Generative models for molecular discovery: Recent advances and challenges

Development of new products often relies on the discovery of novel molecules. While conventional molecular design involves using human expertise to propose, synthesize, and test new molecules, this process can be cost and time intensive, limiting the number of molecules that can be reasonably tested...

Full description

Saved in:
Bibliographic Details
Published inWiley interdisciplinary reviews. Computational molecular science Vol. 12; no. 5
Main Authors Bilodeau, Camille, Jin, Wengong, Jaakkola, Tommi, Barzilay, Regina, Jensen, Klavs F.
Format Journal Article
LanguageEnglish
Published Hoboken, USA Wiley Periodicals, Inc 01.09.2022
Subjects
Online AccessGet full text
ISSN1759-0876
1759-0884
1759-0884
DOI10.1002/wcms.1608

Cover

Abstract Development of new products often relies on the discovery of novel molecules. While conventional molecular design involves using human expertise to propose, synthesize, and test new molecules, this process can be cost and time intensive, limiting the number of molecules that can be reasonably tested. Generative modeling provides an alternative approach to molecular discovery by reformulating molecular design as an inverse design problem. Here, we review the recent advances in the state‐of‐the‐art of generative molecular design and discusses the considerations for integrating these models into real molecular discovery campaigns. We first review the model design choices required to develop and train a generative model including common 1D, 2D, and 3D representations of molecules and typical generative modeling neural network architectures. We then describe different problem statements for molecular discovery applications and explore the benchmarks used to evaluate models based on those problem statements. Finally, we discuss the important factors that play a role in integrating generative models into experimental workflows. Our aim is that this review will equip the reader with the information and context necessary to utilize generative modeling within their domain. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Generative modeling approaches can be used to discover novel and diverse compounds.
AbstractList Development of new products often relies on the discovery of novel molecules. While conventional molecular design involves using human expertise to propose, synthesize, and test new molecules, this process can be cost and time intensive, limiting the number of molecules that can be reasonably tested. Generative modeling provides an alternative approach to molecular discovery by reformulating molecular design as an inverse design problem. Here, we review the recent advances in the state‐of‐the‐art of generative molecular design and discusses the considerations for integrating these models into real molecular discovery campaigns. We first review the model design choices required to develop and train a generative model including common 1D, 2D, and 3D representations of molecules and typical generative modeling neural network architectures. We then describe different problem statements for molecular discovery applications and explore the benchmarks used to evaluate models based on those problem statements. Finally, we discuss the important factors that play a role in integrating generative models into experimental workflows. Our aim is that this review will equip the reader with the information and context necessary to utilize generative modeling within their domain. This article is categorized under: Data Science > Artificial Intelligence/Machine Learning Generative modeling approaches can be used to discover novel and diverse compounds.
Author Bilodeau, Camille
Jin, Wengong
Jaakkola, Tommi
Jensen, Klavs F.
Barzilay, Regina
Author_xml – sequence: 1
  givenname: Camille
  surname: Bilodeau
  fullname: Bilodeau, Camille
  organization: Massachusetts Institute of Technology
– sequence: 2
  givenname: Wengong
  surname: Jin
  fullname: Jin, Wengong
  organization: Massachusetts Institute of Technology
– sequence: 3
  givenname: Tommi
  surname: Jaakkola
  fullname: Jaakkola, Tommi
  organization: Massachusetts Institute of Technology
– sequence: 4
  givenname: Regina
  surname: Barzilay
  fullname: Barzilay, Regina
  organization: Massachusetts Institute of Technology
– sequence: 5
  givenname: Klavs F.
  orcidid: 0000-0001-7192-580X
  surname: Jensen
  fullname: Jensen, Klavs F.
  email: kfjensen@mit.edu
  organization: Massachusetts Institute of Technology
BookMark eNp1kE1Lw0AQhhepYK09-A_2LKTdSdLsrjcpWgsVwQ88hu3urEY2m5JtE_Lvm1jx5lzmPTzvDDyXZOQrj4RcA5sBY_G81WWYQcbEGRkDX8iICZGO_jLPLsg0hG_WTyohTmBM1iv0WKt90SAtK4MuUFvVfXSoD07V1BRBVw3W3S19QY1-T5VplNcYqPKG6i_lHPpPDFfk3CoXcPq7J-T94f5t-Rhtnlfr5d0m0okUIhKaASBPFWYQWxMvtJQ2sSnAFqRMZcx5JntUcbHlwjI01iaaCynQWkxMMiE3p7sHv1Nd27_Pd3VRqrrLgeWDh3zwkA8eenh-gtvCYfc_mH8sn15_GkcPTmJL
CitedBy_id crossref_primary_10_1039_D4DD00076E
crossref_primary_10_1021_acs_jcim_4c01396
crossref_primary_10_1109_TCBB_2024_3477313
crossref_primary_10_1021_acs_iecr_4c00401
crossref_primary_10_1002_prep_202200265
crossref_primary_10_1021_acs_jcim_3c00651
crossref_primary_10_1007_s11227_024_06860_w
crossref_primary_10_1021_acs_jcim_3c01626
crossref_primary_10_3390_pr11051340
crossref_primary_10_1021_acs_jctc_4c00998
crossref_primary_10_1016_j_medidd_2023_100175
crossref_primary_10_1038_s41597_023_02207_x
crossref_primary_10_1016_j_sbi_2023_102769
crossref_primary_10_1021_acs_chemmater_3c01406
crossref_primary_10_1186_s13321_023_00791_z
crossref_primary_10_3389_fddsv_2023_1222655
crossref_primary_10_1093_bioadv_vbae099
crossref_primary_10_1021_acs_jpca_3c04779
crossref_primary_10_1021_acs_jafc_3c00909
crossref_primary_10_1016_j_jpha_2025_101257
crossref_primary_10_1021_acs_jctc_3c01224
crossref_primary_10_1039_D4DD00019F
crossref_primary_10_3390_ph17050543
crossref_primary_10_1021_acs_jcim_3c00643
crossref_primary_10_1021_acs_jpclett_5c00274
crossref_primary_10_1016_j_patter_2023_100678
crossref_primary_10_1088_2632_2153_aca1f7
crossref_primary_10_1002_cmtd_202400024
crossref_primary_10_1038_s41929_022_00896_y
crossref_primary_10_1021_acs_jcim_4c00747
crossref_primary_10_1038_s43588_022_00391_1
crossref_primary_10_1146_annurev_chembioeng_100722_111917
crossref_primary_10_1063_5_0087392
crossref_primary_10_1002_wcms_1651
crossref_primary_10_1039_D3SC04653B
crossref_primary_10_3389_fddsv_2024_1362956
crossref_primary_10_1038_s41587_023_01789_6
crossref_primary_10_3847_1538_4365_adb432
crossref_primary_10_1080_17460441_2023_2250721
crossref_primary_10_1016_j_drudis_2024_104133
crossref_primary_10_1039_D4SC03921A
crossref_primary_10_1186_s13321_025_00975_9
crossref_primary_10_1541_ieejfms_144_293
crossref_primary_10_1021_acs_jmedchem_3c00082
crossref_primary_10_1186_s13321_023_00711_1
crossref_primary_10_1016_j_sbi_2024_102826
crossref_primary_10_1002_wcms_1680
crossref_primary_10_1186_s13321_023_00679_y
crossref_primary_10_1016_j_ijbiomac_2023_127884
crossref_primary_10_1038_s43588_023_00532_0
crossref_primary_10_1038_s42256_024_00821_x
crossref_primary_10_1021_acs_jcim_3c01030
crossref_primary_10_1021_acs_accounts_2c00801
crossref_primary_10_1021_acs_jcim_3c01155
crossref_primary_10_1021_acs_jcim_4c01669
crossref_primary_10_1016_j_patter_2024_100947
crossref_primary_10_1021_acs_jcim_4c01300
crossref_primary_10_1246_bcsj_20230218
crossref_primary_10_1002_minf_202400227
crossref_primary_10_1038_s42256_024_00809_7
crossref_primary_10_1016_j_cep_2022_109148
crossref_primary_10_34133_hds_0092
crossref_primary_10_3390_molecules28114430
crossref_primary_10_1021_acs_chemrev_3c00189
crossref_primary_10_1007_s40843_024_2851_9
crossref_primary_10_1055_s_0044_1796647
crossref_primary_10_1021_jacs_2c13467
crossref_primary_10_1038_s41524_024_01470_9
crossref_primary_10_1039_D4FD00113C
crossref_primary_10_1021_acsmedchemlett_4c00148
crossref_primary_10_1021_acs_jcim_2c00366
crossref_primary_10_1039_D2DD00092J
crossref_primary_10_1016_j_apenergy_2024_125059
crossref_primary_10_1021_acsnano_3c12654
crossref_primary_10_1016_j_matt_2024_05_042
crossref_primary_10_1111_nyas_14913
crossref_primary_10_1109_TKDE_2024_3361474
crossref_primary_10_1186_s13321_024_00812_5
crossref_primary_10_1016_j_flowmeasinst_2024_102804
crossref_primary_10_1039_D3DD00186E
crossref_primary_10_20517_jmi_2023_24
crossref_primary_10_1016_j_sbi_2023_102575
crossref_primary_10_1038_s42003_023_05334_8
crossref_primary_10_1002_wcms_1732
crossref_primary_10_1016_j_sbi_2023_102733
crossref_primary_10_1186_s13059_024_03431_3
crossref_primary_10_1007_s11814_024_00202_5
crossref_primary_10_1063_5_0205433
crossref_primary_10_1021_jasms_4c00186
crossref_primary_10_1021_acsomega_4c07689
crossref_primary_10_1016_j_actamat_2023_119295
crossref_primary_10_1021_acs_jcim_4c01451
crossref_primary_10_1016_j_coelec_2024_101629
crossref_primary_10_1016_j_ascom_2024_100921
crossref_primary_10_1021_acs_jcim_4c00522
crossref_primary_10_1016_j_jece_2025_115946
crossref_primary_10_1186_s13321_024_00924_y
crossref_primary_10_3390_bioengineering10091104
crossref_primary_10_1021_acs_macromol_3c01378
crossref_primary_10_1088_1755_1315_1342_1_012006
crossref_primary_10_1021_acs_jcim_3c01519
crossref_primary_10_1109_JBHI_2024_3416348
crossref_primary_10_1016_j_cad_2023_103609
crossref_primary_10_1021_jacs_4c04670
crossref_primary_10_3390_ijms242316761
crossref_primary_10_1186_s13321_023_00794_w
crossref_primary_10_1021_acs_jmedchem_4c01064
crossref_primary_10_1021_acs_jcim_4c00252
crossref_primary_10_1038_s41467_025_57582_3
crossref_primary_10_1021_acsmedchemlett_3c00369
crossref_primary_10_1021_acs_jcim_3c01753
crossref_primary_10_1021_acs_jcim_3c00667
crossref_primary_10_1021_acs_iecr_3c02305
crossref_primary_10_1016_j_eng_2024_07_008
crossref_primary_10_1089_cmb_2023_0064
crossref_primary_10_1021_acs_jcim_2c00554
crossref_primary_10_1093_bioinformatics_btae396
crossref_primary_10_1073_pnas_2418918121
crossref_primary_10_1158_2159_8290_CD_23_0280
crossref_primary_10_3390_molecules30010018
crossref_primary_10_1038_s44287_024_00076_z
crossref_primary_10_3389_fchem_2023_1288626
crossref_primary_10_3389_fphar_2022_1046524
crossref_primary_10_1186_s13321_024_00930_0
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley Periodicals LLC.
Copyright_xml – notice: 2022 The Authors. published by Wiley Periodicals LLC.
DBID 24P
ADTOC
UNPAY
DOI 10.1002/wcms.1608
DatabaseName Wiley Online Library
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-0884
EndPage n/a
ExternalDocumentID 10.1002/wcms.1608
WCMS1608
Genre reviewArticle
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency
  funderid: HR00111920025
– fundername: MIT consortium for Pharmaceutical Discovery and Synthesis
– fundername: Dow
GroupedDBID 05W
0R~
1OC
1VH
24P
31~
33P
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
D-A
DCZOG
DRFUL
DRSTM
EBS
EJD
FEDTE
G-S
GODZA
HGLYW
HVGLF
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY.
MY~
O66
O9-
P2W
ROL
SUPJJ
WBKPD
WHWMO
WIH
WIK
WOHZO
WVDHM
WXSBR
WYJ
ZZTAW
~S-
ADTOC
AEYWJ
AGHNM
AGQPQ
AGYGG
LH4
UNPAY
ID FETCH-LOGICAL-c3988-8c011e74ae612fd25c99f3f411b1994927769c39a78b78f0edff3c7898effe3d3
IEDL.DBID UNPAY
ISSN 1759-0876
1759-0884
IngestDate Wed Oct 01 16:33:13 EDT 2025
Wed Jan 22 16:22:19 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License Attribution-NonCommercial
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3988-8c011e74ae612fd25c99f3f411b1994927769c39a78b78f0edff3c7898effe3d3
Notes Funding information
Edited by
Raghavan Sunoj, Associate Editor
This work was supported by Dow Chemical Company, the MIT consortium for Pharmaceutical Discovery and Synthesis, and the DARPA Accelerated Molecular Discovery program HR00111920025.
ORCID 0000-0001-7192-580X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/wcms.1608
PageCount 17
ParticipantIDs unpaywall_primary_10_1002_wcms_1608
wiley_primary_10_1002_wcms_1608_WCMS1608
PublicationCentury 2000
PublicationDate September/October 2022
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September/October 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Wiley interdisciplinary reviews. Computational molecular science
PublicationYear 2022
Publisher Wiley Periodicals, Inc
Publisher_xml – name: Wiley Periodicals, Inc
References 2018; 361
2021; 26
1996; 39
2013; 27
2019; 11
2020; 60
2019; 59
2014; 27
2020; 204
2018; 80
2020; 12
2020; 11
2008; 3
2017; 112
2017; 9
1997; 9
2019; 32–33
2014; 1
2020; 7
2020; 5
2020; 2
2018; 4
2017; 70
2020; 1
2018; 11139
2018; 31
2016; 48
2014; 54
2019; 9
2019; 4
2021; 3
2021; 2
2020; 141
2019; 33
2019; 32
2019; 1
2019; 37
2020; 38
2019; 108
2020; 33
2021; 1
2021; 51
2020; 108
2021; 54
2012; 3
2021; 12
2021; 11
2006; 45
2021
2020
2021; 139
2017; 57
1988; 28
2019; 47
2019
2018
2017
2013; 492
2014
2020; 22
2021; 61
2012; 4
2009; 1
2020; 119
2018; 15
2010; 50
2018; 58
References_xml – volume: 60
  start-page: 4582
  year: 2020
  end-page: 93
  article-title: De novo drug design of targeted chemical libraries based on artificial intelligence and pair‐based multiobjective optimization
  publication-title: J Chem Inf Model
– volume: 59
  start-page: 43
  year: 2019
  end-page: 52
  article-title: Conditional molecular design with deep generative models
  publication-title: J Chem Inf Model
– volume: 492
  start-page: 215
  issue: 7428
  year: 2013
  end-page: 220
  article-title: Automated design of ligands to polypharmacological profiles
  publication-title: Nature
– volume: 60
  start-page: 3770
  issue: 8
  year: 2020
  end-page: 80
  article-title: Uncertainty quantification using neural networks for molecular property prediction
  publication-title: J Chem Inf Model
– volume: 108
  start-page: 3393
  year: 2019
  end-page: 3403
  article-title: ChemBO: Bayesian optimization of small organic molecules with synthesizable recommendations
  publication-title: AISTATS
– volume: 60
  start-page: 77
  year: 2020
  end-page: 91
  article-title: DeepScaffold: a comprehensive tool for scaffold‐based de novo drug discovery using deep learning
  publication-title: J Chem Inf Model
– volume: 28
  start-page: 31
  year: 1988
  end-page: 6
  article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules
  publication-title: J Chem Inf Model
– volume: 51
  start-page: 3129
  year: 2021
  end-page: 42
  article-title: Evolutionary multiobjective optimization driven by generative adversarial networks (GANs)
  publication-title: IEEE Trans Cybern
– volume: 33
  start-page: 6852
  year: 2020
  end-page: 6866
  article-title: Barking up the right tree: an approach to search over molecule synthesis DAGs
  publication-title: NeurIPS
– volume: 11
  start-page: 461
  year: 2020
  end-page: 77
  article-title: Learning with uncertainty for biological discovery and design
  publication-title: Cell Syst
– volume: 11
  start-page: 1496
  year: 2020
  end-page: 505
  article-title: The advent of generative chemistry
  publication-title: ACS Med Chem Lett
– volume: 112
  start-page: 859
  year: 2017
  end-page: 77
  article-title: Variational inference: a review for statisticians
  publication-title: J Am Stat Assoc
– year: 2014
– volume: 5
  start-page: 32984
  year: 2020
  end-page: 94
  article-title: Molecular design in synthetically accessible chemical space via deep reinforcement learning
  publication-title: ACS Omega
– volume: 1
  year: 2014
  article-title: Quantum chemistry structures and properties of 134 kilo molecules
  publication-title: Sci Data
– volume: 3
  start-page: 1040
  year: 2021
  end-page: 9
  article-title: Molecule optimization via fragment‐based generative models
  publication-title: Nat Mach
– volume: 48
  start-page: 1050
  year: 2016
  end-page: 1059
  article-title: Dropout as a Bayesian approximation: representing model uncertainty in deep learning
  publication-title: ICML
– volume: 11
  year: 2020
  article-title: Molecular sets (MOSES): a benchmarking platform for molecular generation models
  publication-title: Front Pharmacol
– volume: 141
  year: 2020
  article-title: Deep learning and knowledge‐based methods for computer‐aided molecular design—toward a unified approach: state‐of‐the‐art and future directions
  publication-title: Comput Chem Eng
– volume: 33
  start-page: 1110
  year: 2019
  end-page: 7
  article-title: NeVAE: a deep generative model for molecular graphs
  publication-title: AAAI
– volume: 50
  start-page: 572
  year: 2010
  end-page: 84
  article-title: Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge structural database
  publication-title: J Chem Inf Model
– volume: 3
  start-page: 649
  year: 2012
  end-page: 57
  article-title: Exploring chemical space for drug discovery using the chemical universe database
  publication-title: ACS Chem Nerosci
– volume: 12
  start-page: 7079
  year: 2021
  end-page: 7090
  article-title: Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES
  publication-title: Chem Sci
– volume: 33
  start-page: 173
  issue: 5
  year: 2019
  end-page: 189
  article-title: Adversarial learned molecular graph inference and generation
  publication-title: ECML
– volume: 1
  start-page: 8
  year: 2009
  article-title: Estimation of synthetic accessibility score of drug‐like molecules based on molecular complexity and fragment contributions
  publication-title: J Chem
– volume: 15
  start-page: 4398
  issue: 10
  year: 2018
  end-page: 4405
  article-title: Entangled conditional adversarial autoencoder for de novo drug discovery
  publication-title: Mol Pharm
– volume: 31
  start-page: 7632
  year: 2018
  end-page: 7642
  article-title: Constrained graph variational autoencoders for molecule design
  publication-title: NeurIPS
– volume: 12
  start-page: 3339
  year: 2021
  end-page: 3349
  article-title: Retrosynthetic accessibility score (RAscore)—rapid machine learned synthesizability classification from AI driven retrosynthetic planning
  publication-title: Chem Sci
– year: 2019
– volume: 54
  start-page: 263
  year: 2021
  end-page: 70
  article-title: Applications of deep learning in molecule generation and molecular property prediction
  publication-title: Acc Chem Res
– volume: 9
  start-page: 48
  year: 2017
  article-title: Molecular de‐novo design through deep reinforcement learning
  publication-title: J Chem
– volume: 22
  start-page: 617
  year: 2020
  end-page: 626
  article-title: MoFlow: an invertible flow model for generating molecular graphs
  publication-title: KDD
– volume: 11
  start-page: 619
  year: 2021
  article-title: Self‐driving laboratories for development of new functional materials and optimizing known reactions
  publication-title: J Nanomater
– volume: 119
  start-page: 4839
  year: 2020
  end-page: 4848
  article-title: Hierarchical generation of molecular graphs using structural motifs
  publication-title: ICML
– volume: 2
  start-page: 3
  year: 2021
  article-title: Deep molecular dreaming: inverse machine learning for de‐novo molecular design and interpretability with surjective representations
  publication-title: Mach Learn Sci Technol
– volume: 70
  start-page: 1945
  year: 2017
  end-page: 1954
  article-title: Grammar variational autoencoder
  publication-title: ICML
– volume: 12
  start-page: 8036
  year: 2021
  end-page: 47
  article-title: DeepFrag: a deep convolutional neural network for fragment‐based lead optimization
  publication-title: Chem Sci
– volume: 26
  start-page: 474
  issue: 2
  year: 2021
  end-page: 89
  article-title: Uncertainty quantification in drug design
  publication-title: Drug Discov Today
– volume: 27
  start-page: 675
  issue: 8
  year: 2013
  end-page: 679
  article-title: Estimation of the size of drug‐like chemical space based on GDB‐17 data
  publication-title: J. Comput. Aided. Mol. Des.
– volume: 38
  start-page: 142
  year: 2020
  end-page: 50
  article-title: Assessing the impact of generative AI on medicinal chemistry
  publication-title: Nat Biotechnol
– volume: 32–33
  start-page: 55
  year: 2019
  end-page: 63
  article-title: On failure modes in molecule generation and optimization
  publication-title: Drug Discov Today Technol
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 80
  article-title: Long short‐term memory
  publication-title: Neural Comput
– volume: 11
  start-page: 1153
  year: 2020
  end-page: 64
  article-title: Scaffold‐based molecular design using graph generative model
  publication-title: Chem Sci
– volume: 61
  start-page: 2572
  issue: 6
  year: 2021
  end-page: 81
  article-title: Comparative study of deep generative models on chemical space coverage
  publication-title: J Chem Inf Model
– volume: 12
  start-page: 38
  year: 2020
  article-title: SMILES‐based deep generative scaffold decorator for de‐novo drug design
  publication-title: J Chem
– volume: 119
  start-page: 3668
  year: 2020
  end-page: 3679
  article-title: Learning to navigate the synthetically accessible chemical space using reinforcement learning
  publication-title: PMLR
– volume: 9
  year: 2019
  article-title: Optimization of molecules via deep reinforcement learning
  publication-title: Sci Rep
– year: 2021
– volume: 1
  start-page: 146
  year: 2021
  end-page: 153
  article-title: Controlled molecule generator for optimizing multiple chemical properties
  publication-title: CHIL
– volume: 1
  start-page: 307
  year: 2019
  end-page: 15
  article-title: Automated de novo molecular design by hybrid machine intelligence and rule‐driven chemical synthesis
  publication-title: Nat Mach
– volume: 11
  start-page: 74
  year: 2019
  article-title: A de novo molecular generation method using latent vector based generative adversarial network
  publication-title: J Chem
– volume: 39
  start-page: 2887
  year: 1996
  end-page: 93
  article-title: The properties of known drugs. 1. Molecular frameworks
  publication-title: J Med Chem
– volume: 57
  start-page: 726
  year: 2017
  end-page: 41
  article-title: Molecular dynamics fingerprints (MDFP): machine learning from MD data to predict free‐energy differences
  publication-title: J Chem Inf Model
– year: 2018
– volume: 11
  start-page: 8312
  year: 2020
  end-page: 22
  article-title: SyntaLinker: automatic fragment linking with deep conditional transformer neural networks
  publication-title: Chem Sci
– volume: 37
  start-page: 1038
  year: 2019
  end-page: 40
  article-title: Deep learning enables rapid identification of potent DDR1 kinase inhibitors
  publication-title: Nat Biotechnol
– volume: 4
  start-page: 828
  year: 2019
  end-page: 49
  article-title: Deep learning for molecular design—a review of the state of the art
  publication-title: Mol Syst Des Eng
– volume: 119
  start-page: 4849
  year: 2020
  end-page: 4859
  article-title: Multi‐objective molecule generation using interpretable substructures
  publication-title: ICML
– volume: 80
  start-page: 2323
  year: 2018
  end-page: 2332
  article-title: Junction tree Variational autoencoder for molecular graph generation
  publication-title: ICML
– volume: 119
  start-page: 8949
  year: 2020
  end-page: 8958
  article-title: A generative model for molecular distance geometry
  publication-title: ICML
– volume: 27
  start-page: 3276
  year: 2014
  end-page: 3285
  article-title: Generative adversarial networks
  publication-title: NeurIPS
– volume: 58
  start-page: 1736
  year: 2018
  end-page: 41
  article-title: Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery
  publication-title: J Chem Inf Model
– volume: 12
  start-page: 28
  year: 2020
  article-title: CReM: chemically reasonable mutations framework for structure generation
  publication-title: J Chem
– volume: 4
  start-page: 1126
  year: 2018
  end-page: 33
  article-title: Hunting for organic molecules with artificial intelligence: molecules optimized for desired excitation energies
  publication-title: ACS Cent Sci
– volume: 33
  start-page: 12008
  year: 2020
  end-page: 12021
  article-title: Guiding deep molecular optimization with genetic exploration
  publication-title: NeurIPS
– volume: 45
  start-page: 177
  issue: 1
  year: 2006
  end-page: 82
  article-title: ZINC—a free database of commercially available compounds for virtual screening
  publication-title: J Chem Inf Model
– volume: 58
  start-page: 252
  year: 2018
  end-page: 61
  article-title: The synthesizability of molecules proposed by generative models
  publication-title: J Chem Inf Model
– volume: 60
  start-page: 1983
  year: 2020
  end-page: 95
  article-title: Deep generative models for 3D linker design
  publication-title: J Chem Inf Model
– volume: 139
  start-page: 9558
  year: 2021
  end-page: 9568
  article-title: Learning gradient fields for molecular conformation generation
  publication-title: ICML
– volume: 3
  start-page: 1503
  year: 2008
  end-page: 7
  article-title: On the art of compiling and using ‘drug‐like’ chemical fragment spaces
  publication-title: Chem Med Chem
– year: 2018
  article-title: Learning deep generative models of graphs
  publication-title: arXiv:1803.03324 [cs.LG]
– volume: 108
  start-page: 2240
  year: 2020
  end-page: 2250
  article-title: A deep generative model for fragment‐based molecule generation
  publication-title: AISTATS
– volume: 11
  start-page: 577
  year: 2020
  end-page: 86
  article-title: Constrained Bayesian optimization for automatic chemical design using variational autoencoders
  publication-title: Chem Sci
– volume: 11
  start-page: 70
  year: 2019
  article-title: Efficient learning of non‐autoregressive graph variational autoencoders for molecular graph generation
  publication-title: J Chem
– volume: 60
  start-page: 5637
  issue: 12
  year: 2020
  end-page: 46
  article-title: Scaffold‐constrained molecular generation
  publication-title: J Chem Inf Model
– volume: 60
  start-page: 2697
  issue: 6
  year: 2020
  end-page: 717
  article-title: Evaluating scalable uncertainty estimation methods for deep learning based molecular property prediction
  publication-title: J Chem Inf Model
– volume: 11
  start-page: 24825
  year: 2019
  end-page: 36
  article-title: Autonomous molecular design: then and now
  publication-title: ACS Appl Mater Interfaces
– volume: 59
  start-page: 1096
  issue: 3
  year: 2019
  end-page: 1108
  article-title: GuacaMol: benchmarking models for de novo molecular design
  publication-title: J Chem Inf Model
– volume: 7
  year: 2020
  article-title: Generative deep neural networks for inverse materials design using backpropagation and active learning
  publication-title: Adv Sci
– volume: 4
  start-page: 90
  year: 2012
  end-page: 8
  article-title: Quantifying the chemical beauty of drugs
  publication-title: Nat Chem
– volume: 32
  start-page: 8600
  year: 2019
  end-page: 8610
  article-title: Symmetry‐adapted generation of 3d point sets for the targeted discovery of molecules
  publication-title: NeurIPS
– volume: 32
  start-page: 12000
  year: 2019
  end-page: 12010
  article-title: A model to search for synthesizable molecules
  publication-title: NeurIPS
– volume: 1
  year: 2020
  article-title: Self‐referencing embedded strings (SELFIES): a 100% robust molecular string representation
  publication-title: Mach Learn: Sci Technol
– volume: 119
  start-page: 8959
  year: 2020
  end-page: 8969
  article-title: Reinforcement learning for molecular design guided by quantum mechanics
  publication-title: ICML
– volume: 4
  start-page: 268
  year: 2018
  end-page: 76
  article-title: Automatic chemical design using a data‐driven continuous representation of molecules
  publication-title: ACS Cent Sci
– volume: 4
  year: 2018
  article-title: Deep reinforcement learning for de novo drug design
  publication-title: Sci Adv
– volume: 4
  start-page: 120
  year: 2018
  end-page: 31
  article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks
  publication-title: ACS Cent Sci
– volume: 361
  start-page: 360
  year: 2018
  end-page: 5
  article-title: Inverse molecular design using machine learning: generative models for matter engineering
  publication-title: Science
– volume: 54
  start-page: 3259
  year: 2014
  end-page: 67
  article-title: Prediction of synthetic accessibility based on commercially available compound databases
  publication-title: J Chem Inf Model
– volume: 58
  start-page: 252
  year: 2018
  end-page: 61
  article-title: SCScore: synthetic complexity learned from a reaction corpus
  publication-title: J Chem Inf Model
– year: 2020
– volume: 47
  start-page: D930
  year: 2019
  end-page: 40
  article-title: ChEMBL: towards direct deposition of bioassay data
  publication-title: Nucleic Acids Res
– volume: 3
  start-page: 422
  year: 2021
  end-page: 40
  article-title: Physics‐informed machine learning
  publication-title: Nat Rev Phys
– volume: 9
  year: 2019
  article-title: Advances and challenges in deep generative models for de novo molecule generation
  publication-title: WIREs Comput Mol Sci
– volume: 2
  start-page: 254
  year: 2020
  end-page: 65
  article-title: Direct steering of de novo molecular generation using descriptor conditional recurrent neural networks (cRNNs)
  publication-title: Nat Mach
– year: 2017
– volume: 204
  year: 2020
  article-title: Automated design and optimization of multitarget schizophrenia drug candidates by deep learning
  publication-title: Eur J Med Chem
– volume: 11139
  start-page: 412
  year: 2018
  end-page: 422
  article-title: GraphVAE: towards generation of small graphs using variational autoencoders
  publication-title: ICANN
– start-page: 445
  year: 2020
  end-page: 67
SSID ssj0000491231
Score 2.6828485
SecondaryResourceType review_article
Snippet Development of new products often relies on the discovery of novel molecules. While conventional molecular design involves using human expertise to propose,...
SourceID unpaywall
wiley
SourceType Open Access Repository
Publisher
SubjectTerms generative adversarial networks
generative models
molecular representation
normalizing flow models
variational autoencoders
SummonAdditionalLinks – databaseName: Wiley Online Library
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07TwMxDI5KGQoD4inKS5FgYDn1muSaBCZUURWkIiSo6HbKJbkJjoprVfXfY98LMSCxZfAtTmx_9tmfCbkyVlvphA8sxNZA6CQMDMD4gIfMcpP2lVE44Dx5Goyn4nEWzVrktp6FKfkhmoIbWkbhr9HATZL3fkhDV_Yjx9qI2iCbfcAx-LyZeG4KLAB9wSsXCZeMdIDUazWzUMh6zdfbpLPM5ma9Mu_vvwFqEWFGu2Sngob0rrzLPdLy2T7pDOuNbAfkoeSIRgdFiw02OQXICcdqwy3FEVtsyVzfUICDEE5o9Ys_pyZz1NaLU_JDMh3dvw7HQbUKIbBcw1tWFuzQS2E8IJLUschqnfJU9PsJkvtqJuVAg6iRKpEqDb1LU26l0grbQrjjR6SdfWb-mFCuIglJgheOCyQjTLjyzEUeclXvbOS65LJRSDwvKS_iktyYxai2GNXWJdeFqv6WiN-Gkxc8nPxf9JRsMRwvKHq4zkh78bX05xD0F8lFcbnfZJeo-A
  priority: 102
  providerName: Wiley-Blackwell
Title Generative models for molecular discovery: Recent advances and challenges
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1608
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/wcms.1608
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4IHNCDbyM-SBM9eFmEtsu23giRoAmERIl4Wrt9XMSVuBCCv952d8FHYmLirYdu00w6M1-7M98HcC4kl4Gi2pM2t3qUR3VPWBjvkTqWRJgGE8w1OPf6ze6Q3o78Ua5z6nphMn6I1YOb84w0XjsHnyiTxfn87z6-nMuXxL2PsAKUmr4F40UoDfuD1mPaBulzzxGufY4ZXXILff12A8qzeCIWczEef4eoaY7pbMHTcndZaclzbTaNavL9B3HjP7a_DZs5_kSt7MDswJqOd6HcXsq-7cFNRkTtoiBKZXISZHGtHeYyusj18bq6z8UVspjT5iyU1xEkSMQKyaU6S7IPw871fbvr5XoLniTcOgyT1tl1QIW2sMco7EvODTG00YgcgzDHQdDkdqoIWBQwU9fKGCIDxpmrPSGKHEAxfo31ISDC_MDeRDRVhDrGw4gwjZWv7YVYK-mrCpytbB5OMl6NMGNQxqEzS-jMUoGL1IS_zwgf2r07Nzj604LHsI5d-0JaI3YCxenbTJ9aUDGNqlDAdFDNj88Hw0rN4w
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAwOiKcYz0hw4FJta9ImQVzQxLTBNiGxid2qNElPo0x007R_T9x2QxyQuOXgXpza_uzYnwFulZaaG2Y97WKrx2Tc9JSD8R5t-pqqpCWUwAHnwTDsjtnzJJhU4GE9C1PwQ2wKbmgZub9GA8eCdOOHNXSpPzIsjogt2GZhK8TUy2evmwqLw77OLecZFw-kh9xra2qhpt_YfL0LtUU6U6ulmk5_I9Q8xHT2Ya_EhuSxuMwDqNj0EGrt9Uq2I-gVJNHooUi-wiYjDnO6Y7niluCMLfZkru6Jw4MunpDyjT8jKjVErzenZMcw7jyN2l2v3IXgaSrdzyy0M0TLmbIOkiTGD7SUCU1YqxUju6_0OQ-lE1VcxFwkTWuShGoupMC-EGroCVTTz9SeAqEi4C5LsMxQhmyEMRXWN4F1yao1OjB1uNkoJJoVnBdRwW7sR6i2CNVWh7tcVX9LRO_twRsezv4veg217mjQj_q94cs57Pg4a5A3dF1Adf61sJcOAczjq_yivwGZF6xk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGkHgcEE8xnpHgwKVa16RLgrigwbQBmybBxG5VmsdplIlumvbvSfpCHJC45eBenNr-7NifAa6F5JIqoj1pY6tHeOx7wsJ4D_uBxMK0mGBuwHkwbPfG5GkSTmpwV87C5PwQVcHNWUbmr52B65kyzR_W0KX8SF1xhK3BOgltJHS8zmRUVVgs9rVuOcu4aMg9x71WUgv5QbP6ehs2F8lMrJZiOv2NULMQ092FnQIbovv8MvegppN92OyUK9kOoJ-TRDsPhbIVNimymNMeixW3yM3Yup7M1S2yeNDGE1S88adIJArJcnNKegjj7uNbp-cVuxA8ibn9mZm0hqgpEdpCEqOCUHJusCGtVuzYfXlAaZtbUUFZTJnxtTIGS8o4c30hWOEjqCefiT4GhFlIbZagicLEsRHGmOlAhdomq1rJUDXgqlJINMs5L6Kc3TiInNoip7YG3GSq-lsieu8MXt3h5P-il7AxeuhGL_3h8ylsBW7UIOvnOoP6_Guhzy0AmMcX2T1_A7wqq_M
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60PVQPvsX6IqAHL1vbzW6TeCvFokKLoMV6WrN5XKxrcVtK_fVmdrf1AYLgLYdsCENm5kt25vsATqUSiunAeMrlVi8Qcd2TDsZ7tO4rKm2DS44Nzt1e86of3AzCQaFzir0wOT_E4sENPSOL1-jgI23zOF_83ffPp-olxfcRvgzlZujAeAnK_d5t6zFrgwyFh4Rrn2MezLmFvn67CpVJMpKzqRwOv0PULMd01uFpvru8tOS5NhnHNfX-g7jxH9vfgLUCf5JWfmA2YckkW1Bpz2XftuE6J6LGKEgymZyUOFzrhoWMLsE-Xqz7nF0QhzldziJFHUFKZKKJmquzpDvQ71zet6-8Qm_BU1Q4h-HKObthgTQO9ljth0oIS23QaMTIICx8xprCTZWMx4zbutHWUsW44Fh7QjXdhVLympg9IJSHzN1ETKBpgIyHMeXG16FxF2KjVaircLKweTTKeTWinEHZj9AsEZqlCmeZCX-fET20u3c42P_Tggew4mP7QlYjdgil8dvEHDlQMY6Pi4PzAfYRzQw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+models+for+molecular+discovery%3A+Recent+advances+and+challenges&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Bilodeau%2C+Camille&rft.au=Jin%2C+Wengong&rft.au=Jaakkola%2C+Tommi&rft.au=Barzilay%2C+Regina&rft.date=2022-09-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=12&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwcms.1608&rft.externalDBID=10.1002%252Fwcms.1608&rft.externalDocID=WCMS1608
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon