Efficient Solver of Relativistic Hydrodynamics with an Implicit Runge–Kutta Method
We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge–Kutta methods with a locally optimized fixed-point iterative solver. For numerical demonstration, we implement our idea for ideal hydrodynamics using the one-stage Gauss–Legendre method as an implicit me...
        Saved in:
      
    
          | Published in | Progress of theoretical and experimental physics Vol. 2024; no. 6 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Oxford
          Oxford University Press
    
        01.06.2024
     Oxford University Press on behalf of the Physical Society of Japan  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2050-3911 2050-3911  | 
| DOI | 10.1093/ptep/ptae058 | 
Cover
| Abstract | We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge–Kutta methods with a locally optimized fixed-point iterative solver. For numerical demonstration, we implement our idea for ideal hydrodynamics using the one-stage Gauss–Legendre method as an implicit method. The accuracy and computational cost of our new method are compared with those of explicit ones for the (1+1)D Riemann problem, as well as the (2+1)D Gubser flow and event-by-event initial conditions for heavy-ion collisions generated by TRENTo. We demonstrate that the solver converges with only one iteration in most cases, and as a result, the implicit method requires a smaller computational cost than the explicit one at the same accuracy in these cases, while it may not converge with an unrealistically large Δt. By showing a relationship between the one-stage Gauss–Legendre method with the iterative solver and the two-step Adams–Bashforth method, we argue that our method benefits from both the stability of the former and the efficiency of the latter. | 
    
|---|---|
| AbstractList | We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge–Kutta methods with a locally optimized fixed-point iterative solver. For numerical demonstration, we implement our idea for ideal hydrodynamics using the one-stage Gauss–Legendre method as an implicit method. The accuracy and computational cost of our new method are compared with those of explicit ones for the (1+1)D Riemann problem, as well as the (2+1)D Gubser flow and event-by-event initial conditions for heavy-ion collisions generated by TRENTo. We demonstrate that the solver converges with only one iteration in most cases, and as a result, the implicit method requires a smaller computational cost than the explicit one at the same accuracy in these cases, while it may not converge with an unrealistically large Δt. By showing a relationship between the one-stage Gauss–Legendre method with the iterative solver and the two-step Adams–Bashforth method, we argue that our method benefits from both the stability of the former and the efficiency of the latter. We propose a new method to solve the relativistic hydrodynamic equations based on an implicit Runge-Kutta method with an optimized fixed-point iterative solver. In the case of ideal hydrodynamics, the accuracy and computational cost of our new method are compared with those of explicit ones for the (1+1)-dimensional Riemann problem, as well as the (2+1)-dimensional Gubser flow and event-by-event initial conditions for heavy-ion collisions generated by TrENTo. We demonstrate that the solver converges with only one iteration in most cases, and as a result, the implicit method requires a smaller computational cost than the explicit one at the same accuracy in these cases. We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge–Kutta methods with a locally optimized fixed-point iterative solver. For numerical demonstration, we implement our idea for ideal hydrodynamics using the one-stage Gauss–Legendre method as an implicit method. The accuracy and computational cost of our new method are compared with those of explicit ones for the (1+1)D Riemann problem, as well as the (2+1)D Gubser flow and event-by-event initial conditions for heavy-ion collisions generated by TRENTo. We demonstrate that the solver converges with only one iteration in most cases, and as a result, the implicit method requires a smaller computational cost than the explicit one at the same accuracy in these cases, while it may not converge with an unrealistically large Δt. By showing a relationship between the one-stage Gauss–Legendre method with the iterative solver and the two-step Adams–Bashforth method, we argue that our method benefits from both the stability of the former and the efficiency of the latter.  | 
    
| Author | Murase, Koichi Kitazawa, Masakiyo Touroux, Nathan Nahrgang, Marlene  | 
    
| Author_xml | – sequence: 1 givenname: Nathan orcidid: 0009-0008-0838-9379 surname: Touroux fullname: Touroux, Nathan email: nathan.touroux@subatech.in2p3.fr – sequence: 2 givenname: Masakiyo orcidid: 0000-0002-5210-7649 surname: Kitazawa fullname: Kitazawa, Masakiyo – sequence: 3 givenname: Koichi orcidid: 0000-0003-1634-250X surname: Murase fullname: Murase, Koichi – sequence: 4 givenname: Marlene orcidid: 0000-0001-8004-9821 surname: Nahrgang fullname: Nahrgang, Marlene  | 
    
| BackLink | https://hal.science/hal-04152119$$DView record in HAL | 
    
| BookMark | eNqF0N1KwzAUB_AgE5xzdz5AwAsRrOa0TbdcjjHdcCLMeR1Cm7iMrqlputE738E39EnM7ECvlAP54pdw8j9FncIUEqFzIDdAWHRbOln6QUhCh0eoGxJKgogBdH6tT1C_qtaEECCDAYmhi5YTpXSqZeHws8m30mKj8ELmwumtrpxO8bTJrMmaQmx0WuGddissCjzblLm_5_CiLl7l5_vHQ-2cwI_SrUx2ho6VyCvZP8w99HI3WY6nwfzpfjYezYM0YgMXKBKBUJRliS-W0DgMM-ZLgIjTmIYMsmgIfqdYojJCBEsyGlEJ390PadRDQftuXZSi2Yk856XVG2EbDoTvU-H7VPghFe-vWr8SP9IIzaejOd-f-UhoCMC24O1Fa0tr3mpZOb42tS38d3gEA4hZQljo1XWrUmuqykr1XwOXLTd1-bf8Av3AkHw | 
    
| Cites_doi | 10.1103/PhysRevC.78.044901 10.1142/9789814293297_0004 10.1103/PhysRevC.106.044903 10.1103/PhysRevC.102.064903 10.15083/00008070 10.1103/PhysRevC.82.014903 10.1016/j.nuclphysa.2020.122016 10.1140/epjc/s10052-013-2524-5 10.1016/j.ppnp.2015.09.002 10.1126/science.1215901 10.1146/annurev-nucl-101917-020852 10.1016/j.physrep.2015.12.003 10.1016/j.nuclphysa.2016.01.011 10.1016/j.nuclphysa.2018.10.061 10.1016/j.jcp.2013.08.047 10.1016/j.cpc.2021.108077 10.1103/PhysRevD.82.085027 10.1103/PhysRevC.101.024911 10.1007/JHEP11(2010)077 10.1017/9781108651998 10.1103/PhysRevC.107.014901 10.1146/annurev-nucl-102212-170540 10.1103/PhysRevC.77.064901 10.1051/epjconf/201817116004 10.1006/jcph.2000.6459 10.1103/PhysRevLett.126.202301 10.1016/j.cpc.2014.07.010 10.1140/epjc/s10052-016-4433-x 10.1016/j.cpc.2017.01.015 10.1103/PhysRevC.103.054909 10.1147/rd.112.0215 10.1038/s41567-019-0611-8 10.1103/PhysRevC.85.034901 10.15083/00072981 10.1016/j.ppnp.2016.04.002 10.1103/PhysRevC.84.024912 10.1002/zamm.19610411317 10.1103/PhysRevC.85.054906 10.1103/PhysRevC.85.024909 10.1016/S0377-0427(99)00134-X 10.1016/j.nuclphysa.2004.10.034 10.1103/PhysRevC.97.064918 10.1103/PhysRevC.83.034901 10.1007/BF01448839 10.1103/PhysRevC.102.024914 10.1103/PhysRevC.104.054904 10.1103/PhysRevC.93.021902 10.1103/PhysRev.74.328 10.1103/PhysRevD.27.140 10.1146/annurev.nucl.56.080805.140556 10.1103/PhysRevC.92.011901 10.1016/j.cpc.2019.107090 10.1103/PhysRevLett.126.092301 10.1090/S0025-5718-1964-0159424-9  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024 The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution  | 
    
| Copyright_xml | – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. 2024 – notice: The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution  | 
    
| DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS Q9U 1XC VOOES ADTOC UNPAY  | 
    
| DOI | 10.1093/ptep/ptae058 | 
    
| DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Science Database ProQuest Central Premium ProQuest One Academic ProQuest: Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences Physics Computer Science  | 
    
| EISSN | 2050-3911 | 
    
| ExternalDocumentID | 10.1093/ptep/ptae058 oai:HAL:hal-04152119v1 10_1093_ptep_ptae058  | 
    
| GroupedDBID | .I3 0R~ 4.4 5VS AAFWJ AAMVS AAPPN AAPXW AAVAP ABEJV ABGNP ABPTD ABXVV ACGFS ADHZD AENEX AENZO AFPKN AFULF AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL BAYMD BTTYL CIDKT D~K EBS EJD ER. GROUPED_DOAJ H13 IAO ISR ITC KQ8 KSI M~E O9- OAWHX OJQWA OK1 PEELM RHF ROL ROX RXO TOX ~D7 88I AAYXX ABUWG AFKRA AZQEC BENPR CCPQU CITATION DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PUEGO 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI PRINS Q9U 1XC VOOES ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c397t-f031af59d6d6d965422d9d9da1a4c45291d381a1af96fd00a96d535e110770853 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2050-3911 | 
    
| IngestDate | Sun Oct 26 04:07:07 EDT 2025 Tue Oct 14 20:13:07 EDT 2025 Sat Sep 20 14:11:53 EDT 2025 Wed Oct 01 02:50:24 EDT 2025 Fri Jan 31 08:06:28 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | boundary condition costs scattering fixed point heavy ion hydrodynamics Gubser relativistic Riemann flow  | 
    
| Language | English | 
    
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 Attribution: http://creativecommons.org/licenses/by cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c397t-f031af59d6d6d965422d9d9da1a4c45291d381a1af96fd00a96d535e110770853 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-8004-9821 0000-0003-1634-250X 0000-0002-5210-7649 0009-0008-0838-9379  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/ptep/advance-article-pdf/doi/10.1093/ptep/ptae058/57312707/ptae058.pdf | 
    
| PQID | 3171496092 | 
    
| PQPubID | 7121340 | 
    
| ParticipantIDs | unpaywall_primary_10_1093_ptep_ptae058 hal_primary_oai_HAL_hal_04152119v1 proquest_journals_3171496092 crossref_primary_10_1093_ptep_ptae058 oup_primary_10_1093_ptep_ptae058  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-06-01 | 
    
| PublicationDateYYYYMMDD | 2024-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Oxford | 
    
| PublicationPlace_xml | – name: Oxford | 
    
| PublicationTitle | Progress of theoretical and experimental physics | 
    
| PublicationYear | 2024 | 
    
| Publisher | Oxford University Press Oxford University Press on behalf of the Physical Society of Japan  | 
    
| Publisher_xml | – name: Oxford University Press – name: Oxford University Press on behalf of the Physical Society of Japan  | 
    
| References | Gubser (2024061111505436200_bib49) 2010; 82 Kapusta (2024061111505436200_bib39) 2012; 85 Lora-Clavijo (2024061111505436200_bib48) 2013 Courant (2024061111505436200_bib52) 1967; 11 Nijs (2024061111505436200_bib26) 2021; 126 Courant (2024061111505436200_bib51) 1928; 100 Karpenko (2024061111505436200_bib17) 2014; 185 Petersen (2024061111505436200_bib34) 2008; 78 Busza (2024061111505436200_bib10) 2018; 68 Roy (2024061111505436200_bib14) 2012; 85 Bazow (2024061111505436200_bib61) 2017 Moreland (2024061111505436200_bib50) 2015; 92 Romatschke (2024061111505436200_bib9) 2019 Borsanyi (2024061111505436200_bib62) 2010; 1011 Nahrgang (2024061111505436200_bib44) 2011; 84 Jacak (2024061111505436200_bib5) 2012; 337 Bluhm (2024061111505436200_bib42) 2018; 171 Murase (2024061111505436200_bib19) 2015 Kurganov (2024061111505436200_bib47) 2000; 160 Taub (2024061111505436200_bib54) 1948; 74 Bazow (2024061111505436200_bib20) 2018; 225 Kuntzmann (2024061111505436200_bib59) 1961; 41 Okamoto (2024061111505436200_bib21) 2016; 76 Pang (2024061111505436200_bib22) 2018; 97 Akamatsu (2024061111505436200_bib18) 2014; 256 Singh (2024061111505436200_bib41) 2019; 982 Sakai (2024061111505436200_bib43) 2020; 102 Hairer (2024061111505436200_bib56) 1999; 111 Parkkila (2024061111505436200_bib28) 2021; 104 Landau (2024061111505436200_bib55) 1987 Teaney (2024061111505436200_bib4) 2010; 4 Bluhm (2024061111505436200_bib31) 2020; 1003 Del Zanna (2024061111505436200_bib16) 2013; 73 Muller (2024061111505436200_bib3) 2006; 56 Butcher (2024061111505436200_bib60) 1964; 18 Schenke (2024061111505436200_bib13) 2010; 82 Bjorken (2024061111505436200_bib53) 1983; 27 Arieh (2024061111505436200_bib57) 1996 Song (2024061111505436200_bib11) 2008; 77 McNelis (2024061111505436200_bib36) 2021; 267 Chaudhuri (2024061111505436200_bib12) Nijs (2024061111505436200_bib29) 2022; 106 Murase (2024061111505436200_bib40) 2016; 956 Du (2024061111505436200_bib23) 2020; 251 Hirano (2024061111505436200_bib37) Gyulassy (2024061111505436200_bib2) 2005; 750 Heinz (2024061111505436200_bib1) Asakawa (2024061111505436200_bib30) 2016; 90 Adam (2024061111505436200_bib32) 2021; 126 Holopainen (2024061111505436200_bib35) 2011; 83 Derradi de Souza (2024061111505436200_bib7) 2016; 86 Heinz (2024061111505436200_bib6) 2013; 63 Braun-Munzinger (2024061111505436200_bib8) 2016; 621 Herold (2024061111505436200_bib45) 2016; 93 Tachibana (2024061111505436200_bib38) 2014 Bozek (2024061111505436200_bib15) 2012; 85 Adamczewski-Musch (2024061111505436200_bib33) 2020; 102 Nakamura (2024061111505436200_bib46) 2023; 107 Nijs (2024061111505436200_bib27) 2021; 103 Moreland (2024061111505436200_bib24) 2020; 101 Bernhard (2024061111505436200_bib25) 2019; 15  | 
    
| References_xml | – volume: 78 start-page: 044901 year: 2008 ident: 2024061111505436200_bib34 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.78.044901 – volume: 4 start-page: 207 year: 2010 ident: 2024061111505436200_bib4 publication-title: Quark-gluon plasma doi: 10.1142/9789814293297_0004 – volume: 106 start-page: 044903 year: 2022 ident: 2024061111505436200_bib29 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.106.044903 – volume: 102 start-page: 064903 year: 2020 ident: 2024061111505436200_bib43 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.102.064903 – volume-title: Hydrodynamic response to jet propagation in quark-gluon plasma year: 2014 ident: 2024061111505436200_bib38 doi: 10.15083/00008070 – volume: 82 start-page: 014903 year: 2010 ident: 2024061111505436200_bib13 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.82.014903 – volume: 1003 start-page: 122016 year: 2020 ident: 2024061111505436200_bib31 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2020.122016 – volume: 73 start-page: 2524 year: 2013 ident: 2024061111505436200_bib16 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-013-2524-5 – volume: 86 start-page: 35 year: 2016 ident: 2024061111505436200_bib7 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2015.09.002 – volume: 337 start-page: 310 year: 2012 ident: 2024061111505436200_bib5 publication-title: Science doi: 10.1126/science.1215901 – volume: 68 start-page: 339 year: 2018 ident: 2024061111505436200_bib10 publication-title: Ann. Rev. Nucl. Part. Sci. doi: 10.1146/annurev-nucl-101917-020852 – volume: 621 start-page: 76 year: 2016 ident: 2024061111505436200_bib8 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2015.12.003 – volume: 956 start-page: 276 year: 2016 ident: 2024061111505436200_bib40 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2016.01.011 – volume: 982 start-page: 319 year: 2019 ident: 2024061111505436200_bib41 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2018.10.061 – volume: 256 start-page: 34 year: 2014 ident: 2024061111505436200_bib18 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.08.047 – volume: 267 start-page: 108077 year: 2021 ident: 2024061111505436200_bib36 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108077 – volume: 82 start-page: 085027 year: 2010 ident: 2024061111505436200_bib49 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.82.085027 – volume: 101 start-page: 024911 year: 2020 ident: 2024061111505436200_bib24 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.101.024911 – volume: 1011 start-page: 077 year: 2010 ident: 2024061111505436200_bib62 publication-title: J. High Energy Phys. doi: 10.1007/JHEP11(2010)077 – volume-title: Relativistic Fluid Dynamics In and Out of Equilibrium year: 2019 ident: 2024061111505436200_bib9 doi: 10.1017/9781108651998 – start-page: 28 volume-title: Rev. Mex. Fis. E year: 2013 ident: 2024061111505436200_bib48 – volume-title: GPU-VH year: 2017 ident: 2024061111505436200_bib61 – volume: 107 start-page: 014901 year: 2023 ident: 2024061111505436200_bib46 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.107.014901 – volume-title: A First Course in the Numerical Analysis of Differential Equations year: 1996 ident: 2024061111505436200_bib57 – volume: 63 start-page: 123 year: 2013 ident: 2024061111505436200_bib6 publication-title: Ann. Rev. Nucl. Part. Sci. doi: 10.1146/annurev-nucl-102212-170540 – volume: 77 start-page: 064901 year: 2008 ident: 2024061111505436200_bib11 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.77.064901 – volume: 171 start-page: 16004 year: 2018 ident: 2024061111505436200_bib42 publication-title: EPJ Web Conf. doi: 10.1051/epjconf/201817116004 – volume: 160 start-page: 241 year: 2000 ident: 2024061111505436200_bib47 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6459 – volume: 126 start-page: 202301 year: 2021 ident: 2024061111505436200_bib26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.202301 – volume: 185 start-page: 3016 year: 2014 ident: 2024061111505436200_bib17 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.07.010 – volume: 76 start-page: 579 year: 2016 ident: 2024061111505436200_bib21 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4433-x – volume: 225 start-page: 92 year: 2018 ident: 2024061111505436200_bib20 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2017.01.015 – volume: 103 start-page: 054909 year: 2021 ident: 2024061111505436200_bib27 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.103.054909 – ident: 2024061111505436200_bib37 – volume: 11 start-page: 215 year: 1967 ident: 2024061111505436200_bib52 publication-title: IBM J. Res. Dev. doi: 10.1147/rd.112.0215 – ident: 2024061111505436200_bib12 – volume: 15 start-page: 1113 year: 2019 ident: 2024061111505436200_bib25 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0611-8 – volume: 85 start-page: 034901 year: 2012 ident: 2024061111505436200_bib15 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.85.034901 – volume-title: Ph.D. Thesis year: 2015 ident: 2024061111505436200_bib19 article-title: Causal hydrodynamic fluctuations and their effects on high-energy nuclear collisions doi: 10.15083/00072981 – ident: 2024061111505436200_bib1 – volume: 90 start-page: 299 year: 2016 ident: 2024061111505436200_bib30 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2016.04.002 – volume: 84 start-page: 024912 year: 2011 ident: 2024061111505436200_bib44 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.84.024912 – volume: 41 start-page: T28 year: 1961 ident: 2024061111505436200_bib59 publication-title: Math. Mech. doi: 10.1002/zamm.19610411317 – volume: 85 start-page: 054906 year: 2012 ident: 2024061111505436200_bib39 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.85.054906 – volume: 85 start-page: 024909 year: 2012 ident: 2024061111505436200_bib14 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.85.024909 – volume: 111 start-page: 93 year: 1999 ident: 2024061111505436200_bib56 publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(99)00134-X – volume: 750 start-page: 30 year: 2005 ident: 2024061111505436200_bib2 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2004.10.034 – volume: 97 start-page: 064918 year: 2018 ident: 2024061111505436200_bib22 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.97.064918 – volume: 83 start-page: 034901 year: 2011 ident: 2024061111505436200_bib35 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.83.034901 – volume: 100 start-page: 32 year: 1928 ident: 2024061111505436200_bib51 publication-title: Math. Ann. doi: 10.1007/BF01448839 – volume: 102 start-page: 024914 year: 2020 ident: 2024061111505436200_bib33 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.102.024914 – volume: 104 start-page: 054904 year: 2021 ident: 2024061111505436200_bib28 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.104.054904 – volume: 93 start-page: 021902 year: 2016 ident: 2024061111505436200_bib45 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.93.021902 – volume: 74 start-page: 328 year: 1948 ident: 2024061111505436200_bib54 publication-title: Phys. Rev. doi: 10.1103/PhysRev.74.328 – volume-title: Fluid Mechanics year: 1987 ident: 2024061111505436200_bib55 – volume: 27 start-page: 140 year: 1983 ident: 2024061111505436200_bib53 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.27.140 – volume: 56 start-page: 93 year: 2006 ident: 2024061111505436200_bib3 publication-title: Ann. Rev. Nucl. Part. Sci. doi: 10.1146/annurev.nucl.56.080805.140556 – volume: 92 start-page: 011901 year: 2015 ident: 2024061111505436200_bib50 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.92.011901 – volume: 251 start-page: 107090 year: 2020 ident: 2024061111505436200_bib23 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2019.107090 – volume: 126 start-page: 092301 year: 2021 ident: 2024061111505436200_bib32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.126.092301 – volume: 18 start-page: 50 year: 1964 ident: 2024061111505436200_bib60 publication-title: Math. Comput. doi: 10.1090/S0025-5718-1964-0159424-9  | 
    
| SSID | ssj0001077041 | 
    
| Score | 2.313384 | 
    
| Snippet | We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge–Kutta methods with a locally optimized fixed-point iterative... We propose a new method to solve the relativistic hydrodynamic equations based on implicit Runge–Kutta methods with a locally optimized fixed-point iterative... We propose a new method to solve the relativistic hydrodynamic equations based on an implicit Runge-Kutta method with an optimized fixed-point iterative...  | 
    
| SourceID | unpaywall hal proquest crossref oup  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| SubjectTerms | Computer Science Fluid mechanics General Physics High Energy Physics - Phenomenology Nuclear Theory Physics  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NTtwwEB7BciiX_kCrLoXKQsAtIk7s7PpQVVAt2vKzQhQkbtHs2lYroWxgsyBufYe-YZ-kM4kD9AKyFClW5MOMPfNlZjwfwBYhWK-UHkcqVVmkJLpobPqKFNKXKRpOjXG842SUDS_U4aW-XIBRexeGyypbm1gbajudcIx8N2Wmbm6PlnwtryNmjeLsakuhgYFawX6pW4wtwlLCnbE6sLQ_GJ2ePUZd4l4vVjJUwNPf_G5ZuZIe6GJmfX_imxZ_cmXkf7feGHy-mhcl3t_h1dUTP3TwFl4HACn2Go2_gwVXrMCbACZFOKqzVTgf1M0hyKeIH1MufxZTL5rSt9u6ObMY3luyng0j_UxwQFZgIb7XJea_KnFGZsD9_f3naF5VKE5qpun3cHEwOP82jAKFQjQhoFFFns4sem1sRsMwOVViDQ2UqCacc5WWXDa9eZN5G8doMqtT7WQtKHLlH6BTTAv3EYRXic3c2Pe1RuU0GvQ97KGTBu0kUboL263w8rLplJE3Ge40ZyHnQchd2CTJPnzC7a2He8c5z8U1mpDmVnZBkOBfWGe91Uoezt0sf9wlXdh50NSz66w9v84nWE4IxzTVYevQqW7mboNwSDX-HDbXP1WB35c priority: 102 providerName: ProQuest  | 
    
| Title | Efficient Solver of Relativistic Hydrodynamics with an Implicit Runge–Kutta Method | 
    
| URI | https://www.proquest.com/docview/3171496092 https://hal.science/hal-04152119 https://academic.oup.com/ptep/advance-article-pdf/doi/10.1093/ptep/ptae058/57312707/ptae058.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2024 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: TOX dateStart: 20120101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2050-3911 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB61yQEuLU8RKJGFgNuGfdib-JiiVOHRUJVECqfVbGyLqtVm1ThF4dT_wD_kl3S86y20B-CCLK201shae7zjz57PMwAvCcEazkUe8ISnAY9QB7kccFLIIEpQOteYO-84nKTjGX8_F_MtyJq7MOhZ4b3mSkNpdfnG-8MbslhQKvMr9IBMaqHSog7FgLb4iXOn9puKHklvQzsVBNZb0J5NjoZfXMq5UJAFon_d0-Fvt3Njodr-6miSN67AOSR6Z12UuPmGZ2e_LUoHu3DZdKfmopz21jbvLb7fivT4H_t7D3Y8oGXDuo37sKWLB7DrwS3zpmP1EKajKlgFrXHs89LRsdnSsJqKd1EFi2bjjSJrvimQPnTF3AExw4K9qyjvJ5Ydk1nSPy9_fFhbi-ywynz9CGYHo-nbceBTOgQLAj42MGRD0AipUirSJcuKlaSCEfKF8wFHiiAEvRmZGhWGKFMlEqHdLrVP6DB5DK1iWegnwAyPVapzMxACuRYo0fSxjzqSqBYxFx141egvK-vIHVntcU8yN36ZH64OvCDlXou4cNvj4cfM1YUVuonkRdQBRgr6Szt7zcTIvB1YZYnLL--C-sUdeH09Wf7YztN_FXwGd2NCWDVvbQ9a9nytnxNCsnkX2vujydFxtzphoOf007zrZ_4Vd8wWWA | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLb6OJQLb9SFAiNEuUXNY5LdOVSowFZZ9iFUtlJvwZuZEZVKNrDZVnvjP_B_-DH8Euxk0pZLOVWRIiUaWYrt2B7b4w_gNUWwVsp45slIJp4M0Hgz1ZMkkF4QoeLSGOc7xpMkPZYfT-KTNfjdnoXhtsrWJtaGWs9zzpHvRYzUzePRwrfld49Ro7i62kJooINW0Pv1iDF3sGNoVhe0hVvsDz6QvHfD8LA_fZ96DmXAy8kXV54ltUYbK53QpRi_KdSKLgxQ5lyWDDR5NXqyKrHa91ElOo5iwxunLgUsEdFdh036VkWbv813_cmno6ssD6-Rgeu491W0V1ampBsan1Hmr_nC9a_cifnPKTsOdreWRYmrCzw7u-b3Du_DXRewioNGwx7Amikewj0XvApnGhaPYNqvh1GQDxOf59xuLeZWNK125_UwaJGuNFnrVYHfTvOF4ASwwEIM6pb200ockdkxf37-Gi6rCsW4RrZ-DMe3wswnsFHMC7MNwspQJ2Zme3GM0sSo0HaxiyZQqPNQxh3YbZmXlc1kjqypqEcZMzlzTO7AK-Ls5RIep50ejDJ-59fRS6DOgw4IYvx_6Oy0Usncf77IrrSyA28uJXUjnac303kJW-l0PMpGg8nwGdwJKYZqOtN2YKP6sTTPKQaqZi-cogn4ctu6_Rc-KhtS | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7BcoAL0BbU5SWranvLNg87uz6uEGj7AFUtK8EpmqxtUYGyEesFLSf-A_-wv6TjxOF1oFxQTrFGo9jjjD97Ps8AfCQEazgXecATngY8Qh3kssfJIL0oQelCY-684-AwHQz5t2NxPAdZcxcGPSu801xpKK0uv_h4eEMWC0pl7lMPyKQWKi3qUPRoi5-4cGq3aeiQ9DwspILAegsWhoc_-yeu5FwoyAPRv-7p8E_1PFqo5k8dTfLRFTiHRBenRYmzKzw_f7Ao7a_ATdOdmoty1pnavDO6fpLp8RX7uwrLHtCyfq3jDczp4i2seHDLvOuYvIOjvSpZBa1x7PfY0bHZ2LCaindZJYtmg5kibz4rkD50wtwBMcOCfa0o738s-0VuSf-9uf0-tRbZQVX5eg2G-3tHu4PAl3QIRgR8bGDIh6ARUqX0SFcsK1aSHoyQj1wMOFIEIejNyNSoMESZKpEI7XapXUKHyTq0inGh3wMzPFapzk1PCORaoETTxS7qSKIaxVy04VNjv6ysM3dkdcQ9ydz4ZX642vCBjHsn4tJtD_o_MtcWVugmkpdRGxgZ6D96tpqJkXk_MMkSV1_eJfWL2_D5brI8q2fjpYKbsBQTwqp5a1vQshdTvU0IyeY7fpb_A-M3Eq0 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Solver+of+Relativistic+Hydrodynamics+with+an+Implicit+Runge%E2%80%93Kutta+Method&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Touroux%2C+Nathan&rft.au=Kitazawa%2C+Masakiyo&rft.au=Murase%2C+Koichi&rft.au=Nahrgang%2C+Marlene&rft.date=2024-06-01&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2024&rft.issue=6&rft_id=info:doi/10.1093%2Fptep%2Fptae058&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_ptep_ptae058 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |