A Fuzzy Bayesian Classifier with Learned Mahalanobis Distance

Recent developments show that naive Bayesian classifier (NBC) performs significantly better in applications, although it is based on the assumption that all attributes are independent of each other. However, in the NBC each variable has a finite number of values, which means that in large data sets...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of intelligent systems Vol. 29; no. 8; pp. 713 - 726
Main Authors Kayaalp, Necla, Arslan, Guvenc
Format Journal Article
LanguageEnglish
Published Hoboken, NJ Blackwell Publishing Ltd 01.08.2014
Wiley
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN0884-8173
1098-111X
DOI10.1002/int.21659

Cover

Abstract Recent developments show that naive Bayesian classifier (NBC) performs significantly better in applications, although it is based on the assumption that all attributes are independent of each other. However, in the NBC each variable has a finite number of values, which means that in large data sets NBC may not be so effective in classifications. For example, variables may take continuous values. To overcome this issue, many researchers used fuzzy naive Bayesian classification for partitioning the continuous values. On the other hand, the choice of the distance function is an important subject that should be taken into consideration in fuzzy partitioning or clustering. In this study, a new fuzzy Bayes classifier is proposed for numerical attributes without the independency assumption. To get high accuracy in classification, membership functions are constructed by using the fuzzy C‐means clustering (FCM). The main objective of using FCM is to obtain membership functions directly from the data set instead of consulting to an expert. The proposed method is demonstrated on the basis of two well‐known data sets from the literature, which consist of numerical attributes only. The results show that the proposed the fuzzy Bayes classification is at least comparable to other methods.
AbstractList Recent developments show that naive Bayesian classifier (NBC) performs significantly better in applications, although it is based on the assumption that all attributes are independent of each other. However, in the NBC each variable has a finite number of values, which means that in large data sets NBC may not be so effective in classifications. For example, variables may take continuous values. To overcome this issue, many researchers used fuzzy naive Bayesian classification for partitioning the continuous values. On the other hand, the choice of the distance function is an important subject that should be taken into consideration in fuzzy partitioning or clustering. In this study, a new fuzzy Bayes classifier is proposed for numerical attributes without the independency assumption. To get high accuracy in classification, membership functions are constructed by using the fuzzy C-means clustering (FCM). The main objective of using FCM is to obtain membership functions directly from the data set instead of consulting to an expert. The proposed method is demonstrated on the basis of two well-known data sets from the literature, which consist of numerical attributes only. The results show that the proposed the fuzzy Bayes classification is at least comparable to other methods.
Recent developments show that naive Bayesian classifier (NBC) performs significantly better in applications, although it is based on the assumption that all attributes are independent of each other. However, in the NBC each variable has a finite number of values, which means that in large data sets NBC may not be so effective in classifications. For example, variables may take continuous values. To overcome this issue, many researchers used fuzzy naive Bayesian classification for partitioning the continuous values. On the other hand, the choice of the distance function is an important subject that should be taken into consideration in fuzzy partitioning or clustering. In this study, a new fuzzy Bayes classifier is proposed for numerical attributes without the independency assumption. To get high accuracy in classification, membership functions are constructed by using the fuzzy C-means clustering (FCM). The main objective of using FCM is to obtain membership functions directly from the data set instead of consulting to an expert. The proposed method is demonstrated on the basis of two well-known data sets from the literature, which consist of numerical attributes only. The results show that the proposed the fuzzy Bayes classification is at least comparable to other methods. [PUBLICATION ABSTRACT]
Author Arslan, Guvenc
Kayaalp, Necla
Author_xml – sequence: 1
  givenname: Necla
  surname: Kayaalp
  fullname: Kayaalp, Necla
  email: necla.kayaalp@ieu.edu.tr
  organization: Department of Mathematics, Izmir University of Economics, 35330, Izmir, Turkey
– sequence: 2
  givenname: Guvenc
  surname: Arslan
  fullname: Arslan, Guvenc
  organization: Department of Mathematics, Izmir University of Economics, 35330, Izmir, Turkey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28609674$$DView record in Pascal Francis
BookMark eNp1kT1PHDEQhi1EpBwkRf7BSlGkpFjw2OuvIgVcwkd0uVCAoLNmfV5hsnjB3hM5fn1M7kiBksrN87yeeWeHbMchekLeAd0DStl-iOMeAynMFpkANboGgKttMqFaN7UGxV-TnZxvKAVQjZiQzwfV0fLxcVUd4srngLGa9phz6IJP1UMYr6uZxxT9ovqO19hjHNqQqy8hjxidf0Neddhn_3bz7pKLo6_n05N69uP4dHowqx032tTATcuRdth42jbg3IK1ygjDOUjQXDHdCU6FAm28bNEtRKfAm9Z0jWOONXyXfFzn3qXhfunzaG9Ddr4v8_hhmS0IUfaUlJuCvn-B3gzLFMt0heLSSMaoKNSHDYXZYd-lsk3I9i6FW0wry7SkRqqnj_fXnEtDzsl31oURxzDEMWHoLVD7VLsttds_tRfj0wvjOfRf7Cb9IfR-9X_Qns7Pn416bZQD-F9_DUw_rVRcCXs5P7bfrg5PWDM_s5r_BttvoDU
CODEN IJISED
CitedBy_id crossref_primary_10_1007_s13369_021_06177_3
crossref_primary_10_1155_2014_470758
crossref_primary_10_1016_j_measurement_2019_106886
crossref_primary_10_18466_cbayarfbe_618964
crossref_primary_10_70030_sjmakeu_1460760
crossref_primary_10_3390_math10010128
Cites_doi 10.1016/S0377-2217(00)00167-3
10.1016/j.patcog.2008.05.018
10.1016/j.camwa.2006.03.033
10.1016/j.patcog.2008.07.017
10.1016/j.ins.2004.12.006
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright © 2014 Wiley Periodicals, Inc.
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
– notice: Copyright © 2014 Wiley Periodicals, Inc.
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/int.21659
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1098-111X
EndPage 726
ExternalDocumentID 3337146971
28609674
10_1002_int_21659
INT21659
ark_67375_WNG_JXBH24NP_8
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAMMB
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFZJQ
AGQPQ
AGXDD
AI.
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PTHSS
PUEGO
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
AAYXX
CITATION
AAHHS
AAJEY
AAYOK
ABTAH
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3989-139b3a0fa4e0b41ccd2b79593316183728f53057189e6bacd5f71e9b9f4c2c243
IEDL.DBID DR2
ISSN 0884-8173
IngestDate Sun Sep 28 05:03:36 EDT 2025
Sun Aug 17 00:11:01 EDT 2025
Wed Apr 02 07:24:48 EDT 2025
Wed Oct 01 03:27:26 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Wed Aug 20 07:24:51 EDT 2025
Sun Sep 21 06:25:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Cluster analysis
Bayes estimation
Data analysis
Membership function
Statistical analysis
Expert
High precision
Very large databases
Multivariate analysis
Fuzzy set
Fuzzy logic
Partitioning
Center of mass
Classification
Metric
Mahalanobis distance
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3989-139b3a0fa4e0b41ccd2b79593316183728f53057189e6bacd5f71e9b9f4c2c243
Notes ark:/67375/WNG-JXBH24NP-8
ArticleID:INT21659
istex:B6F77C9F8337CDE9F72A69CFC3A4249B01F4A9E5
e‐mail
guvenc.arslan@ieu.edu.tr
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 1536962205
PQPubID 1026350
PageCount 14
ParticipantIDs proquest_miscellaneous_1551116039
proquest_journals_1536962205
pascalfrancis_primary_28609674
crossref_citationtrail_10_1002_int_21659
crossref_primary_10_1002_int_21659
wiley_primary_10_1002_int_21659_INT21659
istex_primary_ark_67375_WNG_JXBH24NP_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2014
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: August 2014
PublicationDecade 2010
PublicationPlace Hoboken, NJ
PublicationPlace_xml – name: Hoboken, NJ
– name: New York
PublicationTitle International journal of intelligent systems
PublicationTitleAlternate Int. J. Intell. Syst
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
– name: John Wiley & Sons, Inc
References Pekelska E, Paclik P, Duin RPW. A generalized kernel approach to dissimilarity-based classification. Eur J Oper Res 2001;2:175-211.
Xiang S, Nie F, Zhang C. Learning Mahalanobis distance metric for data clustering and classification. Pattern Recog 2008;41:3600-3612.
Li J, Lu BL. An adaptive Euclidean distance. Pattern Recog 2009;42:349-357.
Greco S, Matarazzo B, Slowinski R. Rough sets theory for multicriteria analysis. Eur J Oper Res 2001;129:1-47.
Chen CB, Wang LY. Rough set-based clustering with refinement using Shannon's entropy theory. Comput Math Appl 2006;56:1563-1576.
Khemchandani R, Jayadeva, Chandra S. Learning the optimal kernel for Fisher discriminant analysis via second order cone programming. J Mach Learn Res 2010;203:692-697.
Yager RR. An extension of the naive Bayesian classifier. Inform Sci 2006;176:577-588.
Duda RO, Hart PE. Pattern Classification and Scene Analysis. Wiley: New York; 1973.
Störr HP. A compact fuzzy extension of the naive Bayes classifier based on fuzzy clustering. IEEE Int Conf on Syst Man Cybernet 2002;176:1-6.
Tang Y, Pan W, Li H, Xu Y. Fuzzy naive Bayes extension of the naive Bayes classifier based on fuzzy clustering. IEEE Int Conf Syste Man Cybernet 2002;56:1-6.
2006; 176
1973
2001; 2
2004
2008; 41
2009; 42
2006; 56
2001; 129
2002; 176
2002; 56
2010; 203
Xiang (10.1002/int.21659-BIB0004|int21659-cit-0004) 2008; 41
Yager (10.1002/int.21659-BIB0008|int21659-cit-0008) 2006; 176
Greco (10.1002/int.21659-BIB0005|int21659-cit-0005) 2001; 129
Pekelska (10.1002/int.21659-BIB0001|int21659-cit-0001) 2001; 2
Khemchandani (10.1002/int.21659-BIB0002|int21659-cit-0002) 2010; 203
Störr (10.1002/int.21659-BIB0009|int21659-cit-0009) 2002; 176
Tang (10.1002/int.21659-BIB0010|int21659-cit-0010) 2002; 56
10.1002/int.21659-BIB0007|int21659-cit-0007
Li (10.1002/int.21659-BIB0003|int21659-cit-0003) 2009; 42
Duda (10.1002/int.21659-BIB0006|int21659-cit-0006) 1973
Chen (10.1002/int.21659-BIB0011|int21659-cit-0011) 2006; 56
References_xml – reference: Duda RO, Hart PE. Pattern Classification and Scene Analysis. Wiley: New York; 1973.
– reference: Chen CB, Wang LY. Rough set-based clustering with refinement using Shannon's entropy theory. Comput Math Appl 2006;56:1563-1576.
– reference: Greco S, Matarazzo B, Slowinski R. Rough sets theory for multicriteria analysis. Eur J Oper Res 2001;129:1-47.
– reference: Khemchandani R, Jayadeva, Chandra S. Learning the optimal kernel for Fisher discriminant analysis via second order cone programming. J Mach Learn Res 2010;203:692-697.
– reference: Störr HP. A compact fuzzy extension of the naive Bayes classifier based on fuzzy clustering. IEEE Int Conf on Syst Man Cybernet 2002;176:1-6.
– reference: Yager RR. An extension of the naive Bayesian classifier. Inform Sci 2006;176:577-588.
– reference: Tang Y, Pan W, Li H, Xu Y. Fuzzy naive Bayes extension of the naive Bayes classifier based on fuzzy clustering. IEEE Int Conf Syste Man Cybernet 2002;56:1-6.
– reference: Pekelska E, Paclik P, Duin RPW. A generalized kernel approach to dissimilarity-based classification. Eur J Oper Res 2001;2:175-211.
– reference: Li J, Lu BL. An adaptive Euclidean distance. Pattern Recog 2009;42:349-357.
– reference: Xiang S, Nie F, Zhang C. Learning Mahalanobis distance metric for data clustering and classification. Pattern Recog 2008;41:3600-3612.
– year: 1973
– volume: 176
  start-page: 1
  year: 2002
  end-page: 6
  article-title: A compact fuzzy extension of the naive Bayes classifier based on fuzzy clustering
  publication-title: IEEE Int Conf on Syst Man Cybernet
– volume: 176
  start-page: 577
  year: 2006
  end-page: 588
  article-title: An extension of the naive Bayesian classifier
  publication-title: Inform Sci
– volume: 129
  start-page: 1
  year: 2001
  end-page: 47
  article-title: Rough sets theory for multicriteria analysis
  publication-title: Eur J Oper Res
– volume: 56
  start-page: 1563
  year: 2006
  end-page: 1576
  article-title: Rough set‐based clustering with refinement using Shannon's entropy theory
  publication-title: Comput Math Appl
– volume: 41
  start-page: 3600
  year: 2008
  end-page: 3612
  article-title: Learning Mahalanobis distance metric for data clustering and classification
  publication-title: Pattern Recog
– volume: 56
  start-page: 1
  year: 2002
  end-page: 6
  article-title: Fuzzy naive Bayes extension of the naive Bayes classifier based on fuzzy clustering
  publication-title: IEEE Int Conf Syste Man Cybernet
– start-page: 567
  year: 2004
  end-page: 570
  article-title: Learning weighted naive Bayes with accurate ranking
– volume: 203
  start-page: 692
  year: 2010
  end-page: 697
  article-title: Learning the optimal kernel for Fisher discriminant analysis via second order cone programming
  publication-title: J Mach Learn Res
– volume: 42
  start-page: 349
  year: 2009
  end-page: 357
  article-title: An adaptive Euclidean distance
  publication-title: Pattern Recog
– volume: 2
  start-page: 175
  year: 2001
  end-page: 211
  article-title: A generalized kernel approach to dissimilarity‐based classification
  publication-title: Eur J Oper Res
– volume: 129
  start-page: 1
  year: 2001
  ident: 10.1002/int.21659-BIB0005|int21659-cit-0005
  article-title: Rough sets theory for multicriteria analysis
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(00)00167-3
– volume: 41
  start-page: 3600
  year: 2008
  ident: 10.1002/int.21659-BIB0004|int21659-cit-0004
  article-title: Learning Mahalanobis distance metric for data clustering and classification
  publication-title: Pattern Recog
  doi: 10.1016/j.patcog.2008.05.018
– ident: 10.1002/int.21659-BIB0007|int21659-cit-0007
– volume: 56
  start-page: 1563
  year: 2006
  ident: 10.1002/int.21659-BIB0011|int21659-cit-0011
  article-title: Rough set-based clustering with refinement using Shannon's entropy theory
  publication-title: Comput Math Appl
  doi: 10.1016/j.camwa.2006.03.033
– volume: 2
  start-page: 175
  year: 2001
  ident: 10.1002/int.21659-BIB0001|int21659-cit-0001
  article-title: A generalized kernel approach to dissimilarity-based classification
  publication-title: Eur J Oper Res
– volume: 203
  start-page: 692
  year: 2010
  ident: 10.1002/int.21659-BIB0002|int21659-cit-0002
  article-title: Learning the optimal kernel for Fisher discriminant analysis via second order cone programming
  publication-title: J Mach Learn Res
– volume: 42
  start-page: 349
  year: 2009
  ident: 10.1002/int.21659-BIB0003|int21659-cit-0003
  article-title: An adaptive Euclidean distance
  publication-title: Pattern Recog
  doi: 10.1016/j.patcog.2008.07.017
– volume: 176
  start-page: 1
  year: 2002
  ident: 10.1002/int.21659-BIB0009|int21659-cit-0009
  article-title: A compact fuzzy extension of the naive Bayes classifier based on fuzzy clustering
  publication-title: IEEE Int Conf on Syst Man Cybernet
– volume-title: Pattern Classification and Scene Analysis
  year: 1973
  ident: 10.1002/int.21659-BIB0006|int21659-cit-0006
– volume: 176
  start-page: 577
  year: 2006
  ident: 10.1002/int.21659-BIB0008|int21659-cit-0008
  article-title: An extension of the naive Bayesian classifier
  publication-title: Inform Sci
  doi: 10.1016/j.ins.2004.12.006
– volume: 56
  start-page: 1
  year: 2002
  ident: 10.1002/int.21659-BIB0010|int21659-cit-0010
  article-title: Fuzzy naive Bayes extension of the naive Bayes classifier based on fuzzy clustering
  publication-title: IEEE Int Conf Syste Man Cybernet
SSID ssj0011745
Score 2.061333
Snippet Recent developments show that naive Bayesian classifier (NBC) performs significantly better in applications, although it is based on the assumption that all...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 713
SubjectTerms Algorithms
Applied sciences
Bayesian analysis
Classifications
Classifiers
Computer science; control theory; systems
Data processing. List processing. Character string processing
Exact sciences and technology
Fuzzy
Fuzzy logic
Fuzzy set theory
Intelligent systems
Mathematical analysis
Mathematical models
Memory organisation. Data processing
Software
Title A Fuzzy Bayesian Classifier with Learned Mahalanobis Distance
URI https://api.istex.fr/ark:/67375/WNG-JXBH24NP-8/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fint.21659
https://www.proquest.com/docview/1536962205
https://www.proquest.com/docview/1551116039
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011745
  issn: 0884-8173
  databaseCode: ADMLS
  dateStart: 19860301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0884-8173
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011745
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9K--KL9RNX6xFFpC973c3HfiA-XK3nWewh2uI9CCHJJnhU9qR3B_b-eifZDz1REN8WdrJkZzKZX5LJbwCe6cqxyvkzwypXMS8TFRcOF66C5UWieGESG7Itptnkgp_OxGwHXnR3YRp-iH7DzXtGmK-9gyu9PPpJGjqvV0OaZsJf3ktZFpZTH3rqqBSRtmgQJI-LNGcdq1BCj_qWW7Foz6v1u8-NVEtUj2vqWmwBz1_ha4g_43343PW8STu5HK5Xemg2v5E6_uev3YKbLS4lo2Yg3YYdW9-B_a7mA2mngLvwckTG683mmhyra-svYJJQVnPuMLwSv6lLAmOrrciZ-uLTJhd6viQnHqVi-3twMX59_moStyUYYsN8MhXiQ81U4hS3ieapMRXVvjo5Y55on-W0cAJnDAxwpc20MpVweWpLXTpuqKGc3YfdelHbB0BoleYmZ0pQl3CDXylEJXB9yhRinpJnERx2xpCm5Sf3ZTK-yoZZmUpUiwxqieBpL_qtIeX4k9DzYNFeQl1d-iy2XMhP0zfydHY8oXz6XhYRDLZM3jegRYYLvJxHcNCNAdl6-FJipMjKzF9TjuBJ_xp90x-4qNou1l4G4ayv442dOQwG_3t35dvpeXh4-O-ij-AG4jfe5CMewO7qam0fI0Za6QHsjU7O3n0cBKf4AdAcC90
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6V9gAXylOklGIQQr1km_iRhwSHFli2pY0Q2oq9IMtxbLFqlUXdXYnur2fsPGARSIhbpIwjx-PxfGOPvwF4UVaWVdadGVapCnkeqTCzGLgKlmaR4pmOjM-2KJLROT-ZiMkGvOruwjT8EP2Gm7MMv147A3cb0gc_WUOn9WJA40TkN2CLJxinOEj0qSePihFriwZD8jCLU9bxCkX0oG-65o223MB-d9mRao4DZJvKFmvQ81cA6z3QcBu-dH1vEk8uBstFOdCr32gd__fn7sDtFpqSw2Yu3YUNU9-D7a7sA2lXgfvw-pAMl6vVNTlS18bdwSS-subUooclbl-XeNJWU5Ez9dVlTs7K6Zy8dUAV2z-A8-G78ZtR2FZhCDVz-VQIEUumIqu4iUoea13R0hUoZ8xx7bOUZlbgooE-LjdJqXQlbBqbvMwt11RTzh7CZj2rzSMgtIpTnTIlqI24xq9kohIYojKFsCfnSQD7nTakbinKXaWMS9mQK1OJwyL9sATwvBf91vBy_EnopVdpL6GuLlwiWyrk5-K9PJkcjSgvPsosgL01nfcNaJZgjJfyAHa7SSBbI59LdBZJnribygE861-jebozF1Wb2dLJIKJ1pbyxM_te43_vrjwuxv5h599Fn8LN0fjsVJ4eFx8ewy2Ec7xJT9yFzcXV0jxByLQo97xl_AAk-Q5q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB9qC-KL9RNXa40i0pe97uZjP0AfWs_zWnUp0uK9lJDNJnhU9krvDuz99U6yH3qiIL4t7GTJzmQyvyST3wC8LCvLKuvODKtUhTyPVJhZXLgKlmaR4pmOjM-2KJLxGT-eiMkGvO7uwjT8EP2Gm_MMP187BzeXld3_yRo6rRcDGicivwFbXOSZS-gbfu7Jo2LE2qLBkDzM4pR1vEIR3e-brkWjLafY7y47Us1RQbapbLEGPX8FsD4CjbbhvOt7k3hyMVguyoFe_Ubr-L8_dwdut9CUHDRj6S5smPoebHdlH0g7C9yHNwdktFytrsmhujbuDibxlTWnFiMscfu6xJO2mop8Ul9d5uSsnM7J0AFVbP8AzkbvTt-Ow7YKQ6iZy6dCiFgyFVnFTVTyWOuKlq5AOWOOa5-lNLMCJw2McblJSqUrYdPY5GVuuaaacvYQNutZbR4BoVWc6pQpQW3ENX4lE5XAJSpTCHtyngSw11lD6pai3FXK-CYbcmUqUS3SqyWAF73oZcPL8SehV96kvYS6unCJbKmQX4r38nhyOKa8OJFZALtrNu8b0CzBNV7KA9jpBoFsnXwuMVgkeeJuKgfwvH-N7unOXFRtZksng4jWlfLGzux5i_-9u_KoOPUPj_9d9BncPBmO5Mej4sMTuIVojjfZiTuwubhamqeImBblrneMH7m6De4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fuzzy+Bayesian+Classifier+with+Learned+Mahalanobis+Distance&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Kayaalp%2C+Necla&rft.au=Arslan%2C+Guvenc&rft.date=2014-08-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=29&rft.issue=8&rft.spage=713&rft_id=info:doi/10.1002%2Fint.21659&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=3337146971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon