21659-BIB0010|int21659-cit-0010 article-title: Fuzzy naive Bayes extension of the naive Bayes classifier based on fuzzy clustering publication-title: IEEE Int Conf Syste Man Cybernet  | 
    
| SSID | ssj0011745 | 
    
| Score | 2.061333 | 
    
| Snippet | Recent developments show that naive Bayesian classifier (NBC) performs significantly better in applications, although it is based on the assumption that all... | 
    
| SourceID | proquest pascalfrancis crossref wiley istex  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 713 | 
    
| SubjectTerms | Algorithms Applied sciences Bayesian analysis Classifications Classifiers Computer science; control theory; systems Data processing. List processing. Character string processing Exact sciences and technology Fuzzy Fuzzy logic Fuzzy set theory Intelligent systems Mathematical analysis Mathematical models Memory organisation. Data processing Software  | 
    
| Title | A Fuzzy Bayesian Classifier with Learned Mahalanobis Distance | 
    
| URI | https://api.istex.fr/ark:/67375/WNG-JXBH24NP-8/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.21659 https://www.proquest.com/docview/1536962205 https://www.proquest.com/docview/1551116039  | 
    
| Volume | 29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 0884-8173 databaseCode: ADMLS dateStart: 19860301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0884-8173 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9K--KL9RNX6xFFpC973c3HfiA-XK3nWewh2uI9CCHJJnhU9qR3B_b-eifZDz1REN8WdrJkZzKZX5LJbwCe6cqxyvkzwypXMS8TFRcOF66C5UWieGESG7Itptnkgp_OxGwHXnR3YRp-iH7DzXtGmK-9gyu9PPpJGjqvV0OaZsJf3ktZFpZTH3rqqBSRtmgQJI-LNGcdq1BCj_qWW7Foz6v1u8-NVEtUj2vqWmwBz1_ha4g_43343PW8STu5HK5Xemg2v5E6_uev3YKbLS4lo2Yg3YYdW9-B_a7mA2mngLvwckTG683mmhyra-svYJJQVnPuMLwSv6lLAmOrrciZ-uLTJhd6viQnHqVi-3twMX59_moStyUYYsN8MhXiQ81U4hS3ieapMRXVvjo5Y55on-W0cAJnDAxwpc20MpVweWpLXTpuqKGc3YfdelHbB0BoleYmZ0pQl3CDXylEJXB9yhRinpJnERx2xpCm5Sf3ZTK-yoZZmUpUiwxqieBpL_qtIeX4k9DzYNFeQl1d-iy2XMhP0zfydHY8oXz6XhYRDLZM3jegRYYLvJxHcNCNAdl6-FJipMjKzF9TjuBJ_xp90x-4qNou1l4G4ayv442dOQwG_3t35dvpeXh4-O-ij-AG4jfe5CMewO7qam0fI0Za6QHsjU7O3n0cBKf4AdAcC90 | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gAXylOklGIQQr1km_iRhwSHFli2pY0Q2oq9IMtxbLFqlUXdXYnur2fsPGARSIhbpIwjx-PxfGOPvwF4UVaWVdadGVapCnkeqTCzGLgKlmaR4pmOjM-2KJLROT-ZiMkGvOruwjT8EP2Gm7MMv147A3cb0gc_WUOn9WJA40TkN2CLJxinOEj0qSePihFriwZD8jCLU9bxCkX0oG-65o223MB-d9mRao4DZJvKFmvQ81cA6z3QcBu-dH1vEk8uBstFOdCr32gd__fn7sDtFpqSw2Yu3YUNU9-D7a7sA2lXgfvw-pAMl6vVNTlS18bdwSS-subUooclbl-XeNJWU5Ez9dVlTs7K6Zy8dUAV2z-A8-G78ZtR2FZhCDVz-VQIEUumIqu4iUoea13R0hUoZ8xx7bOUZlbgooE-LjdJqXQlbBqbvMwt11RTzh7CZj2rzSMgtIpTnTIlqI24xq9kohIYojKFsCfnSQD7nTakbinKXaWMS9mQK1OJwyL9sATwvBf91vBy_EnopVdpL6GuLlwiWyrk5-K9PJkcjSgvPsosgL01nfcNaJZgjJfyAHa7SSBbI59LdBZJnribygE861-jebozF1Wb2dLJIKJ1pbyxM_te43_vrjwuxv5h599Fn8LN0fjsVJ4eFx8ewy2Ec7xJT9yFzcXV0jxByLQo97xl_AAk-Q5q | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qC-KL9RNXa40i0pe97uZjP0AfWs_zWnUp0uK9lJDNJnhU9krvDuz99U6yH3qiIL4t7GTJzmQyvyST3wC8LCvLKuvODKtUhTyPVJhZXLgKlmaR4pmOjM-2KJLxGT-eiMkGvO7uwjT8EP2Gm_MMP187BzeXld3_yRo6rRcDGicivwFbXOSZS-gbfu7Jo2LE2qLBkDzM4pR1vEIR3e-brkWjLafY7y47Us1RQbapbLEGPX8FsD4CjbbhvOt7k3hyMVguyoFe_Ubr-L8_dwdut9CUHDRj6S5smPoebHdlH0g7C9yHNwdktFytrsmhujbuDibxlTWnFiMscfu6xJO2mop8Ul9d5uSsnM7J0AFVbP8AzkbvTt-Ow7YKQ6iZy6dCiFgyFVnFTVTyWOuKlq5AOWOOa5-lNLMCJw2McblJSqUrYdPY5GVuuaaacvYQNutZbR4BoVWc6pQpQW3ENX4lE5XAJSpTCHtyngSw11lD6pai3FXK-CYbcmUqUS3SqyWAF73oZcPL8SehV96kvYS6unCJbKmQX4r38nhyOKa8OJFZALtrNu8b0CzBNV7KA9jpBoFsnXwuMVgkeeJuKgfwvH-N7unOXFRtZksng4jWlfLGzux5i_-9u_KoOPUPj_9d9BncPBmO5Mej4sMTuIVojjfZiTuwubhamqeImBblrneMH7m6De4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fuzzy+Bayesian+Classifier+with+Learned+Mahalanobis+Distance&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Kayaalp%2C+Necla&rft.au=Arslan%2C+Guvenc&rft.date=2014-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=29&rft.issue=8&rft.spage=713&rft_id=info:doi/10.1002%2Fint.21659&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3337146971 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |