Practical computation of the diffusion MRI signal of realistic neurons based on Laplace eigenfunctions

The complex transverse water proton magnetization subject to diffusion‐encoding magnetic field gradient pulses in a heterogeneous medium such as brain tissue can be modeled by the Bloch‐Torrey partial differential equation. The spatial integral of the solution of this equation in realistic geometry...

Full description

Saved in:
Bibliographic Details
Published inNMR in biomedicine Vol. 33; no. 10; pp. e4353 - n/a
Main Authors Li, Jing‐Rebecca, Tran, Try Nguyen, Nguyen, Van‐Dang
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.10.2020
Wiley
Subjects
Online AccessGet full text
ISSN0952-3480
1099-1492
1099-1492
DOI10.1002/nbm.4353

Cover

Abstract The complex transverse water proton magnetization subject to diffusion‐encoding magnetic field gradient pulses in a heterogeneous medium such as brain tissue can be modeled by the Bloch‐Torrey partial differential equation. The spatial integral of the solution of this equation in realistic geometry provides a gold‐standard reference model for the diffusion MRI signal arising from different tissue micro‐structures of interest. A closed form representation of this reference diffusion MRI signal called matrix formalism, which makes explicit the link between the Laplace eigenvalues and eigenfunctions of the biological cell and its diffusion MRI signal, was derived 20 years ago. In addition, once the Laplace eigendecomposition has been computed and saved, the diffusion MRI signal can be calculated for arbitrary diffusion‐encoding sequences and b‐values at negligible additional cost. Up to now, this representation, though mathematically elegant, has not been often used as a practical model of the diffusion MRI signal, due to the difficulties of calculating the Laplace eigendecomposition in complicated geometries. In this paper, we present a simulation framework that we have implemented inside the MATLAB‐based diffusion MRI simulator SpinDoctor that efficiently computes the matrix formalism representation for realistic neurons using the finite element method. We show that the matrix formalism representation requires a few hundred eigenmodes to match the reference signal computed by solving the Bloch‐Torrey equation when the cell geometry originates from realistic neurons. As expected, the number of eigenmodes required to match the reference signal increases with smaller diffusion time and higher b‐values. We also convert the eigenvalues to a length scale and illustrate the link between the length scale and the oscillation frequency of the eigenmode in the cell geometry. We give the transformation that links the Laplace eigenfunctions to the eigenfunctions of the Bloch‐Torrey operator and compute the Bloch‐Torrey eigenfunctions and eigenvalues. This work is another step in bringing advanced mathematical tools and numerical method development to the simulation and modeling of diffusion MRI. We present a simulation framework that we have implemented inside the MATLAB‐based diffusion MRI simulator SpinDoctor that efficiently computes the matrix formalism representation for realistic neurons using the finite element method. The matrix formalism representation requires around 100 eigenmodes to match the reference signal when the cell geometry originates from realistic neurons. We convert the eigenvalues to a length scale and illustrate the link between the length scale and the oscillation frequency of the eigenmode in the cell geometry.
AbstractList The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium such as brain tissue can be modeled by the Bloch-Torrey partial differential equation. The spatial integral of the solution of this equation in realistic geometry provides a gold-standard reference model for the diffusion MRI signal arising from different tissue micro-structures of interest. A closed form representation of this reference diffusion MRI signal called matrix formalism, which makes explicit the link between the Laplace eigenvalues and eigenfunctions of the biological cell and its diffusion MRI signal, was derived 20 years ago. In addition, once the Laplace eigendecomposition has been computed and saved, the diffusion MRI signal can be calculated for arbitrary diffusion-encoding sequences and b-values at negligible additional cost. Up to now, this representation, though mathematically elegant, has not been often used as a practical model of the diffusion MRI signal, due to the difficulties of calculating the Laplace eigendecomposition in complicated geometries. In this paper, we present a simulation framework that we have implemented inside the MATLAB-based diffusion MRI simulator SpinDoctor that efficiently computes the matrix formalism representation for realistic neurons using the finite element method. We show that the matrix formalism representation requires a few hundred eigenmodes to match the reference signal computed by solving the Bloch-Torrey equation when the cell geometry originates from realistic neurons. As expected, the number of eigenmodes required to match the reference signal increases with smaller diffusion time and higher b-values. We also convert the eigenvalues to a length scale and illustrate the link between the length scale and the oscillation frequency of the eigenmode in the cell geometry. We give the transformation that links the Laplace eigenfunctions to the eigenfunctions of the Bloch-Torrey operator and compute the Bloch-Torrey eigenfunctions and eigenvalues. This work is another step in bringing advanced mathematical tools and numerical method development to the simulation and modeling of diffusion MRI.The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium such as brain tissue can be modeled by the Bloch-Torrey partial differential equation. The spatial integral of the solution of this equation in realistic geometry provides a gold-standard reference model for the diffusion MRI signal arising from different tissue micro-structures of interest. A closed form representation of this reference diffusion MRI signal called matrix formalism, which makes explicit the link between the Laplace eigenvalues and eigenfunctions of the biological cell and its diffusion MRI signal, was derived 20 years ago. In addition, once the Laplace eigendecomposition has been computed and saved, the diffusion MRI signal can be calculated for arbitrary diffusion-encoding sequences and b-values at negligible additional cost. Up to now, this representation, though mathematically elegant, has not been often used as a practical model of the diffusion MRI signal, due to the difficulties of calculating the Laplace eigendecomposition in complicated geometries. In this paper, we present a simulation framework that we have implemented inside the MATLAB-based diffusion MRI simulator SpinDoctor that efficiently computes the matrix formalism representation for realistic neurons using the finite element method. We show that the matrix formalism representation requires a few hundred eigenmodes to match the reference signal computed by solving the Bloch-Torrey equation when the cell geometry originates from realistic neurons. As expected, the number of eigenmodes required to match the reference signal increases with smaller diffusion time and higher b-values. We also convert the eigenvalues to a length scale and illustrate the link between the length scale and the oscillation frequency of the eigenmode in the cell geometry. We give the transformation that links the Laplace eigenfunctions to the eigenfunctions of the Bloch-Torrey operator and compute the Bloch-Torrey eigenfunctions and eigenvalues. This work is another step in bringing advanced mathematical tools and numerical method development to the simulation and modeling of diffusion MRI.
The complex transverse water proton magnetization subject to diffusion‐encoding magnetic field gradient pulses in a heterogeneous medium such as brain tissue can be modeled by the Bloch‐Torrey partial differential equation. The spatial integral of the solution of this equation in realistic geometry provides a gold‐standard reference model for the diffusion MRI signal arising from different tissue micro‐structures of interest. A closed form representation of this reference diffusion MRI signal called matrix formalism, which makes explicit the link between the Laplace eigenvalues and eigenfunctions of the biological cell and its diffusion MRI signal, was derived 20 years ago. In addition, once the Laplace eigendecomposition has been computed and saved, the diffusion MRI signal can be calculated for arbitrary diffusion‐encoding sequences and b ‐values at negligible additional cost. Up to now, this representation, though mathematically elegant, has not been often used as a practical model of the diffusion MRI signal, due to the difficulties of calculating the Laplace eigendecomposition in complicated geometries. In this paper, we present a simulation framework that we have implemented inside the MATLAB‐based diffusion MRI simulator SpinDoctor that efficiently computes the matrix formalism representation for realistic neurons using the finite element method. We show that the matrix formalism representation requires a few hundred eigenmodes to match the reference signal computed by solving the Bloch‐Torrey equation when the cell geometry originates from realistic neurons. As expected, the number of eigenmodes required to match the reference signal increases with smaller diffusion time and higher b ‐values. We also convert the eigenvalues to a length scale and illustrate the link between the length scale and the oscillation frequency of the eigenmode in the cell geometry. We give the transformation that links the Laplace eigenfunctions to the eigenfunctions of the Bloch‐Torrey operator and compute the Bloch‐Torrey eigenfunctions and eigenvalues. This work is another step in bringing advanced mathematical tools and numerical method development to the simulation and modeling of diffusion MRI.
The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium such as brain tissue can be modeled by the Bloch-Torrey partial differential equation. The spatial integral of the solution of this equation in realistic geometry provides a gold-standard reference model for the diffusion MRI signal arising from different tissue micro-structures of interest. A closed form representation of this reference diffusion MRI signal has been derived twenty years ago, called Matrix Formalism that makes explicit the link between the Laplace eigenvalues and eigenfunctions of the biological cell and its diffusion MRI signal. In addition, once the Laplace eigendecomposition has been computed and saved, the diffusion MRI signal can be calculated for arbitrary diffusion-encoding sequences and b-values at negligible additional cost.Up to now, this representation, though mathematically elegant, has not been often used as a practical model of the diffusion MRI signal, due to the difficulties of calculating the Laplace eigendecomposition in complicated geometries. In this paper, we present a simulation framework that we have implemented inside the MATLAB-based diffusion MRI simulator SpinDoctor that efficiently computes the Matrix Formalism representation forrealistic neurons using the finite elements method. We show the Matrix Formalism representation requires around a few hundred eigenmodes to match the reference signal computed by solving the Bloch-Torrey equation when the cell geometry comes from realistic neurons. As expected, the number of required eigenmodes to match the reference signal increases with smaller diffusion time and higher b-values. We also converted the eigenvalues to alength scale and illustrated the link between the length scale and the oscillation frequency of the eigenmode in the cell geometry. We gave the transformation that links the Laplace eigenfunctions to the eigenfunctions of the Bloch-Torrey operator and computed the Bloch-Torrey eigenfunctions and eigenvalues. This work is another step in bringing advanced mathematical tools and numerical method development to the simulation and modeling ofdiffusion MRI.
The complex transverse water proton magnetization subject to diffusion‐encoding magnetic field gradient pulses in a heterogeneous medium such as brain tissue can be modeled by the Bloch‐Torrey partial differential equation. The spatial integral of the solution of this equation in realistic geometry provides a gold‐standard reference model for the diffusion MRI signal arising from different tissue micro‐structures of interest. A closed form representation of this reference diffusion MRI signal called matrix formalism, which makes explicit the link between the Laplace eigenvalues and eigenfunctions of the biological cell and its diffusion MRI signal, was derived 20 years ago. In addition, once the Laplace eigendecomposition has been computed and saved, the diffusion MRI signal can be calculated for arbitrary diffusion‐encoding sequences and b‐values at negligible additional cost. Up to now, this representation, though mathematically elegant, has not been often used as a practical model of the diffusion MRI signal, due to the difficulties of calculating the Laplace eigendecomposition in complicated geometries. In this paper, we present a simulation framework that we have implemented inside the MATLAB‐based diffusion MRI simulator SpinDoctor that efficiently computes the matrix formalism representation for realistic neurons using the finite element method. We show that the matrix formalism representation requires a few hundred eigenmodes to match the reference signal computed by solving the Bloch‐Torrey equation when the cell geometry originates from realistic neurons. As expected, the number of eigenmodes required to match the reference signal increases with smaller diffusion time and higher b‐values. We also convert the eigenvalues to a length scale and illustrate the link between the length scale and the oscillation frequency of the eigenmode in the cell geometry. We give the transformation that links the Laplace eigenfunctions to the eigenfunctions of the Bloch‐Torrey operator and compute the Bloch‐Torrey eigenfunctions and eigenvalues. This work is another step in bringing advanced mathematical tools and numerical method development to the simulation and modeling of diffusion MRI. We present a simulation framework that we have implemented inside the MATLAB‐based diffusion MRI simulator SpinDoctor that efficiently computes the matrix formalism representation for realistic neurons using the finite element method. The matrix formalism representation requires around 100 eigenmodes to match the reference signal when the cell geometry originates from realistic neurons. We convert the eigenvalues to a length scale and illustrate the link between the length scale and the oscillation frequency of the eigenmode in the cell geometry.
Author Nguyen, Van‐Dang
Li, Jing‐Rebecca
Tran, Try Nguyen
Author_xml – sequence: 1
  givenname: Jing‐Rebecca
  orcidid: 0000-0001-6075-5526
  surname: Li
  fullname: Li, Jing‐Rebecca
  email: jingrebecca.li@inria.fr
  organization: INRIA Saclay‐Equipe DEFI, CMAP, Ecole Polytechnique
– sequence: 2
  givenname: Try Nguyen
  surname: Tran
  fullname: Tran, Try Nguyen
  organization: INRIA Saclay‐Equipe DEFI, CMAP, Ecole Polytechnique
– sequence: 3
  givenname: Van‐Dang
  surname: Nguyen
  fullname: Nguyen, Van‐Dang
  organization: KTH Royal Institute of Technology
BackLink https://hal.science/hal-03153120$$DView record in HAL
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288067$$DView record from Swedish Publication Index
BookMark eNp10cFu1DAQBmALtRLbgsQjROIChyweO8k6x6UUWmlbEAKuluOMd128drCTVn17HLZCUMHJ0vjzL2v-E3Lkg0dCXgBdAqXsje_2y4rX_AlZAG3bEqqWHZEFbWtW8krQp-QkpRtKqag4WxDzKSo9Wq1cocN-mEY12uCLYIpxh0VvjZnSPLj6fFkku_XZ5buIytmUnxUepxh8KjqVsC8y3KjBKY0F2i16M3k956Vn5Ngol_D5w3lKvr4__3J2UW4-frg8W29KzVvBy1pBU_cCmFam4opr0KplaKqV0IBa99CbDgCFRrPqeFN3RjFoODaC1TpPTkl5yE13OEydHKLdq3gvg7Lynf22liFu5fdxJ5kQtFll__rgd8r9hS_WGznPKIeaA6O3kO2rgx1i-DFhGuXeJo3OKY9hSpJVTFSwAt5k-vIRvQlTzMubFW_rtmn4H4E6hpQimt8_ACrnMmUuU85lZrp8RLU9VDVGZd2_Hjws4s46vP9vsLx-e_XL_wSrxbHv
CitedBy_id crossref_primary_10_1016_j_media_2023_102979
crossref_primary_10_1002_nbm_4646
crossref_primary_10_1016_j_neuroimage_2020_117198
crossref_primary_10_1137_21M1439572
Cites_doi 10.1523/JNEUROSCI.2055-07.2007
10.1016/j.jmr.2014.08.016
10.1063/1.3082078
10.1016/j.jcp.2014.01.009
10.1093/oso/9780198537885.001.0001
10.1016/j.neuroimage.2011.06.006
10.1002/nbm.3998
10.1002/mrm.26832
10.1137/16M1107474
10.1016/j.jmr.2019.106611
10.1016/j.neuroimage.2017.12.038
10.7712/100016.1796.8619
10.1002/mrm.26548
10.1109/TBME.2019.2893523
10.1103/PhysRevLett.68.3555
10.1016/S1090-7807(02)00039-3
10.1016/j.neuroimage.2011.09.081
10.1016/j.jmr.2015.01.008
10.1103/RevModPhys.79.1077
10.1371/journal.pone.0076626
10.1007/978-3-319-46630-9_4
10.1016/j.jcp.2018.08.039
10.1016/j.jmr.2011.04.004
10.1002/mrm.21577
10.1016/j.neuroimage.2016.01.047
10.1016/j.jmr.2018.09.013
10.1006/jmre.1997.1233
10.1016/j.neuroimage.2019.116120
10.1016/j.jmr.2019.01.007
10.1002/cpa.3160430802
10.1002/mrm.27101
10.1016/j.jmr.2015.08.008
10.1016/j.jmr.2013.06.019
10.1002/mrm.10078
10.1016/j.neuroimage.2010.05.043
10.1109/TMI.2019.2902957
10.1016/j.jmr.2019.01.002
10.1063/1.1695690
10.1016/j.neuroimage.2012.03.072
10.1148/radiology.161.2.3763909
10.1016/j.jmr.2011.02.022
10.1073/pnas.1418198112
10.1016/j.neuroimage.2011.01.084
10.1006/jmre.1999.1778
10.1016/j.jmr.2019.06.016
10.1103/PhysRevB.47.8565
10.1073/pnas.1316944111
10.1016/j.neuroimage.2006.10.037
10.1016/j.neuroimage.2018.09.076
10.1016/j.neuroimage.2016.09.057
10.1109/TMI.2009.2015756
10.1073/pnas.1504327113
10.1007/s10334-018-0680-1
10.1002/mrm.22033
10.1109/TMI.2018.2873736
10.1073/pnas.1320223111
10.1063/1.1830432
10.1016/j.neuroimage.2015.03.061
10.1103/PhysRev.80.580
10.1016/j.neuroimage.2018.09.075
10.1016/j.neuroimage.2018.06.046
ContentType Journal Article
Copyright 2020 John Wiley & Sons, Ltd.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2020 John Wiley & Sons, Ltd.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7QO
8FD
FR3
K9.
P64
7X8
1XC
ADTPV
AOWAS
D8V
DOI 10.1002/nbm.4353
DatabaseName CrossRef
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
DatabaseTitle CrossRef
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef


ProQuest Health & Medical Complete (Alumni)

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Chemistry
Physics
Computer Science
EISSN 1099-1492
EndPage n/a
ExternalDocumentID oai_DiVA_org_kth_288067
oai:HAL:hal-03153120v1
10_1002_nbm_4353
NBM4353
Genre article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52V
52W
52X
53G
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
DUUFO
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P2Z
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXSBR
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7QO
8FD
FR3
K9.
P64
7X8
1XC
ADTPV
AOWAS
D8V
ID FETCH-LOGICAL-c3983-5a165d812caf43a3c1ca92ef478c1eccd1dfb11e8cef7b365bfa2163e6825c7b3
IEDL.DBID DR2
ISSN 0952-3480
1099-1492
IngestDate Thu Aug 21 06:50:07 EDT 2025
Sat Oct 25 11:30:07 EDT 2025
Thu Oct 02 04:41:25 EDT 2025
Tue Oct 07 06:46:13 EDT 2025
Sat Oct 25 05:30:22 EDT 2025
Thu Apr 24 23:00:38 EDT 2025
Wed Jan 22 16:34:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords diffusion MRI
Bloch-Torrey equation
Laplace eigenfunctions
simulation
Matrix Formalism
finite elements
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3983-5a165d812caf43a3c1ca92ef478c1eccd1dfb11e8cef7b365bfa2163e6825c7b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6075-5526
PQID 2439596631
PQPubID 2029982
PageCount 24
ParticipantIDs swepub_primary_oai_DiVA_org_kth_288067
hal_primary_oai_HAL_hal_03153120v1
proquest_miscellaneous_2428417136
proquest_journals_2439596631
crossref_primary_10_1002_nbm_4353
crossref_citationtrail_10_1002_nbm_4353
wiley_primary_10_1002_nbm_4353_NBM4353
PublicationCentury 2000
PublicationDate October 2020
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle NMR in biomedicine
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Wiley
Publisher_xml – name: Wiley Subscription Services, Inc
– name: Wiley
References 2012; 61
2019; 202
2011; 56
2011; 58
2012; 59
2013; 8
2007; 34
2007; 79
2018; 296
2002; 47
2018; 375
2014; 248
1990; 43
2015; 259
2019; 66
2017; 77
2015; 252
2016; 113
2003; 161
2013; 234
1999; 139
2018; 78
2018; 31
2018; 79
2007; 27
1993; 47
2018; 182
2009; 62
2019; 32
2019; 309
1950; 80
2019; 38
2008; 59
2019; 300
1995
2009; 130
2019; 305
2019; 184
2014; 111
2019; 185
2018; 65
2011; 211
2011; 210
2009; 28
1965; 42
1997; 129
2013; 219
2005; 122
2015; 114
1986; 161
2015; 112
2019
2018
2016
1992; 68
2017; 146
2014; 263
2010; 52
2016; 130
2019; 299
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_35_1
e_1_2_9_56_1
Dang S (e_1_2_9_10_1) 2018; 65
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
Menon V (e_1_2_9_53_1) 2019
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_51_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
Rahman T (e_1_2_9_62_1) 2013; 219
e_1_2_9_3_1
e_1_2_9_9_1
Hughes BD (e_1_2_9_29_1) 1995
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
References_xml – volume: 111
  start-page: 5088
  issue: 14
  year: 2014
  end-page: 5093
  article-title: Revealing mesoscopic structural universality with diffusion
  publication-title: Proc Natl Acad Sci USA
– volume: 296
  start-page: 188
  year: 2018
  end-page: 199
  article-title: Efficient GPU‐based Monte‐Carlo simulation of diffusion in real astrocytes reconstructed from confocal microscopy
  publication-title: J Magn Reson
– volume: 38
  start-page: 1
  year: 2019
  end-page: 1
  article-title: Probing surface‐to‐volume ratio of an anisotropic medium by diffusion NMR with general gradient encoding
  publication-title: IEEE Trans Med Imaging
– volume: 139
  start-page: 342
  issue: 2
  year: 1999
  end-page: 353
  article-title: Theory of spin echo in restricted geometries under a step‐wise gradient pulse sequence
  publication-title: J Magn Reson
– volume: 185
  start-page: 379
  year: 2019
  end-page: 387
  article-title: On the scaling behavior of water diffusion in human brain white matter
  publication-title: NeuroImage
– start-page: 105
  year: 2016
  end-page: 119
– volume: 182
  start-page: 500
  year: 2018
  end-page: 510
  article-title: What dominates the time dependence of diffusion transverse to axons: intra‐ or extra‐axonal water?
  publication-title: NeuroImage
– volume: 62
  start-page: 771
  issue: 3
  year: 2009
  end-page: 778
  article-title: A simulation environment for diffusion weighted MR experiments in complex media
  publication-title: Magn Reson Med
– volume: 259
  start-page: 126
  year: 2015
  end-page: 134
  article-title: A parametric finite element solution of the generalised Bloch‐Torrey equation for arbitrary domains
  publication-title: J Magn Reson
– volume: 61
  start-page: 1000
  issue: 4
  year: 2012
  end-page: 1016
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: NeuroImage
– volume: 77
  start-page: 343
  issue: 1
  year: 2017
  end-page: 350
  article-title: Modeling diffusion of intracellular metabolites in the mouse brain up to very high diffusion‐weighting: diffusion in long fibers (almost) accounts for non‐monoexponential attenuation
  publication-title: Magn Reson Med
– volume: 79
  start-page: 1077
  issue: 3
  year: 2007
  end-page: 1137
  article-title: NMR survey of reflected Brownian motion
  publication-title: Rev Mod Phys
– volume: 32
  issue: 4
  year: 2019
  article-title: Quantifying brain microstructure with diffusion MRI: theory and parameter estimation
  publication-title: NMR Biomed
– volume: 161
  start-page: 401
  issue: 2
  year: 1986
  end-page: 407
  article-title: MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders
  publication-title: Radiology
– year: 2018
– volume: 375
  start-page: 271
  year: 2018
  end-page: 290
  article-title: A partition of unity finite element method for computational diffusion MRI
  publication-title: J Comput Phys
– volume: 122
  start-page: 18
  issue: 2
  year: 2005
  end-page: 30
  article-title: Water mobility in heterogeneous emulsions determined by a new combination of confocal laser scanning microscopy, image analysis, nuclear magnetic resonance diffusometry, and finite element method simulation
  publication-title: J Chem Phys
– volume: 47
  start-page: 455
  issue: 3
  year: 2002
  end-page: 460
  article-title: Biexponential diffusion attenuation in the rat spinal cord: computer simulations based on anatomic images of axonal architecture
  publication-title: Magn Reson Med
– volume: 42
  start-page: 288
  issue: 1
  year: 1965
  end-page: 292
  article-title: Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient
  publication-title: J Chem Phys
– volume: 182
  start-page: 39
  year: 2018
  end-page: 61
  article-title: Physical and numerical phantoms for the validation of brain microstructural MRI: a cookbook
  publication-title: NeuroImage
– volume: 305
  start-page: 162
  year: 2019
  end-page: 174
  article-title: Localization regime in diffusion NMR: theory and experiments
  publication-title: J Magn Reson
– start-page: 34
  year: 2016
  end-page: 44
– volume: 112
  start-page: E2820
  issue: 21
  year: 2015
  end-page: E2828
  article-title: Superficial white matter fiber systems impede detection of long‐range cortical connections in diffusion MR tractography
  publication-title: Proc Natl Acad Sci USA
– volume: 27
  start-page: 9247
  issue: 35
  year: 2007
  end-page: 9251
  article-title: NeuroMorpho.Org: a central resource for neuronal morphologies
  publication-title: J Neurosci
– volume: 210
  start-page: 151
  issue: 1
  year: 2011
  end-page: 157
  article-title: The matrix formalism for generalised gradients with time‐varying orientation in diffusion NMR
  publication-title: J Magn Reson
– volume: 52
  start-page: 1374
  issue: 4
  year: 2010
  end-page: 1389
  article-title: Orientationally invariant indices of axon diameter and density from diffusion MRI
  publication-title: NeuroImage
– volume: 248
  start-page: 164
  year: 2014
  end-page: 176
  article-title: Exploring diffusion across permeable barriers at high gradients. II. Localization regime
  publication-title: J Magn Reson
– volume: 43
  start-page: 949
  issue: 8
  year: 1990
  end-page: 963
  article-title: A fast algorithm for the evaluation of heat potentials
  publication-title: Commun Pure Appl Math
– volume: 47
  start-page: 8565
  year: 1993
  end-page: 8574
  article-title: Short‐time behavior of the diffusion coefficient as a geometrical probe of porous media
  publication-title: Phys Rev B
– volume: 8
  issue: 10
  year: 2013
  article-title: Diffusion Microscopist Simulator: a general Monte Carlo simulation system for diffusion magnetic resonance imaging
  publication-title: PLoS ONE
– volume: 68
  start-page: 3555
  issue: 24
  year: 1992
  end-page: 3558
  article-title: Diffusion propagator as a probe of the structure of porous media
  publication-title: Phys Rev Lett
– volume: 299
  start-page: 176
  year: 2019
  end-page: 187
  article-title: Diffusion MRI simulation in thin‐layer and thin‐tube media using a discretization on manifolds
  publication-title: J Magn Reson
– volume: 130
  start-page: 104702
  issue: 19292544
  year: 2009
  end-page: 104702
  article-title: A general framework to quantify the effect of restricted diffusion on the NMR signal with applications to double pulsed field gradient NMR experiments
  publication-title: J Chem Phys
– volume: 146
  start-page: 452
  year: 2017
  end-page: 473
  article-title: Precise inference and characterization of structural organization (PICASO) of tissue from molecular diffusion
  publication-title: NeuroImage
– volume: 59
  start-page: 1347
  issue: 6
  year: 2008
  end-page: 1354
  article-title: Axcaliber: a method for measuring axon diameter distribution from diffusion MRI
  publication-title: Magn Reson Med
– volume: 252
  start-page: 103
  year: 2015
  end-page: 113
  article-title: Numerical study of a cylinder model of the diffusion MRI signal for neuronal dendrite trees
  publication-title: J Magn Reson
– volume: 56
  start-page: 1301
  issue: 3
  year: 2011
  end-page: 1315
  article-title: Axon diameter mapping in the presence of orientation dispersion with diffusion MRI
  publication-title: NeuroImage
– year: 2019
  article-title: Quantitative modeling links in vivo microstructural and macrofunctional organization of human and macaque insular cortex, and predicts cognitive control abilities
  publication-title: bioRxiv
– volume: 211
  start-page: 67
  issue: 1
  year: 2011
  end-page: 73
  article-title: GPU accelerated Monte Carlo simulation of pulsed‐field gradient NMR experiments
  publication-title: J Magn Reson
– volume: 202
  start-page: 116120
  year: 2019
  article-title: SpinDoctor: a MATLAB toolbox for diffusion MRI simulation
  publication-title: NeuroImage
– volume: 65
  start-page: 1057
  issue: 5
  year: 2018
  end-page: 1068
  article-title: Tractography‐based score for learning effective connectivity from multimodal imaging data using dynamic Bayesian networks
  publication-title: IEEE Trans Biomed Eng
– volume: 28
  start-page: 1354
  issue: 9
  year: 2009
  end-page: 1364
  article-title: Convergence and parameter choice for Monte‐Carlo simulations of diffusion MRI
  publication-title: IEEE Trans Med Imaging
– volume: 161
  start-page: 138
  issue: 2
  year: 2003
  end-page: 147
  article-title: Predictions of pulsed field gradient NMR echo‐decays for molecules diffusing in various restrictive geometries. Simulations of diffusion propagators based on a finite element method
  publication-title: J Magn Reson
– volume: 79
  start-page: 2332
  issue: 4
  year: 2018
  end-page: 2345
  article-title: Assessing the validity of the approximation of diffusion‐weighted‐MRI signals from crossing fascicles by sums of signals from single fascicles
  publication-title: Magn Reson Med
– volume: 130
  start-page: 91
  year: 2016
  end-page: 103
  article-title: Including diffusion time dependence in the extra‐axonal space improves in vivo estimates of axonal diameter and density in human white matter
  publication-title: NeuroImage
– volume: 58
  start-page: 177
  issue: 1
  year: 2011
  end-page: 188
  article-title: White matter characterization with diffusional kurtosis imaging
  publication-title: NeuroImage
– volume: 114
  start-page: 18
  year: 2015
  end-page: 37
  article-title: Mesoscopic structure of neuronal tracts from time‐dependent diffusion
  publication-title: NeuroImage
– volume: 184
  start-page: 964
  year: 2019
  end-page: 980
  article-title: Towards microstructure fingerprinting: estimation of tissue properties from a dictionary of Monte Carlo diffusion MRI simulations
  publication-title: NeuroImage
– volume: 129
  start-page: 74
  issue: 1
  year: 1997
  end-page: 84
  article-title: A simple matrix formalism for spin echo analysis of restricted diffusion under generalized gradient waveforms
  publication-title: J Magn Reson
– volume: 34
  start-page: 1473
  issue: 4
  year: 2007
  end-page: 1486
  article-title: Modeling dendrite density from magnetic resonance diffusion measurements
  publication-title: NeuroImage
– volume: 263
  start-page: 283
  issue: 0
  year: 2014
  end-page: 302
  article-title: A finite elements method to solve the Bloch‐Torrey equation applied to diffusion magnetic resonance imaging
  publication-title: J Comput Phys
– volume: 113
  start-page: 6671
  issue: 24
  year: 2016
  end-page: 6676
  article-title: New paradigm to assess brain cell morphology by diffusion‐weighted MR spectroscopy in vivo
  publication-title: Proc Natl Acad Sci USA
– volume: 66
  start-page: 1
  year: 2019
  end-page: 1
  article-title: Auto‐regressive discrete acquisition points transformation for diffusion weighted MRI data
  publication-title: IEEE Trans Biomed Eng
– volume: 309
  start-page: 106611
  year: 2019
  article-title: Portable simulation framework for diffusion MRI
  publication-title: J Magn Reson
– volume: 219
  start-page: 7151
  issue: 13
  year: 2013
  end-page: 7158
  article-title: Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements
  publication-title: Appl Math Comput
– volume: 79
  start-page: 3172
  issue: 6
  year: 2018
  end-page: 3193
  article-title: On modeling
  publication-title: Magn Reson Med
– volume: 78
  start-page: 774
  issue: 2
  year: 2018
  end-page: 800
  article-title: Understanding the time‐dependent effective diffusion coefficient measured by diffusion MRI: the intracellular case
  publication-title: SIAM J Appl Math
– volume: 234
  start-page: 165
  year: 2013
  end-page: 175
  article-title: Numerical analysis of NMR diffusion measurements in the short gradient pulse limit
  publication-title: J Magn Reson
– volume: 80
  start-page: 580
  year: 1950
  end-page: 594
  article-title: Spin echoes
  publication-title: Phys Rev
– volume: 111
  start-page: 4608
  issue: 12
  year: 2014
  end-page: 4613
  article-title: Water diffusion reveals networks that modulate multiregional morphological plasticity after repetitive brain stimulation
  publication-title: Proc Natl Acad Sci USA
– volume: 300
  start-page: 84
  year: 2019
  end-page: 94
  article-title: Effects of nongaussian diffusion on “isotropic diffusion” measurements: an ex‐vivo microimaging and simulation study
  publication-title: J Magn Reson
– year: 1995
– volume: 31
  start-page: 511
  issue: 4
  year: 2018
  end-page: 530
  article-title: Toward faster inference of micron‐scale axon diameters using Monte Carlo simulations
  publication-title: Magn Reson Mater Phys Biol Med
– volume: 38
  start-page: 834
  issue: 3
  year: 2019
  end-page: 843
  article-title: Learning compact ‐space representations for multi‐shell diffusion‐weighted MRI
  publication-title: IEEE Trans Med Imaging
– volume: 59
  start-page: 2241
  issue: 3
  year: 2012
  end-page: 2254
  article-title: Compartment models of the diffusion MR signal in brain white matter: a taxonomy and comparison
  publication-title: NeuroImage
– ident: e_1_2_9_56_1
  doi: 10.1523/JNEUROSCI.2055-07.2007
– ident: e_1_2_9_63_1
  doi: 10.1016/j.jmr.2014.08.016
– ident: e_1_2_9_60_1
  doi: 10.1063/1.3082078
– ident: e_1_2_9_44_1
  doi: 10.1016/j.jcp.2014.01.009
– volume-title: Random Walks and Random Environments
  year: 1995
  ident: e_1_2_9_29_1
  doi: 10.1093/oso/9780198537885.001.0001
– ident: e_1_2_9_20_1
  doi: 10.1016/j.neuroimage.2011.06.006
– ident: e_1_2_9_25_1
  doi: 10.1002/nbm.3998
– ident: e_1_2_9_40_1
  doi: 10.1002/mrm.26832
– ident: e_1_2_9_61_1
  doi: 10.1137/16M1107474
– ident: e_1_2_9_50_1
  doi: 10.1016/j.jmr.2019.106611
– year: 2019
  ident: e_1_2_9_53_1
  article-title: Quantitative modeling links in vivo microstructural and macrofunctional organization of human and macaque insular cortex, and predicts cognitive control abilities
  publication-title: bioRxiv
– ident: e_1_2_9_24_1
  doi: 10.1016/j.neuroimage.2017.12.038
– ident: e_1_2_9_47_1
  doi: 10.7712/100016.1796.8619
– ident: e_1_2_9_18_1
  doi: 10.1002/mrm.26548
– ident: e_1_2_9_9_1
  doi: 10.1109/TBME.2019.2893523
– ident: e_1_2_9_65_1
  doi: 10.1103/PhysRevLett.68.3555
– ident: e_1_2_9_41_1
  doi: 10.1016/S1090-7807(02)00039-3
– ident: e_1_2_9_21_1
  doi: 10.1016/j.neuroimage.2011.09.081
– ident: e_1_2_9_51_1
  doi: 10.1016/j.jmr.2015.01.008
– ident: e_1_2_9_59_1
  doi: 10.1103/RevModPhys.79.1077
– ident: e_1_2_9_55_1
– ident: e_1_2_9_30_1
  doi: 10.1371/journal.pone.0076626
– ident: e_1_2_9_37_1
  doi: 10.1007/978-3-319-46630-9_4
– ident: e_1_2_9_52_1
– ident: e_1_2_9_48_1
  doi: 10.1016/j.jcp.2018.08.039
– ident: e_1_2_9_34_1
  doi: 10.1016/j.jmr.2011.04.004
– ident: e_1_2_9_13_1
  doi: 10.1002/mrm.21577
– ident: e_1_2_9_23_1
  doi: 10.1016/j.neuroimage.2016.01.047
– ident: e_1_2_9_33_1
  doi: 10.1016/j.jmr.2018.09.013
– ident: e_1_2_9_57_1
  doi: 10.1006/jmre.1997.1233
– ident: e_1_2_9_54_1
  doi: 10.1016/j.neuroimage.2019.116120
– ident: e_1_2_9_35_1
  doi: 10.1016/j.jmr.2019.01.007
– ident: e_1_2_9_67_1
  doi: 10.1002/cpa.3160430802
– ident: e_1_2_9_26_1
  doi: 10.1002/mrm.27101
– ident: e_1_2_9_45_1
  doi: 10.1016/j.jmr.2015.08.008
– ident: e_1_2_9_43_1
  doi: 10.1016/j.jmr.2013.06.019
– ident: e_1_2_9_46_1
  doi: 10.1002/mrm.10078
– volume: 219
  start-page: 7151
  issue: 13
  year: 2013
  ident: e_1_2_9_62_1
  article-title: Fast MATLAB assembly of FEM matrices in 2D and 3D: nodal elements
  publication-title: Appl Math Comput
– ident: e_1_2_9_14_1
  doi: 10.1016/j.neuroimage.2010.05.043
– ident: e_1_2_9_11_1
  doi: 10.1109/TMI.2019.2902957
– ident: e_1_2_9_49_1
  doi: 10.1016/j.jmr.2019.01.002
– ident: e_1_2_9_3_1
  doi: 10.1063/1.1695690
– ident: e_1_2_9_16_1
  doi: 10.1016/j.neuroimage.2012.03.072
– ident: e_1_2_9_4_1
  doi: 10.1148/radiology.161.2.3763909
– ident: e_1_2_9_38_1
  doi: 10.1016/j.jmr.2011.02.022
– ident: e_1_2_9_7_1
  doi: 10.1073/pnas.1418198112
– ident: e_1_2_9_15_1
  doi: 10.1016/j.neuroimage.2011.01.084
– ident: e_1_2_9_58_1
  doi: 10.1006/jmre.1999.1778
– volume: 65
  start-page: 1057
  issue: 5
  year: 2018
  ident: e_1_2_9_10_1
  article-title: Tractography‐based score for learning effective connectivity from multimodal imaging data using dynamic Bayesian networks
  publication-title: IEEE Trans Biomed Eng
– ident: e_1_2_9_64_1
  doi: 10.1016/j.jmr.2019.06.016
– ident: e_1_2_9_66_1
  doi: 10.1103/PhysRevB.47.8565
– ident: e_1_2_9_8_1
  doi: 10.1073/pnas.1316944111
– ident: e_1_2_9_22_1
  doi: 10.1016/j.neuroimage.2006.10.037
– ident: e_1_2_9_28_1
  doi: 10.1016/j.neuroimage.2018.09.076
– ident: e_1_2_9_19_1
  doi: 10.1016/j.neuroimage.2016.09.057
– ident: e_1_2_9_31_1
  doi: 10.1109/TMI.2009.2015756
– ident: e_1_2_9_5_1
  doi: 10.1073/pnas.1504327113
– ident: e_1_2_9_39_1
  doi: 10.1007/s10334-018-0680-1
– ident: e_1_2_9_32_1
  doi: 10.1002/mrm.22033
– ident: e_1_2_9_12_1
  doi: 10.1109/TMI.2018.2873736
– ident: e_1_2_9_6_1
  doi: 10.1073/pnas.1320223111
– ident: e_1_2_9_42_1
  doi: 10.1063/1.1830432
– ident: e_1_2_9_17_1
  doi: 10.1016/j.neuroimage.2015.03.061
– ident: e_1_2_9_2_1
  doi: 10.1103/PhysRev.80.580
– ident: e_1_2_9_36_1
  doi: 10.1016/j.neuroimage.2018.09.075
– ident: e_1_2_9_27_1
  doi: 10.1016/j.neuroimage.2018.06.046
SSID ssj0008432
Score 2.3293412
Snippet The complex transverse water proton magnetization subject to diffusion‐encoding magnetic field gradient pulses in a heterogeneous medium such as brain tissue...
The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium such as brain tissue...
SourceID swepub
hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage e4353
SubjectTerms acceleration
Bioengineering
Biological products
Bloch-Torrey equation
Closed-form representations
Complicated geometry
Computation
Computer Science
Computer simulation
controlled study
Diffusion
diffusion coefficient
diffusion MRI
diffusion weighted imaging
Eigen decomposition
Eigenvalues
Eigenvalues and eigenfunctions
Eigenvectors
Encoding (symbols)
extracellular matrix
finite element analysis
Finite element method
finite elements
Formalism
Geometry
Heterogeneous medium
Imaging
inverse Laplace transform
Laplace eigenfunctions
Laplace transforms
Life Sciences
magnetic field
Magnetic field gradient
Magnetic fields
Magnetic resonance imaging
Mathematical analysis
Mathematical models
MATLAB
Matrix algebra
matrix formalism
Matrix methods
Modeling and Simulation
Neurons
Numerical methods
Operators (mathematics)
oscillation
Oscillation frequency
Partial differential equations
priority journal
pyramidal nerve cell
Representations
Sequences
Signal encoding
Signal systems
simulation
Simulation and modeling
Simulation framework
surface property
Tissue
Title Practical computation of the diffusion MRI signal of realistic neurons based on Laplace eigenfunctions
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnbm.4353
https://www.proquest.com/docview/2439596631
https://www.proquest.com/docview/2428417136
https://hal.science/hal-03153120
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288067
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1099-1492
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-1492
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008432
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BJR4XHttWLBTkIlRO2cZ24mSPS6HaVt0eqhZV6sGyHZuilizq7nLg1zPjJEsXUQlxihRPlMfMeL6xJ98AvONlOcSELU8qp3ySFalNrC1V4lzIU88La2Lx-ORYjc-yw_P8vK2qpH9hGn6I5YIbeUacr8nBjZ3t3iINtd8GGOuJ6JNLFbOpk9_MUWUWe5MhgBCJzMq0451NxW534Uokun9JdZC3QWZDHLqKWWPQ2X8KF93jNrUmV4PF3A7czz-YHP_vfZ7BkxaLslFjPM_hnq978GivawHXg4eTdue9Bw9iqaibrUNoKI5Qt8zFlhBRt2waGGJJRg1XFrQCxyYnB4yqQ1AOxxCbXkdOaBYZNOsZo_hZMRQ8MrEwjHkiBqU4G11hA872P53ujZO2W0Pi5LCUSW64yivEC86ETBrpuDND4UNWlI6joVS8CpZzXzofCitVboMRiAa9wiTV4ZlNWKuntX8BzErvXeXTytMCZWYtdwoTISVEoEnH9eF9pzntWipz6qhxrRsSZqHxY2r6mH3YXkp-b-g7_iLzFpW_HCa-7fHoSNM5aoEhuUh_8D5sdbahWy-faYFoLsd8UeLw9nIYdUSbLqb20wXJIADgBZpoH3Yam1q51cevn0d6evNFX80vtcDZVBUoGA3lzifWxx8mdHz5r4Kv4LGgdYJYhLgFa_ObhX-NYGpu30S3-QWeWRwl
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQzBe-CggCgM8hOApXWwnTiqeymDqoOnDtKE9IFmxYzO0kaK15YG_njsnKSsCCfEUKb4qH3fn-93l-juAFzzPh5iwpVFllYuSLDaRMbmKrPVp7HhmytA8XkzV-CR5f5qebsDr7r8wDT_EquBGnhH2a3JwKkjvXWENNV8HGOzlJlxLFKYphIiOfnFH5UmYToYQQkQyyeOOeTYWe90v12LR5hl1Ql6FmQ116DpqDWHn4DZ86m646TY5HywXZmB__Mbl-J9PdAdutXCUjRr7uQsbru7B9n43Ba4HN4r243sProduUTu_B75hOUL1MhumQgT1splnCCcZzVxZUhGOFUeHjBpEUA7XEJ5eBFpoFkg06zmjEFoxFJyUoTeMOeIGpVAbvOE-nBy8O94fR-3AhsjKYS6jtOQqrRAy2NInspSW23IonE-y3HK0lYpX3nDucut8ZqRKjS8FAkKnME-1eOYBbNWz2j0EZqRztnJx5ahGmRjDrcJcSAnhad-xfXjVqU7bls2chmpc6IaHWWh8mZpeZh92V5LfGgaPP8g8R-2vlolyezyaaDpHUzAkF_F33oedzjh06-hzLRDQpZgySlzeXS2jjui7S1m72ZJkEAPwjEvVh5eNUa1d6u2XjyM9u_yszxdnWuCGqjIUDJby1zvW0zcFHR_9q-Az2B4fFxM9OZx-eAw3BZUNQk_iDmwtLpfuCWKrhXkafOgnV74gRg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5tQwxe-FFAFAZ4CMFTuthOnFQ8lZWqg7ZCE0N7QLJix96mjXZaWx7467lzkrIikBBPkeyLkvjufJ_ty3cAr3ied3HBlkalVS5KsthExuQqstanseOZKULy-HiihkfJh-P0eAPeNv_CVPwQqw038owwX5ODu8vS711jDTXfOhjs5SbcSNJuTvl8_cNf3FF5EqqTIYQQkUzyuGGejcVec-daLNo8pUzI6zCzog5dR60h7Azuwtfmhatsk_POcmE69sdvXI7_-UX34E4NR1mvsp_7sOGmLbi131SBa8H2uD58b8HNkC1q5w_AVyxHqF5mQ1WIoF428wzhJKOaK0vahGPjwwNGCSIoh30ITy8CLTQLJJrTOaMQWjIUHBUhN4w54galUBu84SEcDd5_3h9GdcGGyMpuLqO04CotETLYwieykJbboiucT7LccrSVkpfecO5y63xmpEqNLwQCQqdwnWqx5RFsTWdT9xiYkc7Z0sWloz3KxBhuFa6FlBCe5h3bhjeN6rSt2cypqMaFrniYhcbB1DSYbdhdSV5WDB5_kHmJ2l91E-X2sDfS1EZVMCQX8Xfehp3GOHTt6HMtENCluGSU2L276kYd0blLMXWzJckgBuAZl6oNryujWntU_-xLT8-uTvT54lQLnFBVhoLBUv76xnrybkzXJ_8q-AK2P_UHenQw-fgUbgvaNQgpiTuwtbhaumcIrRbmeXChn9SlH8o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+computation+of+the+diffusion+MRI+signal+of+realistic+neurons+based+on+Laplace+eigenfunctions&rft.jtitle=NMR+in+biomedicine&rft.au=Jing%E2%80%90Rebecca+Li&rft.au=Try+Nguyen+Tran&rft.au=Van%E2%80%90Dang+Nguyen&rft.date=2020-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0952-3480&rft.eissn=1099-1492&rft.volume=33&rft.issue=10&rft_id=info:doi/10.1002%2Fnbm.4353&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-3480&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-3480&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-3480&client=summon