Deep learning to develop zero-equation based turbulence model for CFD simulations of the built environment

This study aims to improve the accuracy and speed of predictions for thermal comfort and air quality in built environments by creating a coupled framework between computational fluid dynamics (CFD) simulations and deep learning models. The coupling approach is showcased by the development of a data-...

Full description

Saved in:
Bibliographic Details
Published inBuilding simulation Vol. 17; no. 3; pp. 399 - 414
Main Authors Calzolari, Giovanni, Liu, Wei
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1996-3599
1996-8744
1996-8744
DOI10.1007/s12273-023-1083-4

Cover

Abstract This study aims to improve the accuracy and speed of predictions for thermal comfort and air quality in built environments by creating a coupled framework between computational fluid dynamics (CFD) simulations and deep learning models. The coupling approach is showcased by the development of a data-driven turbulence model. The new turbulence model is built using a deep learning neural network, whose mapping structure is based on a zero-equation turbulence model for built environment simulations, and is coupled with the CFD software OpenFOAM to create a hybrid framework. The neural network is a standard shallow multi-layer perceptron. The number of hidden layers and nodes per layer was optimized using Bayesan optimization algorithm. The framework is trained on an indoor environment case study, as well as tested on an indoor office simulation and an outdoor building array simulation. Results show that the deep learning based turbulence model is more robust and faster than traditional two-equation Reynolds average Navier-Stokes (RANS) turbulence models, while maintaining a similar level of accuracy. The model also outperforms the standard algebraic zero-equation model due to its superior ability to generalize to various flow scenarios. Despite some challenges, namely the mapping constraint, the limited training dataset size and the source of generation of training data, the hybrid framework demonstrates the viability of the coupling technique and serves as a starting point for future development of more reliable and advanced models.
AbstractList This study aims to improve the accuracy and speed of predictions for thermal comfort and air quality in built environments by creating a coupled framework between computational fluid dynamics (CFD) simulations and deep learning models. The coupling approach is showcased by the development of a data-driven turbulence model. The new turbulence model is built using a deep learning neural network, whose mapping structure is based on a zero-equation turbulence model for built environment simulations, and is coupled with the CFD software OpenFOAM to create a hybrid framework. The neural network is a standard shallow multi-layer perceptron. The number of hidden layers and nodes per layer was optimized using Bayesan optimization algorithm. The framework is trained on an indoor environment case study, as well as tested on an indoor office simulation and an outdoor building array simulation. Results show that the deep learning based turbulence model is more robust and faster than traditional two-equation Reynolds average Navier-Stokes (RANS) turbulence models, while maintaining a similar level of accuracy. The model also outperforms the standard algebraic zero-equation model due to its superior ability to generalize to various flow scenarios. Despite some challenges, namely the mapping constraint, the limited training dataset size and the source of generation of training data, the hybrid framework demonstrates the viability of the coupling technique and serves as a starting point for future development of more reliable and advanced models.
Author Liu, Wei
Calzolari, Giovanni
Author_xml – sequence: 1
  givenname: Giovanni
  surname: Calzolari
  fullname: Calzolari, Giovanni
  organization: Division of Sustainable Buildings, Department of Civil and Architectural Engineering, KTH Royal Institute of Technology
– sequence: 2
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  email: weiliu2@kth.se
  organization: Division of Sustainable Buildings, Department of Civil and Architectural Engineering, KTH Royal Institute of Technology
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-367103$$DView record from Swedish Publication Index
BookMark eNqNkMFu1DAURSNUJErpB7CzxDpg-zlxsqxmKCBVYgNsLcd5nnrw2KnttCpfT6YZgYQEwht7cY51731ZnYUYsKpeM_qWUSrfZca5hJpyqBntoBbPqnPW923dSSHOTm9o-v5FdZnznh6PpI2A82q_RZyIR52CCztSIhnxHn2cyA9Msca7WRcXAxl0xpGUOQ2zx2CQHOKIntiYyOZ6S7I7zP6JzCRaUm6RDLPzhWC4dymGA4byqnputc94ebovqq_X779sPtY3nz982lzd1AZ6WWrb2rYdZN-N0AFvrTCthn6QBunIWgnGSiu4bJb8DIBiB8wCE8CYaa3REi4qvv47h0k_Pmjv1ZTcQadHxag6DqbWwdQymDoOpsQi1auUH3Cah19G1E5t3bcrFdNOfS-3ClrJKCz8m5WfUrybMRe1j3MKSy_Fe84bwWlzjCJXyqSYc0KrjCtPM5Wknf9nHvaH-T8dTsXzwoYdpt-Z_i79BF6GrUg
CitedBy_id crossref_primary_10_1016_j_jocs_2024_102404
crossref_primary_10_1038_s41598_025_88789_5
crossref_primary_10_1063_5_0216440
crossref_primary_10_1063_5_0250564
crossref_primary_10_1016_j_jobe_2024_111182
crossref_primary_10_1063_5_0250509
Cites_doi 10.1146/annurev-fluid-010719-060214
10.1007/s40091-019-0227-3
10.1007/s12273-018-0459-3
10.2514/6.2021-1485
10.1146/annurev.fluid.30.1.539
10.1016/B978-0-08-030937-8.50016-7
10.1017/jfm.2019.205
10.1016/j.crme.2007.08.004
10.1016/j.buildenv.2021.108633
10.5220/0005573606290634
10.1007/BF01061452
10.1007/s00521-019-04508-y
10.1016/j.oceaneng.2022.111716
10.1016/S0378-7788(98)00020-6
10.1111/ina.13125
10.1007/s00158-021-02851-0
10.1017/S0022112070000691
10.1016/j.enbuild.2020.110516
10.1016/j.buildenv.2023.110056
10.1177/00375497211061260
10.1016/j.scs.2021.103187
10.1016/j.buildenv.2012.03.023
10.1016/j.ecoinf.2019.101019
10.1080/10789669.2009.10390881
10.1111/ina.13151
10.1016/j.enbuild.2022.112146
10.1016/j.buildenv.2023.110563
10.1016/j.buildenv.2021.108581
10.1016/j.ijheatmasstransfer.2019.119083
10.1016/j.buildenv.2022.109246
10.1016/j.jweia.2011.07.004
10.1063/1.168744
10.1016/j.enbuild.2018.11.043
10.1016/j.jcp.2018.10.045
10.1016/j.buildenv.2021.108315
10.1016/j.buildenv.2020.107144
10.1016/j.earscirev.2019.103076
10.1016/j.buildenv.2019.106394
10.1098/rspa.2020.0097
10.1016/j.buildenv.2023.110191
10.3390/atmos14030478
10.1016/j.buildenv.2019.106293
10.1111/ina.12840
10.1145/3292500.3330701
10.1016/j.jweia.2021.104647
10.1038/s43588-022-00264-7
10.1016/j.atmosenv.2020.118127
ContentType Journal Article
Copyright The Author(s) 2023
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ADTPV
AOWAS
D8V
ADTOC
UNPAY
DOI 10.1007/s12273-023-1083-4
DatabaseName Springer Nature OA Free Journals
CrossRef
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef



Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (ODIN)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-8744
EndPage 414
ExternalDocumentID 10.1007/s12273-023-1083-4
oai_DiVA_org_kth_367103
10_1007_s12273_023_1083_4
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
06D
0R~
0VY
1N0
23N
29~
2JN
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
5GY
5VS
6J9
6NX
8TC
8UJ
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
B-.
BA0
BDATZ
BGNMA
C6C
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
I~X
I~Y
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OAM
P9P
PT4
QOS
R89
RLLFE
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7R
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ADTPV
AOWAS
D8V
ADTOC
UNPAY
ID FETCH-LOGICAL-c397t-f6f66b798d38326f4c6a39b7ce0d1673cf7f42750541330e831f314311c6fca73
IEDL.DBID C6C
ISSN 1996-3599
1996-8744
IngestDate Wed Oct 01 15:13:01 EDT 2025
Sat Sep 06 10:52:15 EDT 2025
Wed Sep 17 23:57:34 EDT 2025
Wed Oct 01 02:33:30 EDT 2025
Thu Apr 24 23:04:29 EDT 2025
Fri Feb 21 02:41:25 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords computational fluid dynamics (CFD)
OpenFOAM
turbulence model
neural networks
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-f6f66b798d38326f4c6a39b7ce0d1673cf7f42750541330e831f314311c6fca73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s12273-023-1083-4
PQID 2922542057
PQPubID 2043952
PageCount 16
ParticipantIDs unpaywall_primary_10_1007_s12273_023_1083_4
swepub_primary_oai_DiVA_org_kth_367103
proquest_journals_2922542057
crossref_citationtrail_10_1007_s12273_023_1083_4
crossref_primary_10_1007_s12273_023_1083_4
springer_journals_10_1007_s12273_023_1083_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationSubtitle An International Journal
PublicationTitle Building simulation
PublicationTitleAbbrev Build. Simul
PublicationYear 2024
Publisher Tsinghua University Press
Springer Nature B.V
Publisher_xml – name: Tsinghua University Press
– name: Springer Nature B.V
References YingXAn overview of overfitting and its solutionsJournal of Physics: Conference Series20191168022022
MoinPMaheshKDIRECT NUMERICAL SIMULATION: A tool in turbulence researchAnnual Review of Fluid Mechanics1998305395781998AnRFM..30..539M160975310.1146/annurev.fluid.30.1.539
Mohan AT, Lubbers N, Livescu D, et al. (2020). Embedding hard physical constraints in neural network coarse-graining of 3D turbulence. arXiv: 2002.00021.
LaunderBESpaldingDBThe numerical computation of turbulent flowsNumerical Prediction of Flow, Heat Transfer, Turbulence and Combustion1983AmsterdamElsevier9611610.1016/B978-0-08-030937-8.50016-7
EsagerMWMÜnlüKDForecasting air quality in Tripoli: An evaluation of deep learning models for hourly PM2.5 surface mass concentrationsAtmosphere2023144782023Atmos..14..478E10.3390/atmos14030478
WareyAKaushikSKhalighiBData-driven prediction of vehicle cabin thermal comfort: Using machine learning and high-fidelity simulation resultsInternational Journal of Heat and Mass Transfer202014811908310.1016/j.ijheatmasstransfer.2019.119083
CalzolariGLiuWDeep learning to replace, improve, or aid CFD analysis in built environment applications: A reviewBuilding and Environment202120610831510.1016/j.buildenv.2021.108315
SrebricJChenQAn example of verification, validation, and reporting of indoor environment CFD analysesASHRAE Transactions20021082185194
VinuesaRBruntonSLEnhancing computational fluid dynamics with machine learningNature Computational Science202223583663817758710.1038/s43588-022-00264-7
Obiols-Sales O, Vishnu A, Malaya N, et al. (2022). NUNet: Deep learning for non-uniform super-resolution of turbulent flows. arXiv: 2203.14154.
DingCLamKPData-driven model for cross ventilation potential in high-density cities based on coupled CFD simulation and machine learningBuilding and Environment201916510639410.1016/j.buildenv.2019.106394
Slotnick J, Khodadoust A, Alonso J, et al. (2014). CFD vision 2030 study: A path to revolutionary computational aerosciences. National Aeronautics and Space Administration, Langley Research Center.
ZhangXWeerasuriyaAUTseKTCFD simulation of natural ventilation of a generic building in various incident wind directions: comparison of turbulence modelling, evaluation methods, and ventilation mechanismsEnergy and Buildings202022911051610.1016/j.enbuild.2020.110516
YuanXChenQGlicksmanLMeasurements and computations of room airflow with displacement ventilationASHRAE Transactions19991051340352
HangJLiYSandbergMThe influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areasBuilding and Environment20125634636010.1016/j.buildenv.2012.03.023
ShaoXLiuZZhangSPIGNN-CFD: A physics-informed graph neural network for rapid predicting urban wind field defined on unstructured meshBuilding and Environment202323211005610.1016/j.buildenv.2023.110056
RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJournal of Computational Physics20193786867072019JCoPh.378..686R388169510.1016/j.jcp.2018.10.045
Akiba T, Sano S, Yanase T, et al. (2019). Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA.
Duraisamy K, Spalart P, Rumsey C (2017). Status, emerging ideas and future directions of turbulence modeling research in aeronautics. National Aeronautics and Space Administration, Langley Research Center.
MorozovaNTriasFXCapdevilaROn the feasibility of affordable high-fidelity CFD simulations for indoor environment design and controlBuilding and Environment202018410714410.1016/j.buildenv.2020.107144
LambertiGGorléCA multi-fidelity machine learning framework to predict wind loads on buildingsJournal of Wind Engineering and Industrial Aerodynamics202121410464710.1016/j.jweia.2021.104647
ZhouYAnYHuangWA combined deep learning and physical modelling method for estimating air pollutants’ source location and emission profile in street canyonsBuilding and Environment202221910924610.1016/j.buildenv.2022.109246
DeardorffJWA numerical study of three-dimensional turbulent channel flow at large Reynolds numbersJournal of Fluid Mechanics1970414534801970JFM....41..453D10.1017/S0022112070000691
WellerHGTaborGJasakHA tensorial approach to computational continuum mechanics using object-oriented techniquesComputers in Physics1998126206311998ComPh..12..620W10.1063/1.168744
Al AssaadDYangSLicinaDParticle release and transport from human skin and clothing: A CFD modeling methodologyIndoor Air202131137713901:CAS:528:DC%2BB3MXhvVCrur%2FP3389602910.1111/ina.12840
Kingma DP, Ba J (2014). Adam: A method for stochastic optimization. arXiv: 1412.6980.
YonekuraKSuzukiKData-driven design exploration method using conditional variational autoencoder for airfoil designStructural and Multidisciplinary Optimization20216461362410.1007/s00158-021-02851-0
BruntonSLNoackBRKoumoutsakosPMachine learning for fluid mechanicsAnnual Review of Fluid Mechanics2020524775082020AnRFM..52..477B450894410.1146/annurev-fluid-010719-060214
ThysenJ-Hvan HooffTBlockenBAirplane cabin mixing ventilation with time-periodic supply: Contaminant mass fluxes and ventilation efficiencyIndoor Air20223211e131513643765810.1111/ina.13151
WangMChenQAssessment of various turbulence models for transitional flows in an enclosed environment (RP-1271)HVAC&R Research2009151099111910.1080/10789669.2009.10390881
WeiCOokaRIndoor airflow field reconstruction using physics-informed neural networkBuilding and Environment202324211056310.1016/j.buildenv.2023.110563
SinghJRoyAKEffects of roof slope and wind direction on wind pressure distribution on the roof of a square plan pyramidal low-rise building using CFD simulationInternational Journal of Advanced Structural Engineering2019112312542019IJASE..11..231S10.1007/s40091-019-0227-3
FangQLiZWangYA neural-network enhanced modeling method for real-time evaluation of the temperature distribution in a data centerNeural Computing and Applications2019318379839110.1007/s00521-019-04508-y
ShinSBaekKSoHRapid monitoring of indoor air quality for efficient HVAC systems using fully convolutional network deep learning modelBuilding and Environment202323411019110.1016/j.buildenv.2023.110191
TanakaHMatsuokaYKawakamiTOptimization calculations and machine learning aimed at reduction of wind forces acting on tall buildings and mitigation of wind environmentInternational Journal of High-Rise Buildings201984291302
DuCChenQVirus transport and infection evaluation in a passenger elevator with a COVID-19 patientIndoor Air202232e1312536305056987488010.1111/ina.13125
GoodfellowIBengioYCourvilleADeep Learning2016Cambridge MA, USAMIT Press
ErichsonNBMathelinLYaoZShallow neural networks for fluid flow reconstruction with limited sensorsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences2020476202000972020RSPSA.47600097E412648210.1098/rspa.2020.0097
Maulik R, Sharma H, Patel S, et al. (2021). Deploying deep learning in OpenFOAM with TensorFlow. In: Proceedings of the AIAA Scitech 2021 Forum.
NavaresRAznarteJLPredicting air quality with deep learning LSTM: Towards comprehensive modelsEcological Informatics20205510101910.1016/j.ecoinf.2019.101019
LiXTuJEvaluation of the eddy viscosity turbulence models for the simulation of convection-radiation coupled heat transfer in indoor environmentEnergy and Buildings201918481810.1016/j.enbuild.2018.11.043
ChenQXuWA zero-equation turbulence model for indoor airflow simulationEnergy and Buildings19982813714410.1016/S0378-7788(98)00020-6
Abadi M, Agarwal A, Barham P, et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Available at https://www.tensorflow.org
BlockenBLES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion?Building Simulation20181182187010.1007/s12273-018-0459-3
PedregosaFVaroquauxGGramfortAScikit-learn: Machine learning in PythonThe Journal of Machine Learning Research201112282528302854348
MorozovaNTriasFXCapdevilaRA CFD-based surrogate model for predicting flow parameters in a ventilated room using sensor readingsEnergy and Buildings202226611214610.1016/j.enbuild.2022.112146
PourbagianMAshrafizadehASuper-resolution of low-fidelity flow solutions via generative adversarial networksSimulation20229864566310.1177/00375497211061260
Chen Q, Zhang Z, Zuo W (2007). Computational fluid dynamics for indoor environment modeling: Past, present and future. In: Proceedings of XXV Congresso della Trasmissione del Calore UIT, Trieste, Italy.
HangJLiYSandbergMExperimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategyJournal of Wind Engineering and Industrial Aerodynamics2011991036105510.1016/j.jweia.2011.07.004
LauriksTLongoRBaetensDApplication of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban streetAtmospheric Environment20212461181271:CAS:528:DC%2BB3cXisFSnsLbI10.1016/j.atmosenv.2020.118127
YakhotVOrszagSARenormalization group analysis of turbulence. I. Basic theoryJournal of Scientific Computing198613511986JSCom...1....3Y87031310.1007/BF01061452
PiotrowskiAPNapiorkowskiJJPiotrowskaAEImpact of deep learning-based dropout on shallow neural networks applied to stream temperature modellingEarth-Science Reviews202020110307610.1016/j.earscirev.2019.103076
van DruenenTvan HooffTMontazeriHCFD evaluation of building geometry modifications to reduce pedestrian-level wind speedBuilding and Environment201916310629310.1016/j.buildenv.2019.106293
ChenGRongLZhangGUnsteady-state CFD simulations on the impacts of urban geometry on outdoor thermal comfort within idealized building arraysSustainable Cities and Society20217410318710.1016/j.scs.2021.103187
SchmittFGAbout Boussinesq’s turbulent viscosity hypothesis: Historical remarks and a direct evaluation
M Pourbagian (1083_CR38) 2022; 98
J-H Thysen (1083_CR47) 2022; 32
1083_CR10
X Yuan (1083_CR59) 1999; 105
1083_CR15
J Hang (1083_CR21) 2012; 56
1083_CR4
M Raissi (1083_CR39) 2019; 378
K Yonekura (1083_CR58) 2021; 64
C Du (1083_CR14) 2022; 32
R Navares (1083_CR34) 2020; 55
S Shin (1083_CR42) 2023; 234
D Al Assaad (1083_CR5) 2021; 31
J Wu (1083_CR55) 2019; 869
X Ying (1083_CR57) 2019; 1168
1083_CR22
H Tanaka (1083_CR46) 2019; 8
1083_CR24
AP Piotrowski (1083_CR37) 2020; 201
1083_CR29
MWM Esager (1083_CR17) 2023; 14
S Jung (1083_CR23) 2022; 208
J Singh (1083_CR43) 2019; 11
BE Launder (1083_CR26) 1983
FG Schmitt (1083_CR40) 2007; 335
B Blocken (1083_CR6) 2018; 11
NB Erichson (1083_CR16) 2020; 476
X Li (1083_CR28) 2019; 184
Q Chen (1083_CR9) 1998; 28
J Srebric (1083_CR45) 2002; 108
N Morozova (1083_CR33) 2022; 266
1083_CR30
HG Weller (1083_CR54) 1998; 12
1083_CR35
X Zhang (1083_CR60) 2020; 229
Q Fang (1083_CR18) 2019; 31
C Wei (1083_CR53) 2023; 242
JW Deardorff (1083_CR12) 1970; 41
C Ding (1083_CR13) 2019; 165
T Lauriks (1083_CR27) 2021; 246
T van Druenen (1083_CR49) 2019; 163
G Chen (1083_CR11) 2021; 74
1083_CR44
Y Zhou (1083_CR61) 2022; 219
P Moin (1083_CR31) 1998; 30
X Shao (1083_CR41) 2023; 232
X Tian (1083_CR48) 2022; 208
M Wang (1083_CR51) 2009; 15
R Vinuesa (1083_CR50) 2022; 2
G Calzolari (1083_CR8) 2021; 206
A Abbas (1083_CR2) 2022; 258
1083_CR3
G Lamberti (1083_CR25) 2021; 214
F Pedregosa (1083_CR36) 2011; 12
1083_CR1
V Yakhot (1083_CR56) 1986; 1
I Goodfellow (1083_CR19) 2016
SL Brunton (1083_CR7) 2020; 52
A Warey (1083_CR52) 2020; 148
J Hang (1083_CR20) 2011; 99
N Morozova (1083_CR32) 2020; 184
References_xml – reference: SrebricJChenQAn example of verification, validation, and reporting of indoor environment CFD analysesASHRAE Transactions20021082185194
– reference: JungSJeoungJHongTOccupant-centered real-time control of indoor temperature using deep learning algorithmsBuilding and Environment202220810863310.1016/j.buildenv.2021.108633
– reference: PedregosaFVaroquauxGGramfortAScikit-learn: Machine learning in PythonThe Journal of Machine Learning Research201112282528302854348
– reference: Al AssaadDYangSLicinaDParticle release and transport from human skin and clothing: A CFD modeling methodologyIndoor Air202131137713901:CAS:528:DC%2BB3MXhvVCrur%2FP3389602910.1111/ina.12840
– reference: BruntonSLNoackBRKoumoutsakosPMachine learning for fluid mechanicsAnnual Review of Fluid Mechanics2020524775082020AnRFM..52..477B450894410.1146/annurev-fluid-010719-060214
– reference: Agarap AF (2018). Deep learning using rectified linear units (ReLU). arXiv: 1803.08375.
– reference: Duraisamy K, Spalart P, Rumsey C (2017). Status, emerging ideas and future directions of turbulence modeling research in aeronautics. National Aeronautics and Space Administration, Langley Research Center.
– reference: ErichsonNBMathelinLYaoZShallow neural networks for fluid flow reconstruction with limited sensorsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences2020476202000972020RSPSA.47600097E412648210.1098/rspa.2020.0097
– reference: FangQLiZWangYA neural-network enhanced modeling method for real-time evaluation of the temperature distribution in a data centerNeural Computing and Applications2019318379839110.1007/s00521-019-04508-y
– reference: DeardorffJWA numerical study of three-dimensional turbulent channel flow at large Reynolds numbersJournal of Fluid Mechanics1970414534801970JFM....41..453D10.1017/S0022112070000691
– reference: HangJLiYSandbergMThe influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areasBuilding and Environment20125634636010.1016/j.buildenv.2012.03.023
– reference: VinuesaRBruntonSLEnhancing computational fluid dynamics with machine learningNature Computational Science202223583663817758710.1038/s43588-022-00264-7
– reference: Kingma DP, Ba J (2014). Adam: A method for stochastic optimization. arXiv: 1412.6980.
– reference: LambertiGGorléCA multi-fidelity machine learning framework to predict wind loads on buildingsJournal of Wind Engineering and Industrial Aerodynamics202121410464710.1016/j.jweia.2021.104647
– reference: RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJournal of Computational Physics20193786867072019JCoPh.378..686R388169510.1016/j.jcp.2018.10.045
– reference: EsagerMWMÜnlüKDForecasting air quality in Tripoli: An evaluation of deep learning models for hourly PM2.5 surface mass concentrationsAtmosphere2023144782023Atmos..14..478E10.3390/atmos14030478
– reference: SchmittFGAbout Boussinesq’s turbulent viscosity hypothesis: Historical remarks and a direct evaluation of its validityComptes Rendus Mécanique20073356176272007CRMec.335..617S1:CAS:528:DC%2BD2sXht1CnsrzM10.1016/j.crme.2007.08.004
– reference: ChenGRongLZhangGUnsteady-state CFD simulations on the impacts of urban geometry on outdoor thermal comfort within idealized building arraysSustainable Cities and Society20217410318710.1016/j.scs.2021.103187
– reference: Maulik R, Sharma H, Patel S, et al. (2021). Deploying deep learning in OpenFOAM with TensorFlow. In: Proceedings of the AIAA Scitech 2021 Forum.
– reference: ThysenJ-Hvan HooffTBlockenBAirplane cabin mixing ventilation with time-periodic supply: Contaminant mass fluxes and ventilation efficiencyIndoor Air20223211e131513643765810.1111/ina.13151
– reference: Hintea D, Brusey J, Gaura E (2015). A study on several machine learning methods for estimating cabin occupant equivalent temperature. In: Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics, Colmar, Alsace, France.
– reference: ShaoXLiuZZhangSPIGNN-CFD: A physics-informed graph neural network for rapid predicting urban wind field defined on unstructured meshBuilding and Environment202323211005610.1016/j.buildenv.2023.110056
– reference: WareyAKaushikSKhalighiBData-driven prediction of vehicle cabin thermal comfort: Using machine learning and high-fidelity simulation resultsInternational Journal of Heat and Mass Transfer202014811908310.1016/j.ijheatmasstransfer.2019.119083
– reference: YingXAn overview of overfitting and its solutionsJournal of Physics: Conference Series20191168022022
– reference: Akiba T, Sano S, Yanase T, et al. (2019). Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA.
– reference: LauriksTLongoRBaetensDApplication of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban streetAtmospheric Environment20212461181271:CAS:528:DC%2BB3cXisFSnsLbI10.1016/j.atmosenv.2020.118127
– reference: DingCLamKPData-driven model for cross ventilation potential in high-density cities based on coupled CFD simulation and machine learningBuilding and Environment201916510639410.1016/j.buildenv.2019.106394
– reference: WeiCOokaRIndoor airflow field reconstruction using physics-informed neural networkBuilding and Environment202324211056310.1016/j.buildenv.2023.110563
– reference: ZhangXWeerasuriyaAUTseKTCFD simulation of natural ventilation of a generic building in various incident wind directions: comparison of turbulence modelling, evaluation methods, and ventilation mechanismsEnergy and Buildings202022911051610.1016/j.enbuild.2020.110516
– reference: Obiols-Sales O, Vishnu A, Malaya N, et al. (2022). NUNet: Deep learning for non-uniform super-resolution of turbulent flows. arXiv: 2203.14154.
– reference: TanakaHMatsuokaYKawakamiTOptimization calculations and machine learning aimed at reduction of wind forces acting on tall buildings and mitigation of wind environmentInternational Journal of High-Rise Buildings201984291302
– reference: Abadi M, Agarwal A, Barham P, et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Available at https://www.tensorflow.org/
– reference: DuCChenQVirus transport and infection evaluation in a passenger elevator with a COVID-19 patientIndoor Air202232e1312536305056987488010.1111/ina.13125
– reference: MoinPMaheshKDIRECT NUMERICAL SIMULATION: A tool in turbulence researchAnnual Review of Fluid Mechanics1998305395781998AnRFM..30..539M160975310.1146/annurev.fluid.30.1.539
– reference: MorozovaNTriasFXCapdevilaRA CFD-based surrogate model for predicting flow parameters in a ventilated room using sensor readingsEnergy and Buildings202226611214610.1016/j.enbuild.2022.112146
– reference: NavaresRAznarteJLPredicting air quality with deep learning LSTM: Towards comprehensive modelsEcological Informatics20205510101910.1016/j.ecoinf.2019.101019
– reference: PiotrowskiAPNapiorkowskiJJPiotrowskaAEImpact of deep learning-based dropout on shallow neural networks applied to stream temperature modellingEarth-Science Reviews202020110307610.1016/j.earscirev.2019.103076
– reference: van DruenenTvan HooffTMontazeriHCFD evaluation of building geometry modifications to reduce pedestrian-level wind speedBuilding and Environment201916310629310.1016/j.buildenv.2019.106293
– reference: TianXChengYLinZModelling indoor environment indicators using artificial neural network in the stratified environmentsBuilding and Environment202220810858110.1016/j.buildenv.2021.108581
– reference: ZhouYAnYHuangWA combined deep learning and physical modelling method for estimating air pollutants’ source location and emission profile in street canyonsBuilding and Environment202221910924610.1016/j.buildenv.2022.109246
– reference: BlockenBLES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion?Building Simulation20181182187010.1007/s12273-018-0459-3
– reference: PourbagianMAshrafizadehASuper-resolution of low-fidelity flow solutions via generative adversarial networksSimulation20229864566310.1177/00375497211061260
– reference: WangMChenQAssessment of various turbulence models for transitional flows in an enclosed environment (RP-1271)HVAC&R Research2009151099111910.1080/10789669.2009.10390881
– reference: WellerHGTaborGJasakHA tensorial approach to computational continuum mechanics using object-oriented techniquesComputers in Physics1998126206311998ComPh..12..620W10.1063/1.168744
– reference: LiXTuJEvaluation of the eddy viscosity turbulence models for the simulation of convection-radiation coupled heat transfer in indoor environmentEnergy and Buildings201918481810.1016/j.enbuild.2018.11.043
– reference: MorozovaNTriasFXCapdevilaROn the feasibility of affordable high-fidelity CFD simulations for indoor environment design and controlBuilding and Environment202018410714410.1016/j.buildenv.2020.107144
– reference: Mohan AT, Lubbers N, Livescu D, et al. (2020). Embedding hard physical constraints in neural network coarse-graining of 3D turbulence. arXiv: 2002.00021.
– reference: Chen Q, Zhang Z, Zuo W (2007). Computational fluid dynamics for indoor environment modeling: Past, present and future. In: Proceedings of XXV Congresso della Trasmissione del Calore UIT, Trieste, Italy.
– reference: ShinSBaekKSoHRapid monitoring of indoor air quality for efficient HVAC systems using fully convolutional network deep learning modelBuilding and Environment202323411019110.1016/j.buildenv.2023.110191
– reference: Slotnick J, Khodadoust A, Alonso J, et al. (2014). CFD vision 2030 study: A path to revolutionary computational aerosciences. National Aeronautics and Space Administration, Langley Research Center.
– reference: YakhotVOrszagSARenormalization group analysis of turbulence. I. Basic theoryJournal of Scientific Computing198613511986JSCom...1....3Y87031310.1007/BF01061452
– reference: ChenQXuWA zero-equation turbulence model for indoor airflow simulationEnergy and Buildings19982813714410.1016/S0378-7788(98)00020-6
– reference: GoodfellowIBengioYCourvilleADeep Learning2016Cambridge MA, USAMIT Press
– reference: CalzolariGLiuWDeep learning to replace, improve, or aid CFD analysis in built environment applications: A reviewBuilding and Environment202120610831510.1016/j.buildenv.2021.108315
– reference: AbbasARafieeAHaaseMGeometrical deep learning for performance prediction of high-speed craftOcean Engineering202225811171610.1016/j.oceaneng.2022.111716
– reference: HangJLiYSandbergMExperimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategyJournal of Wind Engineering and Industrial Aerodynamics2011991036105510.1016/j.jweia.2011.07.004
– reference: WuJXiaoHSunRReynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditionedJournal of Fluid Mechanics20198695535862019JFM...869..553W39440931:CAS:528:DC%2BC1MXhsF2qtbvI10.1017/jfm.2019.205
– reference: YonekuraKSuzukiKData-driven design exploration method using conditional variational autoencoder for airfoil designStructural and Multidisciplinary Optimization20216461362410.1007/s00158-021-02851-0
– reference: YuanXChenQGlicksmanLMeasurements and computations of room airflow with displacement ventilationASHRAE Transactions19991051340352
– reference: LaunderBESpaldingDBThe numerical computation of turbulent flowsNumerical Prediction of Flow, Heat Transfer, Turbulence and Combustion1983AmsterdamElsevier9611610.1016/B978-0-08-030937-8.50016-7
– reference: SinghJRoyAKEffects of roof slope and wind direction on wind pressure distribution on the roof of a square plan pyramidal low-rise building using CFD simulationInternational Journal of Advanced Structural Engineering2019112312542019IJASE..11..231S10.1007/s40091-019-0227-3
– volume: 52
  start-page: 477
  year: 2020
  ident: 1083_CR7
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 11
  start-page: 231
  year: 2019
  ident: 1083_CR43
  publication-title: International Journal of Advanced Structural Engineering
  doi: 10.1007/s40091-019-0227-3
– volume: 11
  start-page: 821
  year: 2018
  ident: 1083_CR6
  publication-title: Building Simulation
  doi: 10.1007/s12273-018-0459-3
– ident: 1083_CR3
– ident: 1083_CR29
  doi: 10.2514/6.2021-1485
– volume: 30
  start-page: 539
  year: 1998
  ident: 1083_CR31
  publication-title: Annual Review of Fluid Mechanics
  doi: 10.1146/annurev.fluid.30.1.539
– start-page: 96
  volume-title: Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion
  year: 1983
  ident: 1083_CR26
  doi: 10.1016/B978-0-08-030937-8.50016-7
– volume: 869
  start-page: 553
  year: 2019
  ident: 1083_CR55
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/jfm.2019.205
– volume: 335
  start-page: 617
  year: 2007
  ident: 1083_CR40
  publication-title: Comptes Rendus Mécanique
  doi: 10.1016/j.crme.2007.08.004
– volume: 208
  start-page: 108633
  year: 2022
  ident: 1083_CR23
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2021.108633
– ident: 1083_CR22
  doi: 10.5220/0005573606290634
– volume: 1
  start-page: 3
  year: 1986
  ident: 1083_CR56
  publication-title: Journal of Scientific Computing
  doi: 10.1007/BF01061452
– volume: 31
  start-page: 8379
  year: 2019
  ident: 1083_CR18
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-019-04508-y
– volume: 258
  start-page: 111716
  year: 2022
  ident: 1083_CR2
  publication-title: Ocean Engineering
  doi: 10.1016/j.oceaneng.2022.111716
– volume: 28
  start-page: 137
  year: 1998
  ident: 1083_CR9
  publication-title: Energy and Buildings
  doi: 10.1016/S0378-7788(98)00020-6
– volume: 32
  start-page: e13125
  year: 2022
  ident: 1083_CR14
  publication-title: Indoor Air
  doi: 10.1111/ina.13125
– volume: 64
  start-page: 613
  year: 2021
  ident: 1083_CR58
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-021-02851-0
– ident: 1083_CR10
– volume: 41
  start-page: 453
  year: 1970
  ident: 1083_CR12
  publication-title: Journal of Fluid Mechanics
  doi: 10.1017/S0022112070000691
– volume: 229
  start-page: 110516
  year: 2020
  ident: 1083_CR60
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2020.110516
– volume: 232
  start-page: 110056
  year: 2023
  ident: 1083_CR41
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2023.110056
– volume: 98
  start-page: 645
  year: 2022
  ident: 1083_CR38
  publication-title: Simulation
  doi: 10.1177/00375497211061260
– volume: 74
  start-page: 103187
  year: 2021
  ident: 1083_CR11
  publication-title: Sustainable Cities and Society
  doi: 10.1016/j.scs.2021.103187
– volume: 56
  start-page: 346
  year: 2012
  ident: 1083_CR21
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2012.03.023
– volume: 55
  start-page: 101019
  year: 2020
  ident: 1083_CR34
  publication-title: Ecological Informatics
  doi: 10.1016/j.ecoinf.2019.101019
– volume: 15
  start-page: 1099
  year: 2009
  ident: 1083_CR51
  publication-title: HVAC&R Research
  doi: 10.1080/10789669.2009.10390881
– volume: 1168
  start-page: 022022
  year: 2019
  ident: 1083_CR57
  publication-title: Journal of Physics: Conference Series
– ident: 1083_CR30
– volume: 32
  start-page: e13151
  issue: 11
  year: 2022
  ident: 1083_CR47
  publication-title: Indoor Air
  doi: 10.1111/ina.13151
– volume: 266
  start-page: 112146
  year: 2022
  ident: 1083_CR33
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2022.112146
– volume: 242
  start-page: 110563
  year: 2023
  ident: 1083_CR53
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2023.110563
– volume: 208
  start-page: 108581
  year: 2022
  ident: 1083_CR48
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2021.108581
– volume: 148
  start-page: 119083
  year: 2020
  ident: 1083_CR52
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2019.119083
– volume: 219
  start-page: 109246
  year: 2022
  ident: 1083_CR61
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2022.109246
– volume: 99
  start-page: 1036
  year: 2011
  ident: 1083_CR20
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/j.jweia.2011.07.004
– volume: 12
  start-page: 620
  year: 1998
  ident: 1083_CR54
  publication-title: Computers in Physics
  doi: 10.1063/1.168744
– volume: 184
  start-page: 8
  year: 2019
  ident: 1083_CR28
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2018.11.043
– volume: 12
  start-page: 2825
  year: 2011
  ident: 1083_CR36
  publication-title: The Journal of Machine Learning Research
– ident: 1083_CR44
– ident: 1083_CR24
– volume: 108
  start-page: 185
  issue: 2
  year: 2002
  ident: 1083_CR45
  publication-title: ASHRAE Transactions
– volume: 378
  start-page: 686
  year: 2019
  ident: 1083_CR39
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2018.10.045
– ident: 1083_CR1
– volume: 206
  start-page: 108315
  year: 2021
  ident: 1083_CR8
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2021.108315
– volume: 184
  start-page: 107144
  year: 2020
  ident: 1083_CR32
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2020.107144
– volume: 201
  start-page: 103076
  year: 2020
  ident: 1083_CR37
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2019.103076
– volume: 165
  start-page: 106394
  year: 2019
  ident: 1083_CR13
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2019.106394
– volume: 476
  start-page: 20200097
  year: 2020
  ident: 1083_CR16
  publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rspa.2020.0097
– volume: 234
  start-page: 110191
  year: 2023
  ident: 1083_CR42
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2023.110191
– ident: 1083_CR35
– volume: 8
  start-page: 291
  issue: 4
  year: 2019
  ident: 1083_CR46
  publication-title: International Journal of High-Rise Buildings
– volume: 14
  start-page: 478
  year: 2023
  ident: 1083_CR17
  publication-title: Atmosphere
  doi: 10.3390/atmos14030478
– volume: 163
  start-page: 106293
  year: 2019
  ident: 1083_CR49
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2019.106293
– volume: 31
  start-page: 1377
  year: 2021
  ident: 1083_CR5
  publication-title: Indoor Air
  doi: 10.1111/ina.12840
– volume: 105
  start-page: 340
  issue: 1
  year: 1999
  ident: 1083_CR59
  publication-title: ASHRAE Transactions
– ident: 1083_CR4
  doi: 10.1145/3292500.3330701
– volume: 214
  start-page: 104647
  year: 2021
  ident: 1083_CR25
  publication-title: Journal of Wind Engineering and Industrial Aerodynamics
  doi: 10.1016/j.jweia.2021.104647
– volume: 2
  start-page: 358
  year: 2022
  ident: 1083_CR50
  publication-title: Nature Computational Science
  doi: 10.1038/s43588-022-00264-7
– volume-title: Deep Learning
  year: 2016
  ident: 1083_CR19
– ident: 1083_CR15
– volume: 246
  start-page: 118127
  year: 2021
  ident: 1083_CR27
  publication-title: Atmospheric Environment
  doi: 10.1016/j.atmosenv.2020.118127
SSID ssj0000070543
Score 2.3977883
Snippet This study aims to improve the accuracy and speed of predictions for thermal comfort and air quality in built environments by creating a coupled framework...
SourceID unpaywall
swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 399
SubjectTerms Air quality
Algorithms
Atmospheric Protection/Air Quality Control/Air Pollution
Building Construction and Design
Built environment
Computational fluid dynamics
computational fluid dynamics (CFD)
Computer simulation
Coupling
Deep learning
Engineering
Engineering Thermodynamics
Fluid flow
Heat and Mass Transfer
Indoor environments
Machine learning
Mapping
Model accuracy
Monitoring/Environmental Analysis
Multilayer perceptrons
Multilayers
Neural networks
OpenFOAM
Research Article
Simulation
Thermal comfort
turbulence model
Turbulence models
Turbulent flow
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9i5bBxGLAPrYMhHyYOm1ySOHGSY9WuQjugHVbETlb8BR1d0rWJpvHX7-WzBSHQxCUfsmPH9rPf78l-vwfwUStXJdI4NFCMUR_XSRq5-MqV4lYbNIRkdUD2jJ9O_a8XwcUWjFpfmOq0e7slWfs0lCxNaX6y0PZk7fjmodqlqG9wGYmwjgGmPoNtHiAg78H29Ozb8Ee1nxxzyoIqimT1XJK9t3ub95VzWzutIWe3S9oxiu7A8yJdJH__JPP5hkaa7IJu21IfRLkeFLkcqJs7NI9PbOwevGwQKxnWIrYPWyZ9BTsbPIav4efYmAVpAlBckjwjjS8WuTHLjJrfNZ84KVWmJqjkZFH5OpEqDg9B3ExGkzFZzX41wcRWJLMEoSmRxWyekw1vvDcwnXz5PjqlTRAHqhDq5NRyy7kM40ijLexx6yuesFiGyjja5SFTNrR-STIfoDpljomYaxmCONdFYVFJyN5CL81S8w5IpK0NNJo0OsQLw7vjmlhxZnxHoi3ZB6cdPKEahvMy0MZcrLmZy64U2JUlMSoTfh8-dZ8sanqPhzIfthIhmpm-El6MK6LvIeztw-d2LNfJDxR2XAtSV29J9D2enQ9FtrwU1_mVYBzhH8NiO0F7_B_f_1fuA3jhIUirz9QdQi9fFuYDgqxcHjWT6B_sKxwd
  priority: 102
  providerName: Unpaywall
Title Deep learning to develop zero-equation based turbulence model for CFD simulations of the built environment
URI https://link.springer.com/article/10.1007/s12273-023-1083-4
https://www.proquest.com/docview/2922542057
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-367103
https://link.springer.com/content/pdf/10.1007/s12273-023-1083-4.pdf
UnpaywallVersion publishedVersion
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1996-8744
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070543
  issn: 1996-8744
  databaseCode: AFBBN
  dateStart: 20080301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1996-8744
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000070543
  issn: 1996-8744
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1996-8744
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070543
  issn: 1996-8744
  databaseCode: U2A
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ74OGgPxmesj2YPxoOGCCwscCSttdHEeLBGTxtYdrWKbbU0Rn-9s0BpNUbjZQmvYcMsO98yM98AHCTCElEsTcMVlBoOzpOGb-EuE4KpROJCKM4DZC9Zp-uc37q3JVm0zoX55r8_GVk2GlgDLQtOGD5Km4dFtFEs98uyZvU7RdPWuEU4vQ6rpW4QTHyYP0n5aoWm0LLyhlbMoTVYGveH0ftblKYzlqe9CislZCRhoeM1mJP9dajNEAluwGNLyiEpK0Dck2xAymQo8iFfB4Z8KQi9ibZZCUErE4_zZCOSF8IhCFxJs90io95zWc1rRAaKIDYk8biXZmQmHW4Tuu3T62bHKKsoGAKxRmYophiLvcBPcDFqM-UIFtEg9oQ0E4t5VChPOZrl3UV7Rk3pU0tRRFGWhdoSkUe3YKE_6MttIH6ilJvgmiLxsKG4NS0ZCEalY8a4mKuDOXmrXJQU47rSRcqn5MhaERwVoZlJKXfqcFTdMiz4NX67eG-iKl5-aiNuBzglOTbizjocT9Q3Pf2LsMNCw9VzNdN2q3cTchyA_Cl74JQh_qIothoBf_dx51-d2IVlG1FSEdS2BwvZ61juI8rJ4gYshmd3F6eNfJxj27VDPNa9vArvPgFjvfRl
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb5swED6t6UObh3XrWi1bu_lh6sMmKsBg4DFKmmVr16e06p4sbOwuSxayBDStv75HMJBVU6u8gBBwGPvwfYfvvgP4kEhHxkLZli8ptTycJ63QwUMmJdOJQkdIrAJkL9nwyvt649-YPO5lFe1eLUmuZuom2c1FU2uhjcGpI0S5W7DtoX_itmC7-_n7efNrpaCw8cvQ-iLElvpRVK1n_k_OvxapgZn1ymjNItqGnXw2j__-iafTNSs02INR1f4y-GRymmfiVN49oHbc8AVfwHODSkm3VKOX8EzN9qG9xlX4Cn72lZoTU2TilmQpMflW5E4tUkv9LjnDSWEWE4KGTOSrfCayqrVDEBuT3qBPluNfpmDYkqSaIPwkIh9PM7KWcXcAV4OzUW9omUINlkQ4k1maacZEEIUJ-rsu055kMY1EIJWdOCygUgfaK4jkfTSZ1FYhdTRFoOY4qBAyDughtGbpTL0GEiZa-wm6LUmAG4p721GRZFR5tkB_sQN2NVhcGhbzopjGlDf8y0U3cuzGgvyUcq8DH-tb5iWFx2MXH1UawM3XvORuhLOe5yK07cCnauya048IOykVp35uQebdH193ebq45ZPsB6cMIR5FsbViPd3GNxs14j3sDEffLvjFl8vzt7DrIigrY-iOoJUtcnWMoCoT78xHdA_NphQS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RkAocKl4VAUr3gDiArNhee20fUdwotBXiAFVuK3sfNG2wQ-IItb-eWb-SSiioF1uW7d2Vx97vG-_MNwBnUjgiSZVt-YJSy8N50godPGRCMC0VOkJpGSB7wwb33tehP6zrnM6aaPdmSbLKaTAqTVnRnUjdXSS-uQi7FuINTiMh9vEONjwEN1PCoMd67U8WI2bjV0H2JtiW-lHUrGy-1sq_2LQgnO0aaasnug2b82yS_HlOxuMlPOrvwIeaSJKryvK7sKayPdhekhfch1-xUhNS14V4IEVO6hQp8ldNc0s9VTLfxCCZJIg96bxMQSJleRyCdJb0-jGZjR7rGl8zkmuCjJGk89G4IEtJcgdw3_9y1xtYdW0FSyADKSzNNGNpEIUSXVSXaU-whEZpIJQtHRZQoQPtGe13H1GO2iqkjqbIrRwHbSiSgH6E9SzP1CGQUGrtS_Q0ZIAbinvbUZFgVHl2ii5eB-zmqXJRC4-b-hdjvpBMNobgaAijV0q514GL9pZJpbqx6uKTxlS8_gBn3I1wovJcZKMduGzMtzi9orHzysJtv0Z_Ox79uOL59IH_Ln5yypCVUWy2fQPeHuPRfw3iM7y_jfv8-_XNt2PYcpFGVVFvJ7BeTOfqE9KgIj0tX_UXmJT7bg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9i5bBxGLAPrYMhHyYOm1ySOHGSY9WuQjugHVbETlb8BR1d0rWJpvHX7-WzBSHQxCUfsmPH9rPf78l-vwfwUStXJdI4NFCMUR_XSRq5-MqV4lYbNIRkdUD2jJ9O_a8XwcUWjFpfmOq0e7slWfs0lCxNaX6y0PZk7fjmodqlqG9wGYmwjgGmPoNtHiAg78H29Ozb8Ee1nxxzyoIqimT1XJK9t3ub95VzWzutIWe3S9oxiu7A8yJdJH__JPP5hkaa7IJu21IfRLkeFLkcqJs7NI9PbOwevGwQKxnWIrYPWyZ9BTsbPIav4efYmAVpAlBckjwjjS8WuTHLjJrfNZ84KVWmJqjkZFH5OpEqDg9B3ExGkzFZzX41wcRWJLMEoSmRxWyekw1vvDcwnXz5PjqlTRAHqhDq5NRyy7kM40ijLexx6yuesFiGyjja5SFTNrR-STIfoDpljomYaxmCONdFYVFJyN5CL81S8w5IpK0NNJo0OsQLw7vjmlhxZnxHoi3ZB6cdPKEahvMy0MZcrLmZy64U2JUlMSoTfh8-dZ8sanqPhzIfthIhmpm-El6MK6LvIeztw-d2LNfJDxR2XAtSV29J9D2enQ9FtrwU1_mVYBzhH8NiO0F7_B_f_1fuA3jhIUirz9QdQi9fFuYDgqxcHjWT6B_sKxwd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+to+develop+zero-equation+based+turbulence+model+for+CFD+simulations+of+the+built+environment&rft.jtitle=Building+simulation&rft.au=Calzolari%2C+Giovanni&rft.au=Liu%2C+Wei&rft.date=2024-03-01&rft.issn=1996-3599&rft.eissn=1996-8744&rft.volume=17&rft.issue=3&rft.spage=399&rft.epage=414&rft_id=info:doi/10.1007%2Fs12273-023-1083-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12273_023_1083_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-3599&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-3599&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-3599&client=summon