Generative models for molecular discovery: Recent advances and challenges
Development of new products often relies on the discovery of novel molecules. While conventional molecular design involves using human expertise to propose, synthesize, and test new molecules, this process can be cost and time intensive, limiting the number of molecules that can be reasonably tested...
Saved in:
| Published in | Wiley interdisciplinary reviews. Computational molecular science Vol. 12; no. 5 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
Wiley Periodicals, Inc
01.09.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1759-0876 1759-0884 1759-0884 |
| DOI | 10.1002/wcms.1608 |
Cover
| Abstract | Development of new products often relies on the discovery of novel molecules. While conventional molecular design involves using human expertise to propose, synthesize, and test new molecules, this process can be cost and time intensive, limiting the number of molecules that can be reasonably tested. Generative modeling provides an alternative approach to molecular discovery by reformulating molecular design as an inverse design problem. Here, we review the recent advances in the state‐of‐the‐art of generative molecular design and discusses the considerations for integrating these models into real molecular discovery campaigns. We first review the model design choices required to develop and train a generative model including common 1D, 2D, and 3D representations of molecules and typical generative modeling neural network architectures. We then describe different problem statements for molecular discovery applications and explore the benchmarks used to evaluate models based on those problem statements. Finally, we discuss the important factors that play a role in integrating generative models into experimental workflows. Our aim is that this review will equip the reader with the information and context necessary to utilize generative modeling within their domain.
This article is categorized under:
Data Science > Artificial Intelligence/Machine Learning
Generative modeling approaches can be used to discover novel and diverse compounds. |
|---|---|
| AbstractList | Development of new products often relies on the discovery of novel molecules. While conventional molecular design involves using human expertise to propose, synthesize, and test new molecules, this process can be cost and time intensive, limiting the number of molecules that can be reasonably tested. Generative modeling provides an alternative approach to molecular discovery by reformulating molecular design as an inverse design problem. Here, we review the recent advances in the state‐of‐the‐art of generative molecular design and discusses the considerations for integrating these models into real molecular discovery campaigns. We first review the model design choices required to develop and train a generative model including common 1D, 2D, and 3D representations of molecules and typical generative modeling neural network architectures. We then describe different problem statements for molecular discovery applications and explore the benchmarks used to evaluate models based on those problem statements. Finally, we discuss the important factors that play a role in integrating generative models into experimental workflows. Our aim is that this review will equip the reader with the information and context necessary to utilize generative modeling within their domain.
This article is categorized under:
Data Science > Artificial Intelligence/Machine Learning
Generative modeling approaches can be used to discover novel and diverse compounds. |
| Author | Bilodeau, Camille Jin, Wengong Jaakkola, Tommi Jensen, Klavs F. Barzilay, Regina |
| Author_xml | – sequence: 1 givenname: Camille surname: Bilodeau fullname: Bilodeau, Camille organization: Massachusetts Institute of Technology – sequence: 2 givenname: Wengong surname: Jin fullname: Jin, Wengong organization: Massachusetts Institute of Technology – sequence: 3 givenname: Tommi surname: Jaakkola fullname: Jaakkola, Tommi organization: Massachusetts Institute of Technology – sequence: 4 givenname: Regina surname: Barzilay fullname: Barzilay, Regina organization: Massachusetts Institute of Technology – sequence: 5 givenname: Klavs F. orcidid: 0000-0001-7192-580X surname: Jensen fullname: Jensen, Klavs F. email: kfjensen@mit.edu organization: Massachusetts Institute of Technology |
| BookMark | eNp1kE1Lw0AQhhepYK09-A_2LKTdSdLsrjcpWgsVwQ88hu3urEY2m5JtE_Lvm1jx5lzmPTzvDDyXZOQrj4RcA5sBY_G81WWYQcbEGRkDX8iICZGO_jLPLsg0hG_WTyohTmBM1iv0WKt90SAtK4MuUFvVfXSoD07V1BRBVw3W3S19QY1-T5VplNcYqPKG6i_lHPpPDFfk3CoXcPq7J-T94f5t-Rhtnlfr5d0m0okUIhKaASBPFWYQWxMvtJQ2sSnAFqRMZcx5JntUcbHlwjI01iaaCynQWkxMMiE3p7sHv1Nd27_Pd3VRqrrLgeWDh3zwkA8eenh-gtvCYfc_mH8sn15_GkcPTmJL |
| CitedBy_id | crossref_primary_10_1039_D4DD00076E crossref_primary_10_1021_acs_jcim_4c01396 crossref_primary_10_1109_TCBB_2024_3477313 crossref_primary_10_1021_acs_iecr_4c00401 crossref_primary_10_1002_prep_202200265 crossref_primary_10_1021_acs_jcim_3c00651 crossref_primary_10_1007_s11227_024_06860_w crossref_primary_10_1021_acs_jcim_3c01626 crossref_primary_10_3390_pr11051340 crossref_primary_10_1021_acs_jctc_4c00998 crossref_primary_10_1016_j_medidd_2023_100175 crossref_primary_10_1038_s41597_023_02207_x crossref_primary_10_1016_j_sbi_2023_102769 crossref_primary_10_1021_acs_chemmater_3c01406 crossref_primary_10_1186_s13321_023_00791_z crossref_primary_10_3389_fddsv_2023_1222655 crossref_primary_10_1093_bioadv_vbae099 crossref_primary_10_1021_acs_jpca_3c04779 crossref_primary_10_1021_acs_jafc_3c00909 crossref_primary_10_1016_j_jpha_2025_101257 crossref_primary_10_1021_acs_jctc_3c01224 crossref_primary_10_1039_D4DD00019F crossref_primary_10_3390_ph17050543 crossref_primary_10_1021_acs_jcim_3c00643 crossref_primary_10_1021_acs_jpclett_5c00274 crossref_primary_10_1016_j_patter_2023_100678 crossref_primary_10_1088_2632_2153_aca1f7 crossref_primary_10_1002_cmtd_202400024 crossref_primary_10_1038_s41929_022_00896_y crossref_primary_10_1021_acs_jcim_4c00747 crossref_primary_10_1038_s43588_022_00391_1 crossref_primary_10_1146_annurev_chembioeng_100722_111917 crossref_primary_10_1063_5_0087392 crossref_primary_10_1002_wcms_1651 crossref_primary_10_1039_D3SC04653B crossref_primary_10_3389_fddsv_2024_1362956 crossref_primary_10_1038_s41587_023_01789_6 crossref_primary_10_3847_1538_4365_adb432 crossref_primary_10_1080_17460441_2023_2250721 crossref_primary_10_1016_j_drudis_2024_104133 crossref_primary_10_1039_D4SC03921A crossref_primary_10_1186_s13321_025_00975_9 crossref_primary_10_1541_ieejfms_144_293 crossref_primary_10_1021_acs_jmedchem_3c00082 crossref_primary_10_1186_s13321_023_00711_1 crossref_primary_10_1016_j_sbi_2024_102826 crossref_primary_10_1002_wcms_1680 crossref_primary_10_1186_s13321_023_00679_y crossref_primary_10_1016_j_ijbiomac_2023_127884 crossref_primary_10_1038_s43588_023_00532_0 crossref_primary_10_1038_s42256_024_00821_x crossref_primary_10_1021_acs_jcim_3c01030 crossref_primary_10_1021_acs_accounts_2c00801 crossref_primary_10_1021_acs_jcim_3c01155 crossref_primary_10_1021_acs_jcim_4c01669 crossref_primary_10_1016_j_patter_2024_100947 crossref_primary_10_1021_acs_jcim_4c01300 crossref_primary_10_1246_bcsj_20230218 crossref_primary_10_1002_minf_202400227 crossref_primary_10_1038_s42256_024_00809_7 crossref_primary_10_1016_j_cep_2022_109148 crossref_primary_10_34133_hds_0092 crossref_primary_10_3390_molecules28114430 crossref_primary_10_1021_acs_chemrev_3c00189 crossref_primary_10_1007_s40843_024_2851_9 crossref_primary_10_1055_s_0044_1796647 crossref_primary_10_1021_jacs_2c13467 crossref_primary_10_1038_s41524_024_01470_9 crossref_primary_10_1039_D4FD00113C crossref_primary_10_1021_acsmedchemlett_4c00148 crossref_primary_10_1021_acs_jcim_2c00366 crossref_primary_10_1039_D2DD00092J crossref_primary_10_1016_j_apenergy_2024_125059 crossref_primary_10_1021_acsnano_3c12654 crossref_primary_10_1016_j_matt_2024_05_042 crossref_primary_10_1111_nyas_14913 crossref_primary_10_1109_TKDE_2024_3361474 crossref_primary_10_1186_s13321_024_00812_5 crossref_primary_10_1016_j_flowmeasinst_2024_102804 crossref_primary_10_1039_D3DD00186E crossref_primary_10_20517_jmi_2023_24 crossref_primary_10_1016_j_sbi_2023_102575 crossref_primary_10_1038_s42003_023_05334_8 crossref_primary_10_1002_wcms_1732 crossref_primary_10_1016_j_sbi_2023_102733 crossref_primary_10_1186_s13059_024_03431_3 crossref_primary_10_1007_s11814_024_00202_5 crossref_primary_10_1063_5_0205433 crossref_primary_10_1021_jasms_4c00186 crossref_primary_10_1021_acsomega_4c07689 crossref_primary_10_1016_j_actamat_2023_119295 crossref_primary_10_1021_acs_jcim_4c01451 crossref_primary_10_1016_j_coelec_2024_101629 crossref_primary_10_1016_j_ascom_2024_100921 crossref_primary_10_1021_acs_jcim_4c00522 crossref_primary_10_1016_j_jece_2025_115946 crossref_primary_10_1186_s13321_024_00924_y crossref_primary_10_3390_bioengineering10091104 crossref_primary_10_1021_acs_macromol_3c01378 crossref_primary_10_1088_1755_1315_1342_1_012006 crossref_primary_10_1021_acs_jcim_3c01519 crossref_primary_10_1109_JBHI_2024_3416348 crossref_primary_10_1016_j_cad_2023_103609 crossref_primary_10_1021_jacs_4c04670 crossref_primary_10_3390_ijms242316761 crossref_primary_10_1186_s13321_023_00794_w crossref_primary_10_1021_acs_jmedchem_4c01064 crossref_primary_10_1021_acs_jcim_4c00252 crossref_primary_10_1038_s41467_025_57582_3 crossref_primary_10_1021_acsmedchemlett_3c00369 crossref_primary_10_1021_acs_jcim_3c01753 crossref_primary_10_1021_acs_jcim_3c00667 crossref_primary_10_1021_acs_iecr_3c02305 crossref_primary_10_1016_j_eng_2024_07_008 crossref_primary_10_1089_cmb_2023_0064 crossref_primary_10_1021_acs_jcim_2c00554 crossref_primary_10_1093_bioinformatics_btae396 crossref_primary_10_1073_pnas_2418918121 crossref_primary_10_1158_2159_8290_CD_23_0280 crossref_primary_10_3390_molecules30010018 crossref_primary_10_1038_s44287_024_00076_z crossref_primary_10_3389_fchem_2023_1288626 crossref_primary_10_3389_fphar_2022_1046524 crossref_primary_10_1186_s13321_024_00930_0 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2022 The Authors. published by Wiley Periodicals LLC. |
| DBID | 24P ADTOC UNPAY |
| DOI | 10.1002/wcms.1608 |
| DatabaseName | Wiley Online Library Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1759-0884 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/wcms.1608 WCMS1608 |
| Genre | reviewArticle |
| GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency funderid: HR00111920025 – fundername: MIT consortium for Pharmaceutical Discovery and Synthesis – fundername: Dow |
| GroupedDBID | 05W 0R~ 1OC 1VH 24P 31~ 33P 8-0 8-1 A00 AAESR AAHHS AAHQN AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEQDE AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI D-A DCZOG DRFUL DRSTM EBS EJD FEDTE G-S GODZA HGLYW HVGLF HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY. MY~ O66 O9- P2W ROL SUPJJ WBKPD WHWMO WIH WIK WOHZO WVDHM WXSBR WYJ ZZTAW ~S- ADTOC AEYWJ AGHNM AGQPQ AGYGG LH4 UNPAY |
| ID | FETCH-LOGICAL-c3988-8c011e74ae612fd25c99f3f411b1994927769c39a78b78f0edff3c7898effe3d3 |
| IEDL.DBID | UNPAY |
| ISSN | 1759-0876 1759-0884 |
| IngestDate | Wed Oct 01 16:33:13 EDT 2025 Wed Jan 22 16:22:19 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | Attribution-NonCommercial |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3988-8c011e74ae612fd25c99f3f411b1994927769c39a78b78f0edff3c7898effe3d3 |
| Notes | Funding information Edited by Raghavan Sunoj, Associate Editor This work was supported by Dow Chemical Company, the MIT consortium for Pharmaceutical Discovery and Synthesis, and the DARPA Accelerated Molecular Discovery program HR00111920025. |
| ORCID | 0000-0001-7192-580X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/wcms.1608 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_1002_wcms_1608 wiley_primary_10_1002_wcms_1608_WCMS1608 |
| PublicationCentury | 2000 |
| PublicationDate | September/October 2022 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September/October 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA |
| PublicationTitle | Wiley interdisciplinary reviews. Computational molecular science |
| PublicationYear | 2022 |
| Publisher | Wiley Periodicals, Inc |
| Publisher_xml | – name: Wiley Periodicals, Inc |
| References | 2018; 361 2021; 26 1996; 39 2013; 27 2019; 11 2020; 60 2019; 59 2014; 27 2020; 204 2018; 80 2020; 12 2020; 11 2008; 3 2017; 112 2017; 9 1997; 9 2019; 32–33 2014; 1 2020; 7 2020; 5 2020; 2 2018; 4 2017; 70 2020; 1 2018; 11139 2018; 31 2016; 48 2014; 54 2019; 9 2019; 4 2021; 3 2021; 2 2020; 141 2019; 33 2019; 32 2019; 1 2019; 37 2020; 38 2019; 108 2020; 33 2021; 1 2021; 51 2020; 108 2021; 54 2012; 3 2021; 12 2021; 11 2006; 45 2021 2020 2021; 139 2017; 57 1988; 28 2019; 47 2019 2018 2017 2013; 492 2014 2020; 22 2021; 61 2012; 4 2009; 1 2020; 119 2018; 15 2010; 50 2018; 58 |
| References_xml | – volume: 60 start-page: 4582 year: 2020 end-page: 93 article-title: De novo drug design of targeted chemical libraries based on artificial intelligence and pair‐based multiobjective optimization publication-title: J Chem Inf Model – volume: 59 start-page: 43 year: 2019 end-page: 52 article-title: Conditional molecular design with deep generative models publication-title: J Chem Inf Model – volume: 492 start-page: 215 issue: 7428 year: 2013 end-page: 220 article-title: Automated design of ligands to polypharmacological profiles publication-title: Nature – volume: 60 start-page: 3770 issue: 8 year: 2020 end-page: 80 article-title: Uncertainty quantification using neural networks for molecular property prediction publication-title: J Chem Inf Model – volume: 108 start-page: 3393 year: 2019 end-page: 3403 article-title: ChemBO: Bayesian optimization of small organic molecules with synthesizable recommendations publication-title: AISTATS – volume: 60 start-page: 77 year: 2020 end-page: 91 article-title: DeepScaffold: a comprehensive tool for scaffold‐based de novo drug discovery using deep learning publication-title: J Chem Inf Model – volume: 28 start-page: 31 year: 1988 end-page: 6 article-title: SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules publication-title: J Chem Inf Model – volume: 51 start-page: 3129 year: 2021 end-page: 42 article-title: Evolutionary multiobjective optimization driven by generative adversarial networks (GANs) publication-title: IEEE Trans Cybern – volume: 33 start-page: 6852 year: 2020 end-page: 6866 article-title: Barking up the right tree: an approach to search over molecule synthesis DAGs publication-title: NeurIPS – volume: 11 start-page: 461 year: 2020 end-page: 77 article-title: Learning with uncertainty for biological discovery and design publication-title: Cell Syst – volume: 11 start-page: 1496 year: 2020 end-page: 505 article-title: The advent of generative chemistry publication-title: ACS Med Chem Lett – volume: 112 start-page: 859 year: 2017 end-page: 77 article-title: Variational inference: a review for statisticians publication-title: J Am Stat Assoc – year: 2014 – volume: 5 start-page: 32984 year: 2020 end-page: 94 article-title: Molecular design in synthetically accessible chemical space via deep reinforcement learning publication-title: ACS Omega – volume: 1 year: 2014 article-title: Quantum chemistry structures and properties of 134 kilo molecules publication-title: Sci Data – volume: 3 start-page: 1040 year: 2021 end-page: 9 article-title: Molecule optimization via fragment‐based generative models publication-title: Nat Mach – volume: 48 start-page: 1050 year: 2016 end-page: 1059 article-title: Dropout as a Bayesian approximation: representing model uncertainty in deep learning publication-title: ICML – volume: 11 year: 2020 article-title: Molecular sets (MOSES): a benchmarking platform for molecular generation models publication-title: Front Pharmacol – volume: 141 year: 2020 article-title: Deep learning and knowledge‐based methods for computer‐aided molecular design—toward a unified approach: state‐of‐the‐art and future directions publication-title: Comput Chem Eng – volume: 33 start-page: 1110 year: 2019 end-page: 7 article-title: NeVAE: a deep generative model for molecular graphs publication-title: AAAI – volume: 50 start-page: 572 year: 2010 end-page: 84 article-title: Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge structural database publication-title: J Chem Inf Model – volume: 3 start-page: 649 year: 2012 end-page: 57 article-title: Exploring chemical space for drug discovery using the chemical universe database publication-title: ACS Chem Nerosci – volume: 12 start-page: 7079 year: 2021 end-page: 7090 article-title: Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES publication-title: Chem Sci – volume: 33 start-page: 173 issue: 5 year: 2019 end-page: 189 article-title: Adversarial learned molecular graph inference and generation publication-title: ECML – volume: 1 start-page: 8 year: 2009 article-title: Estimation of synthetic accessibility score of drug‐like molecules based on molecular complexity and fragment contributions publication-title: J Chem – volume: 15 start-page: 4398 issue: 10 year: 2018 end-page: 4405 article-title: Entangled conditional adversarial autoencoder for de novo drug discovery publication-title: Mol Pharm – volume: 31 start-page: 7632 year: 2018 end-page: 7642 article-title: Constrained graph variational autoencoders for molecule design publication-title: NeurIPS – volume: 12 start-page: 3339 year: 2021 end-page: 3349 article-title: Retrosynthetic accessibility score (RAscore)—rapid machine learned synthesizability classification from AI driven retrosynthetic planning publication-title: Chem Sci – year: 2019 – volume: 54 start-page: 263 year: 2021 end-page: 70 article-title: Applications of deep learning in molecule generation and molecular property prediction publication-title: Acc Chem Res – volume: 9 start-page: 48 year: 2017 article-title: Molecular de‐novo design through deep reinforcement learning publication-title: J Chem – volume: 22 start-page: 617 year: 2020 end-page: 626 article-title: MoFlow: an invertible flow model for generating molecular graphs publication-title: KDD – volume: 11 start-page: 619 year: 2021 article-title: Self‐driving laboratories for development of new functional materials and optimizing known reactions publication-title: J Nanomater – volume: 119 start-page: 4839 year: 2020 end-page: 4848 article-title: Hierarchical generation of molecular graphs using structural motifs publication-title: ICML – volume: 2 start-page: 3 year: 2021 article-title: Deep molecular dreaming: inverse machine learning for de‐novo molecular design and interpretability with surjective representations publication-title: Mach Learn Sci Technol – volume: 70 start-page: 1945 year: 2017 end-page: 1954 article-title: Grammar variational autoencoder publication-title: ICML – volume: 12 start-page: 8036 year: 2021 end-page: 47 article-title: DeepFrag: a deep convolutional neural network for fragment‐based lead optimization publication-title: Chem Sci – volume: 26 start-page: 474 issue: 2 year: 2021 end-page: 89 article-title: Uncertainty quantification in drug design publication-title: Drug Discov Today – volume: 27 start-page: 675 issue: 8 year: 2013 end-page: 679 article-title: Estimation of the size of drug‐like chemical space based on GDB‐17 data publication-title: J. Comput. Aided. Mol. Des. – volume: 38 start-page: 142 year: 2020 end-page: 50 article-title: Assessing the impact of generative AI on medicinal chemistry publication-title: Nat Biotechnol – volume: 32–33 start-page: 55 year: 2019 end-page: 63 article-title: On failure modes in molecule generation and optimization publication-title: Drug Discov Today Technol – volume: 9 start-page: 1735 year: 1997 end-page: 80 article-title: Long short‐term memory publication-title: Neural Comput – volume: 11 start-page: 1153 year: 2020 end-page: 64 article-title: Scaffold‐based molecular design using graph generative model publication-title: Chem Sci – volume: 61 start-page: 2572 issue: 6 year: 2021 end-page: 81 article-title: Comparative study of deep generative models on chemical space coverage publication-title: J Chem Inf Model – volume: 12 start-page: 38 year: 2020 article-title: SMILES‐based deep generative scaffold decorator for de‐novo drug design publication-title: J Chem – volume: 119 start-page: 3668 year: 2020 end-page: 3679 article-title: Learning to navigate the synthetically accessible chemical space using reinforcement learning publication-title: PMLR – volume: 9 year: 2019 article-title: Optimization of molecules via deep reinforcement learning publication-title: Sci Rep – year: 2021 – volume: 1 start-page: 146 year: 2021 end-page: 153 article-title: Controlled molecule generator for optimizing multiple chemical properties publication-title: CHIL – volume: 1 start-page: 307 year: 2019 end-page: 15 article-title: Automated de novo molecular design by hybrid machine intelligence and rule‐driven chemical synthesis publication-title: Nat Mach – volume: 11 start-page: 74 year: 2019 article-title: A de novo molecular generation method using latent vector based generative adversarial network publication-title: J Chem – volume: 39 start-page: 2887 year: 1996 end-page: 93 article-title: The properties of known drugs. 1. Molecular frameworks publication-title: J Med Chem – volume: 57 start-page: 726 year: 2017 end-page: 41 article-title: Molecular dynamics fingerprints (MDFP): machine learning from MD data to predict free‐energy differences publication-title: J Chem Inf Model – year: 2018 – volume: 11 start-page: 8312 year: 2020 end-page: 22 article-title: SyntaLinker: automatic fragment linking with deep conditional transformer neural networks publication-title: Chem Sci – volume: 37 start-page: 1038 year: 2019 end-page: 40 article-title: Deep learning enables rapid identification of potent DDR1 kinase inhibitors publication-title: Nat Biotechnol – volume: 4 start-page: 828 year: 2019 end-page: 49 article-title: Deep learning for molecular design—a review of the state of the art publication-title: Mol Syst Des Eng – volume: 119 start-page: 4849 year: 2020 end-page: 4859 article-title: Multi‐objective molecule generation using interpretable substructures publication-title: ICML – volume: 80 start-page: 2323 year: 2018 end-page: 2332 article-title: Junction tree Variational autoencoder for molecular graph generation publication-title: ICML – volume: 119 start-page: 8949 year: 2020 end-page: 8958 article-title: A generative model for molecular distance geometry publication-title: ICML – volume: 27 start-page: 3276 year: 2014 end-page: 3285 article-title: Generative adversarial networks publication-title: NeurIPS – volume: 58 start-page: 1736 year: 2018 end-page: 41 article-title: Fréchet ChemNet distance: a metric for generative models for molecules in drug discovery publication-title: J Chem Inf Model – volume: 12 start-page: 28 year: 2020 article-title: CReM: chemically reasonable mutations framework for structure generation publication-title: J Chem – volume: 4 start-page: 1126 year: 2018 end-page: 33 article-title: Hunting for organic molecules with artificial intelligence: molecules optimized for desired excitation energies publication-title: ACS Cent Sci – volume: 33 start-page: 12008 year: 2020 end-page: 12021 article-title: Guiding deep molecular optimization with genetic exploration publication-title: NeurIPS – volume: 45 start-page: 177 issue: 1 year: 2006 end-page: 82 article-title: ZINC—a free database of commercially available compounds for virtual screening publication-title: J Chem Inf Model – volume: 58 start-page: 252 year: 2018 end-page: 61 article-title: The synthesizability of molecules proposed by generative models publication-title: J Chem Inf Model – volume: 60 start-page: 1983 year: 2020 end-page: 95 article-title: Deep generative models for 3D linker design publication-title: J Chem Inf Model – volume: 139 start-page: 9558 year: 2021 end-page: 9568 article-title: Learning gradient fields for molecular conformation generation publication-title: ICML – volume: 3 start-page: 1503 year: 2008 end-page: 7 article-title: On the art of compiling and using ‘drug‐like’ chemical fragment spaces publication-title: Chem Med Chem – year: 2018 article-title: Learning deep generative models of graphs publication-title: arXiv:1803.03324 [cs.LG] – volume: 108 start-page: 2240 year: 2020 end-page: 2250 article-title: A deep generative model for fragment‐based molecule generation publication-title: AISTATS – volume: 11 start-page: 577 year: 2020 end-page: 86 article-title: Constrained Bayesian optimization for automatic chemical design using variational autoencoders publication-title: Chem Sci – volume: 11 start-page: 70 year: 2019 article-title: Efficient learning of non‐autoregressive graph variational autoencoders for molecular graph generation publication-title: J Chem – volume: 60 start-page: 5637 issue: 12 year: 2020 end-page: 46 article-title: Scaffold‐constrained molecular generation publication-title: J Chem Inf Model – volume: 60 start-page: 2697 issue: 6 year: 2020 end-page: 717 article-title: Evaluating scalable uncertainty estimation methods for deep learning based molecular property prediction publication-title: J Chem Inf Model – volume: 11 start-page: 24825 year: 2019 end-page: 36 article-title: Autonomous molecular design: then and now publication-title: ACS Appl Mater Interfaces – volume: 59 start-page: 1096 issue: 3 year: 2019 end-page: 1108 article-title: GuacaMol: benchmarking models for de novo molecular design publication-title: J Chem Inf Model – volume: 7 year: 2020 article-title: Generative deep neural networks for inverse materials design using backpropagation and active learning publication-title: Adv Sci – volume: 4 start-page: 90 year: 2012 end-page: 8 article-title: Quantifying the chemical beauty of drugs publication-title: Nat Chem – volume: 32 start-page: 8600 year: 2019 end-page: 8610 article-title: Symmetry‐adapted generation of 3d point sets for the targeted discovery of molecules publication-title: NeurIPS – volume: 32 start-page: 12000 year: 2019 end-page: 12010 article-title: A model to search for synthesizable molecules publication-title: NeurIPS – volume: 1 year: 2020 article-title: Self‐referencing embedded strings (SELFIES): a 100% robust molecular string representation publication-title: Mach Learn: Sci Technol – volume: 119 start-page: 8959 year: 2020 end-page: 8969 article-title: Reinforcement learning for molecular design guided by quantum mechanics publication-title: ICML – volume: 4 start-page: 268 year: 2018 end-page: 76 article-title: Automatic chemical design using a data‐driven continuous representation of molecules publication-title: ACS Cent Sci – volume: 4 year: 2018 article-title: Deep reinforcement learning for de novo drug design publication-title: Sci Adv – volume: 4 start-page: 120 year: 2018 end-page: 31 article-title: Generating focused molecule libraries for drug discovery with recurrent neural networks publication-title: ACS Cent Sci – volume: 361 start-page: 360 year: 2018 end-page: 5 article-title: Inverse molecular design using machine learning: generative models for matter engineering publication-title: Science – volume: 54 start-page: 3259 year: 2014 end-page: 67 article-title: Prediction of synthetic accessibility based on commercially available compound databases publication-title: J Chem Inf Model – volume: 58 start-page: 252 year: 2018 end-page: 61 article-title: SCScore: synthetic complexity learned from a reaction corpus publication-title: J Chem Inf Model – year: 2020 – volume: 47 start-page: D930 year: 2019 end-page: 40 article-title: ChEMBL: towards direct deposition of bioassay data publication-title: Nucleic Acids Res – volume: 3 start-page: 422 year: 2021 end-page: 40 article-title: Physics‐informed machine learning publication-title: Nat Rev Phys – volume: 9 year: 2019 article-title: Advances and challenges in deep generative models for de novo molecule generation publication-title: WIREs Comput Mol Sci – volume: 2 start-page: 254 year: 2020 end-page: 65 article-title: Direct steering of de novo molecular generation using descriptor conditional recurrent neural networks (cRNNs) publication-title: Nat Mach – year: 2017 – volume: 204 year: 2020 article-title: Automated design and optimization of multitarget schizophrenia drug candidates by deep learning publication-title: Eur J Med Chem – volume: 11139 start-page: 412 year: 2018 end-page: 422 article-title: GraphVAE: towards generation of small graphs using variational autoencoders publication-title: ICANN – start-page: 445 year: 2020 end-page: 67 |
| SSID | ssj0000491231 |
| Score | 2.6828485 |
| SecondaryResourceType | review_article |
| Snippet | Development of new products often relies on the discovery of novel molecules. While conventional molecular design involves using human expertise to propose,... |
| SourceID | unpaywall wiley |
| SourceType | Open Access Repository Publisher |
| SubjectTerms | generative adversarial networks generative models molecular representation normalizing flow models variational autoencoders |
| SummonAdditionalLinks | – databaseName: Wiley Online Library dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07TwMxDI5KGQoD4inKS5FgYDn1muSaBCZUURWkIiSo6HbKJbkJjoprVfXfY98LMSCxZfAtTmx_9tmfCbkyVlvphA8sxNZA6CQMDMD4gIfMcpP2lVE44Dx5Goyn4nEWzVrktp6FKfkhmoIbWkbhr9HATZL3fkhDV_Yjx9qI2iCbfcAx-LyZeG4KLAB9wSsXCZeMdIDUazWzUMh6zdfbpLPM5ma9Mu_vvwFqEWFGu2Sngob0rrzLPdLy2T7pDOuNbAfkoeSIRgdFiw02OQXICcdqwy3FEVtsyVzfUICDEE5o9Ys_pyZz1NaLU_JDMh3dvw7HQbUKIbBcw1tWFuzQS2E8IJLUschqnfJU9PsJkvtqJuVAg6iRKpEqDb1LU26l0grbQrjjR6SdfWb-mFCuIglJgheOCyQjTLjyzEUeclXvbOS65LJRSDwvKS_iktyYxai2GNXWJdeFqv6WiN-Gkxc8nPxf9JRsMRwvKHq4zkh78bX05xD0F8lFcbnfZJeo-A priority: 102 providerName: Wiley-Blackwell |
| Title | Generative models for molecular discovery: Recent advances and challenges |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fwcms.1608 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/wcms.1608 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTwIxEJ4IHNCDbyM-SBM9eFmEtsu23giRoAmERIl4Wrt9XMSVuBCCv952d8FHYmLirYdu00w6M1-7M98HcC4kl4Gi2pM2t3qUR3VPWBjvkTqWRJgGE8w1OPf6ze6Q3o78Ua5z6nphMn6I1YOb84w0XjsHnyiTxfn87z6-nMuXxL2PsAKUmr4F40UoDfuD1mPaBulzzxGufY4ZXXILff12A8qzeCIWczEef4eoaY7pbMHTcndZaclzbTaNavL9B3HjP7a_DZs5_kSt7MDswJqOd6HcXsq-7cFNRkTtoiBKZXISZHGtHeYyusj18bq6z8UVspjT5iyU1xEkSMQKyaU6S7IPw871fbvr5XoLniTcOgyT1tl1QIW2sMco7EvODTG00YgcgzDHQdDkdqoIWBQwU9fKGCIDxpmrPSGKHEAxfo31ISDC_MDeRDRVhDrGw4gwjZWv7YVYK-mrCpytbB5OMl6NMGNQxqEzS-jMUoGL1IS_zwgf2r07Nzj604LHsI5d-0JaI3YCxenbTJ9aUDGNqlDAdFDNj88Hw0rN4w |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAwOiKcYz0hw4FJta9ImQVzQxLTBNiGxid2qNElPo0x007R_T9x2QxyQuOXgXpza_uzYnwFulZaaG2Y97WKrx2Tc9JSD8R5t-pqqpCWUwAHnwTDsjtnzJJhU4GE9C1PwQ2wKbmgZub9GA8eCdOOHNXSpPzIsjogt2GZhK8TUy2evmwqLw77OLecZFw-kh9xra2qhpt_YfL0LtUU6U6ulmk5_I9Q8xHT2Ya_EhuSxuMwDqNj0EGrt9Uq2I-gVJNHooUi-wiYjDnO6Y7niluCMLfZkru6Jw4MunpDyjT8jKjVErzenZMcw7jyN2l2v3IXgaSrdzyy0M0TLmbIOkiTGD7SUCU1YqxUju6_0OQ-lE1VcxFwkTWuShGoupMC-EGroCVTTz9SeAqEi4C5LsMxQhmyEMRXWN4F1yao1OjB1uNkoJJoVnBdRwW7sR6i2CNVWh7tcVX9LRO_twRsezv4veg217mjQj_q94cs57Pg4a5A3dF1Adf61sJcOAczjq_yivwGZF6xk |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGkHgcEE8xnpHgwKVa16RLgrigwbQBmybBxG5VmsdplIlumvbvSfpCHJC45eBenNr-7NifAa6F5JIqoj1pY6tHeOx7wsJ4D_uBxMK0mGBuwHkwbPfG5GkSTmpwV87C5PwQVcHNWUbmr52B65kyzR_W0KX8SF1xhK3BOgltJHS8zmRUVVgs9rVuOcu4aMg9x71WUgv5QbP6ehs2F8lMrJZiOv2NULMQ092FnQIbovv8MvegppN92OyUK9kOoJ-TRDsPhbIVNimymNMeixW3yM3Yup7M1S2yeNDGE1S88adIJArJcnNKegjj7uNbp-cVuxA8ibn9mZm0hqgpEdpCEqOCUHJusCGtVuzYfXlAaZtbUUFZTJnxtTIGS8o4c30hWOEjqCefiT4GhFlIbZagicLEsRHGmOlAhdomq1rJUDXgqlJINMs5L6Kc3TiInNoip7YG3GSq-lsieu8MXt3h5P-il7AxeuhGL_3h8ylsBW7UIOvnOoP6_Guhzy0AmMcX2T1_A7wqq_M |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60PVQPvsX6IqAHL1vbzW6TeCvFokKLoMV6WrN5XKxrcVtK_fVmdrf1AYLgLYdsCENm5kt25vsATqUSiunAeMrlVi8Qcd2TDsZ7tO4rKm2DS44Nzt1e86of3AzCQaFzir0wOT_E4sENPSOL1-jgI23zOF_83ffPp-olxfcRvgzlZujAeAnK_d5t6zFrgwyFh4Rrn2MezLmFvn67CpVJMpKzqRwOv0PULMd01uFpvru8tOS5NhnHNfX-g7jxH9vfgLUCf5JWfmA2YckkW1Bpz2XftuE6J6LGKEgymZyUOFzrhoWMLsE-Xqz7nF0QhzldziJFHUFKZKKJmquzpDvQ71zet6-8Qm_BU1Q4h-HKObthgTQO9ljth0oIS23QaMTIICx8xprCTZWMx4zbutHWUsW44Fh7QjXdhVLympg9IJSHzN1ETKBpgIyHMeXG16FxF2KjVaircLKweTTKeTWinEHZj9AsEZqlCmeZCX-fET20u3c42P_Tggew4mP7QlYjdgil8dvEHDlQMY6Pi4PzAfYRzQw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generative+models+for+molecular+discovery%3A+Recent+advances+and+challenges&rft.jtitle=Wiley+interdisciplinary+reviews.+Computational+molecular+science&rft.au=Bilodeau%2C+Camille&rft.au=Jin%2C+Wengong&rft.au=Jaakkola%2C+Tommi&rft.au=Barzilay%2C+Regina&rft.date=2022-09-01&rft.pub=Wiley+Periodicals%2C+Inc&rft.issn=1759-0876&rft.eissn=1759-0884&rft.volume=12&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fwcms.1608&rft.externalDBID=10.1002%252Fwcms.1608&rft.externalDocID=WCMS1608 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-0876&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-0876&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-0876&client=summon |