Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders

Earth observation (EO) sensors deliver data at daily or weekly intervals. Most land use and land cover classification (LULC) approaches, however, are designed for cloud-free and mono-temporal observations. The increasing temporal capabilities of today’s sensors enable the use of temporal, along with...

Full description

Saved in:
Bibliographic Details
Published inISPRS international journal of geo-information Vol. 7; no. 4; p. 129
Main Authors Rußwurm, Marc, Körner, Marco
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2018
Subjects
Online AccessGet full text
ISSN2220-9964
2220-9964
DOI10.3390/ijgi7040129

Cover

Abstract Earth observation (EO) sensors deliver data at daily or weekly intervals. Most land use and land cover classification (LULC) approaches, however, are designed for cloud-free and mono-temporal observations. The increasing temporal capabilities of today’s sensors enable the use of temporal, along with spectral and spatial features.Domains such as speech recognition or neural machine translation, work with inherently temporal data and, today, achieve impressive results by using sequential encoder-decoder structures. Inspired by these sequence-to-sequence models, we adapt an encoder structure with convolutional recurrent layers in order to approximate a phenological model for vegetation classes based on a temporal sequence of Sentinel 2 (S2) images. In our experiments, we visualize internal activations over a sequence of cloudy and non-cloudy images and find several recurrent cells that reduce the input activity for cloudy observations. Hence, we assume that our network has learned cloud-filtering schemes solely from input data, which could alleviate the need for tedious cloud-filtering as a preprocessing step for many EO approaches. Moreover, using unfiltered temporal series of top-of-atmosphere (TOA) reflectance data, our experiments achieved state-of-the-art classification accuracies on a large number of crop classes with minimal preprocessing, compared to other classification approaches.
AbstractList Earth observation (EO) sensors deliver data at daily or weekly intervals. Most land use and land cover classification (LULC) approaches, however, are designed for cloud-free and mono-temporal observations. The increasing temporal capabilities of today’s sensors enable the use of temporal, along with spectral and spatial features.Domains such as speech recognition or neural machine translation, work with inherently temporal data and, today, achieve impressive results by using sequential encoder-decoder structures. Inspired by these sequence-to-sequence models, we adapt an encoder structure with convolutional recurrent layers in order to approximate a phenological model for vegetation classes based on a temporal sequence of Sentinel 2 (S2) images. In our experiments, we visualize internal activations over a sequence of cloudy and non-cloudy images and find several recurrent cells that reduce the input activity for cloudy observations. Hence, we assume that our network has learned cloud-filtering schemes solely from input data, which could alleviate the need for tedious cloud-filtering as a preprocessing step for many EO approaches. Moreover, using unfiltered temporal series of top-of-atmosphere (TOA) reflectance data, our experiments achieved state-of-the-art classification accuracies on a large number of crop classes with minimal preprocessing, compared to other classification approaches.
Author Körner, Marco
Rußwurm, Marc
Author_xml – sequence: 1
  givenname: Marc
  orcidid: 0000-0001-6612-5744
  surname: Rußwurm
  fullname: Rußwurm, Marc
– sequence: 2
  givenname: Marco
  orcidid: 0000-0002-9186-4175
  surname: Körner
  fullname: Körner, Marco
BookMark eNp9kF1rFDEUhoNUaK296h8Y8Eawo_maSXIpS22LK4LW63Amk9Qs2WRNMpb--6ZdkVLQ3CQnPHl587xCBzFFi9Apwe8ZU_iD39x4gTkmVL1AR5RS3Cs18oMn50N0UsoGt6UIkxwfoc9fllB9f223u5QhdGuIc7dKv23uVgFK8c4bqD7F7tbXn913-2uxsfpGfrNmybkN3Xk0aba5vEYvHYRiT_7sx-jHp_Pr1WW__npxtfq47g1TovYOZskIwcCtcpII5lTrNw0GGzY5OdFpFlQKbLi1lmCB6TQQkEw4ILOAgR2jq33unGCjd9lvId_pBF4_XqR8oyFXb4LVoxFSOjVO4zBxKiWA43QU0nKqJBlMyzrbZy1xB3e3EMLfQIL1g1f9xGvD3-7xXU7NRKl664uxIUC0aSmaMjyQsbGsoW-eoZu05NjEaEooHRgj_OEvZE-ZnErJ1mnj66PwmsGHf5R49-zN_yrfAzSbpNo
CitedBy_id crossref_primary_10_1007_s10668_023_03588_0
crossref_primary_10_3390_rs12030423
crossref_primary_10_1109_JSTARS_2020_2973602
crossref_primary_10_3390_rs16040712
crossref_primary_10_1109_JSTARS_2022_3218919
crossref_primary_10_3390_rs13132428
crossref_primary_10_1109_JSTARS_2024_3358066
crossref_primary_10_3390_rs13010078
crossref_primary_10_3390_rs15030666
crossref_primary_10_1111_2041_210X_13953
crossref_primary_10_1016_j_isprsjprs_2023_11_016
crossref_primary_10_1016_j_isprsjprs_2022_11_011
crossref_primary_10_1016_j_rse_2024_114430
crossref_primary_10_1016_j_rsase_2023_101036
crossref_primary_10_1029_2023JD040418
crossref_primary_10_3390_data4010010
crossref_primary_10_1016_j_rse_2018_11_032
crossref_primary_10_3390_rs11172029
crossref_primary_10_1016_j_eswa_2023_121283
crossref_primary_10_1007_s12145_023_01190_6
crossref_primary_10_4995_raet_2021_15026
crossref_primary_10_1109_LGRS_2019_2953497
crossref_primary_10_3390_land10030282
crossref_primary_10_1117_1_JRS_17_038503
crossref_primary_10_3390_rs12162655
crossref_primary_10_3389_fdata_2019_00031
crossref_primary_10_1016_j_jag_2021_102543
crossref_primary_10_1080_10095020_2021_2017237
crossref_primary_10_1016_j_rsase_2023_101040
crossref_primary_10_1016_j_fcr_2023_108824
crossref_primary_10_3390_rs15184588
crossref_primary_10_3390_rs12182957
crossref_primary_10_1016_j_isprsjprs_2024_08_018
crossref_primary_10_3390_ijgi8010028
crossref_primary_10_1109_LGRS_2021_3064814
crossref_primary_10_3390_ijgi10070483
crossref_primary_10_1007_s10462_023_10512_5
crossref_primary_10_1117_1_JRS_16_034518
crossref_primary_10_2174_1874347102012010011
crossref_primary_10_3390_rs12101668
crossref_primary_10_3390_rs14164005
crossref_primary_10_1016_j_isprsjprs_2019_09_016
crossref_primary_10_1016_j_rse_2019_111411
crossref_primary_10_3390_rs15092343
crossref_primary_10_1016_j_rse_2021_112599
crossref_primary_10_1109_TGRS_2021_3055584
crossref_primary_10_1016_j_isprsjprs_2019_01_011
crossref_primary_10_1109_MGRS_2021_3136100
crossref_primary_10_1109_TGRS_2018_2863224
crossref_primary_10_3390_rs13224668
crossref_primary_10_1016_j_jag_2024_103826
crossref_primary_10_1109_TGRS_2023_3321156
crossref_primary_10_3390_rs16224225
crossref_primary_10_1016_j_knosys_2022_109881
crossref_primary_10_1109_ACCESS_2023_3311711
crossref_primary_10_1109_TGRS_2021_3101965
crossref_primary_10_1016_j_jag_2021_102651
crossref_primary_10_3390_rs15030799
crossref_primary_10_3390_rs11050523
crossref_primary_10_1109_TGRS_2020_3005623
crossref_primary_10_3390_jimaging6070068
crossref_primary_10_1109_TGRS_2022_3198187
crossref_primary_10_3390_rs12020207
crossref_primary_10_3390_app10010238
crossref_primary_10_1109_TGRS_2019_2961947
crossref_primary_10_3390_rs14194858
crossref_primary_10_3389_fpls_2022_839327
crossref_primary_10_3390_s19051140
crossref_primary_10_1016_j_jag_2022_103060
crossref_primary_10_1109_JSTARS_2024_3387452
crossref_primary_10_1038_s41598_020_74215_5
crossref_primary_10_3390_rs14030634
crossref_primary_10_3390_rs14225739
crossref_primary_10_1080_01431161_2023_2232552
crossref_primary_10_1088_1742_6596_2816_1_012020
crossref_primary_10_1109_TGRS_2023_3285401
crossref_primary_10_1016_j_jag_2025_104426
crossref_primary_10_3390_rs11222673
crossref_primary_10_1016_j_rse_2024_114109
crossref_primary_10_1109_JSTARS_2024_3501216
crossref_primary_10_3390_s21051566
crossref_primary_10_3390_rs14205232
crossref_primary_10_1016_j_rsase_2023_100928
crossref_primary_10_1016_j_habitatint_2019_04_008
crossref_primary_10_1109_TGRS_2021_3120914
crossref_primary_10_5194_os_21_113_2025
crossref_primary_10_1109_ACCESS_2021_3069882
crossref_primary_10_1016_j_isprsjprs_2020_06_006
crossref_primary_10_3390_rs16244620
crossref_primary_10_1007_s12524_024_01839_9
crossref_primary_10_1016_j_isprsjprs_2024_06_005
crossref_primary_10_3390_su11123278
crossref_primary_10_1016_j_ophoto_2023_100034
crossref_primary_10_3390_rs15194714
crossref_primary_10_3390_rs11080990
crossref_primary_10_1016_j_isprsjprs_2024_04_021
crossref_primary_10_3390_rs16050838
crossref_primary_10_1016_j_rsase_2025_101505
crossref_primary_10_3390_rs11091006
crossref_primary_10_1016_j_aiia_2021_11_004
crossref_primary_10_3389_fpls_2022_1030595
crossref_primary_10_1109_TGRS_2023_3271024
crossref_primary_10_1016_j_rse_2024_114110
crossref_primary_10_3390_rs13142790
crossref_primary_10_1016_j_compag_2024_109732
crossref_primary_10_1080_2150704X_2021_1950940
crossref_primary_10_1109_JSTARS_2022_3219816
crossref_primary_10_3390_rs15153859
crossref_primary_10_3390_rs16193568
crossref_primary_10_1016_j_envsoft_2019_07_013
crossref_primary_10_1016_j_isprsjprs_2019_12_014
crossref_primary_10_1007_s41064_020_00111_2
crossref_primary_10_1016_j_rse_2021_112600
crossref_primary_10_3390_rs12183053
crossref_primary_10_1016_j_rse_2021_112603
crossref_primary_10_3390_rs14030638
crossref_primary_10_3390_rs14236017
crossref_primary_10_1109_ACCESS_2024_3487267
crossref_primary_10_3390_rs15123009
crossref_primary_10_3390_rs15010047
crossref_primary_10_1016_j_isprsjprs_2024_06_021
crossref_primary_10_3390_rs11141665
crossref_primary_10_1016_j_isprsjprs_2022_12_016
crossref_primary_10_1016_j_ecoinf_2023_102333
crossref_primary_10_1016_j_compag_2023_108012
crossref_primary_10_1109_TGRS_2024_3442171
crossref_primary_10_1080_01431161_2021_1976876
crossref_primary_10_3390_rs14215373
crossref_primary_10_3390_data6060055
crossref_primary_10_1016_j_isprsjprs_2022_09_010
crossref_primary_10_3390_rs16122150
crossref_primary_10_3390_su11195376
crossref_primary_10_1080_15481603_2022_2115619
crossref_primary_10_3390_rs11232784
crossref_primary_10_3390_ijgi7040147
crossref_primary_10_3390_rs13193953
crossref_primary_10_3390_ijgi11120587
crossref_primary_10_1016_j_isprsjprs_2020_01_028
crossref_primary_10_1016_j_isprsjprs_2022_12_005
crossref_primary_10_1016_j_asoc_2025_112876
crossref_primary_10_3390_app14093545
crossref_primary_10_1016_j_jag_2025_104471
crossref_primary_10_1016_j_agwat_2025_109319
crossref_primary_10_1016_j_rse_2020_111946
crossref_primary_10_1080_19479832_2021_2019133
crossref_primary_10_1016_j_isprsjprs_2020_11_007
crossref_primary_10_1016_j_isprsjprs_2019_04_016
crossref_primary_10_3390_rs13224599
crossref_primary_10_1007_s41064_022_00217_9
crossref_primary_10_3390_rs12172814
crossref_primary_10_1016_j_isprsjprs_2024_01_025
crossref_primary_10_1016_j_isprsjprs_2023_03_007
crossref_primary_10_1016_j_jag_2021_102441
crossref_primary_10_1109_JSTARS_2021_3055784
crossref_primary_10_1016_j_isprsjprs_2023_01_017
crossref_primary_10_1016_j_jag_2024_104040
crossref_primary_10_1016_j_isprsjprs_2022_04_018
crossref_primary_10_1145_3649448
Cites_doi 10.1109/MGRS.2017.2762307
10.1080/01431169608949077
10.1016/j.rse.2011.01.009
10.1038/35016072
10.1109/72.279181
10.1016/j.compag.2012.07.015
10.1109/CVPRW.2017.193
10.1007/978-0-85729-667-2_5
10.3390/rs2041035
10.3390/rs70505347
10.3390/rs8060506
10.1006/jcss.1995.1013
10.1016/j.compag.2014.02.003
10.11613/BM.2012.031
10.1016/j.rse.2010.03.002
10.1109/IGARSS.2015.7326945
10.1162/neco.1997.9.8.1735
10.18653/v1/K16-1028
10.1109/MGRS.2016.2540798
10.2307/3235884
10.1109/LGRS.2017.2657778
10.1145/3097983.3098112
10.1016/0034-4257(84)90006-3
10.3390/rs71114680
10.1109/TGRS.2014.2326886
10.1177/001316446002000104
10.3115/v1/D14-1179
10.3390/rs70403633
10.1109/TCYB.2016.2605044
10.1016/j.neunet.2018.05.019
10.1109/TGRS.2018.2863224
10.1117/12.410341
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/ijgi7040129
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Openly Available Collection - DOAJ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
EISSN 2220-9964
ExternalDocumentID oai_doaj_org_article_6c788f96b65b4288aaf42678e429815c
10.3390/ijgi7040129
10_3390_ijgi7040129
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RIG
ZBA
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ADTOC
ITC
UNPAY
ID FETCH-LOGICAL-c397t-fad83110a4e9f8173f9220b5c0c3bf8b2bd72870c4eee10702b51a837fa1d7a53
IEDL.DBID UNPAY
ISSN 2220-9964
IngestDate Fri Oct 03 12:51:50 EDT 2025
Sun Oct 26 03:09:27 EDT 2025
Thu Sep 04 15:41:31 EDT 2025
Fri Jul 25 12:00:28 EDT 2025
Thu Apr 24 22:55:36 EDT 2025
Thu Oct 16 04:43:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-fad83110a4e9f8173f9220b5c0c3bf8b2bd72870c4eee10702b51a837fa1d7a53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6612-5744
0000-0002-9186-4175
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2220-9964/7/4/129/pdf?version=1525344664
PQID 2122533145
PQPubID 2032387
ParticipantIDs doaj_primary_oai_doaj_org_article_6c788f96b65b4288aaf42678e429815c
unpaywall_primary_10_3390_ijgi7040129
proquest_miscellaneous_2305164013
proquest_journals_2122533145
crossref_citationtrail_10_3390_ijgi7040129
crossref_primary_10_3390_ijgi7040129
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ngugi (ref_14) 2011; 115
Richter (ref_45) 1996; 17
Odenweller (ref_2) 1984; 14
ref_35
Hahnloser (ref_37) 2000; 405
Hu (ref_19) 2015; 7
ref_32
Hao (ref_13) 2015; 7
ref_31
Cohen (ref_40) 1960; 20
ref_39
Hochreiter (ref_34) 1997; 9
Chorowski (ref_9) 2015; 1
Shi (ref_36) 2015; 1
Siachalou (ref_15) 2015; 7
Scott (ref_20) 2017; 14
ref_25
ref_24
ref_46
Conrad (ref_12) 2014; 103
Hoberg (ref_16) 2015; 53
ref_23
ref_22
ref_44
ref_21
McHugh (ref_43) 2012; 22
ref_41
Reed (ref_3) 1994; 5
Hagolle (ref_47) 2010; 114
ref_29
Fung (ref_42) 1988; 54
ref_28
Conrad (ref_11) 2010; 2
Zhu (ref_18) 2017; 5
ref_27
Siegelmann (ref_30) 1995; 50
ref_26
ref_8
Foerster (ref_10) 2012; 89
Yoshua (ref_33) 1994; 5
ref_5
Zhang (ref_17) 2016; 4
ref_4
ref_7
Zhang (ref_1) 2018; 48
ref_6
Maas (ref_38) 2013; 28
References_xml – volume: 1
  start-page: 557
  year: 2015
  ident: ref_9
  article-title: Attention-based models for speech recognition
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 5
  start-page: 8
  year: 2017
  ident: ref_18
  article-title: Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
– volume: 17
  start-page: 1201
  year: 1996
  ident: ref_45
  article-title: A spatially adaptive fast atmospheric correction algorithm
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608949077
– volume: 115
  start-page: 1301
  year: 2011
  ident: ref_14
  article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.009
– volume: 1
  start-page: 802
  year: 2015
  ident: ref_36
  article-title: Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 405
  start-page: 947
  year: 2000
  ident: ref_37
  article-title: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit
  publication-title: Nature
  doi: 10.1038/35016072
– ident: ref_5
– ident: ref_32
– volume: 5
  start-page: 157
  year: 1994
  ident: ref_33
  article-title: Learning long-term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.279181
– volume: 89
  start-page: 30
  year: 2012
  ident: ref_10
  article-title: Crop type mapping using spectral-temporal profiles and phenological information
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2012.07.015
– ident: ref_26
– ident: ref_28
  doi: 10.1109/CVPRW.2017.193
– volume: 28
  start-page: 6
  year: 2013
  ident: ref_38
  article-title: Rectifier Nonlinearities Improve Neural Network Acoustic Models
  publication-title: Proc. Int. Conf. Mach. Learn.
– ident: ref_44
  doi: 10.1007/978-0-85729-667-2_5
– volume: 2
  start-page: 1035
  year: 2010
  ident: ref_11
  article-title: Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data
  publication-title: Remote Sens.
  doi: 10.3390/rs2041035
– volume: 7
  start-page: 5347
  year: 2015
  ident: ref_13
  article-title: Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA
  publication-title: Remote Sens.
  doi: 10.3390/rs70505347
– ident: ref_23
  doi: 10.3390/rs8060506
– volume: 50
  start-page: 132
  year: 1995
  ident: ref_30
  article-title: On the Computational Power of Neural Nets
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1006/jcss.1995.1013
– ident: ref_39
– volume: 103
  start-page: 63
  year: 2014
  ident: ref_12
  article-title: Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2014.02.003
– volume: 22
  start-page: 276
  year: 2012
  ident: ref_43
  article-title: Interrater reliability: the kappa statistic
  publication-title: Biochem. Med.
  doi: 10.11613/BM.2012.031
– volume: 114
  start-page: 1747
  year: 2010
  ident: ref_47
  article-title: A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENuS, LANDSAT and SENTINEL-2 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2010.03.002
– ident: ref_21
  doi: 10.1109/IGARSS.2015.7326945
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_34
  article-title: Long Short-Term Memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_7
  doi: 10.18653/v1/K16-1028
– ident: ref_6
– ident: ref_8
– ident: ref_4
– volume: 4
  start-page: 22
  year: 2016
  ident: ref_17
  article-title: Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2016.2540798
– ident: ref_31
– volume: 54
  start-page: 1449
  year: 1988
  ident: ref_42
  article-title: The Determination of Optimal Threshold Levels for Change Detection Using Various Accuracy Indices
  publication-title: Photogramm. Eng. Remote Sens.
– ident: ref_29
– volume: 5
  start-page: 703
  year: 1994
  ident: ref_3
  article-title: Measuring Phenological Variability from Satellite Imagery
  publication-title: J. Veg. Sci.
  doi: 10.2307/3235884
– volume: 14
  start-page: 549
  year: 2017
  ident: ref_20
  article-title: Training Deep Convolutional Neural Networks for Land-Cover Classification of High-Resolution Imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2657778
– ident: ref_24
  doi: 10.1145/3097983.3098112
– volume: 14
  start-page: 39
  year: 1984
  ident: ref_2
  article-title: Crop identification using Landsat temporal-spectral profiles
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(84)90006-3
– volume: 7
  start-page: 14680
  year: 2015
  ident: ref_19
  article-title: Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71114680
– volume: 53
  start-page: 659
  year: 2015
  ident: ref_16
  article-title: Conditional random fields for multitemporal and multiscale classification of optical satellite imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2326886
– ident: ref_41
– volume: 20
  start-page: 37
  year: 1960
  ident: ref_40
  article-title: A coefficient of agreeement for nominal scales
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316446002000104
– ident: ref_35
  doi: 10.3115/v1/D14-1179
– volume: 7
  start-page: 3633
  year: 2015
  ident: ref_15
  article-title: A hidden markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data
  publication-title: Remote Sens.
  doi: 10.3390/rs70403633
– ident: ref_22
– volume: 48
  start-page: 16
  year: 2018
  ident: ref_1
  article-title: Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2016.2605044
– ident: ref_27
  doi: 10.1016/j.neunet.2018.05.019
– ident: ref_25
  doi: 10.1109/TGRS.2018.2863224
– ident: ref_46
  doi: 10.1117/12.410341
SSID ssj0000913840
Score 2.5670207
Snippet Earth observation (EO) sensors deliver data at daily or weekly intervals. Most land use and land cover classification (LULC) approaches, however, are designed...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 129
SubjectTerms Atmospheric models
Classification
Coders
crop classification
Data
deep learning
Domains
Earth
Feature recognition
Filtration
Land cover
Land use
land use and land cover classification
land use and land cover maps
Machine translation
multi-temporal classification
phenology
Preprocessing
recurrent networks
Reflectance
Sensors
Sentinel 2
sequence encoder
sequence-to-sequence
Sequencing
speech
Speech recognition
vegetation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ei3oQXRXriwjrRSjbtE2bHlUU8XXwxd5KnrpSqri7iP_eSVrXFUQvXts5hJnJzPclkxmAbqwjkxlLQ8moCVNNbciN1GEsdMryPBLGT567vMpO79KzPutPjfpyNWFNe-BGcb1MIUmzRSYzJhEqcyEsJpWcGwyknDLlom_Eiyky5WNwQROkLs2DvAR5fW_w9DDI0WOpB5NfKch36v8GL-fG9Yt4fxNVNZVpTpZgsYWI5KBZ2jLMmLoDc-208sf3DizcD4bjRmK4Auf-DW142_SYqsiFqDU5cpWZxE-8dLVAXv3EnbmSG187jfu6ItfurN11ZyLHtXva_jpchbuT49uj07AdkRAqBBKj0ArNE8zgIjWF5TRPbBHHkWQqUom0XMZS5-4qU6XGGGR6UYw2EUhKraA6FyxZg9n6uTbrQGQmVOomoEuFZkINapowzVJMbToS1gSw_6m1UrX9w90Yi6pEHuFUXE6pOIDuRPilaZvxs9ihU_9ExPW69h_QA8rWA8q_PCCArU_jle0GHJaYkWNEsjRlAexOfuPWcfchojbPY5TBWIdsEUFwAHsTo_-23o3_WO8mzCPq4k35zxbMjl7HZhuRzUjueCf-AOGY9Pg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9VAEB7q6UP1QbQqplZZob4IS7NJNsl5ELHllOLlILWVvoW91iMh5_RckP57ZzaXVpC-JgMJM7s73-zOfh_AQWJjlzsvuJbC8cwKz0unLU-UzWRRxMoF5blv0_z0Ivt8KS-3YNrfhaG2yn5NDAu1nRvaIz_EJTZBaCIy-XFxzUk1ik5XewkN1Ukr2A-BYuwBbCfEjDWC7aPJ9PvZsOtCLJhY0rQX9VKs9w9nv69mBY5kEUDmbWoKDP7_wM6dTbNQN39UXd_JQCdP4HEHHdmnNtZPYcs1u7DTqZj_utmFRz9nq01rsXoGX8LdWn7eck_V7KtqLDumjk0WlDCpRyiEhdFeLPsReqpxvtfsjPbgibWJTRq68r5cPYeLk8n58SnvpBO4QYCx5l7ZMsXMrjI39qUoUj9OklhLE5tU-1In2hZ0xGky5xxWgHGCsVJYrHolbKFk-gJGzbxxL4HpXJmMlNG1wfChB61IpZUZpjwbK-8ieN97rTIdrzjJW9QV1hfk4uqOiyM4GIwXLZ3G_82OyP2DCXFghwfz5VXVTakqN1i--3Guc6mxiCqV8gg3itJhii2FNBHs98Gruom5qm6HUQRvh9c4peicRDVuvkEbXAOxikRwHMG7Iej3_e_e_Z96BQ8RZ5Vtw88-jNbLjXuNWGat33QD9C_IC_Ol
  priority: 102
  providerName: ProQuest
Title Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders
URI https://www.proquest.com/docview/2122533145
https://www.proquest.com/docview/2305164013
https://www.mdpi.com/2220-9964/7/4/129/pdf?version=1525344664
https://doaj.org/article/6c788f96b65b4288aaf42678e429815c
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Openly Available Collection - DOAJ
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7R5FA48CggDCUyUrkgubHjXXtzQm2VUPGIqtKgcrL2WdJaThTHoPLrmV1vQkEIIa72WPJqZna-mZ2dD2BvoGKdaZNEgiY6IioxEdNCRQOuCM3zmGvHPPdhkh1Pydtzeu57c2rfVomp-Mxt0hi74ggBOennfdLHyNRfKPP6qy8kWeae1B5Hki3oZhSheAe608nJwWdLKLf-tL2Tl2Jq359dXsxyNNrE4cmfUcgN6_8FYW431YJff-NleSPYjO-1jKq1m1Foe0yu9puV2Jfff5vg-N_ruA93PQwND1q7eQC3dLUD254R_cv1Dtz5NKubVqJ-CO_cPd3orJ1jVYbveaXCI9v9GTpWTdtv5FQc2rpu-NH1Z-PeUYantp5vJ0CFo8pen1_Wj2A6Hp0dHUeehiGSCFZWkeGKpYgSONFDw5I8NUNcj6AylqkwTAyEyu1xqSRaa8wm4wHqnWPia3iick7Tx9Cp5pV-AqHIuCSWZV1INAWEdypJqaIEw6eKudEBvFqrpZB-RrmlyigLzFWsDosbOgxgbyO8aEdz_Fns0Op3I2LnabsH8-VF4d2zyGTOmBlmIqMCEzLGuUHokjON4ZolVAawu7aOwjt5XWDUR82lCaEBvNi8Rve0Zy680vMGZXA_xYwUgXYALzdW9bf_ffqPcs_gNoI31nYR7UJntWz0cwRIK9GDLTZ-04Pu4WhyctpzZYaed40ffE0OKg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7SFwQKWAMBRYpPaCZNWPtb0-VIiWVClJI1RS1JvZZxtkOWmcqMqf47cx61eLhHrr1RnJ8ey8d2Y-gL1AeTrWxndF5GuXKt-4TAvlBlzRKEk8rivkubNxPLig3y6jyw34087C2LbK1iZWhlrNpK2RH6CJDTA08Wn0eX7jWtQoe7vaQmjwBlpBHVYrxprBjqFe32IKVx6efsXz3g-Ck_7keOA2KAOuRF-8dA1XLEQnyKlODfOT0KRB4IlIejIUholAqMTeBkqqtcZkyQvwszjmdYb7KuEWNQJdwBYNaYrJ39ZRf_z9vKvy2K2bmELVg4FhmHoH099X0wQ1x6-C2jtXWCEG_BPm9lbFnK9veZ7f83gn2_CsCVXJl1q2nsOGLnag16CmX6934OnPabmqKcoXMKxmed1JvesqJyNeKHJsO0RJhbxpe5IqMSC29kt-VD3caF9ycm5r_nZLFOkXdsR-Ub6Ei0dh4ivYLGaFfg1ExFxSi8QuJIoLclD5YaQiii5WedxoBz61XMtks8fcwmnkGeYzlsXZPRY7sNcRz-v1Hf8nO7Ls70jszu3qwWxxlTUqnMUyYcyksYgjgUkb49xgeJMwjS6d-ZF0YLc9vKwxBGV2J7YOfOx-RhW29zK80LMV0qDNxawVg3EH9rtDf-j_vnn4VR-gN5icjbLR6Xj4Fp5gjMfqZqNd2FwuVvodxlFL8b4RVgK_Hls__gKJwDCw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNREB5KBasPolVxteoR2hdhyd735EFE28bW1CLaSt-251ojyyZmE0r-mr_OmbOXVpC-9XUzsNk5cz8z8wFsRzowmbGhL9PQ-IkOrc-N1H4kdJLmeSCMQ577cpwdnCafz9KzNfjTzcJQW2VnE52h1lNFNfIBmtgIQ5MwSQe2bYv4ujd6P_vtE4IU3bR2cBqNiIzN6hLTt_rd4R6e9U4UjfZPdg_8FmHAV-iHF74VmsfoAEVihpaHeWyHURTIVAUqlpbLSOqcbgJVYozBRCmI8JME5nRWhDoXhBiB5v9OTlvcaUp99Kmv79C-TUyempHAOB4Gg8mvi0mOOhO6cPbKCTqsgH8C3I1lNROrS1GW13zd6CE8aINU9qGRqkewZqpN2Gjx0n-uNuH-j0m9bCjqxzB2U7z-SbPlqmRHotJsl3pDmcPcpG4kJwCMqr7su-veRstSsm9U7af9UGy_ouH6ef0ETm-FhU9hvZpW5hkwmQmVEAa7VCgoyEEdxqlOE3SuOhDWePC241qh2g3mBKRRFpjJEIuLayz2YLsnnjWLO_5P9pHY35PQtm33YDq_KFrlLTKVc26HmcxSiekaF8JiYJNzg86ch6nyYKs7vKI1AXVxJbAevOl_RuWlGxlRmekSadDaYr6KYbgHO_2h3_R_n9_8qtdwF7WiODo8Hr-Aexjc8abLaAvWF_OleYkB1EK-cpLK4Py2VeMvNUsuSg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9lA48CggAi0KUrkgpYk3duI9oVK1qnhUCLqonCI_y7ZRdrXZtCq_nrHj3RaEEOKaTKRYM_Z8Y4-_D2B7qDNTGEsSyYhJqCY24UbqZCg0ZWWZCeOV5z4eFYdj-u6EnYTenDa0VWIpPvGLNOauLEFATtMypSlmpnSm7ZuLsJHklHtydxxJb8NawRCKD2BtfPRp95sTlFt-2t_Jy7G0Tydnp5MSg5Z4PHmdhTxZ_y8Ic71rZuLqUtT1jWRzcL9XVG09R6HrMTnf6RZyR_34jcHxv8fxAO4FGBrv9nHzEG6ZZgPWgyL696sNuPt10na9RfsI3vt7uslxz2NVxx9Eo-M91_0Ze1VN12_kXRy7fd34i-_PxrWjjj-7_XzHABXvN-76_Lx9DOOD_eO9wyTIMCQKwcoisULzHFGCoGZkOSlzO8LxSKYylUvL5VDq0h2XKmqMwWoyG6LfBRa-VhBdCpY_gUEzbcxTiGUhFHUq61JhKCC80yRnmlFMnzoT1kTweumWSgWOcieVUVdYqzgfVjd8GMH2ynjWU3P82eyt8-_KxPFp-wfT-WkVpmdVqJJzOypkwSQWZFwIi9Cl5AbTNSdMRbC5jI4qTPK2wqyPnssJZRG8XL3G6enOXERjph3a4HqKFSkC7QheraLqb__77B_tnsMdBG-87yLahMFi3pktBEgL-SJMg5-MFAq1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Temporal+Land+Cover+Classification+with+Sequential+Recurrent+Encoders&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Marc+Ru%C3%9Fwurm&rft.au=Marco+K%C3%B6rner&rft.date=2018-04-01&rft.pub=MDPI+AG&rft.eissn=2220-9964&rft.volume=7&rft.issue=4&rft.spage=129&rft_id=info:doi/10.3390%2Fijgi7040129&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6c788f96b65b4288aaf42678e429815c
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon