Efficient Solver of Relativistic Hydrodynamics with an Implicit Runge–Kutta Method

We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge–Kutta methods with a locally optimized fixed-point iterative solver. For numerical demonstration, we implement our idea for ideal hydrodynamics using the one-stage Gauss–Legendre method as an implicit me...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2024; no. 6
Main Authors Touroux, Nathan, Kitazawa, Masakiyo, Murase, Koichi, Nahrgang, Marlene
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.06.2024
Oxford University Press on behalf of the Physical Society of Japan
Subjects
Online AccessGet full text
ISSN2050-3911
2050-3911
DOI10.1093/ptep/ptae058

Cover

Abstract We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge–Kutta methods with a locally optimized fixed-point iterative solver. For numerical demonstration, we implement our idea for ideal hydrodynamics using the one-stage Gauss–Legendre method as an implicit method. The accuracy and computational cost of our new method are compared with those of explicit ones for the (1+1)D Riemann problem, as well as the (2+1)D Gubser flow and event-by-event initial conditions for heavy-ion collisions generated by TRENTo. We demonstrate that the solver converges with only one iteration in most cases, and as a result, the implicit method requires a smaller computational cost than the explicit one at the same accuracy in these cases, while it may not converge with an unrealistically large Δt. By showing a relationship between the one-stage Gauss–Legendre method with the iterative solver and the two-step Adams–Bashforth method, we argue that our method benefits from both the stability of the former and the efficiency of the latter.
AbstractList We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge–Kutta methods with a locally optimized fixed-point iterative solver. For numerical demonstration, we implement our idea for ideal hydrodynamics using the one-stage Gauss–Legendre method as an implicit method. The accuracy and computational cost of our new method are compared with those of explicit ones for the (1+1)D Riemann problem, as well as the (2+1)D Gubser flow and event-by-event initial conditions for heavy-ion collisions generated by TRENTo. We demonstrate that the solver converges with only one iteration in most cases, and as a result, the implicit method requires a smaller computational cost than the explicit one at the same accuracy in these cases, while it may not converge with an unrealistically large Δt. By showing a relationship between the one-stage Gauss–Legendre method with the iterative solver and the two-step Adams–Bashforth method, we argue that our method benefits from both the stability of the former and the efficiency of the latter.
We propose a new method to solve the relativistic hydrodynamic equations based on an implicit Runge-Kutta method with an optimized fixed-point iterative solver. In the case of ideal hydrodynamics, the accuracy and computational cost of our new method are compared with those of explicit ones for the (1+1)-dimensional Riemann problem, as well as the (2+1)-dimensional Gubser flow and event-by-event initial conditions for heavy-ion collisions generated by TrENTo. We demonstrate that the solver converges with only one iteration in most cases, and as a result, the implicit method requires a smaller computational cost than the explicit one at the same accuracy in these cases.
We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge–Kutta methods with a locally optimized fixed-point iterative solver. For numerical demonstration, we implement our idea for ideal hydrodynamics using the one-stage Gauss–Legendre method as an implicit method. The accuracy and computational cost of our new method are compared with those of explicit ones for the (1+1)D Riemann problem, as well as the (2+1)D Gubser flow and event-by-event initial conditions for heavy-ion collisions generated by TRENTo. We demonstrate that the solver converges with only one iteration in most cases, and as a result, the implicit method requires a smaller computational cost than the explicit one at the same accuracy in these cases, while it may not converge with an unrealistically large Δt. By showing a relationship between the one-stage Gauss–Legendre method with the iterative solver and the two-step Adams–Bashforth method, we argue that our method benefits from both the stability of the former and the efficiency of the latter.
Author Murase, Koichi
Kitazawa, Masakiyo
Touroux, Nathan
Nahrgang, Marlene
Author_xml – sequence: 1
  givenname: Nathan
  orcidid: 0009-0008-0838-9379
  surname: Touroux
  fullname: Touroux, Nathan
  email: nathan.touroux@subatech.in2p3.fr
– sequence: 2
  givenname: Masakiyo
  orcidid: 0000-0002-5210-7649
  surname: Kitazawa
  fullname: Kitazawa, Masakiyo
– sequence: 3
  givenname: Koichi
  orcidid: 0000-0003-1634-250X
  surname: Murase
  fullname: Murase, Koichi
– sequence: 4
  givenname: Marlene
  orcidid: 0000-0001-8004-9821
  surname: Nahrgang
  fullname: Nahrgang, Marlene
BackLink https://hal.science/hal-04152119$$DView record in HAL
BookMark eNqF0N1KwzAUB_AgE5xzdz5AwAsRrOa0TbdcjjHdcCLMeR1Cm7iMrqlputE738E39EnM7ECvlAP54pdw8j9FncIUEqFzIDdAWHRbOln6QUhCh0eoGxJKgogBdH6tT1C_qtaEECCDAYmhi5YTpXSqZeHws8m30mKj8ELmwumtrpxO8bTJrMmaQmx0WuGddissCjzblLm_5_CiLl7l5_vHQ-2cwI_SrUx2ho6VyCvZP8w99HI3WY6nwfzpfjYezYM0YgMXKBKBUJRliS-W0DgMM-ZLgIjTmIYMsmgIfqdYojJCBEsyGlEJ390PadRDQftuXZSi2Yk856XVG2EbDoTvU-H7VPghFe-vWr8SP9IIzaejOd-f-UhoCMC24O1Fa0tr3mpZOb42tS38d3gEA4hZQljo1XWrUmuqykr1XwOXLTd1-bf8Av3AkHw
Cites_doi 10.1103/PhysRevC.78.044901
10.1142/9789814293297_0004
10.1103/PhysRevC.106.044903
10.1103/PhysRevC.102.064903
10.15083/00008070
10.1103/PhysRevC.82.014903
10.1016/j.nuclphysa.2020.122016
10.1140/epjc/s10052-013-2524-5
10.1016/j.ppnp.2015.09.002
10.1126/science.1215901
10.1146/annurev-nucl-101917-020852
10.1016/j.physrep.2015.12.003
10.1016/j.nuclphysa.2016.01.011
10.1016/j.nuclphysa.2018.10.061
10.1016/j.jcp.2013.08.047
10.1016/j.cpc.2021.108077
10.1103/PhysRevD.82.085027
10.1103/PhysRevC.101.024911
10.1007/JHEP11(2010)077
10.1017/9781108651998
10.1103/PhysRevC.107.014901
10.1146/annurev-nucl-102212-170540
10.1103/PhysRevC.77.064901
10.1051/epjconf/201817116004
10.1006/jcph.2000.6459
10.1103/PhysRevLett.126.202301
10.1016/j.cpc.2014.07.010
10.1140/epjc/s10052-016-4433-x
10.1016/j.cpc.2017.01.015
10.1103/PhysRevC.103.054909
10.1147/rd.112.0215
10.1038/s41567-019-0611-8
10.1103/PhysRevC.85.034901
10.15083/00072981
10.1016/j.ppnp.2016.04.002
10.1103/PhysRevC.84.024912
10.1002/zamm.19610411317
10.1103/PhysRevC.85.054906
10.1103/PhysRevC.85.024909
10.1016/S0377-0427(99)00134-X
10.1016/j.nuclphysa.2004.10.034
10.1103/PhysRevC.97.064918
10.1103/PhysRevC.83.034901
10.1007/BF01448839
10.1103/PhysRevC.102.024914
10.1103/PhysRevC.104.054904
10.1103/PhysRevC.93.021902
10.1103/PhysRev.74.328
10.1103/PhysRevD.27.140
10.1146/annurev.nucl.56.080805.140556
10.1103/PhysRevC.92.011901
10.1016/j.cpc.2019.107090
10.1103/PhysRevLett.126.092301
10.1090/S0025-5718-1964-0159424-9
ContentType Journal Article
Copyright The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024
The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024
– notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
1XC
VOOES
ADTOC
UNPAY
DOI 10.1093/ptep/ptae058
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest: Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
Computer Science
EISSN 2050-3911
ExternalDocumentID 10.1093/ptep/ptae058
oai:HAL:hal-04152119v1
10_1093_ptep_ptae058
GroupedDBID .I3
0R~
4.4
5VS
AAFWJ
AAMVS
AAPPN
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFPKN
AFULF
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
BAYMD
BTTYL
CIDKT
D~K
EBS
EJD
ER.
GROUPED_DOAJ
H13
IAO
ISR
ITC
KQ8
KSI
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
RHF
ROL
ROX
RXO
TOX
~D7
88I
AAYXX
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PUEGO
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c397t-f031af59d6d6d965422d9d9da1a4c45291d381a1af96fd00a96d535e110770853
IEDL.DBID UNPAY
ISSN 2050-3911
IngestDate Sun Oct 26 04:07:07 EDT 2025
Tue Oct 14 20:13:07 EDT 2025
Sat Sep 20 14:11:53 EDT 2025
Wed Oct 01 02:50:24 EDT 2025
Fri Jan 31 08:06:28 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords boundary condition
costs
scattering
fixed point
heavy ion
hydrodynamics
Gubser
relativistic
Riemann
flow
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Attribution: http://creativecommons.org/licenses/by
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-f031af59d6d6d965422d9d9da1a4c45291d381a1af96fd00a96d535e110770853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8004-9821
0000-0003-1634-250X
0000-0002-5210-7649
0009-0008-0838-9379
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/ptep/advance-article-pdf/doi/10.1093/ptep/ptae058/57312707/ptae058.pdf
PQID 3171496092
PQPubID 7121340
ParticipantIDs unpaywall_primary_10_1093_ptep_ptae058
hal_primary_oai_HAL_hal_04152119v1
proquest_journals_3171496092
crossref_primary_10_1093_ptep_ptae058
oup_primary_10_1093_ptep_ptae058
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2024
Publisher Oxford University Press
Oxford University Press on behalf of the Physical Society of Japan
Publisher_xml – name: Oxford University Press
– name: Oxford University Press on behalf of the Physical Society of Japan
References Gubser (2024061111505436200_bib49) 2010; 82
Kapusta (2024061111505436200_bib39) 2012; 85
Lora-Clavijo (2024061111505436200_bib48) 2013
Courant (2024061111505436200_bib52) 1967; 11
Nijs (2024061111505436200_bib26) 2021; 126
Courant (2024061111505436200_bib51) 1928; 100
Karpenko (2024061111505436200_bib17) 2014; 185
Petersen (2024061111505436200_bib34) 2008; 78
Busza (2024061111505436200_bib10) 2018; 68
Roy (2024061111505436200_bib14) 2012; 85
Bazow (2024061111505436200_bib61) 2017
Moreland (2024061111505436200_bib50) 2015; 92
Romatschke (2024061111505436200_bib9) 2019
Borsanyi (2024061111505436200_bib62) 2010; 1011
Nahrgang (2024061111505436200_bib44) 2011; 84
Jacak (2024061111505436200_bib5) 2012; 337
Bluhm (2024061111505436200_bib42) 2018; 171
Murase (2024061111505436200_bib19) 2015
Kurganov (2024061111505436200_bib47) 2000; 160
Taub (2024061111505436200_bib54) 1948; 74
Bazow (2024061111505436200_bib20) 2018; 225
Kuntzmann (2024061111505436200_bib59) 1961; 41
Okamoto (2024061111505436200_bib21) 2016; 76
Pang (2024061111505436200_bib22) 2018; 97
Akamatsu (2024061111505436200_bib18) 2014; 256
Singh (2024061111505436200_bib41) 2019; 982
Sakai (2024061111505436200_bib43) 2020; 102
Hairer (2024061111505436200_bib56) 1999; 111
Parkkila (2024061111505436200_bib28) 2021; 104
Landau (2024061111505436200_bib55) 1987
Teaney (2024061111505436200_bib4) 2010; 4
Bluhm (2024061111505436200_bib31) 2020; 1003
Del Zanna (2024061111505436200_bib16) 2013; 73
Muller (2024061111505436200_bib3) 2006; 56
Butcher (2024061111505436200_bib60) 1964; 18
Schenke (2024061111505436200_bib13) 2010; 82
Bjorken (2024061111505436200_bib53) 1983; 27
Arieh (2024061111505436200_bib57) 1996
Song (2024061111505436200_bib11) 2008; 77
McNelis (2024061111505436200_bib36) 2021; 267
Chaudhuri (2024061111505436200_bib12)
Nijs (2024061111505436200_bib29) 2022; 106
Murase (2024061111505436200_bib40) 2016; 956
Du (2024061111505436200_bib23) 2020; 251
Hirano (2024061111505436200_bib37)
Gyulassy (2024061111505436200_bib2) 2005; 750
Heinz (2024061111505436200_bib1)
Asakawa (2024061111505436200_bib30) 2016; 90
Adam (2024061111505436200_bib32) 2021; 126
Holopainen (2024061111505436200_bib35) 2011; 83
Derradi de Souza (2024061111505436200_bib7) 2016; 86
Heinz (2024061111505436200_bib6) 2013; 63
Braun-Munzinger (2024061111505436200_bib8) 2016; 621
Herold (2024061111505436200_bib45) 2016; 93
Tachibana (2024061111505436200_bib38) 2014
Bozek (2024061111505436200_bib15) 2012; 85
Adamczewski-Musch (2024061111505436200_bib33) 2020; 102
Nakamura (2024061111505436200_bib46) 2023; 107
Nijs (2024061111505436200_bib27) 2021; 103
Moreland (2024061111505436200_bib24) 2020; 101
Bernhard (2024061111505436200_bib25) 2019; 15
References_xml – volume: 78
  start-page: 044901
  year: 2008
  ident: 2024061111505436200_bib34
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.78.044901
– volume: 4
  start-page: 207
  year: 2010
  ident: 2024061111505436200_bib4
  publication-title: Quark-gluon plasma
  doi: 10.1142/9789814293297_0004
– volume: 106
  start-page: 044903
  year: 2022
  ident: 2024061111505436200_bib29
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.106.044903
– volume: 102
  start-page: 064903
  year: 2020
  ident: 2024061111505436200_bib43
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.102.064903
– volume-title: Hydrodynamic response to jet propagation in quark-gluon plasma
  year: 2014
  ident: 2024061111505436200_bib38
  doi: 10.15083/00008070
– volume: 82
  start-page: 014903
  year: 2010
  ident: 2024061111505436200_bib13
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.82.014903
– volume: 1003
  start-page: 122016
  year: 2020
  ident: 2024061111505436200_bib31
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2020.122016
– volume: 73
  start-page: 2524
  year: 2013
  ident: 2024061111505436200_bib16
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-013-2524-5
– volume: 86
  start-page: 35
  year: 2016
  ident: 2024061111505436200_bib7
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2015.09.002
– volume: 337
  start-page: 310
  year: 2012
  ident: 2024061111505436200_bib5
  publication-title: Science
  doi: 10.1126/science.1215901
– volume: 68
  start-page: 339
  year: 2018
  ident: 2024061111505436200_bib10
  publication-title: Ann. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev-nucl-101917-020852
– volume: 621
  start-page: 76
  year: 2016
  ident: 2024061111505436200_bib8
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2015.12.003
– volume: 956
  start-page: 276
  year: 2016
  ident: 2024061111505436200_bib40
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2016.01.011
– volume: 982
  start-page: 319
  year: 2019
  ident: 2024061111505436200_bib41
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2018.10.061
– volume: 256
  start-page: 34
  year: 2014
  ident: 2024061111505436200_bib18
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.08.047
– volume: 267
  start-page: 108077
  year: 2021
  ident: 2024061111505436200_bib36
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108077
– volume: 82
  start-page: 085027
  year: 2010
  ident: 2024061111505436200_bib49
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.82.085027
– volume: 101
  start-page: 024911
  year: 2020
  ident: 2024061111505436200_bib24
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.101.024911
– volume: 1011
  start-page: 077
  year: 2010
  ident: 2024061111505436200_bib62
  publication-title: J. High Energy Phys.
  doi: 10.1007/JHEP11(2010)077
– volume-title: Relativistic Fluid Dynamics In and Out of Equilibrium
  year: 2019
  ident: 2024061111505436200_bib9
  doi: 10.1017/9781108651998
– start-page: 28
  volume-title: Rev. Mex. Fis. E
  year: 2013
  ident: 2024061111505436200_bib48
– volume-title: GPU-VH
  year: 2017
  ident: 2024061111505436200_bib61
– volume: 107
  start-page: 014901
  year: 2023
  ident: 2024061111505436200_bib46
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.107.014901
– volume-title: A First Course in the Numerical Analysis of Differential Equations
  year: 1996
  ident: 2024061111505436200_bib57
– volume: 63
  start-page: 123
  year: 2013
  ident: 2024061111505436200_bib6
  publication-title: Ann. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev-nucl-102212-170540
– volume: 77
  start-page: 064901
  year: 2008
  ident: 2024061111505436200_bib11
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.77.064901
– volume: 171
  start-page: 16004
  year: 2018
  ident: 2024061111505436200_bib42
  publication-title: EPJ Web Conf.
  doi: 10.1051/epjconf/201817116004
– volume: 160
  start-page: 241
  year: 2000
  ident: 2024061111505436200_bib47
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6459
– volume: 126
  start-page: 202301
  year: 2021
  ident: 2024061111505436200_bib26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.202301
– volume: 185
  start-page: 3016
  year: 2014
  ident: 2024061111505436200_bib17
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2014.07.010
– volume: 76
  start-page: 579
  year: 2016
  ident: 2024061111505436200_bib21
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-016-4433-x
– volume: 225
  start-page: 92
  year: 2018
  ident: 2024061111505436200_bib20
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2017.01.015
– volume: 103
  start-page: 054909
  year: 2021
  ident: 2024061111505436200_bib27
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.103.054909
– ident: 2024061111505436200_bib37
– volume: 11
  start-page: 215
  year: 1967
  ident: 2024061111505436200_bib52
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.112.0215
– ident: 2024061111505436200_bib12
– volume: 15
  start-page: 1113
  year: 2019
  ident: 2024061111505436200_bib25
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0611-8
– volume: 85
  start-page: 034901
  year: 2012
  ident: 2024061111505436200_bib15
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.85.034901
– volume-title: Ph.D. Thesis
  year: 2015
  ident: 2024061111505436200_bib19
  article-title: Causal hydrodynamic fluctuations and their effects on high-energy nuclear collisions
  doi: 10.15083/00072981
– ident: 2024061111505436200_bib1
– volume: 90
  start-page: 299
  year: 2016
  ident: 2024061111505436200_bib30
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2016.04.002
– volume: 84
  start-page: 024912
  year: 2011
  ident: 2024061111505436200_bib44
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.84.024912
– volume: 41
  start-page: T28
  year: 1961
  ident: 2024061111505436200_bib59
  publication-title: Math. Mech.
  doi: 10.1002/zamm.19610411317
– volume: 85
  start-page: 054906
  year: 2012
  ident: 2024061111505436200_bib39
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.85.054906
– volume: 85
  start-page: 024909
  year: 2012
  ident: 2024061111505436200_bib14
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.85.024909
– volume: 111
  start-page: 93
  year: 1999
  ident: 2024061111505436200_bib56
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00134-X
– volume: 750
  start-page: 30
  year: 2005
  ident: 2024061111505436200_bib2
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2004.10.034
– volume: 97
  start-page: 064918
  year: 2018
  ident: 2024061111505436200_bib22
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.97.064918
– volume: 83
  start-page: 034901
  year: 2011
  ident: 2024061111505436200_bib35
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.83.034901
– volume: 100
  start-page: 32
  year: 1928
  ident: 2024061111505436200_bib51
  publication-title: Math. Ann.
  doi: 10.1007/BF01448839
– volume: 102
  start-page: 024914
  year: 2020
  ident: 2024061111505436200_bib33
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.102.024914
– volume: 104
  start-page: 054904
  year: 2021
  ident: 2024061111505436200_bib28
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.104.054904
– volume: 93
  start-page: 021902
  year: 2016
  ident: 2024061111505436200_bib45
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.93.021902
– volume: 74
  start-page: 328
  year: 1948
  ident: 2024061111505436200_bib54
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.74.328
– volume-title: Fluid Mechanics
  year: 1987
  ident: 2024061111505436200_bib55
– volume: 27
  start-page: 140
  year: 1983
  ident: 2024061111505436200_bib53
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.27.140
– volume: 56
  start-page: 93
  year: 2006
  ident: 2024061111505436200_bib3
  publication-title: Ann. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev.nucl.56.080805.140556
– volume: 92
  start-page: 011901
  year: 2015
  ident: 2024061111505436200_bib50
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.92.011901
– volume: 251
  start-page: 107090
  year: 2020
  ident: 2024061111505436200_bib23
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2019.107090
– volume: 126
  start-page: 092301
  year: 2021
  ident: 2024061111505436200_bib32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.092301
– volume: 18
  start-page: 50
  year: 1964
  ident: 2024061111505436200_bib60
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-1964-0159424-9
SSID ssj0001077041
Score 2.313384
Snippet We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge–Kutta methods with a locally optimized fixed-point iterative...
We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge–Kutta methods with a locally optimized fixed-point iterative...
We propose a new method to solve the relativistic hydrodynamic equations based on an implicit Runge-Kutta method with an optimized fixed-point iterative...
SourceID unpaywall
hal
proquest
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Computer Science
Fluid mechanics
General Physics
High Energy Physics - Phenomenology
Nuclear Theory
Physics
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTtwwEB7BciiX_kCrLoXKQsAtIk7s7PpQVVAt2vKzQhQkbtHs2lYroWxgsyBufYe-YZ-kM4kD9AKyFClW5MOMPfNlZjwfwBYhWK-UHkcqVVmkJLpobPqKFNKXKRpOjXG842SUDS_U4aW-XIBRexeGyypbm1gbajudcIx8N2Wmbm6PlnwtryNmjeLsakuhgYFawX6pW4wtwlLCnbE6sLQ_GJ2ePUZd4l4vVjJUwNPf_G5ZuZIe6GJmfX_imxZ_cmXkf7feGHy-mhcl3t_h1dUTP3TwFl4HACn2Go2_gwVXrMCbACZFOKqzVTgf1M0hyKeIH1MufxZTL5rSt9u6ObMY3luyng0j_UxwQFZgIb7XJea_KnFGZsD9_f3naF5VKE5qpun3cHEwOP82jAKFQjQhoFFFns4sem1sRsMwOVViDQ2UqCacc5WWXDa9eZN5G8doMqtT7WQtKHLlH6BTTAv3EYRXic3c2Pe1RuU0GvQ97KGTBu0kUboL263w8rLplJE3Ge40ZyHnQchd2CTJPnzC7a2He8c5z8U1mpDmVnZBkOBfWGe91Uoezt0sf9wlXdh50NSz66w9v84nWE4IxzTVYevQqW7mboNwSDX-HDbXP1WB35c
  priority: 102
  providerName: ProQuest
Title Efficient Solver of Relativistic Hydrodynamics with an Implicit Runge–Kutta Method
URI https://www.proquest.com/docview/3171496092
https://hal.science/hal-04152119
https://academic.oup.com/ptep/advance-article-pdf/doi/10.1093/ptep/ptae058/57312707/ptae058.pdf
UnpaywallVersion publishedVersion
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: TOX
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61yQEuLU8RKJGFgNuGfdib-JiiVOHRUJVECqfVbGyLqtVm1ThF4dT_wD_kl3S86y20B-CCLK201shae7zjz57PMwAvCcEazkUe8ISnAY9QB7kccFLIIEpQOteYO-84nKTjGX8_F_MtyJq7MOhZ4b3mSkNpdfnG-8MbslhQKvMr9IBMaqHSog7FgLb4iXOn9puKHklvQzsVBNZb0J5NjoZfXMq5UJAFon_d0-Fvt3Njodr-6miSN67AOSR6Z12UuPmGZ2e_LUoHu3DZdKfmopz21jbvLb7fivT4H_t7D3Y8oGXDuo37sKWLB7DrwS3zpmP1EKajKlgFrXHs89LRsdnSsJqKd1EFi2bjjSJrvimQPnTF3AExw4K9qyjvJ5Ydk1nSPy9_fFhbi-ywynz9CGYHo-nbceBTOgQLAj42MGRD0AipUirSJcuKlaSCEfKF8wFHiiAEvRmZGhWGKFMlEqHdLrVP6DB5DK1iWegnwAyPVapzMxACuRYo0fSxjzqSqBYxFx141egvK-vIHVntcU8yN36ZH64OvCDlXou4cNvj4cfM1YUVuonkRdQBRgr6Szt7zcTIvB1YZYnLL--C-sUdeH09Wf7YztN_FXwGd2NCWDVvbQ9a9nytnxNCsnkX2vujydFxtzphoOf007zrZ_4Vd8wWWA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLb6OJQLb9SFAiNEuUXNY5LdOVSowFZZ9iFUtlJvwZuZEZVKNrDZVnvjP_B_-DH8Euxk0pZLOVWRIiUaWYrt2B7b4w_gNUWwVsp45slIJp4M0Hgz1ZMkkF4QoeLSGOc7xpMkPZYfT-KTNfjdnoXhtsrWJtaGWs9zzpHvRYzUzePRwrfld49Ro7i62kJooINW0Pv1iDF3sGNoVhe0hVvsDz6QvHfD8LA_fZ96DmXAy8kXV54ltUYbK53QpRi_KdSKLgxQ5lyWDDR5NXqyKrHa91ElOo5iwxunLgUsEdFdh036VkWbv813_cmno6ssD6-Rgeu491W0V1ampBsan1Hmr_nC9a_cifnPKTsOdreWRYmrCzw7u-b3Du_DXRewioNGwx7Amikewj0XvApnGhaPYNqvh1GQDxOf59xuLeZWNK125_UwaJGuNFnrVYHfTvOF4ASwwEIM6pb200ockdkxf37-Gi6rCsW4RrZ-DMe3wswnsFHMC7MNwspQJ2Zme3GM0sSo0HaxiyZQqPNQxh3YbZmXlc1kjqypqEcZMzlzTO7AK-Ls5RIep50ejDJ-59fRS6DOgw4IYvx_6Oy0Usncf77IrrSyA28uJXUjnac303kJW-l0PMpGg8nwGdwJKYZqOtN2YKP6sTTPKQaqZi-cogn4ctu6_Rc-KhtS
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcoAL0BbU5SWranvLNg87uz6uEGj7AFUtK8EpmqxtUYGyEesFLSf-A_-wv6TjxOF1oFxQTrFGo9jjjD97Ps8AfCQEazgXecATngY8Qh3kssfJIL0oQelCY-684-AwHQz5t2NxPAdZcxcGPSu801xpKK0uv_h4eEMWC0pl7lMPyKQWKi3qUPRoi5-4cGq3aeiQ9DwspILAegsWhoc_-yeu5FwoyAPRv-7p8E_1PFqo5k8dTfLRFTiHRBenRYmzKzw_f7Ao7a_ATdOdmoty1pnavDO6fpLp8RX7uwrLHtCyfq3jDczp4i2seHDLvOuYvIOjvSpZBa1x7PfY0bHZ2LCaindZJYtmg5kibz4rkD50wtwBMcOCfa0o738s-0VuSf-9uf0-tRbZQVX5eg2G-3tHu4PAl3QIRgR8bGDIh6ARUqX0SFcsK1aSHoyQj1wMOFIEIejNyNSoMESZKpEI7XapXUKHyTq0inGh3wMzPFapzk1PCORaoETTxS7qSKIaxVy04VNjv6ysM3dkdcQ9ydz4ZX642vCBjHsn4tJtD_o_MtcWVugmkpdRGxgZ6D96tpqJkXk_MMkSV1_eJfWL2_D5brI8q2fjpYKbsBQTwqp5a1vQshdTvU0IyeY7fpb_A-M3Eq0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Solver+of+Relativistic+Hydrodynamics+with+an+Implicit+Runge%E2%80%93Kutta+Method&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Touroux%2C+Nathan&rft.au=Kitazawa%2C+Masakiyo&rft.au=Murase%2C+Koichi&rft.au=Nahrgang%2C+Marlene&rft.date=2024-06-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2024&rft.issue=6&rft_id=info:doi/10.1093%2Fptep%2Fptae058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptae058
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon