Deep learning to develop zero-equation based turbulence model for CFD simulations of the built environment
This study aims to improve the accuracy and speed of predictions for thermal comfort and air quality in built environments by creating a coupled framework between computational fluid dynamics (CFD) simulations and deep learning models. The coupling approach is showcased by the development of a data-...
        Saved in:
      
    
          | Published in | Building simulation Vol. 17; no. 3; pp. 399 - 414 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Beijing
          Tsinghua University Press
    
        01.03.2024
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1996-3599 1996-8744 1996-8744  | 
| DOI | 10.1007/s12273-023-1083-4 | 
Cover
| Abstract | This study aims to improve the accuracy and speed of predictions for thermal comfort and air quality in built environments by creating a coupled framework between computational fluid dynamics (CFD) simulations and deep learning models. The coupling approach is showcased by the development of a data-driven turbulence model. The new turbulence model is built using a deep learning neural network, whose mapping structure is based on a zero-equation turbulence model for built environment simulations, and is coupled with the CFD software OpenFOAM to create a hybrid framework. The neural network is a standard shallow multi-layer perceptron. The number of hidden layers and nodes per layer was optimized using Bayesan optimization algorithm. The framework is trained on an indoor environment case study, as well as tested on an indoor office simulation and an outdoor building array simulation. Results show that the deep learning based turbulence model is more robust and faster than traditional two-equation Reynolds average Navier-Stokes (RANS) turbulence models, while maintaining a similar level of accuracy. The model also outperforms the standard algebraic zero-equation model due to its superior ability to generalize to various flow scenarios. Despite some challenges, namely the mapping constraint, the limited training dataset size and the source of generation of training data, the hybrid framework demonstrates the viability of the coupling technique and serves as a starting point for future development of more reliable and advanced models. | 
    
|---|---|
| AbstractList | This study aims to improve the accuracy and speed of predictions for thermal comfort and air quality in built environments by creating a coupled framework between computational fluid dynamics (CFD) simulations and deep learning models. The coupling approach is showcased by the development of a data-driven turbulence model. The new turbulence model is built using a deep learning neural network, whose mapping structure is based on a zero-equation turbulence model for built environment simulations, and is coupled with the CFD software OpenFOAM to create a hybrid framework. The neural network is a standard shallow multi-layer perceptron. The number of hidden layers and nodes per layer was optimized using Bayesan optimization algorithm. The framework is trained on an indoor environment case study, as well as tested on an indoor office simulation and an outdoor building array simulation. Results show that the deep learning based turbulence model is more robust and faster than traditional two-equation Reynolds average Navier-Stokes (RANS) turbulence models, while maintaining a similar level of accuracy. The model also outperforms the standard algebraic zero-equation model due to its superior ability to generalize to various flow scenarios. Despite some challenges, namely the mapping constraint, the limited training dataset size and the source of generation of training data, the hybrid framework demonstrates the viability of the coupling technique and serves as a starting point for future development of more reliable and advanced models. | 
    
| Author | Liu, Wei Calzolari, Giovanni  | 
    
| Author_xml | – sequence: 1 givenname: Giovanni surname: Calzolari fullname: Calzolari, Giovanni organization: Division of Sustainable Buildings, Department of Civil and Architectural Engineering, KTH Royal Institute of Technology – sequence: 2 givenname: Wei surname: Liu fullname: Liu, Wei email: weiliu2@kth.se organization: Division of Sustainable Buildings, Department of Civil and Architectural Engineering, KTH Royal Institute of Technology  | 
    
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-367103$$DView record from Swedish Publication Index | 
    
| BookMark | eNqNkMFu1DAURSNUJErpB7CzxDpg-zlxsqxmKCBVYgNsLcd5nnrw2KnttCpfT6YZgYQEwht7cY51731ZnYUYsKpeM_qWUSrfZca5hJpyqBntoBbPqnPW923dSSHOTm9o-v5FdZnznh6PpI2A82q_RZyIR52CCztSIhnxHn2cyA9Msca7WRcXAxl0xpGUOQ2zx2CQHOKIntiYyOZ6S7I7zP6JzCRaUm6RDLPzhWC4dymGA4byqnputc94ebovqq_X779sPtY3nz982lzd1AZ6WWrb2rYdZN-N0AFvrTCthn6QBunIWgnGSiu4bJb8DIBiB8wCE8CYaa3REi4qvv47h0k_Pmjv1ZTcQadHxag6DqbWwdQymDoOpsQi1auUH3Cah19G1E5t3bcrFdNOfS-3ClrJKCz8m5WfUrybMRe1j3MKSy_Fe84bwWlzjCJXyqSYc0KrjCtPM5Wknf9nHvaH-T8dTsXzwoYdpt-Z_i79BF6GrUg | 
    
| CitedBy_id | crossref_primary_10_1016_j_jocs_2024_102404 crossref_primary_10_1038_s41598_025_88789_5 crossref_primary_10_1063_5_0216440 crossref_primary_10_1063_5_0250564 crossref_primary_10_1016_j_jobe_2024_111182 crossref_primary_10_1063_5_0250509  | 
    
| Cites_doi | 10.1146/annurev-fluid-010719-060214 10.1007/s40091-019-0227-3 10.1007/s12273-018-0459-3 10.2514/6.2021-1485 10.1146/annurev.fluid.30.1.539 10.1016/B978-0-08-030937-8.50016-7 10.1017/jfm.2019.205 10.1016/j.crme.2007.08.004 10.1016/j.buildenv.2021.108633 10.5220/0005573606290634 10.1007/BF01061452 10.1007/s00521-019-04508-y 10.1016/j.oceaneng.2022.111716 10.1016/S0378-7788(98)00020-6 10.1111/ina.13125 10.1007/s00158-021-02851-0 10.1017/S0022112070000691 10.1016/j.enbuild.2020.110516 10.1016/j.buildenv.2023.110056 10.1177/00375497211061260 10.1016/j.scs.2021.103187 10.1016/j.buildenv.2012.03.023 10.1016/j.ecoinf.2019.101019 10.1080/10789669.2009.10390881 10.1111/ina.13151 10.1016/j.enbuild.2022.112146 10.1016/j.buildenv.2023.110563 10.1016/j.buildenv.2021.108581 10.1016/j.ijheatmasstransfer.2019.119083 10.1016/j.buildenv.2022.109246 10.1016/j.jweia.2011.07.004 10.1063/1.168744 10.1016/j.enbuild.2018.11.043 10.1016/j.jcp.2018.10.045 10.1016/j.buildenv.2021.108315 10.1016/j.buildenv.2020.107144 10.1016/j.earscirev.2019.103076 10.1016/j.buildenv.2019.106394 10.1098/rspa.2020.0097 10.1016/j.buildenv.2023.110191 10.3390/atmos14030478 10.1016/j.buildenv.2019.106293 10.1111/ina.12840 10.1145/3292500.3330701 10.1016/j.jweia.2021.104647 10.1038/s43588-022-00264-7 10.1016/j.atmosenv.2020.118127  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2023 The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: The Author(s) 2023 – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | C6C AAYXX CITATION ADTPV AOWAS D8V ADTOC UNPAY  | 
    
| DOI | 10.1007/s12273-023-1083-4 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef SwePub SwePub Articles SWEPUB Kungliga Tekniska Högskolan Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (ODIN) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1996-8744 | 
    
| EndPage | 414 | 
    
| ExternalDocumentID | 10.1007/s12273-023-1083-4 oai_DiVA_org_kth_367103 10_1007_s12273_023_1083_4  | 
    
| GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 06D 0R~ 0VY 1N0 23N 29~ 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 6J9 6NX 8TC 8UJ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD B-. BA0 BDATZ BGNMA C6C CAG COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ ITM IWAJR IXC IZIGR I~X I~Y J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J OAM P9P PT4 QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z7R ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ADTPV AOWAS D8V ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c397t-f6f66b798d38326f4c6a39b7ce0d1673cf7f42750541330e831f314311c6fca73 | 
    
| IEDL.DBID | C6C | 
    
| ISSN | 1996-3599 1996-8744  | 
    
| IngestDate | Wed Oct 01 15:13:01 EDT 2025 Sat Sep 06 10:52:15 EDT 2025 Wed Sep 17 23:57:34 EDT 2025 Wed Oct 01 02:33:30 EDT 2025 Thu Apr 24 23:04:29 EDT 2025 Fri Feb 21 02:41:25 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | computational fluid dynamics (CFD) OpenFOAM turbulence model neural networks  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c397t-f6f66b798d38326f4c6a39b7ce0d1673cf7f42750541330e831f314311c6fca73 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://doi.org/10.1007/s12273-023-1083-4 | 
    
| PQID | 2922542057 | 
    
| PQPubID | 2043952 | 
    
| PageCount | 16 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s12273_023_1083_4 swepub_primary_oai_DiVA_org_kth_367103 proquest_journals_2922542057 crossref_citationtrail_10_1007_s12273_023_1083_4 crossref_primary_10_1007_s12273_023_1083_4 springer_journals_10_1007_s12273_023_1083_4  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-03-01 | 
    
| PublicationDateYYYYMMDD | 2024-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Beijing | 
    
| PublicationPlace_xml | – name: Beijing – name: Heidelberg  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Building simulation | 
    
| PublicationTitleAbbrev | Build. Simul | 
    
| PublicationYear | 2024 | 
    
| Publisher | Tsinghua University Press Springer Nature B.V  | 
    
| Publisher_xml | – name: Tsinghua University Press – name: Springer Nature B.V  | 
    
| References | YingXAn overview of overfitting and its solutionsJournal of Physics: Conference Series20191168022022 MoinPMaheshKDIRECT NUMERICAL SIMULATION: A tool in turbulence researchAnnual Review of Fluid Mechanics1998305395781998AnRFM..30..539M160975310.1146/annurev.fluid.30.1.539 Mohan AT, Lubbers N, Livescu D, et al. (2020). Embedding hard physical constraints in neural network coarse-graining of 3D turbulence. arXiv: 2002.00021. LaunderBESpaldingDBThe numerical computation of turbulent flowsNumerical Prediction of Flow, Heat Transfer, Turbulence and Combustion1983AmsterdamElsevier9611610.1016/B978-0-08-030937-8.50016-7 EsagerMWMÜnlüKDForecasting air quality in Tripoli: An evaluation of deep learning models for hourly PM2.5 surface mass concentrationsAtmosphere2023144782023Atmos..14..478E10.3390/atmos14030478 WareyAKaushikSKhalighiBData-driven prediction of vehicle cabin thermal comfort: Using machine learning and high-fidelity simulation resultsInternational Journal of Heat and Mass Transfer202014811908310.1016/j.ijheatmasstransfer.2019.119083 CalzolariGLiuWDeep learning to replace, improve, or aid CFD analysis in built environment applications: A reviewBuilding and Environment202120610831510.1016/j.buildenv.2021.108315 SrebricJChenQAn example of verification, validation, and reporting of indoor environment CFD analysesASHRAE Transactions20021082185194 VinuesaRBruntonSLEnhancing computational fluid dynamics with machine learningNature Computational Science202223583663817758710.1038/s43588-022-00264-7 Obiols-Sales O, Vishnu A, Malaya N, et al. (2022). NUNet: Deep learning for non-uniform super-resolution of turbulent flows. arXiv: 2203.14154. DingCLamKPData-driven model for cross ventilation potential in high-density cities based on coupled CFD simulation and machine learningBuilding and Environment201916510639410.1016/j.buildenv.2019.106394 Slotnick J, Khodadoust A, Alonso J, et al. (2014). CFD vision 2030 study: A path to revolutionary computational aerosciences. National Aeronautics and Space Administration, Langley Research Center. ZhangXWeerasuriyaAUTseKTCFD simulation of natural ventilation of a generic building in various incident wind directions: comparison of turbulence modelling, evaluation methods, and ventilation mechanismsEnergy and Buildings202022911051610.1016/j.enbuild.2020.110516 YuanXChenQGlicksmanLMeasurements and computations of room airflow with displacement ventilationASHRAE Transactions19991051340352 HangJLiYSandbergMThe influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areasBuilding and Environment20125634636010.1016/j.buildenv.2012.03.023 ShaoXLiuZZhangSPIGNN-CFD: A physics-informed graph neural network for rapid predicting urban wind field defined on unstructured meshBuilding and Environment202323211005610.1016/j.buildenv.2023.110056 RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJournal of Computational Physics20193786867072019JCoPh.378..686R388169510.1016/j.jcp.2018.10.045 Akiba T, Sano S, Yanase T, et al. (2019). Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA. Duraisamy K, Spalart P, Rumsey C (2017). Status, emerging ideas and future directions of turbulence modeling research in aeronautics. National Aeronautics and Space Administration, Langley Research Center. MorozovaNTriasFXCapdevilaROn the feasibility of affordable high-fidelity CFD simulations for indoor environment design and controlBuilding and Environment202018410714410.1016/j.buildenv.2020.107144 LambertiGGorléCA multi-fidelity machine learning framework to predict wind loads on buildingsJournal of Wind Engineering and Industrial Aerodynamics202121410464710.1016/j.jweia.2021.104647 ZhouYAnYHuangWA combined deep learning and physical modelling method for estimating air pollutants’ source location and emission profile in street canyonsBuilding and Environment202221910924610.1016/j.buildenv.2022.109246 DeardorffJWA numerical study of three-dimensional turbulent channel flow at large Reynolds numbersJournal of Fluid Mechanics1970414534801970JFM....41..453D10.1017/S0022112070000691 WellerHGTaborGJasakHA tensorial approach to computational continuum mechanics using object-oriented techniquesComputers in Physics1998126206311998ComPh..12..620W10.1063/1.168744 Al AssaadDYangSLicinaDParticle release and transport from human skin and clothing: A CFD modeling methodologyIndoor Air202131137713901:CAS:528:DC%2BB3MXhvVCrur%2FP3389602910.1111/ina.12840 Kingma DP, Ba J (2014). Adam: A method for stochastic optimization. arXiv: 1412.6980. YonekuraKSuzukiKData-driven design exploration method using conditional variational autoencoder for airfoil designStructural and Multidisciplinary Optimization20216461362410.1007/s00158-021-02851-0 BruntonSLNoackBRKoumoutsakosPMachine learning for fluid mechanicsAnnual Review of Fluid Mechanics2020524775082020AnRFM..52..477B450894410.1146/annurev-fluid-010719-060214 ThysenJ-Hvan HooffTBlockenBAirplane cabin mixing ventilation with time-periodic supply: Contaminant mass fluxes and ventilation efficiencyIndoor Air20223211e131513643765810.1111/ina.13151 WangMChenQAssessment of various turbulence models for transitional flows in an enclosed environment (RP-1271)HVAC&R Research2009151099111910.1080/10789669.2009.10390881 WeiCOokaRIndoor airflow field reconstruction using physics-informed neural networkBuilding and Environment202324211056310.1016/j.buildenv.2023.110563 SinghJRoyAKEffects of roof slope and wind direction on wind pressure distribution on the roof of a square plan pyramidal low-rise building using CFD simulationInternational Journal of Advanced Structural Engineering2019112312542019IJASE..11..231S10.1007/s40091-019-0227-3 FangQLiZWangYA neural-network enhanced modeling method for real-time evaluation of the temperature distribution in a data centerNeural Computing and Applications2019318379839110.1007/s00521-019-04508-y ShinSBaekKSoHRapid monitoring of indoor air quality for efficient HVAC systems using fully convolutional network deep learning modelBuilding and Environment202323411019110.1016/j.buildenv.2023.110191 TanakaHMatsuokaYKawakamiTOptimization calculations and machine learning aimed at reduction of wind forces acting on tall buildings and mitigation of wind environmentInternational Journal of High-Rise Buildings201984291302 DuCChenQVirus transport and infection evaluation in a passenger elevator with a COVID-19 patientIndoor Air202232e1312536305056987488010.1111/ina.13125 GoodfellowIBengioYCourvilleADeep Learning2016Cambridge MA, USAMIT Press ErichsonNBMathelinLYaoZShallow neural networks for fluid flow reconstruction with limited sensorsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences2020476202000972020RSPSA.47600097E412648210.1098/rspa.2020.0097 Maulik R, Sharma H, Patel S, et al. (2021). Deploying deep learning in OpenFOAM with TensorFlow. In: Proceedings of the AIAA Scitech 2021 Forum. NavaresRAznarteJLPredicting air quality with deep learning LSTM: Towards comprehensive modelsEcological Informatics20205510101910.1016/j.ecoinf.2019.101019 LiXTuJEvaluation of the eddy viscosity turbulence models for the simulation of convection-radiation coupled heat transfer in indoor environmentEnergy and Buildings201918481810.1016/j.enbuild.2018.11.043 ChenQXuWA zero-equation turbulence model for indoor airflow simulationEnergy and Buildings19982813714410.1016/S0378-7788(98)00020-6 Abadi M, Agarwal A, Barham P, et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Available at https://www.tensorflow.org BlockenBLES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion?Building Simulation20181182187010.1007/s12273-018-0459-3 PedregosaFVaroquauxGGramfortAScikit-learn: Machine learning in PythonThe Journal of Machine Learning Research201112282528302854348 MorozovaNTriasFXCapdevilaRA CFD-based surrogate model for predicting flow parameters in a ventilated room using sensor readingsEnergy and Buildings202226611214610.1016/j.enbuild.2022.112146 PourbagianMAshrafizadehASuper-resolution of low-fidelity flow solutions via generative adversarial networksSimulation20229864566310.1177/00375497211061260 Chen Q, Zhang Z, Zuo W (2007). Computational fluid dynamics for indoor environment modeling: Past, present and future. In: Proceedings of XXV Congresso della Trasmissione del Calore UIT, Trieste, Italy. HangJLiYSandbergMExperimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategyJournal of Wind Engineering and Industrial Aerodynamics2011991036105510.1016/j.jweia.2011.07.004 LauriksTLongoRBaetensDApplication of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban streetAtmospheric Environment20212461181271:CAS:528:DC%2BB3cXisFSnsLbI10.1016/j.atmosenv.2020.118127 YakhotVOrszagSARenormalization group analysis of turbulence. I. Basic theoryJournal of Scientific Computing198613511986JSCom...1....3Y87031310.1007/BF01061452 PiotrowskiAPNapiorkowskiJJPiotrowskaAEImpact of deep learning-based dropout on shallow neural networks applied to stream temperature modellingEarth-Science Reviews202020110307610.1016/j.earscirev.2019.103076 van DruenenTvan HooffTMontazeriHCFD evaluation of building geometry modifications to reduce pedestrian-level wind speedBuilding and Environment201916310629310.1016/j.buildenv.2019.106293 ChenGRongLZhangGUnsteady-state CFD simulations on the impacts of urban geometry on outdoor thermal comfort within idealized building arraysSustainable Cities and Society20217410318710.1016/j.scs.2021.103187 SchmittFGAbout Boussinesq’s turbulent viscosity hypothesis: Historical remarks and a direct evaluation M Pourbagian (1083_CR38) 2022; 98 J-H Thysen (1083_CR47) 2022; 32 1083_CR10 X Yuan (1083_CR59) 1999; 105 1083_CR15 J Hang (1083_CR21) 2012; 56 1083_CR4 M Raissi (1083_CR39) 2019; 378 K Yonekura (1083_CR58) 2021; 64 C Du (1083_CR14) 2022; 32 R Navares (1083_CR34) 2020; 55 S Shin (1083_CR42) 2023; 234 D Al Assaad (1083_CR5) 2021; 31 J Wu (1083_CR55) 2019; 869 X Ying (1083_CR57) 2019; 1168 1083_CR22 H Tanaka (1083_CR46) 2019; 8 1083_CR24 AP Piotrowski (1083_CR37) 2020; 201 1083_CR29 MWM Esager (1083_CR17) 2023; 14 S Jung (1083_CR23) 2022; 208 J Singh (1083_CR43) 2019; 11 BE Launder (1083_CR26) 1983 FG Schmitt (1083_CR40) 2007; 335 B Blocken (1083_CR6) 2018; 11 NB Erichson (1083_CR16) 2020; 476 X Li (1083_CR28) 2019; 184 Q Chen (1083_CR9) 1998; 28 J Srebric (1083_CR45) 2002; 108 N Morozova (1083_CR33) 2022; 266 1083_CR30 HG Weller (1083_CR54) 1998; 12 1083_CR35 X Zhang (1083_CR60) 2020; 229 Q Fang (1083_CR18) 2019; 31 C Wei (1083_CR53) 2023; 242 JW Deardorff (1083_CR12) 1970; 41 C Ding (1083_CR13) 2019; 165 T Lauriks (1083_CR27) 2021; 246 T van Druenen (1083_CR49) 2019; 163 G Chen (1083_CR11) 2021; 74 1083_CR44 Y Zhou (1083_CR61) 2022; 219 P Moin (1083_CR31) 1998; 30 X Shao (1083_CR41) 2023; 232 X Tian (1083_CR48) 2022; 208 M Wang (1083_CR51) 2009; 15 R Vinuesa (1083_CR50) 2022; 2 G Calzolari (1083_CR8) 2021; 206 A Abbas (1083_CR2) 2022; 258 1083_CR3 G Lamberti (1083_CR25) 2021; 214 F Pedregosa (1083_CR36) 2011; 12 1083_CR1 V Yakhot (1083_CR56) 1986; 1 I Goodfellow (1083_CR19) 2016 SL Brunton (1083_CR7) 2020; 52 A Warey (1083_CR52) 2020; 148 J Hang (1083_CR20) 2011; 99 N Morozova (1083_CR32) 2020; 184  | 
    
| References_xml | – reference: SrebricJChenQAn example of verification, validation, and reporting of indoor environment CFD analysesASHRAE Transactions20021082185194 – reference: JungSJeoungJHongTOccupant-centered real-time control of indoor temperature using deep learning algorithmsBuilding and Environment202220810863310.1016/j.buildenv.2021.108633 – reference: PedregosaFVaroquauxGGramfortAScikit-learn: Machine learning in PythonThe Journal of Machine Learning Research201112282528302854348 – reference: Al AssaadDYangSLicinaDParticle release and transport from human skin and clothing: A CFD modeling methodologyIndoor Air202131137713901:CAS:528:DC%2BB3MXhvVCrur%2FP3389602910.1111/ina.12840 – reference: BruntonSLNoackBRKoumoutsakosPMachine learning for fluid mechanicsAnnual Review of Fluid Mechanics2020524775082020AnRFM..52..477B450894410.1146/annurev-fluid-010719-060214 – reference: Agarap AF (2018). Deep learning using rectified linear units (ReLU). arXiv: 1803.08375. – reference: Duraisamy K, Spalart P, Rumsey C (2017). Status, emerging ideas and future directions of turbulence modeling research in aeronautics. National Aeronautics and Space Administration, Langley Research Center. – reference: ErichsonNBMathelinLYaoZShallow neural networks for fluid flow reconstruction with limited sensorsProceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences2020476202000972020RSPSA.47600097E412648210.1098/rspa.2020.0097 – reference: FangQLiZWangYA neural-network enhanced modeling method for real-time evaluation of the temperature distribution in a data centerNeural Computing and Applications2019318379839110.1007/s00521-019-04508-y – reference: DeardorffJWA numerical study of three-dimensional turbulent channel flow at large Reynolds numbersJournal of Fluid Mechanics1970414534801970JFM....41..453D10.1017/S0022112070000691 – reference: HangJLiYSandbergMThe influence of building height variability on pollutant dispersion and pedestrian ventilation in idealized high-rise urban areasBuilding and Environment20125634636010.1016/j.buildenv.2012.03.023 – reference: VinuesaRBruntonSLEnhancing computational fluid dynamics with machine learningNature Computational Science202223583663817758710.1038/s43588-022-00264-7 – reference: Kingma DP, Ba J (2014). Adam: A method for stochastic optimization. arXiv: 1412.6980. – reference: LambertiGGorléCA multi-fidelity machine learning framework to predict wind loads on buildingsJournal of Wind Engineering and Industrial Aerodynamics202121410464710.1016/j.jweia.2021.104647 – reference: RaissiMPerdikarisPKarniadakisGEPhysics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equationsJournal of Computational Physics20193786867072019JCoPh.378..686R388169510.1016/j.jcp.2018.10.045 – reference: EsagerMWMÜnlüKDForecasting air quality in Tripoli: An evaluation of deep learning models for hourly PM2.5 surface mass concentrationsAtmosphere2023144782023Atmos..14..478E10.3390/atmos14030478 – reference: SchmittFGAbout Boussinesq’s turbulent viscosity hypothesis: Historical remarks and a direct evaluation of its validityComptes Rendus Mécanique20073356176272007CRMec.335..617S1:CAS:528:DC%2BD2sXht1CnsrzM10.1016/j.crme.2007.08.004 – reference: ChenGRongLZhangGUnsteady-state CFD simulations on the impacts of urban geometry on outdoor thermal comfort within idealized building arraysSustainable Cities and Society20217410318710.1016/j.scs.2021.103187 – reference: Maulik R, Sharma H, Patel S, et al. (2021). Deploying deep learning in OpenFOAM with TensorFlow. In: Proceedings of the AIAA Scitech 2021 Forum. – reference: ThysenJ-Hvan HooffTBlockenBAirplane cabin mixing ventilation with time-periodic supply: Contaminant mass fluxes and ventilation efficiencyIndoor Air20223211e131513643765810.1111/ina.13151 – reference: Hintea D, Brusey J, Gaura E (2015). A study on several machine learning methods for estimating cabin occupant equivalent temperature. In: Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics, Colmar, Alsace, France. – reference: ShaoXLiuZZhangSPIGNN-CFD: A physics-informed graph neural network for rapid predicting urban wind field defined on unstructured meshBuilding and Environment202323211005610.1016/j.buildenv.2023.110056 – reference: WareyAKaushikSKhalighiBData-driven prediction of vehicle cabin thermal comfort: Using machine learning and high-fidelity simulation resultsInternational Journal of Heat and Mass Transfer202014811908310.1016/j.ijheatmasstransfer.2019.119083 – reference: YingXAn overview of overfitting and its solutionsJournal of Physics: Conference Series20191168022022 – reference: Akiba T, Sano S, Yanase T, et al. (2019). Optuna: A next-generation hyperparameter optimization framework. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA. – reference: LauriksTLongoRBaetensDApplication of improved CFD modeling for prediction and mitigation of traffic-related air pollution hotspots in a realistic urban streetAtmospheric Environment20212461181271:CAS:528:DC%2BB3cXisFSnsLbI10.1016/j.atmosenv.2020.118127 – reference: DingCLamKPData-driven model for cross ventilation potential in high-density cities based on coupled CFD simulation and machine learningBuilding and Environment201916510639410.1016/j.buildenv.2019.106394 – reference: WeiCOokaRIndoor airflow field reconstruction using physics-informed neural networkBuilding and Environment202324211056310.1016/j.buildenv.2023.110563 – reference: ZhangXWeerasuriyaAUTseKTCFD simulation of natural ventilation of a generic building in various incident wind directions: comparison of turbulence modelling, evaluation methods, and ventilation mechanismsEnergy and Buildings202022911051610.1016/j.enbuild.2020.110516 – reference: Obiols-Sales O, Vishnu A, Malaya N, et al. (2022). NUNet: Deep learning for non-uniform super-resolution of turbulent flows. arXiv: 2203.14154. – reference: TanakaHMatsuokaYKawakamiTOptimization calculations and machine learning aimed at reduction of wind forces acting on tall buildings and mitigation of wind environmentInternational Journal of High-Rise Buildings201984291302 – reference: Abadi M, Agarwal A, Barham P, et al. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Available at https://www.tensorflow.org/ – reference: DuCChenQVirus transport and infection evaluation in a passenger elevator with a COVID-19 patientIndoor Air202232e1312536305056987488010.1111/ina.13125 – reference: MoinPMaheshKDIRECT NUMERICAL SIMULATION: A tool in turbulence researchAnnual Review of Fluid Mechanics1998305395781998AnRFM..30..539M160975310.1146/annurev.fluid.30.1.539 – reference: MorozovaNTriasFXCapdevilaRA CFD-based surrogate model for predicting flow parameters in a ventilated room using sensor readingsEnergy and Buildings202226611214610.1016/j.enbuild.2022.112146 – reference: NavaresRAznarteJLPredicting air quality with deep learning LSTM: Towards comprehensive modelsEcological Informatics20205510101910.1016/j.ecoinf.2019.101019 – reference: PiotrowskiAPNapiorkowskiJJPiotrowskaAEImpact of deep learning-based dropout on shallow neural networks applied to stream temperature modellingEarth-Science Reviews202020110307610.1016/j.earscirev.2019.103076 – reference: van DruenenTvan HooffTMontazeriHCFD evaluation of building geometry modifications to reduce pedestrian-level wind speedBuilding and Environment201916310629310.1016/j.buildenv.2019.106293 – reference: TianXChengYLinZModelling indoor environment indicators using artificial neural network in the stratified environmentsBuilding and Environment202220810858110.1016/j.buildenv.2021.108581 – reference: ZhouYAnYHuangWA combined deep learning and physical modelling method for estimating air pollutants’ source location and emission profile in street canyonsBuilding and Environment202221910924610.1016/j.buildenv.2022.109246 – reference: BlockenBLES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion?Building Simulation20181182187010.1007/s12273-018-0459-3 – reference: PourbagianMAshrafizadehASuper-resolution of low-fidelity flow solutions via generative adversarial networksSimulation20229864566310.1177/00375497211061260 – reference: WangMChenQAssessment of various turbulence models for transitional flows in an enclosed environment (RP-1271)HVAC&R Research2009151099111910.1080/10789669.2009.10390881 – reference: WellerHGTaborGJasakHA tensorial approach to computational continuum mechanics using object-oriented techniquesComputers in Physics1998126206311998ComPh..12..620W10.1063/1.168744 – reference: LiXTuJEvaluation of the eddy viscosity turbulence models for the simulation of convection-radiation coupled heat transfer in indoor environmentEnergy and Buildings201918481810.1016/j.enbuild.2018.11.043 – reference: MorozovaNTriasFXCapdevilaROn the feasibility of affordable high-fidelity CFD simulations for indoor environment design and controlBuilding and Environment202018410714410.1016/j.buildenv.2020.107144 – reference: Mohan AT, Lubbers N, Livescu D, et al. (2020). Embedding hard physical constraints in neural network coarse-graining of 3D turbulence. arXiv: 2002.00021. – reference: Chen Q, Zhang Z, Zuo W (2007). Computational fluid dynamics for indoor environment modeling: Past, present and future. In: Proceedings of XXV Congresso della Trasmissione del Calore UIT, Trieste, Italy. – reference: ShinSBaekKSoHRapid monitoring of indoor air quality for efficient HVAC systems using fully convolutional network deep learning modelBuilding and Environment202323411019110.1016/j.buildenv.2023.110191 – reference: Slotnick J, Khodadoust A, Alonso J, et al. (2014). CFD vision 2030 study: A path to revolutionary computational aerosciences. National Aeronautics and Space Administration, Langley Research Center. – reference: YakhotVOrszagSARenormalization group analysis of turbulence. I. Basic theoryJournal of Scientific Computing198613511986JSCom...1....3Y87031310.1007/BF01061452 – reference: ChenQXuWA zero-equation turbulence model for indoor airflow simulationEnergy and Buildings19982813714410.1016/S0378-7788(98)00020-6 – reference: GoodfellowIBengioYCourvilleADeep Learning2016Cambridge MA, USAMIT Press – reference: CalzolariGLiuWDeep learning to replace, improve, or aid CFD analysis in built environment applications: A reviewBuilding and Environment202120610831510.1016/j.buildenv.2021.108315 – reference: AbbasARafieeAHaaseMGeometrical deep learning for performance prediction of high-speed craftOcean Engineering202225811171610.1016/j.oceaneng.2022.111716 – reference: HangJLiYSandbergMExperimental and numerical studies of flows through and within high-rise building arrays and their link to ventilation strategyJournal of Wind Engineering and Industrial Aerodynamics2011991036105510.1016/j.jweia.2011.07.004 – reference: WuJXiaoHSunRReynolds-averaged Navier–Stokes equations with explicit data-driven Reynolds stress closure can be ill-conditionedJournal of Fluid Mechanics20198695535862019JFM...869..553W39440931:CAS:528:DC%2BC1MXhsF2qtbvI10.1017/jfm.2019.205 – reference: YonekuraKSuzukiKData-driven design exploration method using conditional variational autoencoder for airfoil designStructural and Multidisciplinary Optimization20216461362410.1007/s00158-021-02851-0 – reference: YuanXChenQGlicksmanLMeasurements and computations of room airflow with displacement ventilationASHRAE Transactions19991051340352 – reference: LaunderBESpaldingDBThe numerical computation of turbulent flowsNumerical Prediction of Flow, Heat Transfer, Turbulence and Combustion1983AmsterdamElsevier9611610.1016/B978-0-08-030937-8.50016-7 – reference: SinghJRoyAKEffects of roof slope and wind direction on wind pressure distribution on the roof of a square plan pyramidal low-rise building using CFD simulationInternational Journal of Advanced Structural Engineering2019112312542019IJASE..11..231S10.1007/s40091-019-0227-3 – volume: 52 start-page: 477 year: 2020 ident: 1083_CR7 publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev-fluid-010719-060214 – volume: 11 start-page: 231 year: 2019 ident: 1083_CR43 publication-title: International Journal of Advanced Structural Engineering doi: 10.1007/s40091-019-0227-3 – volume: 11 start-page: 821 year: 2018 ident: 1083_CR6 publication-title: Building Simulation doi: 10.1007/s12273-018-0459-3 – ident: 1083_CR3 – ident: 1083_CR29 doi: 10.2514/6.2021-1485 – volume: 30 start-page: 539 year: 1998 ident: 1083_CR31 publication-title: Annual Review of Fluid Mechanics doi: 10.1146/annurev.fluid.30.1.539 – start-page: 96 volume-title: Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion year: 1983 ident: 1083_CR26 doi: 10.1016/B978-0-08-030937-8.50016-7 – volume: 869 start-page: 553 year: 2019 ident: 1083_CR55 publication-title: Journal of Fluid Mechanics doi: 10.1017/jfm.2019.205 – volume: 335 start-page: 617 year: 2007 ident: 1083_CR40 publication-title: Comptes Rendus Mécanique doi: 10.1016/j.crme.2007.08.004 – volume: 208 start-page: 108633 year: 2022 ident: 1083_CR23 publication-title: Building and Environment doi: 10.1016/j.buildenv.2021.108633 – ident: 1083_CR22 doi: 10.5220/0005573606290634 – volume: 1 start-page: 3 year: 1986 ident: 1083_CR56 publication-title: Journal of Scientific Computing doi: 10.1007/BF01061452 – volume: 31 start-page: 8379 year: 2019 ident: 1083_CR18 publication-title: Neural Computing and Applications doi: 10.1007/s00521-019-04508-y – volume: 258 start-page: 111716 year: 2022 ident: 1083_CR2 publication-title: Ocean Engineering doi: 10.1016/j.oceaneng.2022.111716 – volume: 28 start-page: 137 year: 1998 ident: 1083_CR9 publication-title: Energy and Buildings doi: 10.1016/S0378-7788(98)00020-6 – volume: 32 start-page: e13125 year: 2022 ident: 1083_CR14 publication-title: Indoor Air doi: 10.1111/ina.13125 – volume: 64 start-page: 613 year: 2021 ident: 1083_CR58 publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-021-02851-0 – ident: 1083_CR10 – volume: 41 start-page: 453 year: 1970 ident: 1083_CR12 publication-title: Journal of Fluid Mechanics doi: 10.1017/S0022112070000691 – volume: 229 start-page: 110516 year: 2020 ident: 1083_CR60 publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2020.110516 – volume: 232 start-page: 110056 year: 2023 ident: 1083_CR41 publication-title: Building and Environment doi: 10.1016/j.buildenv.2023.110056 – volume: 98 start-page: 645 year: 2022 ident: 1083_CR38 publication-title: Simulation doi: 10.1177/00375497211061260 – volume: 74 start-page: 103187 year: 2021 ident: 1083_CR11 publication-title: Sustainable Cities and Society doi: 10.1016/j.scs.2021.103187 – volume: 56 start-page: 346 year: 2012 ident: 1083_CR21 publication-title: Building and Environment doi: 10.1016/j.buildenv.2012.03.023 – volume: 55 start-page: 101019 year: 2020 ident: 1083_CR34 publication-title: Ecological Informatics doi: 10.1016/j.ecoinf.2019.101019 – volume: 15 start-page: 1099 year: 2009 ident: 1083_CR51 publication-title: HVAC&R Research doi: 10.1080/10789669.2009.10390881 – volume: 1168 start-page: 022022 year: 2019 ident: 1083_CR57 publication-title: Journal of Physics: Conference Series – ident: 1083_CR30 – volume: 32 start-page: e13151 issue: 11 year: 2022 ident: 1083_CR47 publication-title: Indoor Air doi: 10.1111/ina.13151 – volume: 266 start-page: 112146 year: 2022 ident: 1083_CR33 publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2022.112146 – volume: 242 start-page: 110563 year: 2023 ident: 1083_CR53 publication-title: Building and Environment doi: 10.1016/j.buildenv.2023.110563 – volume: 208 start-page: 108581 year: 2022 ident: 1083_CR48 publication-title: Building and Environment doi: 10.1016/j.buildenv.2021.108581 – volume: 148 start-page: 119083 year: 2020 ident: 1083_CR52 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2019.119083 – volume: 219 start-page: 109246 year: 2022 ident: 1083_CR61 publication-title: Building and Environment doi: 10.1016/j.buildenv.2022.109246 – volume: 99 start-page: 1036 year: 2011 ident: 1083_CR20 publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/j.jweia.2011.07.004 – volume: 12 start-page: 620 year: 1998 ident: 1083_CR54 publication-title: Computers in Physics doi: 10.1063/1.168744 – volume: 184 start-page: 8 year: 2019 ident: 1083_CR28 publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2018.11.043 – volume: 12 start-page: 2825 year: 2011 ident: 1083_CR36 publication-title: The Journal of Machine Learning Research – ident: 1083_CR44 – ident: 1083_CR24 – volume: 108 start-page: 185 issue: 2 year: 2002 ident: 1083_CR45 publication-title: ASHRAE Transactions – volume: 378 start-page: 686 year: 2019 ident: 1083_CR39 publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2018.10.045 – ident: 1083_CR1 – volume: 206 start-page: 108315 year: 2021 ident: 1083_CR8 publication-title: Building and Environment doi: 10.1016/j.buildenv.2021.108315 – volume: 184 start-page: 107144 year: 2020 ident: 1083_CR32 publication-title: Building and Environment doi: 10.1016/j.buildenv.2020.107144 – volume: 201 start-page: 103076 year: 2020 ident: 1083_CR37 publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2019.103076 – volume: 165 start-page: 106394 year: 2019 ident: 1083_CR13 publication-title: Building and Environment doi: 10.1016/j.buildenv.2019.106394 – volume: 476 start-page: 20200097 year: 2020 ident: 1083_CR16 publication-title: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rspa.2020.0097 – volume: 234 start-page: 110191 year: 2023 ident: 1083_CR42 publication-title: Building and Environment doi: 10.1016/j.buildenv.2023.110191 – ident: 1083_CR35 – volume: 8 start-page: 291 issue: 4 year: 2019 ident: 1083_CR46 publication-title: International Journal of High-Rise Buildings – volume: 14 start-page: 478 year: 2023 ident: 1083_CR17 publication-title: Atmosphere doi: 10.3390/atmos14030478 – volume: 163 start-page: 106293 year: 2019 ident: 1083_CR49 publication-title: Building and Environment doi: 10.1016/j.buildenv.2019.106293 – volume: 31 start-page: 1377 year: 2021 ident: 1083_CR5 publication-title: Indoor Air doi: 10.1111/ina.12840 – volume: 105 start-page: 340 issue: 1 year: 1999 ident: 1083_CR59 publication-title: ASHRAE Transactions – ident: 1083_CR4 doi: 10.1145/3292500.3330701 – volume: 214 start-page: 104647 year: 2021 ident: 1083_CR25 publication-title: Journal of Wind Engineering and Industrial Aerodynamics doi: 10.1016/j.jweia.2021.104647 – volume: 2 start-page: 358 year: 2022 ident: 1083_CR50 publication-title: Nature Computational Science doi: 10.1038/s43588-022-00264-7 – volume-title: Deep Learning year: 2016 ident: 1083_CR19 – ident: 1083_CR15 – volume: 246 start-page: 118127 year: 2021 ident: 1083_CR27 publication-title: Atmospheric Environment doi: 10.1016/j.atmosenv.2020.118127  | 
    
| SSID | ssj0000070543 | 
    
| Score | 2.3977883 | 
    
| Snippet | This study aims to improve the accuracy and speed of predictions for thermal comfort and air quality in built environments by creating a coupled framework... | 
    
| SourceID | unpaywall swepub proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 399 | 
    
| SubjectTerms | Air quality Algorithms Atmospheric Protection/Air Quality Control/Air Pollution Building Construction and Design Built environment Computational fluid dynamics computational fluid dynamics (CFD) Computer simulation Coupling Deep learning Engineering Engineering Thermodynamics Fluid flow Heat and Mass Transfer Indoor environments Machine learning Mapping Model accuracy Monitoring/Environmental Analysis Multilayer perceptrons Multilayers Neural networks OpenFOAM Research Article Simulation Thermal comfort turbulence model Turbulence models Turbulent flow  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9i5bBxGLAPrYMhHyYOm1ySOHGSY9WuQjugHVbETlb8BR1d0rWJpvHX7-WzBSHQxCUfsmPH9rPf78l-vwfwUStXJdI4NFCMUR_XSRq5-MqV4lYbNIRkdUD2jJ9O_a8XwcUWjFpfmOq0e7slWfs0lCxNaX6y0PZk7fjmodqlqG9wGYmwjgGmPoNtHiAg78H29Ozb8Ee1nxxzyoIqimT1XJK9t3ub95VzWzutIWe3S9oxiu7A8yJdJH__JPP5hkaa7IJu21IfRLkeFLkcqJs7NI9PbOwevGwQKxnWIrYPWyZ9BTsbPIav4efYmAVpAlBckjwjjS8WuTHLjJrfNZ84KVWmJqjkZFH5OpEqDg9B3ExGkzFZzX41wcRWJLMEoSmRxWyekw1vvDcwnXz5PjqlTRAHqhDq5NRyy7kM40ijLexx6yuesFiGyjja5SFTNrR-STIfoDpljomYaxmCONdFYVFJyN5CL81S8w5IpK0NNJo0OsQLw7vjmlhxZnxHoi3ZB6cdPKEahvMy0MZcrLmZy64U2JUlMSoTfh8-dZ8sanqPhzIfthIhmpm-El6MK6LvIeztw-d2LNfJDxR2XAtSV29J9D2enQ9FtrwU1_mVYBzhH8NiO0F7_B_f_1fuA3jhIUirz9QdQi9fFuYDgqxcHjWT6B_sKxwd priority: 102 providerName: Unpaywall  | 
    
| Title | Deep learning to develop zero-equation based turbulence model for CFD simulations of the built environment | 
    
| URI | https://link.springer.com/article/10.1007/s12273-023-1083-4 https://www.proquest.com/docview/2922542057 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-367103 https://link.springer.com/content/pdf/10.1007/s12273-023-1083-4.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 17 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1996-8744 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070543 issn: 1996-8744 databaseCode: AFBBN dateStart: 20080301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1996-8744 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000070543 issn: 1996-8744 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1996-8744 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070543 issn: 1996-8744 databaseCode: U2A dateStart: 20080301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT4NAEJ74OGgPxmesj2YPxoOGCCwscCSttdHEeLBGTxtYdrWKbbU0Rn-9s0BpNUbjZQmvYcMsO98yM98AHCTCElEsTcMVlBoOzpOGb-EuE4KpROJCKM4DZC9Zp-uc37q3JVm0zoX55r8_GVk2GlgDLQtOGD5Km4dFtFEs98uyZvU7RdPWuEU4vQ6rpW4QTHyYP0n5aoWm0LLyhlbMoTVYGveH0ftblKYzlqe9CislZCRhoeM1mJP9dajNEAluwGNLyiEpK0Dck2xAymQo8iFfB4Z8KQi9ibZZCUErE4_zZCOSF8IhCFxJs90io95zWc1rRAaKIDYk8biXZmQmHW4Tuu3T62bHKKsoGAKxRmYophiLvcBPcDFqM-UIFtEg9oQ0E4t5VChPOZrl3UV7Rk3pU0tRRFGWhdoSkUe3YKE_6MttIH6ilJvgmiLxsKG4NS0ZCEalY8a4mKuDOXmrXJQU47rSRcqn5MhaERwVoZlJKXfqcFTdMiz4NX67eG-iKl5-aiNuBzglOTbizjocT9Q3Pf2LsMNCw9VzNdN2q3cTchyA_Cl74JQh_qIothoBf_dx51-d2IVlG1FSEdS2BwvZ61juI8rJ4gYshmd3F6eNfJxj27VDPNa9vArvPgFjvfRl | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb5swED6t6UObh3XrWi1bu_lh6sMmKsBg4DFKmmVr16e06p4sbOwuSxayBDStv75HMJBVU6u8gBBwGPvwfYfvvgP4kEhHxkLZli8ptTycJ63QwUMmJdOJQkdIrAJkL9nwyvt649-YPO5lFe1eLUmuZuom2c1FU2uhjcGpI0S5W7DtoX_itmC7-_n7efNrpaCw8cvQ-iLElvpRVK1n_k_OvxapgZn1ymjNItqGnXw2j__-iafTNSs02INR1f4y-GRymmfiVN49oHbc8AVfwHODSkm3VKOX8EzN9qG9xlX4Cn72lZoTU2TilmQpMflW5E4tUkv9LjnDSWEWE4KGTOSrfCayqrVDEBuT3qBPluNfpmDYkqSaIPwkIh9PM7KWcXcAV4OzUW9omUINlkQ4k1maacZEEIUJ-rsu055kMY1EIJWdOCygUgfaK4jkfTSZ1FYhdTRFoOY4qBAyDughtGbpTL0GEiZa-wm6LUmAG4p721GRZFR5tkB_sQN2NVhcGhbzopjGlDf8y0U3cuzGgvyUcq8DH-tb5iWFx2MXH1UawM3XvORuhLOe5yK07cCnauya048IOykVp35uQebdH193ebq45ZPsB6cMIR5FsbViPd3GNxs14j3sDEffLvjFl8vzt7DrIigrY-iOoJUtcnWMoCoT78xHdA_NphQS | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB5RkAocKl4VAUr3gDiArNhee20fUdwotBXiAFVuK3sfNG2wQ-IItb-eWb-SSiioF1uW7d2Vx97vG-_MNwBnUjgiSZVt-YJSy8N50godPGRCMC0VOkJpGSB7wwb33tehP6zrnM6aaPdmSbLKaTAqTVnRnUjdXSS-uQi7FuINTiMh9vEONjwEN1PCoMd67U8WI2bjV0H2JtiW-lHUrGy-1sq_2LQgnO0aaasnug2b82yS_HlOxuMlPOrvwIeaSJKryvK7sKayPdhekhfch1-xUhNS14V4IEVO6hQp8ldNc0s9VTLfxCCZJIg96bxMQSJleRyCdJb0-jGZjR7rGl8zkmuCjJGk89G4IEtJcgdw3_9y1xtYdW0FSyADKSzNNGNpEIUSXVSXaU-whEZpIJQtHRZQoQPtGe13H1GO2iqkjqbIrRwHbSiSgH6E9SzP1CGQUGrtS_Q0ZIAbinvbUZFgVHl2ii5eB-zmqXJRC4-b-hdjvpBMNobgaAijV0q514GL9pZJpbqx6uKTxlS8_gBn3I1wovJcZKMduGzMtzi9orHzysJtv0Z_Ox79uOL59IH_Ln5yypCVUWy2fQPeHuPRfw3iM7y_jfv8-_XNt2PYcpFGVVFvJ7BeTOfqE9KgIj0tX_UXmJT7bg | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT9swFH9i5bBxGLAPrYMhHyYOm1ySOHGSY9WuQjugHVbETlb8BR1d0rWJpvHX7-WzBSHQxCUfsmPH9rPf78l-vwfwUStXJdI4NFCMUR_XSRq5-MqV4lYbNIRkdUD2jJ9O_a8XwcUWjFpfmOq0e7slWfs0lCxNaX6y0PZk7fjmodqlqG9wGYmwjgGmPoNtHiAg78H29Ozb8Ee1nxxzyoIqimT1XJK9t3ub95VzWzutIWe3S9oxiu7A8yJdJH__JPP5hkaa7IJu21IfRLkeFLkcqJs7NI9PbOwevGwQKxnWIrYPWyZ9BTsbPIav4efYmAVpAlBckjwjjS8WuTHLjJrfNZ84KVWmJqjkZFH5OpEqDg9B3ExGkzFZzX41wcRWJLMEoSmRxWyekw1vvDcwnXz5PjqlTRAHqhDq5NRyy7kM40ijLexx6yuesFiGyjja5SFTNrR-STIfoDpljomYaxmCONdFYVFJyN5CL81S8w5IpK0NNJo0OsQLw7vjmlhxZnxHoi3ZB6cdPKEahvMy0MZcrLmZy64U2JUlMSoTfh8-dZ8sanqPhzIfthIhmpm-El6MK6LvIeztw-d2LNfJDxR2XAtSV29J9D2enQ9FtrwU1_mVYBzhH8NiO0F7_B_f_1fuA3jhIUirz9QdQi9fFuYDgqxcHjWT6B_sKxwd | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+to+develop+zero-equation+based+turbulence+model+for+CFD+simulations+of+the+built+environment&rft.jtitle=Building+simulation&rft.au=Calzolari%2C+Giovanni&rft.au=Liu%2C+Wei&rft.date=2024-03-01&rft.issn=1996-3599&rft.eissn=1996-8744&rft.volume=17&rft.issue=3&rft.spage=399&rft.epage=414&rft_id=info:doi/10.1007%2Fs12273-023-1083-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12273_023_1083_4 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-3599&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-3599&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-3599&client=summon |