One Class One Click: Quasi scene-level weakly supervised point cloud semantic segmentation with active learning

Reliance on vast annotations to achieve leading performance severely restricts the practicality of large-scale point cloud semantic segmentation. For the purpose of reducing data annotation costs, effective labeling schemes are developed and contribute to attaining competitive results under weak sup...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 204; pp. 89 - 104
Main Authors Wang, Puzuo, Yao, Wei, Shao, Jie
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2023
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2023.09.002

Cover

Abstract Reliance on vast annotations to achieve leading performance severely restricts the practicality of large-scale point cloud semantic segmentation. For the purpose of reducing data annotation costs, effective labeling schemes are developed and contribute to attaining competitive results under weak supervision strategy. Revisiting current weak label forms, we introduce One Class One Click (OCOC), a low cost yet informative quasi scene-level label, which encapsulates both point-level and scene-level annotations. An active weakly supervised framework is proposed to leverage scarce labels by involving weak supervision from both global and local perspectives. Contextual constraints are imposed by an auxiliary scene classification task, respectively based on global feature embedding and point-wise prediction aggregation, which restricts the model prediction merely to OCOC labels within a sub-cloud. Furthermore, we design a context-aware pseudo labeling strategy, which effectively supplement point-level supervisory signals subject to OCOC labels. Finally, an active learning scheme with a uncertainty measure — temporal output discrepancy is integrated to examine informative samples and provides guidance on sub-clouds query, which is conducive to quickly attaining desirable OCOC annotations and reduces the labeling cost to an extremely low extent. Extensive experimental analysis using three LiDAR benchmarks respectively collected from airborne, mobile and ground platforms demonstrates that our proposed method achieves very promising results though subject to scarce labels. It considerably outperforms genuine scene-level weakly supervised methods by up to 25% in terms of average F1 score and achieves competitive results against full supervision schemes. On terrestrial LiDAR dataset — Semantics3D, using approximately 2‱ of labels, our method achieves an average F1 score of 85.2%, which increases by 11.58% compared to the baseline model. Codes are publicly available at https://github.com/PuzoW/One-Class-One-Click.
AbstractList Reliance on vast annotations to achieve leading performance severely restricts the practicality of large-scale point cloud semantic segmentation. For the purpose of reducing data annotation costs, effective labeling schemes are developed and contribute to attaining competitive results under weak supervision strategy. Revisiting current weak label forms, we introduce One Class One Click (OCOC), a low cost yet informative quasi scene-level label, which encapsulates both point-level and scene-level annotations. An active weakly supervised framework is proposed to leverage scarce labels by involving weak supervision from both global and local perspectives. Contextual constraints are imposed by an auxiliary scene classification task, respectively based on global feature embedding and point-wise prediction aggregation, which restricts the model prediction merely to OCOC labels within a sub-cloud. Furthermore, we design a context-aware pseudo labeling strategy, which effectively supplement point-level supervisory signals subject to OCOC labels. Finally, an active learning scheme with a uncertainty measure — temporal output discrepancy is integrated to examine informative samples and provides guidance on sub-clouds query, which is conducive to quickly attaining desirable OCOC annotations and reduces the labeling cost to an extremely low extent. Extensive experimental analysis using three LiDAR benchmarks respectively collected from airborne, mobile and ground platforms demonstrates that our proposed method achieves very promising results though subject to scarce labels. It considerably outperforms genuine scene-level weakly supervised methods by up to 25% in terms of average F1 score and achieves competitive results against full supervision schemes. On terrestrial LiDAR dataset — Semantics3D, using approximately 2‱ of labels, our method achieves an average F1 score of 85.2%, which increases by 11.58% compared to the baseline model. Codes are publicly available at https://github.com/PuzoW/One-Class-One-Click.
Author Wang, Puzuo
Yao, Wei
Shao, Jie
Author_xml – sequence: 1
  givenname: Puzuo
  orcidid: 0000-0002-0971-4013
  surname: Wang
  fullname: Wang, Puzuo
  email: puzuo.wang@connect.polyu.hk
  organization: Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-7704-0615
  surname: Yao
  fullname: Yao, Wei
  email: wei.hn.yao@polyu.edu.hk
  organization: Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong
– sequence: 3
  givenname: Jie
  surname: Shao
  fullname: Shao, Jie
  organization: Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong
BookMark eNqNkM1rFTEUxYO04Gvr32CWbmaaj_mK4KI81AqFIug6JJk79b7mJWOSeaX_vVNGXLjRxeXeC-ccOL8LchZiAELeclZzxrvrQ415TvmwTi2YkDVTNWPiFdnxoRfVIGR7RnZMiaYSPe9ek4ucD4wx3nbDjsT7AHTvTc50u9A9vqdfF5ORZgcBKg8n8PQJzKN_pnmZIZ0ww0jniKFQ5-My0gxHEwq69Xg4QiimYAz0CcsPalzBE1APJgUMD1fkfDI-w5vf-5J8__Tx2_62urv__GV_c1c5qfpSwTQxKyfeWuk4OOg7Y_tOWWEbq5STcpwa2YzD-rKmBd6wRljhwE6MW9ZP8pK823LnFH8ukIs-4trHexMgLllL3kquOjW0q7TfpC7FnBNMek54NOlZc6ZfEOuD_oNYvyDWTOkV8er88JfT4da9JIP-P_w3mx9WEieEpLNDCA5GTOCKHiP-M-MXybajcQ
CitedBy_id crossref_primary_10_1016_j_autcon_2025_106016
crossref_primary_10_1016_j_jag_2024_103951
crossref_primary_10_1016_j_jag_2024_104105
crossref_primary_10_1109_TGRS_2024_3458013
crossref_primary_10_1109_TGRS_2025_3535104
crossref_primary_10_1109_JSTARS_2024_3469269
crossref_primary_10_1016_j_compbiomed_2024_108115
crossref_primary_10_1016_j_jag_2025_104440
crossref_primary_10_1007_s13721_024_00483_0
crossref_primary_10_1016_j_jag_2024_103970
crossref_primary_10_1016_j_isprsjprs_2024_12_005
crossref_primary_10_3390_e26080634
crossref_primary_10_1109_TGRS_2024_3506016
crossref_primary_10_1109_TITS_2024_3496938
Cites_doi 10.1109/ICCV48922.2021.01522
10.1109/CVPR.2019.00521
10.1609/aaai.v35i4.16455
10.1109/CVPR46437.2021.01533
10.1109/CVPR42600.2020.01112
10.5194/isprs-annals-V-2-2022-151-2022
10.1109/ICCV.2019.00651
10.1109/ICCV48922.2021.01523
10.1109/CVPR42600.2020.00444
10.1109/JSTARS.2015.2510867
10.1109/CVPR.2017.16
10.1016/j.isprsjprs.2022.04.016
10.1109/ICRA46639.2022.9811904
10.1109/CVPR52688.2022.01451
10.1145/3503161.3547820
10.2307/143141
10.1002/j.1538-7305.1948.tb01338.x
10.1109/ICCV48922.2021.00343
10.1145/3472291
10.1177/0278364918767506
10.1109/ICCV48922.2021.01595
10.5194/isprs-annals-IV-1-W1-91-2017
10.1109/CVPR52688.2022.00272
10.1016/j.isprsjprs.2020.02.020
10.1109/ICCV48922.2021.00636
10.1109/CVPR42600.2020.01372
10.1016/j.isprsjprs.2022.03.001
10.1016/j.isprsjprs.2020.09.003
10.1109/LRA.2021.3088796
10.1007/978-3-031-19821-2_39
10.1609/aaai.v35i2.16200
10.1109/CVPR46437.2021.00177
10.1016/j.isprsjprs.2015.01.010
10.1007/978-3-031-19812-0_35
10.1007/978-3-030-58580-8_34
10.1016/j.cag.2021.12.008
10.1016/j.isprsjprs.2010.10.005
10.1109/CVPR.2019.00018
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2023.09.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 104
ExternalDocumentID 10_1016_j_isprsjprs_2023_09_002
S0924271623002344
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
ACLOT
EFKBS
L.6
~HD
ID FETCH-LOGICAL-c397t-eff0b3f15b3c1ece76ab769b2b4b99c33df434d8b4b045e14042b2cebf01b07f3
IEDL.DBID AIKHN
ISSN 0924-2716
IngestDate Sat Sep 27 16:01:31 EDT 2025
Tue Jul 01 03:46:51 EDT 2025
Thu Apr 24 22:57:09 EDT 2025
Fri Feb 23 02:34:21 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Point cloud
Semantic segmentation
Active learning
Weakly supervised learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-eff0b3f15b3c1ece76ab769b2b4b99c33df434d8b4b045e14042b2cebf01b07f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0971-4013
0000-0001-7704-0615
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0924271623002344
PQID 3153196985
PQPubID 24069
PageCount 16
ParticipantIDs proquest_miscellaneous_3153196985
crossref_primary_10_1016_j_isprsjprs_2023_09_002
crossref_citationtrail_10_1016_j_isprsjprs_2023_09_002
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2023_09_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
20231001
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Laine, S., Aila, T., 2017. Temporal Ensembling for Semi-Supervised Learning. In: International Conference on Learning Representations.
Liu, Gao, Lin, Chen (b21) 2022
Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J., 2017. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 77–85.
Zhang, Y., Li, Z., Xie, Y., Qu, Y., Li, C., Mei, T., 2021a. Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 4. pp. 3421–3429.
Scheffer, Decomain, Wrobel (b29) 2001
Kölle, Laupheimer, Schmohl, Haala, Rottensteiner, Wegner, Ledoux (b15) 2021; 1
Tobler (b36) 1970; 46
Shao, F., Luo, Y., Liu, P., Chen, J., Yang, Y., Lu, Y., Xiao, J., 2022. Active Learning for Point Cloud Semantic Segmentation via Spatial-Structural Diversity Reasoning. In: Proceedings of the 30th ACM International Conference on Multimedia. MM ’22, pp. 2575–2585.
Liu, Hu, Lei, Xu, Li, Guo (b22) 2022
Li, M., Xie, Y., Shen, Y., Ke, B., Qiao, R., Ren, B., Lin, S., Ma, L., 2022. HybridCR: Weakly-Supervised 3D Point Cloud Semantic Segmentation via Hybrid Contrastive Regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 14930–14939.
Lin, Vosselman, Cao, Yang (b19) 2020; 169
Chibane, J., Engelmann, F., Anh Tran, T., Pons-Moll, G., 2022. Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation using Bounding Boxes. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (Eds.), Computer Vision – ECCV 2022. pp. 681–699.
Ren, Xiao, Chang, Huang, Li, Gupta, Chen, Wang (b27) 2021; 54
Cheng, M., Hui, L., Xie, J., Yang, J., 2021. SSPC-Net: Semi-supervised Semantic 3D Point Cloud Segmentation Network. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 2. pp. 1140–1147.
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L., 2019. KPConv: Flexible and Deformable Convolution for Point Clouds. In: 2019 IEEE/CVF International Conference on Computer Vision. ICCV, pp. 6410–6419.
Wang, Yao (b38) 2022; V-2-2022
Hu, Qi (b8) 2019
Polewski, Yao, Heurich, Krzystek, Stilla (b25) 2016; 9
Huang, S., Wang, T., Xiong, H., Huan, J., Dou, D., 2021. Semi-Supervised Active Learning With Temporal Output Discrepancy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 3447–3456.
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D., 2018. mixup: Beyond Empirical Risk Minimization. In: International Conference on Learning Representations.
Shannon (b31) 1948; 27
Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A., 2020. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 11105–11114.
Lin, Vosselman, Yang (b20) 2022; 187
Wang, Yao (b39) 2022; 188
Yoo, D., Kweon, I.S., 2019. Learning Loss for Active Learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 93–102.
Iscen, A., Tolias, G., Avrithis, Y., Chum, O., 2019. Label Propagation for Deep Semi-Supervised Learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 5065–5074.
Deng, S., Dong, Q., Liu, B., Hu, Z., 2022a. Superpoint-guided Semi-supervised Semantic Segmentation of 3D Point Clouds. In: 2022 International Conference on Robotics and Automation. ICRA, pp. 9214–9220.
Hackel, Savinov, Ladicky, Wegner, Schindler, Pollefeys (b6) 2017; IV-1/W1
Qi, Yi, Su, Guibas (b26) 2017
Lee, D.H., 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, Vol. 3, No. 2. pp. 1–6.
Polewski, Yao, Heurich, Krzystek, Stilla (b24) 2015; 105
Huang, Xu, Hong, Yao, Ghamisi, Stilla (b12) 2020; 163
Wei, Lin, Yap, Liu, Hung (b41) 2021
Jiang, L., Shi, S., Tian, Z., Lai, X., Liu, S., Fu, C.W., Jia, J., 2021. Guided Point Contrastive Learning for Semi-Supervised Point Cloud Semantic Segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 6423–6432.
Zhang, Y., Qu, Y., Xie, Y., Li, Z., Zheng, S., Li, C., 2021b. Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 15520–15528.
Roynard, Deschaud, Goulette (b28) 2018; 37
Wei, J., Lin, G., Yap, K.H., Hung, T.Y., Xie, L., 2020. Multi-Path Region Mining for Weakly Supervised 3D Semantic Segmentation on Point Clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 4383–4392.
Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V., 2021. Point Transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 16259–16268.
Liu, Z., Qi, X., Fu, C.W., 2021. One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 1726–1736.
Shui, Zhou, Gagné, Wang (b33) 2020; vol. 108
Xu, X., Lee, G.H., 2020. Weakly Supervised Semantic Point Cloud Segmentation: Towards 10×Fewer Labels. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 13703–13712.
Deng, Wu, Zhang, Lu, Li, Su (b5) 2022; 102
Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O., 2020. PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (Eds.), Computer Vision – ECCV 2020. pp. 574–591.
Sener, O., Savarese, S., 2018. Active Learning for Convolutional Neural Networks: A Core-Set Approach. In: International Conference on Learning Representations.
Unal, O., Dai, D., Van Gool, L., 2022. Scribble-Supervised LiDAR Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2697–2707.
Yin, Xu, Ji, Scherer, Choset (b46) 2021; 6
Wu, T.H., Liu, Y.C., Huang, Y.K., Lee, H.Y., Su, H.T., Huang, P.C., Hsu, W.H., 2021. ReDAL: Region-Based and Diversity-Aware Active Learning for Point Cloud Semantic Segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 15510–15519.
Hu, Q., Yang, B., Fang, G., Guo, Y., Leonardis, A., Trigoni, N., Markham, A., 2022. SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (Eds.), Computer Vision – ECCV 2022. pp. 600–619.
Hou, J., Graham, B., Niessner, M., Xie, S., 2021. Exploring Data-Efficient 3D Scene Understanding With Contrastive Scene Contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 15587–15597.
Tarvainen, Valpola (b34) 2017
Yao, Hinz, Stilla (b45) 2011; 66
10.1016/j.isprsjprs.2023.09.002_b40
Deng (10.1016/j.isprsjprs.2023.09.002_b5) 2022; 102
10.1016/j.isprsjprs.2023.09.002_b44
10.1016/j.isprsjprs.2023.09.002_b43
Tarvainen (10.1016/j.isprsjprs.2023.09.002_b34) 2017
10.1016/j.isprsjprs.2023.09.002_b42
Roynard (10.1016/j.isprsjprs.2023.09.002_b28) 2018; 37
Polewski (10.1016/j.isprsjprs.2023.09.002_b25) 2016; 9
Hu (10.1016/j.isprsjprs.2023.09.002_b8) 2019
Yao (10.1016/j.isprsjprs.2023.09.002_b45) 2011; 66
10.1016/j.isprsjprs.2023.09.002_b37
Wang (10.1016/j.isprsjprs.2023.09.002_b39) 2022; 188
10.1016/j.isprsjprs.2023.09.002_b35
Wang (10.1016/j.isprsjprs.2023.09.002_b38) 2022; V-2-2022
Shui (10.1016/j.isprsjprs.2023.09.002_b33) 2020; vol. 108
10.1016/j.isprsjprs.2023.09.002_b32
Liu (10.1016/j.isprsjprs.2023.09.002_b21) 2022
10.1016/j.isprsjprs.2023.09.002_b30
Wei (10.1016/j.isprsjprs.2023.09.002_b41) 2021
Lin (10.1016/j.isprsjprs.2023.09.002_b19) 2020; 169
Huang (10.1016/j.isprsjprs.2023.09.002_b12) 2020; 163
10.1016/j.isprsjprs.2023.09.002_b23
10.1016/j.isprsjprs.2023.09.002_b7
10.1016/j.isprsjprs.2023.09.002_b9
Shannon (10.1016/j.isprsjprs.2023.09.002_b31) 1948; 27
Scheffer (10.1016/j.isprsjprs.2023.09.002_b29) 2001
Yin (10.1016/j.isprsjprs.2023.09.002_b46) 2021; 6
10.1016/j.isprsjprs.2023.09.002_b1
10.1016/j.isprsjprs.2023.09.002_b2
10.1016/j.isprsjprs.2023.09.002_b3
10.1016/j.isprsjprs.2023.09.002_b4
Liu (10.1016/j.isprsjprs.2023.09.002_b22) 2022
10.1016/j.isprsjprs.2023.09.002_b14
10.1016/j.isprsjprs.2023.09.002_b13
10.1016/j.isprsjprs.2023.09.002_b18
10.1016/j.isprsjprs.2023.09.002_b17
10.1016/j.isprsjprs.2023.09.002_b16
10.1016/j.isprsjprs.2023.09.002_b51
10.1016/j.isprsjprs.2023.09.002_b50
10.1016/j.isprsjprs.2023.09.002_b11
10.1016/j.isprsjprs.2023.09.002_b10
Tobler (10.1016/j.isprsjprs.2023.09.002_b36) 1970; 46
Ren (10.1016/j.isprsjprs.2023.09.002_b27) 2021; 54
Polewski (10.1016/j.isprsjprs.2023.09.002_b24) 2015; 105
Hackel (10.1016/j.isprsjprs.2023.09.002_b6) 2017; IV-1/W1
Qi (10.1016/j.isprsjprs.2023.09.002_b26) 2017
Kölle (10.1016/j.isprsjprs.2023.09.002_b15) 2021; 1
10.1016/j.isprsjprs.2023.09.002_b48
10.1016/j.isprsjprs.2023.09.002_b47
Lin (10.1016/j.isprsjprs.2023.09.002_b20) 2022; 187
10.1016/j.isprsjprs.2023.09.002_b49
References_xml – start-page: 1
  year: 2022
  end-page: 12
  ident: b21
  article-title: FG-net: A fast and accurate framework for large-scale LiDAR point cloud understanding
  publication-title: IEEE Trans. Cybern.
– volume: 105
  start-page: 252
  year: 2015
  end-page: 271
  ident: b24
  article-title: Detection of fallen trees in ALS point clouds using a normalized cut approach trained by simulation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 46
  start-page: 234
  year: 1970
  end-page: 240
  ident: b36
  article-title: A computer movie simulating urban growth in the detroit region
  publication-title: Econ. Geogr.
– volume: 54
  year: 2021
  ident: b27
  article-title: A survey of deep active learning
  publication-title: ACM Comput. Surv.
– start-page: 309
  year: 2001
  end-page: 318
  ident: b29
  article-title: Active hidden Markov models for information extraction
  publication-title: Advances in Intelligent Data Analysis
– reference: Hou, J., Graham, B., Niessner, M., Xie, S., 2021. Exploring Data-Efficient 3D Scene Understanding With Contrastive Scene Contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 15587–15597.
– reference: Wei, J., Lin, G., Yap, K.H., Hung, T.Y., Xie, L., 2020. Multi-Path Region Mining for Weakly Supervised 3D Semantic Segmentation on Point Clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 4383–4392.
– volume: 27
  start-page: 379
  year: 1948
  end-page: 423
  ident: b31
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
– volume: vol. 108
  start-page: 1308
  year: 2020
  end-page: 1318
  ident: b33
  article-title: Deep active learning: Unified and principled method for query and training
  publication-title: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics
– reference: Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V., 2021. Point Transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 16259–16268.
– reference: Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O., 2020. PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (Eds.), Computer Vision – ECCV 2020. pp. 574–591.
– volume: 188
  start-page: 237
  year: 2022
  end-page: 254
  ident: b39
  article-title: A new weakly supervised approach for ALS point cloud semantic segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Unal, O., Dai, D., Van Gool, L., 2022. Scribble-Supervised LiDAR Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2697–2707.
– year: 2017
  ident: b26
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
  publication-title: Advances in Neural Information Processing Systems, Vol. 30
– reference: Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J., 2017. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 77–85.
– reference: Zhang, Y., Li, Z., Xie, Y., Qu, Y., Li, C., Mei, T., 2021a. Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 4. pp. 3421–3429.
– reference: Liu, Z., Qi, X., Fu, C.W., 2021. One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 1726–1736.
– volume: IV-1/W1
  start-page: 91
  year: 2017
  end-page: 98
  ident: b6
  article-title: Semantic3D.net: A new large-scale point cloud classification benchmark
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
– reference: Iscen, A., Tolias, G., Avrithis, Y., Chum, O., 2019. Label Propagation for Deep Semi-Supervised Learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 5065–5074.
– reference: Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D., 2018. mixup: Beyond Empirical Risk Minimization. In: International Conference on Learning Representations.
– volume: 169
  start-page: 73
  year: 2020
  end-page: 92
  ident: b19
  article-title: Active and incremental learning for semantic ALS point cloud segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 163
  start-page: 62
  year: 2020
  end-page: 81
  ident: b12
  article-title: Deep point embedding for urban classification using ALS point clouds: A new perspective from local to global
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Yoo, D., Kweon, I.S., 2019. Learning Loss for Active Learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 93–102.
– reference: Cheng, M., Hui, L., Xie, J., Yang, J., 2021. SSPC-Net: Semi-supervised Semantic 3D Point Cloud Segmentation Network. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 2. pp. 1140–1147.
– volume: V-2-2022
  start-page: 151
  year: 2022
  end-page: 158
  ident: b38
  article-title: Exploring label initialization for weakly supervised ALS point cloud semantic segmentation
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
– reference: Wu, T.H., Liu, Y.C., Huang, Y.K., Lee, H.Y., Su, H.T., Huang, P.C., Hsu, W.H., 2021. ReDAL: Region-Based and Diversity-Aware Active Learning for Point Cloud Semantic Segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 15510–15519.
– year: 2021
  ident: b41
  article-title: Dense supervision propagation for weakly supervised semantic segmentation on 3D point clouds
– reference: Jiang, L., Shi, S., Tian, Z., Lai, X., Liu, S., Fu, C.W., Jia, J., 2021. Guided Point Contrastive Learning for Semi-Supervised Point Cloud Semantic Segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 6423–6432.
– volume: 37
  start-page: 545
  year: 2018
  end-page: 557
  ident: b28
  article-title: Paris-lille-3D: A large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification
  publication-title: Int. J. Robot. Res.
– volume: 1
  year: 2021
  ident: b15
  article-title: The hessigheim 3D (H3D) benchmark on semantic segmentation of high-resolution 3D point clouds and textured meshes from UAV LiDAR and Multi-View-Stereo
  publication-title: ISPRS Open J. Photogramm. Remote Sens.
– reference: Li, M., Xie, Y., Shen, Y., Ke, B., Qiao, R., Ren, B., Lin, S., Ma, L., 2022. HybridCR: Weakly-Supervised 3D Point Cloud Semantic Segmentation via Hybrid Contrastive Regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 14930–14939.
– reference: Xu, X., Lee, G.H., 2020. Weakly Supervised Semantic Point Cloud Segmentation: Towards 10×Fewer Labels. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 13703–13712.
– reference: Hu, Q., Yang, B., Fang, G., Guo, Y., Leonardis, A., Trigoni, N., Markham, A., 2022. SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (Eds.), Computer Vision – ECCV 2022. pp. 600–619.
– volume: 6
  start-page: 5953
  year: 2021
  end-page: 5960
  ident: b46
  article-title: 3D segmentation learning from sparse annotations and hierarchical descriptors
  publication-title: IEEE Robot. Autom. Lett.
– reference: Lee, D.H., 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, Vol. 3, No. 2. pp. 1–6.
– reference: Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L., 2019. KPConv: Flexible and Deformable Convolution for Point Clouds. In: 2019 IEEE/CVF International Conference on Computer Vision. ICCV, pp. 6410–6419.
– year: 2022
  ident: b22
  article-title: Box2Seg: Learning semantics of 3D point clouds with box-level supervision
– reference: Deng, S., Dong, Q., Liu, B., Hu, Z., 2022a. Superpoint-guided Semi-supervised Semantic Segmentation of 3D Point Clouds. In: 2022 International Conference on Robotics and Automation. ICRA, pp. 9214–9220.
– start-page: 1195
  year: 2017
  end-page: 1204
  ident: b34
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
  publication-title: Advances in Neural Information Processing Systems, Vol. 30
– year: 2019
  ident: b8
  article-title: See better before looking closer: Weakly supervised data augmentation network for fine-grained visual classification
– volume: 187
  start-page: 79
  year: 2022
  end-page: 100
  ident: b20
  article-title: Weakly supervised semantic segmentation of airborne laser scanning point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Shao, F., Luo, Y., Liu, P., Chen, J., Yang, Y., Lu, Y., Xiao, J., 2022. Active Learning for Point Cloud Semantic Segmentation via Spatial-Structural Diversity Reasoning. In: Proceedings of the 30th ACM International Conference on Multimedia. MM ’22, pp. 2575–2585.
– reference: Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A., 2020. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 11105–11114.
– reference: Huang, S., Wang, T., Xiong, H., Huan, J., Dou, D., 2021. Semi-Supervised Active Learning With Temporal Output Discrepancy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 3447–3456.
– volume: 9
  start-page: 2910
  year: 2016
  end-page: 2922
  ident: b25
  article-title: Combining active and semisupervised learning of remote sensing data within a renyi entropy regularization framework
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– volume: 102
  start-page: 78
  year: 2022
  end-page: 88
  ident: b5
  article-title: A weakly supervised framework for real-world point cloud classification
  publication-title: Comput. Graph.
– reference: Chibane, J., Engelmann, F., Anh Tran, T., Pons-Moll, G., 2022. Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation using Bounding Boxes. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (Eds.), Computer Vision – ECCV 2022. pp. 681–699.
– reference: Laine, S., Aila, T., 2017. Temporal Ensembling for Semi-Supervised Learning. In: International Conference on Learning Representations.
– volume: 66
  start-page: 260
  year: 2011
  end-page: 271
  ident: b45
  article-title: Extraction and motion estimation of vehicles in single-pass airborne LiDAR data towards urban traffic analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
– reference: Sener, O., Savarese, S., 2018. Active Learning for Convolutional Neural Networks: A Core-Set Approach. In: International Conference on Learning Representations.
– reference: Zhang, Y., Qu, Y., Xie, Y., Li, Z., Zheng, S., Li, C., 2021b. Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 15520–15528.
– start-page: 1195
  year: 2017
  ident: 10.1016/j.isprsjprs.2023.09.002_b34
  article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results
– ident: 10.1016/j.isprsjprs.2023.09.002_b42
  doi: 10.1109/ICCV48922.2021.01522
– ident: 10.1016/j.isprsjprs.2023.09.002_b13
  doi: 10.1109/CVPR.2019.00521
– start-page: 1
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.09.002_b21
  article-title: FG-net: A fast and accurate framework for large-scale LiDAR point cloud understanding
  publication-title: IEEE Trans. Cybern.
– year: 2022
  ident: 10.1016/j.isprsjprs.2023.09.002_b22
– ident: 10.1016/j.isprsjprs.2023.09.002_b49
  doi: 10.1609/aaai.v35i4.16455
– ident: 10.1016/j.isprsjprs.2023.09.002_b7
  doi: 10.1109/CVPR46437.2021.01533
– ident: 10.1016/j.isprsjprs.2023.09.002_b10
  doi: 10.1109/CVPR42600.2020.01112
– volume: V-2-2022
  start-page: 151
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.09.002_b38
  article-title: Exploring label initialization for weakly supervised ALS point cloud semantic segmentation
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprs-annals-V-2-2022-151-2022
– ident: 10.1016/j.isprsjprs.2023.09.002_b30
– start-page: 309
  year: 2001
  ident: 10.1016/j.isprsjprs.2023.09.002_b29
  article-title: Active hidden Markov models for information extraction
– ident: 10.1016/j.isprsjprs.2023.09.002_b35
  doi: 10.1109/ICCV.2019.00651
– ident: 10.1016/j.isprsjprs.2023.09.002_b50
  doi: 10.1109/ICCV48922.2021.01523
– ident: 10.1016/j.isprsjprs.2023.09.002_b40
  doi: 10.1109/CVPR42600.2020.00444
– volume: 9
  start-page: 2910
  issue: 7
  year: 2016
  ident: 10.1016/j.isprsjprs.2023.09.002_b25
  article-title: Combining active and semisupervised learning of remote sensing data within a renyi entropy regularization framework
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2015.2510867
– ident: 10.1016/j.isprsjprs.2023.09.002_b1
  doi: 10.1109/CVPR.2017.16
– volume: 188
  start-page: 237
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.09.002_b39
  article-title: A new weakly supervised approach for ALS point cloud semantic segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.04.016
– ident: 10.1016/j.isprsjprs.2023.09.002_b4
  doi: 10.1109/ICRA46639.2022.9811904
– ident: 10.1016/j.isprsjprs.2023.09.002_b18
  doi: 10.1109/CVPR52688.2022.01451
– year: 2017
  ident: 10.1016/j.isprsjprs.2023.09.002_b26
  article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space
– ident: 10.1016/j.isprsjprs.2023.09.002_b32
  doi: 10.1145/3503161.3547820
– volume: 46
  start-page: 234
  issue: sup1
  year: 1970
  ident: 10.1016/j.isprsjprs.2023.09.002_b36
  article-title: A computer movie simulating urban growth in the detroit region
  publication-title: Econ. Geogr.
  doi: 10.2307/143141
– volume: 1
  year: 2021
  ident: 10.1016/j.isprsjprs.2023.09.002_b15
  article-title: The hessigheim 3D (H3D) benchmark on semantic segmentation of high-resolution 3D point clouds and textured meshes from UAV LiDAR and Multi-View-Stereo
  publication-title: ISPRS Open J. Photogramm. Remote Sens.
– ident: 10.1016/j.isprsjprs.2023.09.002_b17
– volume: 27
  start-page: 379
  issue: 3
  year: 1948
  ident: 10.1016/j.isprsjprs.2023.09.002_b31
  article-title: A mathematical theory of communication
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: 10.1016/j.isprsjprs.2023.09.002_b11
  doi: 10.1109/ICCV48922.2021.00343
– volume: 54
  issue: 9
  year: 2021
  ident: 10.1016/j.isprsjprs.2023.09.002_b27
  article-title: A survey of deep active learning
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3472291
– volume: 37
  start-page: 545
  issue: 6
  year: 2018
  ident: 10.1016/j.isprsjprs.2023.09.002_b28
  article-title: Paris-lille-3D: A large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364918767506
– ident: 10.1016/j.isprsjprs.2023.09.002_b51
  doi: 10.1109/ICCV48922.2021.01595
– volume: IV-1/W1
  start-page: 91
  year: 2017
  ident: 10.1016/j.isprsjprs.2023.09.002_b6
  article-title: Semantic3D.net: A new large-scale point cloud classification benchmark
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprs-annals-IV-1-W1-91-2017
– ident: 10.1016/j.isprsjprs.2023.09.002_b37
  doi: 10.1109/CVPR52688.2022.00272
– volume: 163
  start-page: 62
  year: 2020
  ident: 10.1016/j.isprsjprs.2023.09.002_b12
  article-title: Deep point embedding for urban classification using ALS point clouds: A new perspective from local to global
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.02.020
– ident: 10.1016/j.isprsjprs.2023.09.002_b14
  doi: 10.1109/ICCV48922.2021.00636
– year: 2019
  ident: 10.1016/j.isprsjprs.2023.09.002_b8
– volume: vol. 108
  start-page: 1308
  year: 2020
  ident: 10.1016/j.isprsjprs.2023.09.002_b33
  article-title: Deep active learning: Unified and principled method for query and training
– ident: 10.1016/j.isprsjprs.2023.09.002_b16
– ident: 10.1016/j.isprsjprs.2023.09.002_b44
  doi: 10.1109/CVPR42600.2020.01372
– volume: 187
  start-page: 79
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.09.002_b20
  article-title: Weakly supervised semantic segmentation of airborne laser scanning point clouds
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.03.001
– volume: 169
  start-page: 73
  year: 2020
  ident: 10.1016/j.isprsjprs.2023.09.002_b19
  article-title: Active and incremental learning for semantic ALS point cloud segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.09.003
– ident: 10.1016/j.isprsjprs.2023.09.002_b48
– volume: 6
  start-page: 5953
  issue: 3
  year: 2021
  ident: 10.1016/j.isprsjprs.2023.09.002_b46
  article-title: 3D segmentation learning from sparse annotations and hierarchical descriptors
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3088796
– ident: 10.1016/j.isprsjprs.2023.09.002_b3
  doi: 10.1007/978-3-031-19821-2_39
– year: 2021
  ident: 10.1016/j.isprsjprs.2023.09.002_b41
– ident: 10.1016/j.isprsjprs.2023.09.002_b2
  doi: 10.1609/aaai.v35i2.16200
– ident: 10.1016/j.isprsjprs.2023.09.002_b23
  doi: 10.1109/CVPR46437.2021.00177
– volume: 105
  start-page: 252
  year: 2015
  ident: 10.1016/j.isprsjprs.2023.09.002_b24
  article-title: Detection of fallen trees in ALS point clouds using a normalized cut approach trained by simulation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.01.010
– ident: 10.1016/j.isprsjprs.2023.09.002_b9
  doi: 10.1007/978-3-031-19812-0_35
– ident: 10.1016/j.isprsjprs.2023.09.002_b43
  doi: 10.1007/978-3-030-58580-8_34
– volume: 102
  start-page: 78
  year: 2022
  ident: 10.1016/j.isprsjprs.2023.09.002_b5
  article-title: A weakly supervised framework for real-world point cloud classification
  publication-title: Comput. Graph.
  doi: 10.1016/j.cag.2021.12.008
– volume: 66
  start-page: 260
  issue: 3
  year: 2011
  ident: 10.1016/j.isprsjprs.2023.09.002_b45
  article-title: Extraction and motion estimation of vehicles in single-pass airborne LiDAR data towards urban traffic analysis
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.10.005
– ident: 10.1016/j.isprsjprs.2023.09.002_b47
  doi: 10.1109/CVPR.2019.00018
SSID ssj0001568
Score 2.4754858
Snippet Reliance on vast annotations to achieve leading performance severely restricts the practicality of large-scale point cloud semantic segmentation. For the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 89
SubjectTerms Active learning
class
data collection
lidar
photogrammetry
Point cloud
prediction
Semantic segmentation
uncertainty
Weakly supervised learning
Title One Class One Click: Quasi scene-level weakly supervised point cloud semantic segmentation with active learning
URI https://dx.doi.org/10.1016/j.isprsjprs.2023.09.002
https://www.proquest.com/docview/3153196985
Volume 204
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS90wFD7o9WHbw9jcxpxOMthrvG2Tpje-iSh3G3OMTfAtNMmpVq9tsbcMX_ztS9r0okPwYQ-FtPTQkpN-5yQ9-T6Az1YwrgshaSJSRrm1Kc3TxFCmhZwxzKzp2fa_n4j5Kf96lp6tweG4F8aXVQbsHzC9R-twZRp6c9qU5fRX5KYOiSdAYj7wcL4OG4mL9rMJbBx8-TY_WQFyPOyI8_dTb_CgzKtsm5v20h17Xki85zwNSyyPBKl_4LqPQcev4GVIHsnB8H6vYQ2rTXhxj1JwE54FVfOL2zdQ_6iQ9KqXZGiV5mqf_OzytiSexAnpwpcMkT-YXy1uSds1HjhatKSpy2pJzKLuLGnx2vV-aVzj_DrsVKqIX78leQ-WJChPnL-F0-Oj34dzGgQWqHFpyJJiUUSaFXGqmYnRYCZynQmpE821lIYxW3DG7cyduswPPRNPohODuohiHWUFeweTqq7wPRDN0co8FSwzbkKH0st5uGww1dJKnfF8C8TYo8oE9nEvgrFQY5nZpVq5QnlXqEgq54otiFaGzUDA8bTJ_ugy9WAsKRcmnjb-NDpZuS_N_z7JK6y7VrG4xys5Sz_8zwO24bk_GwoCd2CyvOnwo0tslnoX1vfu4t0wfP8CNwr7xw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5UB7qFraqvTTlXp1N4kdZ80NoaKlwFZVQeJmxfYEAksSkY0q_n3txFmVqhKHHiI5H6NEnuTN2Bm_B_DZCsZ1ISRNRMootzaleZoYyrSQM4aZNT3b_slCzM_4t_P0fAP2x7UwvqwyYP-A6T1ahyPT0JvTpiynPyM3dEg8ARLzgYfzR7DJvaj1BDb3Do_mizUgx8OKOH899Qb3yrzKtrltr9z2xQuJ95ynYYrlH0HqL7juY9DBM3gakkeyNzzfc9jAahue_EEpuA1bQdX88u4F1N8rJL3qJRlapbneJT-6vC2JJ3FCuvQlQ-QX5tfLO9J2jQeOFi1p6rJaEbOsO0tavHG9XxrXuLgJK5Uq4udvSd6DJQnKExcv4ezg6-n-nAaBBWpcGrKiWBSRZkWcamZiNJiJXGdC6kRzLaVhzBaccTtzuy7zQ8_Ek-jEoC6iWEdZwV7BpKorfA1Ec7QyTwXLjBvQofRyHi4bTLW0Umc83wEx9qgygX3ci2As1VhmdqXWrlDeFSqSyrliB6K1YTMQcDxssju6TN17l5QLEw8bfxqdrNyX5n-f5BXWXatY3OOVnKVv_ucGH2FrfnpyrI4PF0dv4bE_MxQHvoPJ6rbD9y7JWekP4SX-DSZk_a0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One+Class+One+Click%3A+Quasi+scene-level+weakly+supervised+point+cloud+semantic+segmentation+with+active+learning&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Wang%2C+Puzuo&rft.au=Yao%2C+Wei&rft.au=Shao%2C+Jie&rft.date=2023-10-01&rft.issn=0924-2716&rft.volume=204+p.89-104&rft.spage=89&rft.epage=104&rft_id=info:doi/10.1016%2Fj.isprsjprs.2023.09.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon