Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders
Earth observation (EO) sensors deliver data at daily or weekly intervals. Most land use and land cover classification (LULC) approaches, however, are designed for cloud-free and mono-temporal observations. The increasing temporal capabilities of today’s sensors enable the use of temporal, along with...
Saved in:
| Published in | ISPRS international journal of geo-information Vol. 7; no. 4; p. 129 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.04.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2220-9964 2220-9964 |
| DOI | 10.3390/ijgi7040129 |
Cover
| Abstract | Earth observation (EO) sensors deliver data at daily or weekly intervals. Most land use and land cover classification (LULC) approaches, however, are designed for cloud-free and mono-temporal observations. The increasing temporal capabilities of today’s sensors enable the use of temporal, along with spectral and spatial features.Domains such as speech recognition or neural machine translation, work with inherently temporal data and, today, achieve impressive results by using sequential encoder-decoder structures. Inspired by these sequence-to-sequence models, we adapt an encoder structure with convolutional recurrent layers in order to approximate a phenological model for vegetation classes based on a temporal sequence of Sentinel 2 (S2) images. In our experiments, we visualize internal activations over a sequence of cloudy and non-cloudy images and find several recurrent cells that reduce the input activity for cloudy observations. Hence, we assume that our network has learned cloud-filtering schemes solely from input data, which could alleviate the need for tedious cloud-filtering as a preprocessing step for many EO approaches. Moreover, using unfiltered temporal series of top-of-atmosphere (TOA) reflectance data, our experiments achieved state-of-the-art classification accuracies on a large number of crop classes with minimal preprocessing, compared to other classification approaches. |
|---|---|
| AbstractList | Earth observation (EO) sensors deliver data at daily or weekly intervals. Most land use and land cover classification (LULC) approaches, however, are designed for cloud-free and mono-temporal observations. The increasing temporal capabilities of today’s sensors enable the use of temporal, along with spectral and spatial features.Domains such as speech recognition or neural machine translation, work with inherently temporal data and, today, achieve impressive results by using sequential encoder-decoder structures. Inspired by these sequence-to-sequence models, we adapt an encoder structure with convolutional recurrent layers in order to approximate a phenological model for vegetation classes based on a temporal sequence of Sentinel 2 (S2) images. In our experiments, we visualize internal activations over a sequence of cloudy and non-cloudy images and find several recurrent cells that reduce the input activity for cloudy observations. Hence, we assume that our network has learned cloud-filtering schemes solely from input data, which could alleviate the need for tedious cloud-filtering as a preprocessing step for many EO approaches. Moreover, using unfiltered temporal series of top-of-atmosphere (TOA) reflectance data, our experiments achieved state-of-the-art classification accuracies on a large number of crop classes with minimal preprocessing, compared to other classification approaches. |
| Author | Körner, Marco Rußwurm, Marc |
| Author_xml | – sequence: 1 givenname: Marc orcidid: 0000-0001-6612-5744 surname: Rußwurm fullname: Rußwurm, Marc – sequence: 2 givenname: Marco orcidid: 0000-0002-9186-4175 surname: Körner fullname: Körner, Marco |
| BookMark | eNp9kF1rFDEUhoNUaK296h8Y8Eawo_maSXIpS22LK4LW63Amk9Qs2WRNMpb--6ZdkVLQ3CQnPHl587xCBzFFi9Apwe8ZU_iD39x4gTkmVL1AR5RS3Cs18oMn50N0UsoGt6UIkxwfoc9fllB9f223u5QhdGuIc7dKv23uVgFK8c4bqD7F7tbXn913-2uxsfpGfrNmybkN3Xk0aba5vEYvHYRiT_7sx-jHp_Pr1WW__npxtfq47g1TovYOZskIwcCtcpII5lTrNw0GGzY5OdFpFlQKbLi1lmCB6TQQkEw4ILOAgR2jq33unGCjd9lvId_pBF4_XqR8oyFXb4LVoxFSOjVO4zBxKiWA43QU0nKqJBlMyzrbZy1xB3e3EMLfQIL1g1f9xGvD3-7xXU7NRKl664uxIUC0aSmaMjyQsbGsoW-eoZu05NjEaEooHRgj_OEvZE-ZnErJ1mnj66PwmsGHf5R49-zN_yrfAzSbpNo |
| CitedBy_id | crossref_primary_10_1007_s10668_023_03588_0 crossref_primary_10_3390_rs12030423 crossref_primary_10_1109_JSTARS_2020_2973602 crossref_primary_10_3390_rs16040712 crossref_primary_10_1109_JSTARS_2022_3218919 crossref_primary_10_3390_rs13132428 crossref_primary_10_1109_JSTARS_2024_3358066 crossref_primary_10_3390_rs13010078 crossref_primary_10_3390_rs15030666 crossref_primary_10_1111_2041_210X_13953 crossref_primary_10_1016_j_isprsjprs_2023_11_016 crossref_primary_10_1016_j_isprsjprs_2022_11_011 crossref_primary_10_1016_j_rse_2024_114430 crossref_primary_10_1016_j_rsase_2023_101036 crossref_primary_10_1029_2023JD040418 crossref_primary_10_3390_data4010010 crossref_primary_10_1016_j_rse_2018_11_032 crossref_primary_10_3390_rs11172029 crossref_primary_10_1016_j_eswa_2023_121283 crossref_primary_10_1007_s12145_023_01190_6 crossref_primary_10_4995_raet_2021_15026 crossref_primary_10_1109_LGRS_2019_2953497 crossref_primary_10_3390_land10030282 crossref_primary_10_1117_1_JRS_17_038503 crossref_primary_10_3390_rs12162655 crossref_primary_10_3389_fdata_2019_00031 crossref_primary_10_1016_j_jag_2021_102543 crossref_primary_10_1080_10095020_2021_2017237 crossref_primary_10_1016_j_rsase_2023_101040 crossref_primary_10_1016_j_fcr_2023_108824 crossref_primary_10_3390_rs15184588 crossref_primary_10_3390_rs12182957 crossref_primary_10_1016_j_isprsjprs_2024_08_018 crossref_primary_10_3390_ijgi8010028 crossref_primary_10_1109_LGRS_2021_3064814 crossref_primary_10_3390_ijgi10070483 crossref_primary_10_1007_s10462_023_10512_5 crossref_primary_10_1117_1_JRS_16_034518 crossref_primary_10_2174_1874347102012010011 crossref_primary_10_3390_rs12101668 crossref_primary_10_3390_rs14164005 crossref_primary_10_1016_j_isprsjprs_2019_09_016 crossref_primary_10_1016_j_rse_2019_111411 crossref_primary_10_3390_rs15092343 crossref_primary_10_1016_j_rse_2021_112599 crossref_primary_10_1109_TGRS_2021_3055584 crossref_primary_10_1016_j_isprsjprs_2019_01_011 crossref_primary_10_1109_MGRS_2021_3136100 crossref_primary_10_1109_TGRS_2018_2863224 crossref_primary_10_3390_rs13224668 crossref_primary_10_1016_j_jag_2024_103826 crossref_primary_10_1109_TGRS_2023_3321156 crossref_primary_10_3390_rs16224225 crossref_primary_10_1016_j_knosys_2022_109881 crossref_primary_10_1109_ACCESS_2023_3311711 crossref_primary_10_1109_TGRS_2021_3101965 crossref_primary_10_1016_j_jag_2021_102651 crossref_primary_10_3390_rs15030799 crossref_primary_10_3390_rs11050523 crossref_primary_10_1109_TGRS_2020_3005623 crossref_primary_10_3390_jimaging6070068 crossref_primary_10_1109_TGRS_2022_3198187 crossref_primary_10_3390_rs12020207 crossref_primary_10_3390_app10010238 crossref_primary_10_1109_TGRS_2019_2961947 crossref_primary_10_3390_rs14194858 crossref_primary_10_3389_fpls_2022_839327 crossref_primary_10_3390_s19051140 crossref_primary_10_1016_j_jag_2022_103060 crossref_primary_10_1109_JSTARS_2024_3387452 crossref_primary_10_1038_s41598_020_74215_5 crossref_primary_10_3390_rs14030634 crossref_primary_10_3390_rs14225739 crossref_primary_10_1080_01431161_2023_2232552 crossref_primary_10_1088_1742_6596_2816_1_012020 crossref_primary_10_1109_TGRS_2023_3285401 crossref_primary_10_1016_j_jag_2025_104426 crossref_primary_10_3390_rs11222673 crossref_primary_10_1016_j_rse_2024_114109 crossref_primary_10_1109_JSTARS_2024_3501216 crossref_primary_10_3390_s21051566 crossref_primary_10_3390_rs14205232 crossref_primary_10_1016_j_rsase_2023_100928 crossref_primary_10_1016_j_habitatint_2019_04_008 crossref_primary_10_1109_TGRS_2021_3120914 crossref_primary_10_5194_os_21_113_2025 crossref_primary_10_1109_ACCESS_2021_3069882 crossref_primary_10_1016_j_isprsjprs_2020_06_006 crossref_primary_10_3390_rs16244620 crossref_primary_10_1007_s12524_024_01839_9 crossref_primary_10_1016_j_isprsjprs_2024_06_005 crossref_primary_10_3390_su11123278 crossref_primary_10_1016_j_ophoto_2023_100034 crossref_primary_10_3390_rs15194714 crossref_primary_10_3390_rs11080990 crossref_primary_10_1016_j_isprsjprs_2024_04_021 crossref_primary_10_3390_rs16050838 crossref_primary_10_1016_j_rsase_2025_101505 crossref_primary_10_3390_rs11091006 crossref_primary_10_1016_j_aiia_2021_11_004 crossref_primary_10_3389_fpls_2022_1030595 crossref_primary_10_1109_TGRS_2023_3271024 crossref_primary_10_1016_j_rse_2024_114110 crossref_primary_10_3390_rs13142790 crossref_primary_10_1016_j_compag_2024_109732 crossref_primary_10_1080_2150704X_2021_1950940 crossref_primary_10_1109_JSTARS_2022_3219816 crossref_primary_10_3390_rs15153859 crossref_primary_10_3390_rs16193568 crossref_primary_10_1016_j_envsoft_2019_07_013 crossref_primary_10_1016_j_isprsjprs_2019_12_014 crossref_primary_10_1007_s41064_020_00111_2 crossref_primary_10_1016_j_rse_2021_112600 crossref_primary_10_3390_rs12183053 crossref_primary_10_1016_j_rse_2021_112603 crossref_primary_10_3390_rs14030638 crossref_primary_10_3390_rs14236017 crossref_primary_10_1109_ACCESS_2024_3487267 crossref_primary_10_3390_rs15123009 crossref_primary_10_3390_rs15010047 crossref_primary_10_1016_j_isprsjprs_2024_06_021 crossref_primary_10_3390_rs11141665 crossref_primary_10_1016_j_isprsjprs_2022_12_016 crossref_primary_10_1016_j_ecoinf_2023_102333 crossref_primary_10_1016_j_compag_2023_108012 crossref_primary_10_1109_TGRS_2024_3442171 crossref_primary_10_1080_01431161_2021_1976876 crossref_primary_10_3390_rs14215373 crossref_primary_10_3390_data6060055 crossref_primary_10_1016_j_isprsjprs_2022_09_010 crossref_primary_10_3390_rs16122150 crossref_primary_10_3390_su11195376 crossref_primary_10_1080_15481603_2022_2115619 crossref_primary_10_3390_rs11232784 crossref_primary_10_3390_ijgi7040147 crossref_primary_10_3390_rs13193953 crossref_primary_10_3390_ijgi11120587 crossref_primary_10_1016_j_isprsjprs_2020_01_028 crossref_primary_10_1016_j_isprsjprs_2022_12_005 crossref_primary_10_1016_j_asoc_2025_112876 crossref_primary_10_3390_app14093545 crossref_primary_10_1016_j_jag_2025_104471 crossref_primary_10_1016_j_agwat_2025_109319 crossref_primary_10_1016_j_rse_2020_111946 crossref_primary_10_1080_19479832_2021_2019133 crossref_primary_10_1016_j_isprsjprs_2020_11_007 crossref_primary_10_1016_j_isprsjprs_2019_04_016 crossref_primary_10_3390_rs13224599 crossref_primary_10_1007_s41064_022_00217_9 crossref_primary_10_3390_rs12172814 crossref_primary_10_1016_j_isprsjprs_2024_01_025 crossref_primary_10_1016_j_isprsjprs_2023_03_007 crossref_primary_10_1016_j_jag_2021_102441 crossref_primary_10_1109_JSTARS_2021_3055784 crossref_primary_10_1016_j_isprsjprs_2023_01_017 crossref_primary_10_1016_j_jag_2024_104040 crossref_primary_10_1016_j_isprsjprs_2022_04_018 crossref_primary_10_1145_3649448 |
| Cites_doi | 10.1109/MGRS.2017.2762307 10.1080/01431169608949077 10.1016/j.rse.2011.01.009 10.1038/35016072 10.1109/72.279181 10.1016/j.compag.2012.07.015 10.1109/CVPRW.2017.193 10.1007/978-0-85729-667-2_5 10.3390/rs2041035 10.3390/rs70505347 10.3390/rs8060506 10.1006/jcss.1995.1013 10.1016/j.compag.2014.02.003 10.11613/BM.2012.031 10.1016/j.rse.2010.03.002 10.1109/IGARSS.2015.7326945 10.1162/neco.1997.9.8.1735 10.18653/v1/K16-1028 10.1109/MGRS.2016.2540798 10.2307/3235884 10.1109/LGRS.2017.2657778 10.1145/3097983.3098112 10.1016/0034-4257(84)90006-3 10.3390/rs71114680 10.1109/TGRS.2014.2326886 10.1177/001316446002000104 10.3115/v1/D14-1179 10.3390/rs70403633 10.1109/TCYB.2016.2605044 10.1016/j.neunet.2018.05.019 10.1109/TGRS.2018.2863224 10.1117/12.410341 |
| ContentType | Journal Article |
| Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/ijgi7040129 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: Openly Available Collection - DOAJ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Visual Arts |
| EISSN | 2220-9964 |
| ExternalDocumentID | oai_doaj_org_article_6c788f96b65b4288aaf42678e429815c 10.3390/ijgi7040129 10_3390_ijgi7040129 |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RIG ZBA 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO ADTOC ITC UNPAY |
| ID | FETCH-LOGICAL-c397t-fad83110a4e9f8173f9220b5c0c3bf8b2bd72870c4eee10702b51a837fa1d7a53 |
| IEDL.DBID | UNPAY |
| ISSN | 2220-9964 |
| IngestDate | Fri Oct 03 12:51:50 EDT 2025 Sun Oct 26 03:09:27 EDT 2025 Thu Sep 04 15:41:31 EDT 2025 Fri Jul 25 12:00:28 EDT 2025 Thu Apr 24 22:55:36 EDT 2025 Thu Oct 16 04:43:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c397t-fad83110a4e9f8173f9220b5c0c3bf8b2bd72870c4eee10702b51a837fa1d7a53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-6612-5744 0000-0002-9186-4175 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2220-9964/7/4/129/pdf?version=1525344664 |
| PQID | 2122533145 |
| PQPubID | 2032387 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6c788f96b65b4288aaf42678e429815c unpaywall_primary_10_3390_ijgi7040129 proquest_miscellaneous_2305164013 proquest_journals_2122533145 crossref_citationtrail_10_3390_ijgi7040129 crossref_primary_10_3390_ijgi7040129 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-04-01 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | ISPRS international journal of geo-information |
| PublicationYear | 2018 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ngugi (ref_14) 2011; 115 Richter (ref_45) 1996; 17 Odenweller (ref_2) 1984; 14 ref_35 Hahnloser (ref_37) 2000; 405 Hu (ref_19) 2015; 7 ref_32 Hao (ref_13) 2015; 7 ref_31 Cohen (ref_40) 1960; 20 ref_39 Hochreiter (ref_34) 1997; 9 Chorowski (ref_9) 2015; 1 Shi (ref_36) 2015; 1 Siachalou (ref_15) 2015; 7 Scott (ref_20) 2017; 14 ref_25 ref_24 ref_46 Conrad (ref_12) 2014; 103 Hoberg (ref_16) 2015; 53 ref_23 ref_22 ref_44 ref_21 McHugh (ref_43) 2012; 22 ref_41 Reed (ref_3) 1994; 5 Hagolle (ref_47) 2010; 114 ref_29 Fung (ref_42) 1988; 54 ref_28 Conrad (ref_11) 2010; 2 Zhu (ref_18) 2017; 5 ref_27 Siegelmann (ref_30) 1995; 50 ref_26 ref_8 Foerster (ref_10) 2012; 89 Yoshua (ref_33) 1994; 5 ref_5 Zhang (ref_17) 2016; 4 ref_4 ref_7 Zhang (ref_1) 2018; 48 ref_6 Maas (ref_38) 2013; 28 |
| References_xml | – volume: 1 start-page: 557 year: 2015 ident: ref_9 article-title: Attention-based models for speech recognition publication-title: Adv. Neural Inf. Process. Syst. – volume: 5 start-page: 8 year: 2017 ident: ref_18 article-title: Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – volume: 17 start-page: 1201 year: 1996 ident: ref_45 article-title: A spatially adaptive fast atmospheric correction algorithm publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608949077 – volume: 115 start-page: 1301 year: 2011 ident: ref_14 article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.009 – volume: 1 start-page: 802 year: 2015 ident: ref_36 article-title: Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting publication-title: Adv. Neural Inf. Process. Syst. – volume: 405 start-page: 947 year: 2000 ident: ref_37 article-title: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit publication-title: Nature doi: 10.1038/35016072 – ident: ref_5 – ident: ref_32 – volume: 5 start-page: 157 year: 1994 ident: ref_33 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.279181 – volume: 89 start-page: 30 year: 2012 ident: ref_10 article-title: Crop type mapping using spectral-temporal profiles and phenological information publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2012.07.015 – ident: ref_26 – ident: ref_28 doi: 10.1109/CVPRW.2017.193 – volume: 28 start-page: 6 year: 2013 ident: ref_38 article-title: Rectifier Nonlinearities Improve Neural Network Acoustic Models publication-title: Proc. Int. Conf. Mach. Learn. – ident: ref_44 doi: 10.1007/978-0-85729-667-2_5 – volume: 2 start-page: 1035 year: 2010 ident: ref_11 article-title: Per-Field Irrigated Crop Classification in Arid Central Asia Using SPOT and ASTER Data publication-title: Remote Sens. doi: 10.3390/rs2041035 – volume: 7 start-page: 5347 year: 2015 ident: ref_13 article-title: Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA publication-title: Remote Sens. doi: 10.3390/rs70505347 – ident: ref_23 doi: 10.3390/rs8060506 – volume: 50 start-page: 132 year: 1995 ident: ref_30 article-title: On the Computational Power of Neural Nets publication-title: J. Comput. Syst. Sci. doi: 10.1006/jcss.1995.1013 – ident: ref_39 – volume: 103 start-page: 63 year: 2014 ident: ref_12 article-title: Derivation of temporal windows for accurate crop discrimination in heterogeneous croplands of Uzbekistan using multitemporal RapidEye images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2014.02.003 – volume: 22 start-page: 276 year: 2012 ident: ref_43 article-title: Interrater reliability: the kappa statistic publication-title: Biochem. Med. doi: 10.11613/BM.2012.031 – volume: 114 start-page: 1747 year: 2010 ident: ref_47 article-title: A multi-temporal method for cloud detection, applied to FORMOSAT-2, VENuS, LANDSAT and SENTINEL-2 images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.03.002 – ident: ref_21 doi: 10.1109/IGARSS.2015.7326945 – volume: 9 start-page: 1735 year: 1997 ident: ref_34 article-title: Long Short-Term Memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_7 doi: 10.18653/v1/K16-1028 – ident: ref_6 – ident: ref_8 – ident: ref_4 – volume: 4 start-page: 22 year: 2016 ident: ref_17 article-title: Deep Learning for Remote Sensing Data: A Technical Tutorial on the State of the Art publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2016.2540798 – ident: ref_31 – volume: 54 start-page: 1449 year: 1988 ident: ref_42 article-title: The Determination of Optimal Threshold Levels for Change Detection Using Various Accuracy Indices publication-title: Photogramm. Eng. Remote Sens. – ident: ref_29 – volume: 5 start-page: 703 year: 1994 ident: ref_3 article-title: Measuring Phenological Variability from Satellite Imagery publication-title: J. Veg. Sci. doi: 10.2307/3235884 – volume: 14 start-page: 549 year: 2017 ident: ref_20 article-title: Training Deep Convolutional Neural Networks for Land-Cover Classification of High-Resolution Imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2657778 – ident: ref_24 doi: 10.1145/3097983.3098112 – volume: 14 start-page: 39 year: 1984 ident: ref_2 article-title: Crop identification using Landsat temporal-spectral profiles publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(84)90006-3 – volume: 7 start-page: 14680 year: 2015 ident: ref_19 article-title: Transferring Deep Convolutional Neural Networks for the Scene Classification of High-Resolution Remote Sensing Imagery publication-title: Remote Sens. doi: 10.3390/rs71114680 – volume: 53 start-page: 659 year: 2015 ident: ref_16 article-title: Conditional random fields for multitemporal and multiscale classification of optical satellite imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2326886 – ident: ref_41 – volume: 20 start-page: 37 year: 1960 ident: ref_40 article-title: A coefficient of agreeement for nominal scales publication-title: Educ. Psychol. Meas. doi: 10.1177/001316446002000104 – ident: ref_35 doi: 10.3115/v1/D14-1179 – volume: 7 start-page: 3633 year: 2015 ident: ref_15 article-title: A hidden markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data publication-title: Remote Sens. doi: 10.3390/rs70403633 – ident: ref_22 – volume: 48 start-page: 16 year: 2018 ident: ref_1 article-title: Simultaneous Spectral-Spatial Feature Selection and Extraction for Hyperspectral Images publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2016.2605044 – ident: ref_27 doi: 10.1016/j.neunet.2018.05.019 – ident: ref_25 doi: 10.1109/TGRS.2018.2863224 – ident: ref_46 doi: 10.1117/12.410341 |
| SSID | ssj0000913840 |
| Score | 2.5670207 |
| Snippet | Earth observation (EO) sensors deliver data at daily or weekly intervals. Most land use and land cover classification (LULC) approaches, however, are designed... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 129 |
| SubjectTerms | Atmospheric models Classification Coders crop classification Data deep learning Domains Earth Feature recognition Filtration Land cover Land use land use and land cover classification land use and land cover maps Machine translation multi-temporal classification phenology Preprocessing recurrent networks Reflectance Sensors Sentinel 2 sequence encoder sequence-to-sequence Sequencing speech Speech recognition vegetation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEB7Ei3oQXRXriwjrRSjbtE2bHlUU8XXwxd5KnrpSqri7iP_eSVrXFUQvXts5hJnJzPclkxmAbqwjkxlLQ8moCVNNbciN1GEsdMryPBLGT567vMpO79KzPutPjfpyNWFNe-BGcb1MIUmzRSYzJhEqcyEsJpWcGwyknDLlom_Eiyky5WNwQROkLs2DvAR5fW_w9DDI0WOpB5NfKch36v8GL-fG9Yt4fxNVNZVpTpZgsYWI5KBZ2jLMmLoDc-208sf3DizcD4bjRmK4Auf-DW142_SYqsiFqDU5cpWZxE-8dLVAXv3EnbmSG187jfu6ItfurN11ZyLHtXva_jpchbuT49uj07AdkRAqBBKj0ArNE8zgIjWF5TRPbBHHkWQqUom0XMZS5-4qU6XGGGR6UYw2EUhKraA6FyxZg9n6uTbrQGQmVOomoEuFZkINapowzVJMbToS1gSw_6m1UrX9w90Yi6pEHuFUXE6pOIDuRPilaZvxs9ihU_9ExPW69h_QA8rWA8q_PCCArU_jle0GHJaYkWNEsjRlAexOfuPWcfchojbPY5TBWIdsEUFwAHsTo_-23o3_WO8mzCPq4k35zxbMjl7HZhuRzUjueCf-AOGY9Pg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ba9VAEB7q6UP1QbQqplZZob4IS7NJNsl5ELHllOLlILWVvoW91iMh5_RckP57ZzaXVpC-JgMJM7s73-zOfh_AQWJjlzsvuJbC8cwKz0unLU-UzWRRxMoF5blv0_z0Ivt8KS-3YNrfhaG2yn5NDAu1nRvaIz_EJTZBaCIy-XFxzUk1ik5XewkN1Ukr2A-BYuwBbCfEjDWC7aPJ9PvZsOtCLJhY0rQX9VKs9w9nv69mBY5kEUDmbWoKDP7_wM6dTbNQN39UXd_JQCdP4HEHHdmnNtZPYcs1u7DTqZj_utmFRz9nq01rsXoGX8LdWn7eck_V7KtqLDumjk0WlDCpRyiEhdFeLPsReqpxvtfsjPbgibWJTRq68r5cPYeLk8n58SnvpBO4QYCx5l7ZMsXMrjI39qUoUj9OklhLE5tU-1In2hZ0xGky5xxWgHGCsVJYrHolbKFk-gJGzbxxL4HpXJmMlNG1wfChB61IpZUZpjwbK-8ieN97rTIdrzjJW9QV1hfk4uqOiyM4GIwXLZ3G_82OyP2DCXFghwfz5VXVTakqN1i--3Guc6mxiCqV8gg3itJhii2FNBHs98Gruom5qm6HUQRvh9c4peicRDVuvkEbXAOxikRwHMG7Iej3_e_e_Z96BQ8RZ5Vtw88-jNbLjXuNWGat33QD9C_IC_Ol priority: 102 providerName: ProQuest |
| Title | Multi-Temporal Land Cover Classification with Sequential Recurrent Encoders |
| URI | https://www.proquest.com/docview/2122533145 https://www.proquest.com/docview/2305164013 https://www.mdpi.com/2220-9964/7/4/129/pdf?version=1525344664 https://doaj.org/article/6c788f96b65b4288aaf42678e429815c |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Openly Available Collection - DOAJ customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB7R5FA48CggDCUyUrkgubHjXXtzQm2VUPGIqtKgcrL2WdJaThTHoPLrmV1vQkEIIa72WPJqZna-mZ2dD2BvoGKdaZNEgiY6IioxEdNCRQOuCM3zmGvHPPdhkh1Pydtzeu57c2rfVomp-Mxt0hi74ggBOennfdLHyNRfKPP6qy8kWeae1B5Hki3oZhSheAe608nJwWdLKLf-tL2Tl2Jq359dXsxyNNrE4cmfUcgN6_8FYW431YJff-NleSPYjO-1jKq1m1Foe0yu9puV2Jfff5vg-N_ruA93PQwND1q7eQC3dLUD254R_cv1Dtz5NKubVqJ-CO_cPd3orJ1jVYbveaXCI9v9GTpWTdtv5FQc2rpu-NH1Z-PeUYantp5vJ0CFo8pen1_Wj2A6Hp0dHUeehiGSCFZWkeGKpYgSONFDw5I8NUNcj6AylqkwTAyEyu1xqSRaa8wm4wHqnWPia3iick7Tx9Cp5pV-AqHIuCSWZV1INAWEdypJqaIEw6eKudEBvFqrpZB-RrmlyigLzFWsDosbOgxgbyO8aEdz_Fns0Op3I2LnabsH8-VF4d2zyGTOmBlmIqMCEzLGuUHokjON4ZolVAawu7aOwjt5XWDUR82lCaEBvNi8Rve0Zy680vMGZXA_xYwUgXYALzdW9bf_ffqPcs_gNoI31nYR7UJntWz0cwRIK9GDLTZ-04Pu4WhyctpzZYaed40ffE0OKg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7SFwQKWAMBRYpPaCZNWPtb0-VIiWVClJI1RS1JvZZxtkOWmcqMqf47cx61eLhHrr1RnJ8ey8d2Y-gL1AeTrWxndF5GuXKt-4TAvlBlzRKEk8rivkubNxPLig3y6jyw34087C2LbK1iZWhlrNpK2RH6CJDTA08Wn0eX7jWtQoe7vaQmjwBlpBHVYrxprBjqFe32IKVx6efsXz3g-Ck_7keOA2KAOuRF-8dA1XLEQnyKlODfOT0KRB4IlIejIUholAqMTeBkqqtcZkyQvwszjmdYb7KuEWNQJdwBYNaYrJ39ZRf_z9vKvy2K2bmELVg4FhmHoH099X0wQ1x6-C2jtXWCEG_BPm9lbFnK9veZ7f83gn2_CsCVXJl1q2nsOGLnag16CmX6934OnPabmqKcoXMKxmed1JvesqJyNeKHJsO0RJhbxpe5IqMSC29kt-VD3caF9ycm5r_nZLFOkXdsR-Ub6Ei0dh4ivYLGaFfg1ExFxSi8QuJIoLclD5YaQiii5WedxoBz61XMtks8fcwmnkGeYzlsXZPRY7sNcRz-v1Hf8nO7Ls70jszu3qwWxxlTUqnMUyYcyksYgjgUkb49xgeJMwjS6d-ZF0YLc9vKwxBGV2J7YOfOx-RhW29zK80LMV0qDNxawVg3EH9rtDf-j_vnn4VR-gN5icjbLR6Xj4Fp5gjMfqZqNd2FwuVvodxlFL8b4RVgK_Hls__gKJwDCw |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1baxNREB5KBasPolVxteoR2hdhyd735EFE28bW1CLaSt-251ojyyZmE0r-mr_OmbOXVpC-9XUzsNk5cz8z8wFsRzowmbGhL9PQ-IkOrc-N1H4kdJLmeSCMQ577cpwdnCafz9KzNfjTzcJQW2VnE52h1lNFNfIBmtgIQ5MwSQe2bYv4ujd6P_vtE4IU3bR2cBqNiIzN6hLTt_rd4R6e9U4UjfZPdg_8FmHAV-iHF74VmsfoAEVihpaHeWyHURTIVAUqlpbLSOqcbgJVYozBRCmI8JME5nRWhDoXhBiB5v9OTlvcaUp99Kmv79C-TUyempHAOB4Gg8mvi0mOOhO6cPbKCTqsgH8C3I1lNROrS1GW13zd6CE8aINU9qGRqkewZqpN2Gjx0n-uNuH-j0m9bCjqxzB2U7z-SbPlqmRHotJsl3pDmcPcpG4kJwCMqr7su-veRstSsm9U7af9UGy_ouH6ef0ETm-FhU9hvZpW5hkwmQmVEAa7VCgoyEEdxqlOE3SuOhDWePC241qh2g3mBKRRFpjJEIuLayz2YLsnnjWLO_5P9pHY35PQtm33YDq_KFrlLTKVc26HmcxSiekaF8JiYJNzg86ch6nyYKs7vKI1AXVxJbAevOl_RuWlGxlRmekSadDaYr6KYbgHO_2h3_R_n9_8qtdwF7WiODo8Hr-Aexjc8abLaAvWF_OleYkB1EK-cpLK4Py2VeMvNUsuSg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7B9lA48CggAi0KUrkgpYk3duI9oVK1qnhUCLqonCI_y7ZRdrXZtCq_nrHj3RaEEOKaTKRYM_Z8Y4-_D2B7qDNTGEsSyYhJqCY24UbqZCg0ZWWZCeOV5z4eFYdj-u6EnYTenDa0VWIpPvGLNOauLEFATtMypSlmpnSm7ZuLsJHklHtydxxJb8NawRCKD2BtfPRp95sTlFt-2t_Jy7G0Tydnp5MSg5Z4PHmdhTxZ_y8Ic71rZuLqUtT1jWRzcL9XVG09R6HrMTnf6RZyR_34jcHxv8fxAO4FGBrv9nHzEG6ZZgPWgyL696sNuPt10na9RfsI3vt7uslxz2NVxx9Eo-M91_0Ze1VN12_kXRy7fd34i-_PxrWjjj-7_XzHABXvN-76_Lx9DOOD_eO9wyTIMCQKwcoisULzHFGCoGZkOSlzO8LxSKYylUvL5VDq0h2XKmqMwWoyG6LfBRa-VhBdCpY_gUEzbcxTiGUhFHUq61JhKCC80yRnmlFMnzoT1kTweumWSgWOcieVUVdYqzgfVjd8GMH2ynjWU3P82eyt8-_KxPFp-wfT-WkVpmdVqJJzOypkwSQWZFwIi9Cl5AbTNSdMRbC5jI4qTPK2wqyPnssJZRG8XL3G6enOXERjph3a4HqKFSkC7QheraLqb__77B_tnsMdBG-87yLahMFi3pktBEgL-SJMg5-MFAq1 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Temporal+Land+Cover+Classification+with+Sequential+Recurrent+Encoders&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Marc+Ru%C3%9Fwurm&rft.au=Marco+K%C3%B6rner&rft.date=2018-04-01&rft.pub=MDPI+AG&rft.eissn=2220-9964&rft.volume=7&rft.issue=4&rft.spage=129&rft_id=info:doi/10.3390%2Fijgi7040129&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6c788f96b65b4288aaf42678e429815c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |