Automated detection of pediatric congenital heart disease from phonocardiograms using deep and handcrafted feature fusion

Congenital heart disease (CHD) is the most common type of birth defect, impacting about 1% of live births worldwide. Echocardiography, the gold-standard diagnostic method, is costly and inaccessible in low-resource settings. Diagnosis is delayed due to limited skilled experts, whose ability to inter...

Full description

Saved in:
Bibliographic Details
Published inComputers in biology and medicine Vol. 197; no. Pt A; p. 110993
Main Authors Jabbar, Abdul, Grooby, Ethan, Poh, Yang Yi, Ahmad, Khawza I., Hassanuzzaman, Md, Mostafa, Raqibul, Khandoker, Ahsan H., Marzbanrad, Faezeh
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text
ISSN0010-4825
1879-0534
1879-0534
DOI10.1016/j.compbiomed.2025.110993

Cover

Abstract Congenital heart disease (CHD) is the most common type of birth defect, impacting about 1% of live births worldwide. Echocardiography, the gold-standard diagnostic method, is costly and inaccessible in low-resource settings. Diagnosis is delayed due to limited skilled experts, whose ability to interpret pathological patterns varies significantly, causing inter- and intra-clinician variability. Therefore, we present a new method for a more accessible diagnostic modality, the digital stethoscope, to detect CHDs. Our method is based on deep feature fusion, integrating deep and handcrafted features for the automated early detection of CHDs. For this work, Phonocardiography (PCG) recordings were obtained from 751 pediatric subjects (Age:1 month- 16 years) in Bangladesh, ranging from infants to adults at four auscultation locations: mitral valve (MV), aortic valve (AV), pulmonary valve (PV), and tricuspid valve (TV). These recordings were labeled based on confirmed diagnoses by cardiologists as either cases of CHD or non-CHD. The results demonstrated that our proposed model achieved an accuracy of 92%, a sensitivity of 91%, and a specificity of 91%, based on a patient-wise split of 70% training, 20% validation, and 10% testing. Furthermore, the Area Under the Receiver Operating Characteristic curve (AUROC) of 96%, and an F1-score of 92%. This model promises efficient real-time remote detection of CHDs as a cost-effective screening tool for low-resource settings. [Display omitted] •Hybrid deep model developed for pediatric CHD detection, not just murmurs.•Enables CHD screening via digital stethoscope, affordable in low-resource areas.•Combines handcrafted and deep features for stronger feature representation.•Achieves 92% accuracy, 91% sensitivity, and 92% specificity in CHD detection. .
AbstractList Congenital heart disease (CHD) is the most common type of birth defect, impacting about 1% of live births worldwide. Echocardiography, the gold-standard diagnostic method, is costly and inaccessible in low-resource settings. Diagnosis is delayed due to limited skilled experts, whose ability to interpret pathological patterns varies significantly, causing inter- and intra-clinician variability. Therefore, we present a new method for a more accessible diagnostic modality, the digital stethoscope, to detect CHDs. Our method is based on deep feature fusion, integrating deep and handcrafted features for the automated early detection of CHDs. For this work, Phonocardiography (PCG) recordings were obtained from 751 pediatric subjects (Age:1 month- 16 years) in Bangladesh, ranging from infants to adults at four auscultation locations: mitral valve (MV), aortic valve (AV), pulmonary valve (PV), and tricuspid valve (TV). These recordings were labeled based on confirmed diagnoses by cardiologists as either cases of CHD or non-CHD. The results demonstrated that our proposed model achieved an accuracy of 92%, a sensitivity of 91%, and a specificity of 91%, based on a patient-wise split of 70% training, 20% validation, and 10% testing. Furthermore, the Area Under the Receiver Operating Characteristic curve (AUROC) of 96%, and an F1-score of 92%. This model promises efficient real-time remote detection of CHDs as a cost-effective screening tool for low-resource settings.Congenital heart disease (CHD) is the most common type of birth defect, impacting about 1% of live births worldwide. Echocardiography, the gold-standard diagnostic method, is costly and inaccessible in low-resource settings. Diagnosis is delayed due to limited skilled experts, whose ability to interpret pathological patterns varies significantly, causing inter- and intra-clinician variability. Therefore, we present a new method for a more accessible diagnostic modality, the digital stethoscope, to detect CHDs. Our method is based on deep feature fusion, integrating deep and handcrafted features for the automated early detection of CHDs. For this work, Phonocardiography (PCG) recordings were obtained from 751 pediatric subjects (Age:1 month- 16 years) in Bangladesh, ranging from infants to adults at four auscultation locations: mitral valve (MV), aortic valve (AV), pulmonary valve (PV), and tricuspid valve (TV). These recordings were labeled based on confirmed diagnoses by cardiologists as either cases of CHD or non-CHD. The results demonstrated that our proposed model achieved an accuracy of 92%, a sensitivity of 91%, and a specificity of 91%, based on a patient-wise split of 70% training, 20% validation, and 10% testing. Furthermore, the Area Under the Receiver Operating Characteristic curve (AUROC) of 96%, and an F1-score of 92%. This model promises efficient real-time remote detection of CHDs as a cost-effective screening tool for low-resource settings.
Congenital heart disease (CHD) is the most common type of birth defect, impacting about 1% of live births worldwide. Echocardiography, the gold-standard diagnostic method, is costly and inaccessible in low-resource settings. Diagnosis is delayed due to limited skilled experts, whose ability to interpret pathological patterns varies significantly, causing inter- and intra-clinician variability. Therefore, we present a new method for a more accessible diagnostic modality, the digital stethoscope, to detect CHDs. Our method is based on deep feature fusion, integrating deep and handcrafted features for the automated early detection of CHDs. For this work, Phonocardiography (PCG) recordings were obtained from 751 pediatric subjects (Age:1 month- 16 years) in Bangladesh, ranging from infants to adults at four auscultation locations: mitral valve (MV), aortic valve (AV), pulmonary valve (PV), and tricuspid valve (TV). These recordings were labeled based on confirmed diagnoses by cardiologists as either cases of CHD or non-CHD. The results demonstrated that our proposed model achieved an accuracy of 92%, a sensitivity of 91%, and a specificity of 91%, based on a patient-wise split of 70% training, 20% validation, and 10% testing. Furthermore, the Area Under the Receiver Operating Characteristic curve (AUROC) of 96%, and an F1-score of 92%. This model promises efficient real-time remote detection of CHDs as a cost-effective screening tool for low-resource settings. [Display omitted] •Hybrid deep model developed for pediatric CHD detection, not just murmurs.•Enables CHD screening via digital stethoscope, affordable in low-resource areas.•Combines handcrafted and deep features for stronger feature representation.•Achieves 92% accuracy, 91% sensitivity, and 92% specificity in CHD detection. .
AbstractCongenital heart disease (CHD) is the most common type of birth defect, impacting about 1% of live births worldwide. Echocardiography, the gold-standard diagnostic method, is costly and inaccessible in low-resource settings. Diagnosis is delayed due to limited skilled experts, whose ability to interpret pathological patterns varies significantly, causing inter- and intra-clinician variability. Therefore, we present a new method for a more accessible diagnostic modality, the digital stethoscope, to detect CHDs. Our method is based on deep feature fusion, integrating deep and handcrafted features for the automated early detection of CHDs. For this work, Phonocardiography (PCG) recordings were obtained from 751 pediatric subjects (Age:1 month- 16 years) in Bangladesh, ranging from infants to adults at four auscultation locations: mitral valve (MV), aortic valve (AV), pulmonary valve (PV), and tricuspid valve (TV). These recordings were labeled based on confirmed diagnoses by cardiologists as either cases of CHD or non-CHD. The results demonstrated that our proposed model achieved an accuracy of 92%, a sensitivity of 91%, and a specificity of 91%, based on a patient-wise split of 70% training, 20% validation, and 10% testing. Furthermore, the Area Under the Receiver Operating Characteristic curve (AUROC) of 96%, and an F1-score of 92%. This model promises efficient real-time remote detection of CHDs as a cost-effective screening tool for low-resource settings.
Congenital heart disease (CHD) is the most common type of birth defect, impacting about 1% of live births worldwide. Echocardiography, the gold-standard diagnostic method, is costly and inaccessible in low-resource settings. Diagnosis is delayed due to limited skilled experts, whose ability to interpret pathological patterns varies significantly, causing inter- and intra-clinician variability. Therefore, we present a new method for a more accessible diagnostic modality, the digital stethoscope, to detect CHDs. Our method is based on deep feature fusion, integrating deep and handcrafted features for the automated early detection of CHDs. For this work, Phonocardiography (PCG) recordings were obtained from 751 pediatric subjects (Age:1 month- 16 years) in Bangladesh, ranging from infants to adults at four auscultation locations: mitral valve (MV), aortic valve (AV), pulmonary valve (PV), and tricuspid valve (TV). These recordings were labeled based on confirmed diagnoses by cardiologists as either cases of CHD or non-CHD. The results demonstrated that our proposed model achieved an accuracy of 92%, a sensitivity of 91%, and a specificity of 91%, based on a patient-wise split of 70% training, 20% validation, and 10% testing. Furthermore, the Area Under the Receiver Operating Characteristic curve (AUROC) of 96%, and an F1-score of 92%. This model promises efficient real-time remote detection of CHDs as a cost-effective screening tool for low-resource settings.
ArticleNumber 110993
Author Jabbar, Abdul
Grooby, Ethan
Khandoker, Ahsan H.
Ahmad, Khawza I.
Mostafa, Raqibul
Marzbanrad, Faezeh
Poh, Yang Yi
Hassanuzzaman, Md
Author_xml – sequence: 1
  givenname: Abdul
  orcidid: 0009-0009-9605-6482
  surname: Jabbar
  fullname: Jabbar, Abdul
  email: abduljabbar1526@gmail.com
  organization: Electrical and Computer System Engineering, Monash University, Clayton, Melbourne, 3800, VIC, Australia
– sequence: 2
  givenname: Ethan
  surname: Grooby
  fullname: Grooby, Ethan
  organization: Electrical and Computer System Engineering, Monash University, Clayton, Melbourne, 3800, VIC, Australia
– sequence: 3
  givenname: Yang Yi
  orcidid: 0009-0001-0869-7047
  surname: Poh
  fullname: Poh, Yang Yi
  organization: Electrical and Computer System Engineering, Monash University, Clayton, Melbourne, 3800, VIC, Australia
– sequence: 4
  givenname: Khawza I.
  surname: Ahmad
  fullname: Ahmad, Khawza I.
  organization: Electrical and Electronic Engineering (EEE), United International University, Dhaka, Bangladesh
– sequence: 5
  givenname: Md
  orcidid: 0000-0002-4751-3773
  surname: Hassanuzzaman
  fullname: Hassanuzzaman, Md
  organization: Department of Electrical and Computer Engineering (ECE), Duke University, USA
– sequence: 6
  givenname: Raqibul
  surname: Mostafa
  fullname: Mostafa, Raqibul
  organization: Electrical and Electronic Engineering (EEE), United International University, Dhaka, Bangladesh
– sequence: 7
  givenname: Ahsan H.
  surname: Khandoker
  fullname: Khandoker, Ahsan H.
  organization: Healthcare Engineering Innovation Group (HEIG), Department of Biomedical Engineering and Biotechnology, Khalifa University, Abu Dhabi 127788, United Arab Emirates
– sequence: 8
  givenname: Faezeh
  orcidid: 0000-0003-0551-1611
  surname: Marzbanrad
  fullname: Marzbanrad, Faezeh
  organization: Electrical and Computer System Engineering, Monash University, Clayton, Melbourne, 3800, VIC, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40929795$$D View this record in MEDLINE/PubMed
BookMark eNqVkkFv1DAQhS1URLeFv4B85LJbO46T-IIoFRSkShyAszWxJ7teEjvYSdH-exylFRISUrl4fHjvzeibuSBnPngkhHK244xXV8edCcPYujCg3RWskDvOmVLiGdnwplZbJkV5RjaMcbYtm0Kek4uUjoyxkgn2gpyXTBWqVnJDTtfzFAaY0FKLE5rJBU9DR0e0DqboDDXB79G7CXp6QIgTtS4hJKRdDAMdD8EHA9G6sI8wJDon5_c5C0cK3tJDfkyEbmnQIUxzzMasCf4led5Bn_DVQ70k3z9--HbzaXv35fbzzfXd1gjViK2sLDIlK2kNQFNLgUrYmkngppBNpQSUolVtUck2_6VkbWWbuhLKcgmFbcQlUWvu7Ec4_YK-12N0A8ST5kwvOPVR_8GpF5x6xZm9b1bvGMPPGdOkB5cM9j14DHPSoiibqs6A6yx9_SCd2yXmsccj6ixoVoGJIaWI3f-M8X61YuZ07zDqZBx6k3cU88q0De4pIW__CjG9885A_wNPmI5hjj7vQXOdCs301-V4ltspJOOilCoHvPt3wNNm-A0-L9rN
Cites_doi 10.1038/s41390-023-02490-9
10.1016/S0735-1097(01)01272-4
10.3390/s20133790
10.22489/CinC.2022.020
10.1186/s12911-021-01720-6
10.22489/CinC.2016.180-213
10.1161/CIRCULATIONAHA.115.019307
10.1016/j.compbiomed.2020.103733
10.1109/TIM.2022.3163156
10.1109/ACCESS.2024.3395389
10.3390/s19214819
10.1007/s12098-012-0738-4
10.1161/CIRCULATIONAHA.109.192576
10.1016/j.compbiomed.2020.103632
10.22489/CinC.2022.165
10.1016/j.neunet.2020.06.015
10.22489/CinC.2016.182-399
10.1016/j.ppedcard.2021.101455
10.1016/j.bspc.2021.102893
10.1016/j.bspc.2019.101684
10.22489/CinC.2022.310
10.1016/j.irbm.2019.12.003
10.1088/0967-3334/37/12/2181
10.1016/j.compbiomed.2018.06.026
10.1038/s41598-024-53778-7
10.1142/S0219519416400121
10.1109/EMBC40787.2023.10340370
10.1109/JBHI.2020.3047602
10.3390/s22208002
ContentType Journal Article
Copyright 2025 The Authors
The Authors
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
Copyright_xml – notice: 2025 The Authors
– notice: The Authors
– notice: Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.compbiomed.2025.110993
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic



MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1879-0534
EndPage 110993
ExternalDocumentID 10.1016/j.compbiomed.2025.110993
40929795
10_1016_j_compbiomed_2025_110993
S0010482525013459
1_s2_0_S0010482525013459
Genre Journal Article
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
77I
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABOCM
ABUWG
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHMBA
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ARAPS
ASPBG
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BKEYQ
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EFLBG
EJD
EMOBN
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GBOLZ
GNUQQ
GUQSH
HCIFZ
HLZ
HMCUK
HMK
HMO
HVGLF
HZ~
IHE
J1W
K6V
K7-
KOM
LK8
LX9
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
P62
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
Q38
R2-
ROL
RPZ
RXW
SAE
SBC
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
SV3
T5K
TAE
UAP
UKHRP
WOW
WUQ
X7M
XPP
Z5R
ZGI
~G-
~HD
6I.
AAFTH
AAYXX
CITATION
PUEGO
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c3983-56de09565dcaa8753e93d705a1c258693a43b9b265b93a550b6d87639d15a2d83
IEDL.DBID .~1
ISSN 0010-4825
1879-0534
IngestDate Sun Oct 12 06:15:00 EDT 2025
Thu Oct 02 21:28:21 EDT 2025
Sat Sep 20 02:13:01 EDT 2025
Thu Oct 02 04:23:07 EDT 2025
Sat Oct 25 17:45:00 EDT 2025
Sun Oct 19 01:22:15 EDT 2025
Sat Oct 25 11:12:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Deep learning
Heart sounds
Phonocardiography (PCG)
Deep feature fusion
Mel-frequency cepstral coefficients (MFCC)
Congenital heart disease (CHD)
Language English
License This is an open access article under the CC BY license.
Copyright © 2025 The Authors. Published by Elsevier Ltd.. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3983-56de09565dcaa8753e93d705a1c258693a43b9b265b93a550b6d87639d15a2d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4751-3773
0000-0003-0551-1611
0009-0009-9605-6482
0009-0001-0869-7047
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0010482525013459
PMID 40929795
PQID 3248678257
PQPubID 23479
PageCount 1
ParticipantIDs unpaywall_primary_10_1016_j_compbiomed_2025_110993
proquest_miscellaneous_3248678257
pubmed_primary_40929795
crossref_primary_10_1016_j_compbiomed_2025_110993
elsevier_sciencedirect_doi_10_1016_j_compbiomed_2025_110993
elsevier_clinicalkeyesjournals_1_s2_0_S0010482525013459
elsevier_clinicalkey_doi_10_1016_j_compbiomed_2025_110993
PublicationCentury 2000
PublicationDate 2025-10-01
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: 2025-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Computers in biology and medicine
PublicationTitleAlternate Comput Biol Med
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zeinali, Niaki (b10) 2022; 7
A. McDonald, M.J. Gales, A. Agarwal, Detection of Heart Murmurs in Phonocardiograms with Parallel Hidden Semi-Markov Models, in: 2022 Computing in Cardiology, CinC, Tampere, Finland, 2022, pp. 1–4
Burns, Ganigara, Dhar (b18) 2022; 64
Li (b27) 2020; 120
Bhat, Dhar, Kumar, Patel, Rawat, Kalra (b44) 2013; 80
H. Wu, S. Kim, K. Bae, Hidden Markov model with heart sound signals for identification of heart diseases, in: Proceedings of 20th International Congress on Acoustics, ICA, Sydney, Australia, 2010, pp. 23–27.
C. Potes, S. Parvaneh, A. Rahman, B. Conroy, Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds, in: 2016 Computing in Cardiology Conference, CinC, Vancouver, BC, Canada, 2016, pp. 621–624.
Alkahtani, Haq, Ghadi, Innab, Alajmi, Nurbapa (b38) 2024; 12
Liu, Springer, Li, Moody, Juan, Chorro (b23) 2016; 37
Tutsoy, Tanrikulu (b39) 2022; 22
M.N. Homsi, F. Plesinger, P. Jurak, L. Viscor, P. Leinveber, I. Halamek, J. Meste, R. Smisek, J.P. Martinek, M. Vondra, Automatic heart sound recording classification using a nested set of ensemble algorithms, in: 2016 Computing in Cardiology Conference, CinC, Vancouver, BC, Canada, 2016, pp. 817–820.
Grooby (b40) 2021; 25
Rahmani, Haider, Adeli, Mzoughi, Gemeay, Mohammadi, Alinejad-Rokny, Khoshvaght, Hosseinzadeh (b42) 2024; 19
Desai (b22) 2016; 16
Maglogiannis, Loukis, Zafiropoulos, Stasis (b17) 2009; 95
Singh, Meitei, Majumder (b28) 2020
Aziz, Khan, Alhaisoni, Akram, Altaf (b36) 2020; 20
Bozkurt, Germanakis, Stylianou (b30) 2018; 100
Vassar, Peyvandi, Gano, Cox, Zetino, Miller, McQuillen (b5) 2023; 94
Warnes, Liberthson, Danielson, Dore, Harris, Hoffman, Webb (b7) 2001; 37
Abbas, Ojo, Al Hejaili (b9) 2024; 14
Gilboa, Devine, Kucik, Oster, Riehle-Colarusso, Nembhard, Marelli (b4) 2016; 134
Pandey, Adedinsewo (b12) 2022
Chen, Zhang (b19) 2020; 57
El Badlaoui, Benba, Hammouch (b15) 2020; 41
Deng, Meng, Cao, Wang, Zhang, Fan (b31) 2020; 130
Raza (b14) 2019; 19
Huang (b11) 2022; 22
H. Lu, Y. Zhang, Q. Liu, J. Wang, M. Zhou, J. Li, A Lightweight Robust Approach for Automatic Heart Murmurs and Clinical Outcomes Classification from Phonocardiogram Recordings, in: 2022 Computing in Cardiology, CinC, Tampere, Finland, 2022, pp. 1–4
Karhade, Dash, Ghosh, Dash, Tripathy (b20) 2022; 71
.
Hassanuzzaman, Hasan, Mamun, Ahmed, Khandoker, Mostafa (b1) 2024
Alkhodari, Fraiwan (b29) 2021; 200
Y. Xu, X. Bao, H.K. Lam, E.N. Kamavuako, Hierarchical Multi-Scale Convolutional Network for Murmurs Detection on PCG Signals, in: 2022 Computing in Cardiology, CinC, Tampere, Finland, 2022, pp. 1–4
Gilboa, Devine, Kucik, Oster, Riehle-Colarusso, Nembhard, Xu, Correa, Jenkins, Marelli (b45) 2016; 134
Z. Imran, E. Grooby, V.V. Malgi, C. Sitaula, S. Aryal, F. Marzbanrad, A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection, in: 2022 Computing in Cardiology, CinC, Tampere, Finland, 2022, pp. 1–4
Kui, Pan, Zong, Yang, Wang (b13) 2021; 69
Ghosh, Ponnalagu, Tripathy, Acharya (b21) 2020; 118
Deng, Meng, Cao, Wang, Zhang, Fan (b43) 2020; 130
Bhat, Dhar, Kumar, Patel, Rawat, Kalra (b3) 2013; 80
Yugar, Yugar-Toledo, Dinamarco, Sedenho-Prado, Moreno, Rubio, Fattori, Rodrigues, Vilela-Martin, Moreno (b41) 2023; 13
Lopes, Guimarães, Costa, Acosta, Sandes, Mendes (b6) 2018; 111
Mahle, Newburger, Matherne, Smith, Hoke, Koppel, Grosse (b8) 2009; 120
Reyna, Kiarashi, Elola, Oliveira, Renna, Gu, Perez Alday, Sadr, Mattos, Coimbra, Sameni, Bahrami Rad, Koscova, Clifford (b32) 2023
M. Zabihi, A.B. Rad, S. Kiranyaz, M. Gabbouj, A.K. Katsaggelos, Heart sound anomaly and quality detection using ensemble of neural networks without segmentation, in: 2016 Computing in Cardiology Conference, CinC, Vancouver, BC, Canada, 2016, pp. 613–616.
M. Hassanuzzaman, et al., Recognition of Pediatric Congenital Heart Diseases by Using Phonocardiogram Signals and Transformer-Based Neural Networks, in: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, EMBC, Sydney, Australia, 2023, pp. 1–4
Mahle (10.1016/j.compbiomed.2025.110993_b8) 2009; 120
Abbas (10.1016/j.compbiomed.2025.110993_b9) 2024; 14
Li (10.1016/j.compbiomed.2025.110993_b27) 2020; 120
10.1016/j.compbiomed.2025.110993_b26
Grooby (10.1016/j.compbiomed.2025.110993_b40) 2021; 25
Bhat (10.1016/j.compbiomed.2025.110993_b3) 2013; 80
Vassar (10.1016/j.compbiomed.2025.110993_b5) 2023; 94
Pandey (10.1016/j.compbiomed.2025.110993_b12) 2022
10.1016/j.compbiomed.2025.110993_b25
10.1016/j.compbiomed.2025.110993_b24
Gilboa (10.1016/j.compbiomed.2025.110993_b45) 2016; 134
Yugar (10.1016/j.compbiomed.2025.110993_b41) 2023; 13
Rahmani (10.1016/j.compbiomed.2025.110993_b42) 2024; 19
Deng (10.1016/j.compbiomed.2025.110993_b43) 2020; 130
Chen (10.1016/j.compbiomed.2025.110993_b19) 2020; 57
Bozkurt (10.1016/j.compbiomed.2025.110993_b30) 2018; 100
Hassanuzzaman (10.1016/j.compbiomed.2025.110993_b1) 2024
Gilboa (10.1016/j.compbiomed.2025.110993_b4) 2016; 134
El Badlaoui (10.1016/j.compbiomed.2025.110993_b15) 2020; 41
Reyna (10.1016/j.compbiomed.2025.110993_b32) 2023
Alkahtani (10.1016/j.compbiomed.2025.110993_b38) 2024; 12
Bhat (10.1016/j.compbiomed.2025.110993_b44) 2013; 80
Lopes (10.1016/j.compbiomed.2025.110993_b6) 2018; 111
Tutsoy (10.1016/j.compbiomed.2025.110993_b39) 2022; 22
Ghosh (10.1016/j.compbiomed.2025.110993_b21) 2020; 118
Karhade (10.1016/j.compbiomed.2025.110993_b20) 2022; 71
Burns (10.1016/j.compbiomed.2025.110993_b18) 2022; 64
Raza (10.1016/j.compbiomed.2025.110993_b14) 2019; 19
Liu (10.1016/j.compbiomed.2025.110993_b23) 2016; 37
Huang (10.1016/j.compbiomed.2025.110993_b11) 2022; 22
10.1016/j.compbiomed.2025.110993_b16
10.1016/j.compbiomed.2025.110993_b37
Zeinali (10.1016/j.compbiomed.2025.110993_b10) 2022; 7
Aziz (10.1016/j.compbiomed.2025.110993_b36) 2020; 20
Desai (10.1016/j.compbiomed.2025.110993_b22) 2016; 16
10.1016/j.compbiomed.2025.110993_b34
10.1016/j.compbiomed.2025.110993_b33
10.1016/j.compbiomed.2025.110993_b35
Kui (10.1016/j.compbiomed.2025.110993_b13) 2021; 69
Maglogiannis (10.1016/j.compbiomed.2025.110993_b17) 2009; 95
Alkhodari (10.1016/j.compbiomed.2025.110993_b29) 2021; 200
10.1016/j.compbiomed.2025.110993_b2
Warnes (10.1016/j.compbiomed.2025.110993_b7) 2001; 37
Deng (10.1016/j.compbiomed.2025.110993_b31) 2020; 130
Singh (10.1016/j.compbiomed.2025.110993_b28) 2020
References_xml – volume: 13
  start-page: 785
  year: 2023
  ident: b41
  article-title: The role of heart rate variability (HRV) in different hypertensive syndromes
  publication-title: Diagn. (Basel)
– volume: 19
  year: 2024
  ident: b42
  article-title: Enhanced heart sound classification using mel frequency cepstral coefficients and comparative analysis of single vs. ensemble classifier strategies
  publication-title: PLoS One
– volume: 41
  start-page: 223
  year: 2020
  end-page: 228
  ident: b15
  article-title: Novel PCG analysis method for discriminating between abnormal and normal heart sounds
  publication-title: IRBM
– volume: 130
  start-page: 22
  year: 2020
  end-page: 32
  ident: b31
  article-title: Heart sound classification based on improved MFCC features and convolutional recurrent neural networks
  publication-title: Neural Netw.
– volume: 22
  year: 2022
  ident: b39
  article-title: Priority and age specific vaccination algorithm for the pandemic diseases: A comprehensive parametric prediction model
  publication-title: BMC Med. Inform. Decis. Mak.
– volume: 118
  year: 2020
  ident: b21
  article-title: Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals
  publication-title: Comput. Biol. Med.
– volume: 69
  year: 2021
  ident: b13
  article-title: Heart sound classification based on log Mel-frequency spectral coefficients features and convolutional neural networks
  publication-title: Biomed. Signal Process. Control.
– volume: 19
  start-page: 4819
  year: 2019
  ident: b14
  article-title: Heartbeat sound signal classification using deep learning
  publication-title: Sensors
– volume: 95
  start-page: 47
  year: 2009
  end-page: 61
  ident: b17
  article-title: Support vectors machine-based identification of heart valve diseases using heart sounds
  publication-title: Comput. Biol. Med.
– reference: Z. Imran, E. Grooby, V.V. Malgi, C. Sitaula, S. Aryal, F. Marzbanrad, A Fusion of Handcrafted Feature-Based and Deep Learning Classifiers for Heart Murmur Detection, in: 2022 Computing in Cardiology, CinC, Tampere, Finland, 2022, pp. 1–4,
– volume: 71
  year: 2022
  ident: b20
  article-title: Time–frequency-domain deep learning framework for the automated detection of heart valve disorders using PCG signals
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 22
  start-page: 8002
  year: 2022
  ident: b11
  article-title: Applying artificial intelligence to wearable sensor data to diagnose and predict cardiovascular disease: A review
  publication-title: Sensors
– reference: H. Wu, S. Kim, K. Bae, Hidden Markov model with heart sound signals for identification of heart diseases, in: Proceedings of 20th International Congress on Acoustics, ICA, Sydney, Australia, 2010, pp. 23–27.
– year: 2022
  ident: b12
  article-title: The future of AI-enhanced ECG interpretation for valvular heart disease screening
– start-page: 141
  year: 2020
  end-page: 164
  ident: b28
  article-title: Short PCG Classification Based on Deep Learning
– reference: Y. Xu, X. Bao, H.K. Lam, E.N. Kamavuako, Hierarchical Multi-Scale Convolutional Network for Murmurs Detection on PCG Signals, in: 2022 Computing in Cardiology, CinC, Tampere, Finland, 2022, pp. 1–4,
– volume: 80
  start-page: 281
  year: 2013
  end-page: 285
  ident: b3
  article-title: Prevalence and pattern of congenital heart disease in Uttarakhand, India
  publication-title: Indian J. Pediatr.
– reference: M. Hassanuzzaman, et al., Recognition of Pediatric Congenital Heart Diseases by Using Phonocardiogram Signals and Transformer-Based Neural Networks, in: 2023 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society, EMBC, Sydney, Australia, 2023, pp. 1–4,
– year: 2024
  ident: b1
  article-title: Classification of short segment pediatric heart sounds based on a transformer-based convolutional neural network
– volume: 130
  start-page: 22
  year: 2020
  end-page: 32
  ident: b43
  article-title: Heart sound classification based on improved MFCC features and convolutional recurrent neural networks
  publication-title: Neural Netw.
– reference: C. Potes, S. Parvaneh, A. Rahman, B. Conroy, Ensemble of feature-based and deep learning-based classifiers for detection of abnormal heart sounds, in: 2016 Computing in Cardiology Conference, CinC, Vancouver, BC, Canada, 2016, pp. 621–624.
– reference: A. McDonald, M.J. Gales, A. Agarwal, Detection of Heart Murmurs in Phonocardiograms with Parallel Hidden Semi-Markov Models, in: 2022 Computing in Cardiology, CinC, Tampere, Finland, 2022, pp. 1–4,
– volume: 134
  start-page: 101
  year: 2016
  end-page: 109
  ident: b4
  article-title: Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010
  publication-title: Circulation
– volume: 7
  year: 2022
  ident: b10
  article-title: Heart sound classification using signal processing and machine learning algorithms
  publication-title: Mach. Learn. Appl.
– volume: 200
  year: 2021
  ident: b29
  article-title: Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings
  publication-title: Comput. Biol. Med.
– volume: 111
  start-page: 666
  year: 2018
  end-page: 673
  ident: b6
  article-title: Mortality for critical congenital heart diseases and associated risk factors in newborns. A cohort study
  publication-title: Arq. Bras. Cardiol.
– volume: 37
  start-page: 1170
  year: 2001
  end-page: 1175
  ident: b7
  article-title: Task force 1: the changing profile of congenital heart disease in adult life
  publication-title: J. Am. Coll. Cardiol.
– volume: 80
  start-page: 281
  year: 2013
  end-page: 285
  ident: b44
  article-title: Prevalence and pattern of congenital heart disease in Uttarakhand, India
  publication-title: Indian J. Pediatr.
– volume: 25
  start-page: 4255
  year: 2021
  end-page: 4266
  ident: b40
  article-title: Neonatal heart and lung sound quality assessment for robust heart and breathing rate estimation for telehealth applications
  publication-title: IEEE J. Biomed. Heal. Inform.
– reference: H. Lu, Y. Zhang, Q. Liu, J. Wang, M. Zhou, J. Li, A Lightweight Robust Approach for Automatic Heart Murmurs and Clinical Outcomes Classification from Phonocardiogram Recordings, in: 2022 Computing in Cardiology, CinC, Tampere, Finland, 2022, pp. 1–4,
– volume: 14
  start-page: 3123
  year: 2024
  ident: b9
  article-title: Artificial intelligence framework for heart disease classification from audio signals
  publication-title: Sci. Rep.
– year: 2023
  ident: b32
  article-title: Heart murmur detection from phonocardiogram recordings: The george B. moody PhysioNet challenge 2022 (version 1.0.0)
  publication-title: PhysioNet
– reference: .
– volume: 100
  start-page: 132
  year: 2018
  end-page: 143
  ident: b30
  article-title: A study of time-frequency features for CNN-based automatic heart sound classification for pathology detection
  publication-title: Comput. Biol. Med.
– volume: 37
  start-page: 2181
  year: 2016
  ident: b23
  article-title: An open access database for the evaluation of heart sound algorithms
  publication-title: Physiol. Meas.
– volume: 64
  year: 2022
  ident: b18
  article-title: Application of intelligent phonocardiography in the detection of congenital heart disease in pediatric patients: a narrative review
  publication-title: Prog. Pediatr. Cardiol.
– volume: 16
  year: 2016
  ident: b22
  article-title: Decision support system for arrhythmia beats using ECG signals with DCT, DWT and EMD methods: a comparative study
  publication-title: J. Mech. Med. Biology
– volume: 20
  year: 2020
  ident: b36
  article-title: Phonocardiogram signal processing for automatic diagnosis of congenital heart disorders through fusion of temporal and cepstral features
  publication-title: Sensors
– volume: 12
  start-page: 76053
  year: 2024
  end-page: 76064
  ident: b38
  article-title: Precision diagnosis: An automated method for detecting congenital heart diseases in children from phonocardiogram signals employing deep neural network
  publication-title: IEEE Access
– volume: 120
  year: 2020
  ident: b27
  article-title: A fusion framework based on multi-domain features and deep learning features of phonocardiogram for coronary artery disease detection
  publication-title: Comput. Biol. Med.
– reference: M. Zabihi, A.B. Rad, S. Kiranyaz, M. Gabbouj, A.K. Katsaggelos, Heart sound anomaly and quality detection using ensemble of neural networks without segmentation, in: 2016 Computing in Cardiology Conference, CinC, Vancouver, BC, Canada, 2016, pp. 613–616.
– reference: M.N. Homsi, F. Plesinger, P. Jurak, L. Viscor, P. Leinveber, I. Halamek, J. Meste, R. Smisek, J.P. Martinek, M. Vondra, Automatic heart sound recording classification using a nested set of ensemble algorithms, in: 2016 Computing in Cardiology Conference, CinC, Vancouver, BC, Canada, 2016, pp. 817–820.
– volume: 94
  start-page: 691
  year: 2023
  end-page: 698
  ident: b5
  article-title: Critical congenital heart disease beyond HLHS and TGA: neonatal brain injury and early neurodevelopment
  publication-title: Pediatr. Res.
– volume: 57
  year: 2020
  ident: b19
  article-title: Classification of heart sounds using discrete time-frequency energy feature based on s transform and the wavelet threshold denoising
  publication-title: Biomed. Signal Process. Control.
– volume: 120
  start-page: 447
  year: 2009
  end-page: 458
  ident: b8
  article-title: Role of pulse oximetry in examining newborns for congenital heart disease: a scientific statement from the American Heart Association and American Academy of Pediatrics
  publication-title: Circulation
– volume: 134
  start-page: 101
  year: 2016
  end-page: 109
  ident: b45
  article-title: Congenital heart defects in the United States: Estimating the magnitude of the affected population in 2010
  publication-title: Circulation
– volume: 94
  start-page: 691
  issue: 2
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110993_b5
  article-title: Critical congenital heart disease beyond HLHS and TGA: neonatal brain injury and early neurodevelopment
  publication-title: Pediatr. Res.
  doi: 10.1038/s41390-023-02490-9
– volume: 37
  start-page: 1170
  issue: 5
  year: 2001
  ident: 10.1016/j.compbiomed.2025.110993_b7
  article-title: Task force 1: the changing profile of congenital heart disease in adult life
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(01)01272-4
– volume: 20
  issue: 13
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110993_b36
  article-title: Phonocardiogram signal processing for automatic diagnosis of congenital heart disorders through fusion of temporal and cepstral features
  publication-title: Sensors
  doi: 10.3390/s20133790
– ident: 10.1016/j.compbiomed.2025.110993_b16
– year: 2023
  ident: 10.1016/j.compbiomed.2025.110993_b32
  article-title: Heart murmur detection from phonocardiogram recordings: The george B. moody PhysioNet challenge 2022 (version 1.0.0)
  publication-title: PhysioNet
– ident: 10.1016/j.compbiomed.2025.110993_b35
  doi: 10.22489/CinC.2022.020
– volume: 7
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110993_b10
  article-title: Heart sound classification using signal processing and machine learning algorithms
  publication-title: Mach. Learn. Appl.
– year: 2024
  ident: 10.1016/j.compbiomed.2025.110993_b1
– volume: 22
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110993_b39
  article-title: Priority and age specific vaccination algorithm for the pandemic diseases: A comprehensive parametric prediction model
  publication-title: BMC Med. Inform. Decis. Mak.
  doi: 10.1186/s12911-021-01720-6
– start-page: 141
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110993_b28
– ident: 10.1016/j.compbiomed.2025.110993_b25
  doi: 10.22489/CinC.2016.180-213
– volume: 134
  start-page: 101
  issue: 2
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110993_b45
  article-title: Congenital heart defects in the United States: Estimating the magnitude of the affected population in 2010
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.019307
– volume: 120
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110993_b27
  article-title: A fusion framework based on multi-domain features and deep learning features of phonocardiogram for coronary artery disease detection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103733
– year: 2022
  ident: 10.1016/j.compbiomed.2025.110993_b12
– volume: 71
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110993_b20
  article-title: Time–frequency-domain deep learning framework for the automated detection of heart valve disorders using PCG signals
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3163156
– volume: 12
  start-page: 76053
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110993_b38
  article-title: Precision diagnosis: An automated method for detecting congenital heart diseases in children from phonocardiogram signals employing deep neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3395389
– ident: 10.1016/j.compbiomed.2025.110993_b33
– volume: 95
  start-page: 47
  issue: 1
  year: 2009
  ident: 10.1016/j.compbiomed.2025.110993_b17
  article-title: Support vectors machine-based identification of heart valve diseases using heart sounds
  publication-title: Comput. Biol. Med.
– volume: 19
  start-page: 4819
  year: 2019
  ident: 10.1016/j.compbiomed.2025.110993_b14
  article-title: Heartbeat sound signal classification using deep learning
  publication-title: Sensors
  doi: 10.3390/s19214819
– volume: 80
  start-page: 281
  issue: 4
  year: 2013
  ident: 10.1016/j.compbiomed.2025.110993_b44
  article-title: Prevalence and pattern of congenital heart disease in Uttarakhand, India
  publication-title: Indian J. Pediatr.
  doi: 10.1007/s12098-012-0738-4
– volume: 120
  start-page: 447
  issue: 5
  year: 2009
  ident: 10.1016/j.compbiomed.2025.110993_b8
  article-title: Role of pulse oximetry in examining newborns for congenital heart disease: a scientific statement from the American Heart Association and American Academy of Pediatrics
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.109.192576
– volume: 118
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110993_b21
  article-title: Automated detection of heart valve diseases using chirplet transform and multiclass composite classifier with PCG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103632
– ident: 10.1016/j.compbiomed.2025.110993_b34
  doi: 10.22489/CinC.2022.165
– volume: 130
  start-page: 22
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110993_b43
  article-title: Heart sound classification based on improved MFCC features and convolutional recurrent neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.06.015
– ident: 10.1016/j.compbiomed.2025.110993_b26
  doi: 10.22489/CinC.2016.182-399
– volume: 64
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110993_b18
  article-title: Application of intelligent phonocardiography in the detection of congenital heart disease in pediatric patients: a narrative review
  publication-title: Prog. Pediatr. Cardiol.
  doi: 10.1016/j.ppedcard.2021.101455
– volume: 200
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110993_b29
  article-title: Convolutional and recurrent neural networks for the detection of valvular heart diseases in phonocardiogram recordings
  publication-title: Comput. Biol. Med.
– volume: 69
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110993_b13
  article-title: Heart sound classification based on log Mel-frequency spectral coefficients features and convolutional neural networks
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2021.102893
– volume: 57
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110993_b19
  article-title: Classification of heart sounds using discrete time-frequency energy feature based on s transform and the wavelet threshold denoising
  publication-title: Biomed. Signal Process. Control.
  doi: 10.1016/j.bspc.2019.101684
– ident: 10.1016/j.compbiomed.2025.110993_b2
  doi: 10.22489/CinC.2022.310
– volume: 41
  start-page: 223
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110993_b15
  article-title: Novel PCG analysis method for discriminating between abnormal and normal heart sounds
  publication-title: IRBM
  doi: 10.1016/j.irbm.2019.12.003
– volume: 19
  issue: 12
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110993_b42
  article-title: Enhanced heart sound classification using mel frequency cepstral coefficients and comparative analysis of single vs. ensemble classifier strategies
  publication-title: PLoS One
– volume: 37
  start-page: 2181
  issue: 12
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110993_b23
  article-title: An open access database for the evaluation of heart sound algorithms
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/12/2181
– volume: 100
  start-page: 132
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110993_b30
  article-title: A study of time-frequency features for CNN-based automatic heart sound classification for pathology detection
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.026
– volume: 14
  start-page: 3123
  year: 2024
  ident: 10.1016/j.compbiomed.2025.110993_b9
  article-title: Artificial intelligence framework for heart disease classification from audio signals
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-53778-7
– volume: 13
  start-page: 785
  issue: 4
  year: 2023
  ident: 10.1016/j.compbiomed.2025.110993_b41
  article-title: The role of heart rate variability (HRV) in different hypertensive syndromes
  publication-title: Diagn. (Basel)
– volume: 111
  start-page: 666
  issue: 5
  year: 2018
  ident: 10.1016/j.compbiomed.2025.110993_b6
  article-title: Mortality for critical congenital heart diseases and associated risk factors in newborns. A cohort study
  publication-title: Arq. Bras. Cardiol.
– volume: 80
  start-page: 281
  year: 2013
  ident: 10.1016/j.compbiomed.2025.110993_b3
  article-title: Prevalence and pattern of congenital heart disease in Uttarakhand, India
  publication-title: Indian J. Pediatr.
  doi: 10.1007/s12098-012-0738-4
– volume: 130
  start-page: 22
  year: 2020
  ident: 10.1016/j.compbiomed.2025.110993_b31
  article-title: Heart sound classification based on improved MFCC features and convolutional recurrent neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.06.015
– volume: 16
  issue: 1
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110993_b22
  article-title: Decision support system for arrhythmia beats using ECG signals with DCT, DWT and EMD methods: a comparative study
  publication-title: J. Mech. Med. Biology
  doi: 10.1142/S0219519416400121
– ident: 10.1016/j.compbiomed.2025.110993_b24
– ident: 10.1016/j.compbiomed.2025.110993_b37
  doi: 10.1109/EMBC40787.2023.10340370
– volume: 134
  start-page: 101
  issue: 2
  year: 2016
  ident: 10.1016/j.compbiomed.2025.110993_b4
  article-title: Congenital heart defects in the United States: estimating the magnitude of the affected population in 2010
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.115.019307
– volume: 25
  start-page: 4255
  issue: 12
  year: 2021
  ident: 10.1016/j.compbiomed.2025.110993_b40
  article-title: Neonatal heart and lung sound quality assessment for robust heart and breathing rate estimation for telehealth applications
  publication-title: IEEE J. Biomed. Heal. Inform.
  doi: 10.1109/JBHI.2020.3047602
– volume: 22
  start-page: 8002
  year: 2022
  ident: 10.1016/j.compbiomed.2025.110993_b11
  article-title: Applying artificial intelligence to wearable sensor data to diagnose and predict cardiovascular disease: A review
  publication-title: Sensors
  doi: 10.3390/s22208002
SSID ssj0004030
Score 2.4243338
Snippet Congenital heart disease (CHD) is the most common type of birth defect, impacting about 1% of live births worldwide. Echocardiography, the gold-standard...
AbstractCongenital heart disease (CHD) is the most common type of birth defect, impacting about 1% of live births worldwide. Echocardiography, the...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 110993
SubjectTerms Adolescent
Child
Child, Preschool
Congenital heart disease (CHD)
Deep feature fusion
Deep Learning
Diagnosis, Computer-Assisted - methods
Female
Heart Defects, Congenital - diagnosis
Heart Defects, Congenital - diagnostic imaging
Heart Defects, Congenital - physiopathology
Heart sounds
Humans
Infant
Infant, Newborn
Internal Medicine
Male
Mel-frequency cepstral coefficients (MFCC)
Other
Phonocardiography (PCG)
Phonocardiography - methods
Signal Processing, Computer-Assisted
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_qFbQ--K2NVVnB15TLfl0Wnw6xFKFF0YP6tGyym4KW3NEklPrXdyabnF9VTt-SwGyS2dnd3-z-ZgbgVVBl6UOG3klW6VQ6L9NcKZ0qXE3yQvAq9xTgfHSsDxfy3Yk62YLpGAvz0_l9z8MianUMRUdvjqs-RaYRN2BbK0TfE9heHL-ff44T7jSVeV9nlWpop2hfciDv_K2pP61IvyPO23Crq1fu8sKdnf2wCh3chQ_j90fyydf9ri32y2-_pHb8lx-8B3cGSMrm0Ybuw1aoH8DNo-HQ_SFczrt2icA2eOZD21O3aras2Gqs8sHQp0Y7pPIjjApkt2w49mEUvMKI_Y4rJvFeiQrWMOLan2JbYcVc7Rnt3ZfnVKzcsyr0iUZZ1dEu3iNYHLz99OYwHSo2pKUwuUiV9oEyGypfOkeeUDDCz6bKZSVXuTbCSVGYgmtV4DU6R4X2lBLP-Ew57nPxGCb1sg67wPCRCEFoLZWT1UwYnHsCF0qgx2W8rxLIxl6zq5iYw46MtS_2u04t6dRGnSZgxu61Y-ApTpUW-2QD2dl1sqEZxnxjM9twO7Uf-5RHaIYILjMhlUng9VpygDURrmz43pejHVoc-XSc4-qw7BqLUDhHqIFzbgJPooGuNYFeOzczoxLga4vdWE1P_0doD3boLvIcn8GkPe_Cc8RrbfFiGKJXnP07Vw
  priority: 102
  providerName: Unpaywall
Title Automated detection of pediatric congenital heart disease from phonocardiograms using deep and handcrafted feature fusion
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0010482525013459
https://www.clinicalkey.es/playcontent/1-s2.0-S0010482525013459
https://dx.doi.org/10.1016/j.compbiomed.2025.110993
https://www.ncbi.nlm.nih.gov/pubmed/40929795
https://www.proquest.com/docview/3248678257
https://doi.org/10.1016/j.compbiomed.2025.110993
UnpaywallVersion publishedVersion
Volume 197
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Science Direct Freedom Collection
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0534
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004030
  issn: 0010-4825
  databaseCode: AKRWK
  dateStart: 19700101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB5CAn0cSt91H0GFXt2srYctclpCw7YlSw9dSE9CtuSSELwmtim59Ld3xpY3LUlgoSfbwrKNNJqZz_pmBuCDl2XpfILoJKlULKwTcS6liiVak7zgaZU7CnA-WarFSnw5lac7cDTFwhCtMuj-UacP2jq0HITRPGjOzijGF6EEAhw04gkXkoL4hMioisHH39c0DzHjYxgK6hu6O7B5Ro4X0bbHMHdEiqkc0m9qfpeJuumCPoT7fd3Yq1_24uIvs3T8GB4Ff5LNx09-Aju-fgr3TsKO-TO4mvfdGr1S75jz3cC7qtm6Ys1UooMhIEYhotohjKpbdyzs2TCKPGFEXUdzR6RV4nG1jIjyP_FZvmG2dox-vJeXVGncscoPWUJZ1dMvuOewOv70_WgRh3ILccl1zmOpnKe0hNKV1hKM8Zq7bCZtUqYyV5pbwQtdpEoWeI7IplCO8tlpl0ibupy_gN16XftXwLCJe8-VEtKKKuMaFYdPueQIl7RzVQTJNMKmGbNqmIludm6uZ8XQrJhxViLQ01SYKWoU9ZxB1b9F3-y2vr4NC7Y1iWlTMzM3hCqCw03Pf-Ryy_e-n2TG4LKlvRhb-3XfGvRjc_QTUGFG8HIUps1IIOROdaZlBOlGurYeptf_9cFv4AFdjWzFt7DbXfb-HXpdXbE_LKt92Jt__rpY4nG1_Db_8QdbDy6K
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7SFJrmUPpK4j5V6NXNWrJsi55CaNi22ZwSyE3IllxSgtfENiWX_PbMWPKmJS0s9GZsyxbSaGY-6ZsZgI9OVpV1CaKTpM7i1Ng0LqTMYonWpCgFrwtLAc6Lk2x-ln47l-cbcDjFwhCtMuh-r9NHbR3u7IfR3G8vLijGF6EEAhw04olIpXoAD1PJc0Jgn27ueB7pTPg4FFQ49Hqg83iSF_G2fZw7QkUux_ybSvzLRt33Qbdha2hac_3LXF7-ZpeOnsKT4FCyA9_nZ7DhmufwaBGOzF_A9cHQL9EtdZZZ14_Eq4Yta9ZONToYImKUIioewqi8dc_CoQ2j0BNG3HW0d8RaJSJXx4gp_wO_5VpmGsto5726olLjltVuTBPK6oH24F7C2dGX08N5HOotxJVQhYhlZh3lJZS2MoZwjFPC5jNpkorLIlPCpKJUJc9kidcIbcrMUkI7ZRNpuC3EDmw2y8btAcNbwjmRZak0aZ0LhZrDcSEF4iVlbR1BMo2wbn1aDT3xzX7qu1nRNCvaz0oEapoKPYWNoqLTqPvXaJv_ra3rwortdKI7rmf6nlRF8HnV8g_BXPO_HyaZ0bhu6TDGNG45dBod2QIdBdSYEex6YVqNBGJurnIlI-Ar6Vp7mF79V4ffw9b8dHGsj7-efH8Nj-mJpy6-gc3-anBv0QXry3fjErsFnhsubw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_qFbQ--K2NVVnB15TLfl0Wnw6xFKFF0YP6tGyym4KW3NEklPrXdyabnF9VTt-SwGyS2dnd3-z-ZgbgVVBl6UOG3klW6VQ6L9NcKZ0qXE3yQvAq9xTgfHSsDxfy3Yk62YLpGAvz0_l9z8MianUMRUdvjqs-RaYRN2BbK0TfE9heHL-ff44T7jSVeV9nlWpop2hfciDv_K2pP61IvyPO23Crq1fu8sKdnf2wCh3chQ_j90fyydf9ri32y2-_pHb8lx-8B3cGSMrm0Ybuw1aoH8DNo-HQ_SFczrt2icA2eOZD21O3aras2Gqs8sHQp0Y7pPIjjApkt2w49mEUvMKI_Y4rJvFeiQrWMOLan2JbYcVc7Rnt3ZfnVKzcsyr0iUZZ1dEu3iNYHLz99OYwHSo2pKUwuUiV9oEyGypfOkeeUDDCz6bKZSVXuTbCSVGYgmtV4DU6R4X2lBLP-Ew57nPxGCb1sg67wPCRCEFoLZWT1UwYnHsCF0qgx2W8rxLIxl6zq5iYw46MtS_2u04t6dRGnSZgxu61Y-ApTpUW-2QD2dl1sqEZxnxjM9twO7Uf-5RHaIYILjMhlUng9VpygDURrmz43pejHVoc-XSc4-qw7BqLUDhHqIFzbgJPooGuNYFeOzczoxLga4vdWE1P_0doD3boLvIcn8GkPe_Cc8RrbfFiGKJXnP07Vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+detection+of+pediatric+congenital+heart+disease+from+phonocardiograms+using+deep+and+handcrafted+feature+fusion&rft.jtitle=Computers+in+biology+and+medicine&rft.au=Jabbar%2C+Abdul&rft.au=Grooby%2C+Ethan&rft.au=Poh%2C+Yang+Yi&rft.au=Ahmad%2C+Khawza+I.&rft.date=2025-10-01&rft.pub=Elsevier+Ltd&rft.issn=0010-4825&rft.volume=197&rft_id=info:doi/10.1016%2Fj.compbiomed.2025.110993&rft.externalDocID=S0010482525013459
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00104825%2FS0010482525X00159%2Fcov150h.gif