One Class One Click: Quasi scene-level weakly supervised point cloud semantic segmentation with active learning
Reliance on vast annotations to achieve leading performance severely restricts the practicality of large-scale point cloud semantic segmentation. For the purpose of reducing data annotation costs, effective labeling schemes are developed and contribute to attaining competitive results under weak sup...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 204; pp. 89 - 104 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 1872-8235 |
DOI | 10.1016/j.isprsjprs.2023.09.002 |
Cover
Abstract | Reliance on vast annotations to achieve leading performance severely restricts the practicality of large-scale point cloud semantic segmentation. For the purpose of reducing data annotation costs, effective labeling schemes are developed and contribute to attaining competitive results under weak supervision strategy. Revisiting current weak label forms, we introduce One Class One Click (OCOC), a low cost yet informative quasi scene-level label, which encapsulates both point-level and scene-level annotations. An active weakly supervised framework is proposed to leverage scarce labels by involving weak supervision from both global and local perspectives. Contextual constraints are imposed by an auxiliary scene classification task, respectively based on global feature embedding and point-wise prediction aggregation, which restricts the model prediction merely to OCOC labels within a sub-cloud. Furthermore, we design a context-aware pseudo labeling strategy, which effectively supplement point-level supervisory signals subject to OCOC labels. Finally, an active learning scheme with a uncertainty measure — temporal output discrepancy is integrated to examine informative samples and provides guidance on sub-clouds query, which is conducive to quickly attaining desirable OCOC annotations and reduces the labeling cost to an extremely low extent. Extensive experimental analysis using three LiDAR benchmarks respectively collected from airborne, mobile and ground platforms demonstrates that our proposed method achieves very promising results though subject to scarce labels. It considerably outperforms genuine scene-level weakly supervised methods by up to 25% in terms of average F1 score and achieves competitive results against full supervision schemes. On terrestrial LiDAR dataset — Semantics3D, using approximately 2‱ of labels, our method achieves an average F1 score of 85.2%, which increases by 11.58% compared to the baseline model. Codes are publicly available at https://github.com/PuzoW/One-Class-One-Click. |
---|---|
AbstractList | Reliance on vast annotations to achieve leading performance severely restricts the practicality of large-scale point cloud semantic segmentation. For the purpose of reducing data annotation costs, effective labeling schemes are developed and contribute to attaining competitive results under weak supervision strategy. Revisiting current weak label forms, we introduce One Class One Click (OCOC), a low cost yet informative quasi scene-level label, which encapsulates both point-level and scene-level annotations. An active weakly supervised framework is proposed to leverage scarce labels by involving weak supervision from both global and local perspectives. Contextual constraints are imposed by an auxiliary scene classification task, respectively based on global feature embedding and point-wise prediction aggregation, which restricts the model prediction merely to OCOC labels within a sub-cloud. Furthermore, we design a context-aware pseudo labeling strategy, which effectively supplement point-level supervisory signals subject to OCOC labels. Finally, an active learning scheme with a uncertainty measure — temporal output discrepancy is integrated to examine informative samples and provides guidance on sub-clouds query, which is conducive to quickly attaining desirable OCOC annotations and reduces the labeling cost to an extremely low extent. Extensive experimental analysis using three LiDAR benchmarks respectively collected from airborne, mobile and ground platforms demonstrates that our proposed method achieves very promising results though subject to scarce labels. It considerably outperforms genuine scene-level weakly supervised methods by up to 25% in terms of average F1 score and achieves competitive results against full supervision schemes. On terrestrial LiDAR dataset — Semantics3D, using approximately 2‱ of labels, our method achieves an average F1 score of 85.2%, which increases by 11.58% compared to the baseline model. Codes are publicly available at https://github.com/PuzoW/One-Class-One-Click. |
Author | Wang, Puzuo Yao, Wei Shao, Jie |
Author_xml | – sequence: 1 givenname: Puzuo orcidid: 0000-0002-0971-4013 surname: Wang fullname: Wang, Puzuo email: puzuo.wang@connect.polyu.hk organization: Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong – sequence: 2 givenname: Wei orcidid: 0000-0001-7704-0615 surname: Yao fullname: Yao, Wei email: wei.hn.yao@polyu.edu.hk organization: Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong – sequence: 3 givenname: Jie surname: Shao fullname: Shao, Jie organization: Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong |
BookMark | eNqNkM1rFTEUxYO04Gvr32CWbmaaj_mK4KI81AqFIug6JJk79b7mJWOSeaX_vVNGXLjRxeXeC-ccOL8LchZiAELeclZzxrvrQ415TvmwTi2YkDVTNWPiFdnxoRfVIGR7RnZMiaYSPe9ek4ucD4wx3nbDjsT7AHTvTc50u9A9vqdfF5ORZgcBKg8n8PQJzKN_pnmZIZ0ww0jniKFQ5-My0gxHEwq69Xg4QiimYAz0CcsPalzBE1APJgUMD1fkfDI-w5vf-5J8__Tx2_62urv__GV_c1c5qfpSwTQxKyfeWuk4OOg7Y_tOWWEbq5STcpwa2YzD-rKmBd6wRljhwE6MW9ZP8pK823LnFH8ukIs-4trHexMgLllL3kquOjW0q7TfpC7FnBNMek54NOlZc6ZfEOuD_oNYvyDWTOkV8er88JfT4da9JIP-P_w3mx9WEieEpLNDCA5GTOCKHiP-M-MXybajcQ |
CitedBy_id | crossref_primary_10_1016_j_autcon_2025_106016 crossref_primary_10_1016_j_jag_2024_103951 crossref_primary_10_1016_j_jag_2024_104105 crossref_primary_10_1109_TGRS_2024_3458013 crossref_primary_10_1109_TGRS_2025_3535104 crossref_primary_10_1109_JSTARS_2024_3469269 crossref_primary_10_1016_j_compbiomed_2024_108115 crossref_primary_10_1016_j_jag_2025_104440 crossref_primary_10_1007_s13721_024_00483_0 crossref_primary_10_1016_j_jag_2024_103970 crossref_primary_10_1016_j_isprsjprs_2024_12_005 crossref_primary_10_3390_e26080634 crossref_primary_10_1109_TGRS_2024_3506016 crossref_primary_10_1109_TITS_2024_3496938 |
Cites_doi | 10.1109/ICCV48922.2021.01522 10.1109/CVPR.2019.00521 10.1609/aaai.v35i4.16455 10.1109/CVPR46437.2021.01533 10.1109/CVPR42600.2020.01112 10.5194/isprs-annals-V-2-2022-151-2022 10.1109/ICCV.2019.00651 10.1109/ICCV48922.2021.01523 10.1109/CVPR42600.2020.00444 10.1109/JSTARS.2015.2510867 10.1109/CVPR.2017.16 10.1016/j.isprsjprs.2022.04.016 10.1109/ICRA46639.2022.9811904 10.1109/CVPR52688.2022.01451 10.1145/3503161.3547820 10.2307/143141 10.1002/j.1538-7305.1948.tb01338.x 10.1109/ICCV48922.2021.00343 10.1145/3472291 10.1177/0278364918767506 10.1109/ICCV48922.2021.01595 10.5194/isprs-annals-IV-1-W1-91-2017 10.1109/CVPR52688.2022.00272 10.1016/j.isprsjprs.2020.02.020 10.1109/ICCV48922.2021.00636 10.1109/CVPR42600.2020.01372 10.1016/j.isprsjprs.2022.03.001 10.1016/j.isprsjprs.2020.09.003 10.1109/LRA.2021.3088796 10.1007/978-3-031-19821-2_39 10.1609/aaai.v35i2.16200 10.1109/CVPR46437.2021.00177 10.1016/j.isprsjprs.2015.01.010 10.1007/978-3-031-19812-0_35 10.1007/978-3-030-58580-8_34 10.1016/j.cag.2021.12.008 10.1016/j.isprsjprs.2010.10.005 10.1109/CVPR.2019.00018 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2023.09.002 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 104 |
ExternalDocumentID | 10_1016_j_isprsjprs_2023_09_002 S0924271623002344 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 ACLOT EFKBS L.6 ~HD |
ID | FETCH-LOGICAL-c397t-eff0b3f15b3c1ece76ab769b2b4b99c33df434d8b4b045e14042b2cebf01b07f3 |
IEDL.DBID | AIKHN |
ISSN | 0924-2716 |
IngestDate | Sat Sep 27 16:01:31 EDT 2025 Tue Jul 01 03:46:51 EDT 2025 Thu Apr 24 22:57:09 EDT 2025 Fri Feb 23 02:34:21 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Point cloud Semantic segmentation Active learning Weakly supervised learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-eff0b3f15b3c1ece76ab769b2b4b99c33df434d8b4b045e14042b2cebf01b07f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0971-4013 0000-0001-7704-0615 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0924271623002344 |
PQID | 3153196985 |
PQPubID | 24069 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_3153196985 crossref_primary_10_1016_j_isprsjprs_2023_09_002 crossref_citationtrail_10_1016_j_isprsjprs_2023_09_002 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2023_09_002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2023 2023-10-00 20231001 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Laine, S., Aila, T., 2017. Temporal Ensembling for Semi-Supervised Learning. In: International Conference on Learning Representations. Liu, Gao, Lin, Chen (b21) 2022 Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J., 2017. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 77–85. Zhang, Y., Li, Z., Xie, Y., Qu, Y., Li, C., Mei, T., 2021a. Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 4. pp. 3421–3429. Scheffer, Decomain, Wrobel (b29) 2001 Kölle, Laupheimer, Schmohl, Haala, Rottensteiner, Wegner, Ledoux (b15) 2021; 1 Tobler (b36) 1970; 46 Shao, F., Luo, Y., Liu, P., Chen, J., Yang, Y., Lu, Y., Xiao, J., 2022. Active Learning for Point Cloud Semantic Segmentation via Spatial-Structural Diversity Reasoning. In: Proceedings of the 30th ACM International Conference on Multimedia. MM ’22, pp. 2575–2585. Liu, Hu, Lei, Xu, Li, Guo (b22) 2022 Li, M., Xie, Y., Shen, Y., Ke, B., Qiao, R., Ren, B., Lin, S., Ma, L., 2022. HybridCR: Weakly-Supervised 3D Point Cloud Semantic Segmentation via Hybrid Contrastive Regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 14930–14939. Lin, Vosselman, Cao, Yang (b19) 2020; 169 Chibane, J., Engelmann, F., Anh Tran, T., Pons-Moll, G., 2022. Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation using Bounding Boxes. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (Eds.), Computer Vision – ECCV 2022. pp. 681–699. Ren, Xiao, Chang, Huang, Li, Gupta, Chen, Wang (b27) 2021; 54 Cheng, M., Hui, L., Xie, J., Yang, J., 2021. SSPC-Net: Semi-supervised Semantic 3D Point Cloud Segmentation Network. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 2. pp. 1140–1147. Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L., 2019. KPConv: Flexible and Deformable Convolution for Point Clouds. In: 2019 IEEE/CVF International Conference on Computer Vision. ICCV, pp. 6410–6419. Wang, Yao (b38) 2022; V-2-2022 Hu, Qi (b8) 2019 Polewski, Yao, Heurich, Krzystek, Stilla (b25) 2016; 9 Huang, S., Wang, T., Xiong, H., Huan, J., Dou, D., 2021. Semi-Supervised Active Learning With Temporal Output Discrepancy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 3447–3456. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D., 2018. mixup: Beyond Empirical Risk Minimization. In: International Conference on Learning Representations. Shannon (b31) 1948; 27 Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A., 2020. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 11105–11114. Lin, Vosselman, Yang (b20) 2022; 187 Wang, Yao (b39) 2022; 188 Yoo, D., Kweon, I.S., 2019. Learning Loss for Active Learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 93–102. Iscen, A., Tolias, G., Avrithis, Y., Chum, O., 2019. Label Propagation for Deep Semi-Supervised Learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 5065–5074. Deng, S., Dong, Q., Liu, B., Hu, Z., 2022a. Superpoint-guided Semi-supervised Semantic Segmentation of 3D Point Clouds. In: 2022 International Conference on Robotics and Automation. ICRA, pp. 9214–9220. Hackel, Savinov, Ladicky, Wegner, Schindler, Pollefeys (b6) 2017; IV-1/W1 Qi, Yi, Su, Guibas (b26) 2017 Lee, D.H., 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, Vol. 3, No. 2. pp. 1–6. Polewski, Yao, Heurich, Krzystek, Stilla (b24) 2015; 105 Huang, Xu, Hong, Yao, Ghamisi, Stilla (b12) 2020; 163 Wei, Lin, Yap, Liu, Hung (b41) 2021 Jiang, L., Shi, S., Tian, Z., Lai, X., Liu, S., Fu, C.W., Jia, J., 2021. Guided Point Contrastive Learning for Semi-Supervised Point Cloud Semantic Segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 6423–6432. Zhang, Y., Qu, Y., Xie, Y., Li, Z., Zheng, S., Li, C., 2021b. Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 15520–15528. Roynard, Deschaud, Goulette (b28) 2018; 37 Wei, J., Lin, G., Yap, K.H., Hung, T.Y., Xie, L., 2020. Multi-Path Region Mining for Weakly Supervised 3D Semantic Segmentation on Point Clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 4383–4392. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V., 2021. Point Transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 16259–16268. Liu, Z., Qi, X., Fu, C.W., 2021. One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 1726–1736. Shui, Zhou, Gagné, Wang (b33) 2020; vol. 108 Xu, X., Lee, G.H., 2020. Weakly Supervised Semantic Point Cloud Segmentation: Towards 10×Fewer Labels. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 13703–13712. Deng, Wu, Zhang, Lu, Li, Su (b5) 2022; 102 Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O., 2020. PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (Eds.), Computer Vision – ECCV 2020. pp. 574–591. Sener, O., Savarese, S., 2018. Active Learning for Convolutional Neural Networks: A Core-Set Approach. In: International Conference on Learning Representations. Unal, O., Dai, D., Van Gool, L., 2022. Scribble-Supervised LiDAR Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2697–2707. Yin, Xu, Ji, Scherer, Choset (b46) 2021; 6 Wu, T.H., Liu, Y.C., Huang, Y.K., Lee, H.Y., Su, H.T., Huang, P.C., Hsu, W.H., 2021. ReDAL: Region-Based and Diversity-Aware Active Learning for Point Cloud Semantic Segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 15510–15519. Hu, Q., Yang, B., Fang, G., Guo, Y., Leonardis, A., Trigoni, N., Markham, A., 2022. SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (Eds.), Computer Vision – ECCV 2022. pp. 600–619. Hou, J., Graham, B., Niessner, M., Xie, S., 2021. Exploring Data-Efficient 3D Scene Understanding With Contrastive Scene Contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 15587–15597. Tarvainen, Valpola (b34) 2017 Yao, Hinz, Stilla (b45) 2011; 66 10.1016/j.isprsjprs.2023.09.002_b40 Deng (10.1016/j.isprsjprs.2023.09.002_b5) 2022; 102 10.1016/j.isprsjprs.2023.09.002_b44 10.1016/j.isprsjprs.2023.09.002_b43 Tarvainen (10.1016/j.isprsjprs.2023.09.002_b34) 2017 10.1016/j.isprsjprs.2023.09.002_b42 Roynard (10.1016/j.isprsjprs.2023.09.002_b28) 2018; 37 Polewski (10.1016/j.isprsjprs.2023.09.002_b25) 2016; 9 Hu (10.1016/j.isprsjprs.2023.09.002_b8) 2019 Yao (10.1016/j.isprsjprs.2023.09.002_b45) 2011; 66 10.1016/j.isprsjprs.2023.09.002_b37 Wang (10.1016/j.isprsjprs.2023.09.002_b39) 2022; 188 10.1016/j.isprsjprs.2023.09.002_b35 Wang (10.1016/j.isprsjprs.2023.09.002_b38) 2022; V-2-2022 Shui (10.1016/j.isprsjprs.2023.09.002_b33) 2020; vol. 108 10.1016/j.isprsjprs.2023.09.002_b32 Liu (10.1016/j.isprsjprs.2023.09.002_b21) 2022 10.1016/j.isprsjprs.2023.09.002_b30 Wei (10.1016/j.isprsjprs.2023.09.002_b41) 2021 Lin (10.1016/j.isprsjprs.2023.09.002_b19) 2020; 169 Huang (10.1016/j.isprsjprs.2023.09.002_b12) 2020; 163 10.1016/j.isprsjprs.2023.09.002_b23 10.1016/j.isprsjprs.2023.09.002_b7 10.1016/j.isprsjprs.2023.09.002_b9 Shannon (10.1016/j.isprsjprs.2023.09.002_b31) 1948; 27 Scheffer (10.1016/j.isprsjprs.2023.09.002_b29) 2001 Yin (10.1016/j.isprsjprs.2023.09.002_b46) 2021; 6 10.1016/j.isprsjprs.2023.09.002_b1 10.1016/j.isprsjprs.2023.09.002_b2 10.1016/j.isprsjprs.2023.09.002_b3 10.1016/j.isprsjprs.2023.09.002_b4 Liu (10.1016/j.isprsjprs.2023.09.002_b22) 2022 10.1016/j.isprsjprs.2023.09.002_b14 10.1016/j.isprsjprs.2023.09.002_b13 10.1016/j.isprsjprs.2023.09.002_b18 10.1016/j.isprsjprs.2023.09.002_b17 10.1016/j.isprsjprs.2023.09.002_b16 10.1016/j.isprsjprs.2023.09.002_b51 10.1016/j.isprsjprs.2023.09.002_b50 10.1016/j.isprsjprs.2023.09.002_b11 10.1016/j.isprsjprs.2023.09.002_b10 Tobler (10.1016/j.isprsjprs.2023.09.002_b36) 1970; 46 Ren (10.1016/j.isprsjprs.2023.09.002_b27) 2021; 54 Polewski (10.1016/j.isprsjprs.2023.09.002_b24) 2015; 105 Hackel (10.1016/j.isprsjprs.2023.09.002_b6) 2017; IV-1/W1 Qi (10.1016/j.isprsjprs.2023.09.002_b26) 2017 Kölle (10.1016/j.isprsjprs.2023.09.002_b15) 2021; 1 10.1016/j.isprsjprs.2023.09.002_b48 10.1016/j.isprsjprs.2023.09.002_b47 Lin (10.1016/j.isprsjprs.2023.09.002_b20) 2022; 187 10.1016/j.isprsjprs.2023.09.002_b49 |
References_xml | – start-page: 1 year: 2022 end-page: 12 ident: b21 article-title: FG-net: A fast and accurate framework for large-scale LiDAR point cloud understanding publication-title: IEEE Trans. Cybern. – volume: 105 start-page: 252 year: 2015 end-page: 271 ident: b24 article-title: Detection of fallen trees in ALS point clouds using a normalized cut approach trained by simulation publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 46 start-page: 234 year: 1970 end-page: 240 ident: b36 article-title: A computer movie simulating urban growth in the detroit region publication-title: Econ. Geogr. – volume: 54 year: 2021 ident: b27 article-title: A survey of deep active learning publication-title: ACM Comput. Surv. – start-page: 309 year: 2001 end-page: 318 ident: b29 article-title: Active hidden Markov models for information extraction publication-title: Advances in Intelligent Data Analysis – reference: Hou, J., Graham, B., Niessner, M., Xie, S., 2021. Exploring Data-Efficient 3D Scene Understanding With Contrastive Scene Contexts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 15587–15597. – reference: Wei, J., Lin, G., Yap, K.H., Hung, T.Y., Xie, L., 2020. Multi-Path Region Mining for Weakly Supervised 3D Semantic Segmentation on Point Clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 4383–4392. – volume: 27 start-page: 379 year: 1948 end-page: 423 ident: b31 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. – volume: vol. 108 start-page: 1308 year: 2020 end-page: 1318 ident: b33 article-title: Deep active learning: Unified and principled method for query and training publication-title: Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics – reference: Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V., 2021. Point Transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 16259–16268. – reference: Xie, S., Gu, J., Guo, D., Qi, C.R., Guibas, L., Litany, O., 2020. PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (Eds.), Computer Vision – ECCV 2020. pp. 574–591. – volume: 188 start-page: 237 year: 2022 end-page: 254 ident: b39 article-title: A new weakly supervised approach for ALS point cloud semantic segmentation publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Unal, O., Dai, D., Van Gool, L., 2022. Scribble-Supervised LiDAR Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 2697–2707. – year: 2017 ident: b26 article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space publication-title: Advances in Neural Information Processing Systems, Vol. 30 – reference: Charles, R.Q., Su, H., Kaichun, M., Guibas, L.J., 2017. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition. CVPR, pp. 77–85. – reference: Zhang, Y., Li, Z., Xie, Y., Qu, Y., Li, C., Mei, T., 2021a. Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 4. pp. 3421–3429. – reference: Liu, Z., Qi, X., Fu, C.W., 2021. One Thing One Click: A Self-Training Approach for Weakly Supervised 3D Semantic Segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 1726–1736. – volume: IV-1/W1 start-page: 91 year: 2017 end-page: 98 ident: b6 article-title: Semantic3D.net: A new large-scale point cloud classification benchmark publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. – reference: Iscen, A., Tolias, G., Avrithis, Y., Chum, O., 2019. Label Propagation for Deep Semi-Supervised Learning. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 5065–5074. – reference: Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D., 2018. mixup: Beyond Empirical Risk Minimization. In: International Conference on Learning Representations. – volume: 169 start-page: 73 year: 2020 end-page: 92 ident: b19 article-title: Active and incremental learning for semantic ALS point cloud segmentation publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 163 start-page: 62 year: 2020 end-page: 81 ident: b12 article-title: Deep point embedding for urban classification using ALS point clouds: A new perspective from local to global publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Yoo, D., Kweon, I.S., 2019. Learning Loss for Active Learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 93–102. – reference: Cheng, M., Hui, L., Xie, J., Yang, J., 2021. SSPC-Net: Semi-supervised Semantic 3D Point Cloud Segmentation Network. In: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35, No. 2. pp. 1140–1147. – volume: V-2-2022 start-page: 151 year: 2022 end-page: 158 ident: b38 article-title: Exploring label initialization for weakly supervised ALS point cloud semantic segmentation publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. – reference: Wu, T.H., Liu, Y.C., Huang, Y.K., Lee, H.Y., Su, H.T., Huang, P.C., Hsu, W.H., 2021. ReDAL: Region-Based and Diversity-Aware Active Learning for Point Cloud Semantic Segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 15510–15519. – year: 2021 ident: b41 article-title: Dense supervision propagation for weakly supervised semantic segmentation on 3D point clouds – reference: Jiang, L., Shi, S., Tian, Z., Lai, X., Liu, S., Fu, C.W., Jia, J., 2021. Guided Point Contrastive Learning for Semi-Supervised Point Cloud Semantic Segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 6423–6432. – volume: 37 start-page: 545 year: 2018 end-page: 557 ident: b28 article-title: Paris-lille-3D: A large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification publication-title: Int. J. Robot. Res. – volume: 1 year: 2021 ident: b15 article-title: The hessigheim 3D (H3D) benchmark on semantic segmentation of high-resolution 3D point clouds and textured meshes from UAV LiDAR and Multi-View-Stereo publication-title: ISPRS Open J. Photogramm. Remote Sens. – reference: Li, M., Xie, Y., Shen, Y., Ke, B., Qiao, R., Ren, B., Lin, S., Ma, L., 2022. HybridCR: Weakly-Supervised 3D Point Cloud Semantic Segmentation via Hybrid Contrastive Regularization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 14930–14939. – reference: Xu, X., Lee, G.H., 2020. Weakly Supervised Semantic Point Cloud Segmentation: Towards 10×Fewer Labels. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 13703–13712. – reference: Hu, Q., Yang, B., Fang, G., Guo, Y., Leonardis, A., Trigoni, N., Markham, A., 2022. SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (Eds.), Computer Vision – ECCV 2022. pp. 600–619. – volume: 6 start-page: 5953 year: 2021 end-page: 5960 ident: b46 article-title: 3D segmentation learning from sparse annotations and hierarchical descriptors publication-title: IEEE Robot. Autom. Lett. – reference: Lee, D.H., 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on Challenges in Representation Learning, ICML, Vol. 3, No. 2. pp. 1–6. – reference: Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L., 2019. KPConv: Flexible and Deformable Convolution for Point Clouds. In: 2019 IEEE/CVF International Conference on Computer Vision. ICCV, pp. 6410–6419. – year: 2022 ident: b22 article-title: Box2Seg: Learning semantics of 3D point clouds with box-level supervision – reference: Deng, S., Dong, Q., Liu, B., Hu, Z., 2022a. Superpoint-guided Semi-supervised Semantic Segmentation of 3D Point Clouds. In: 2022 International Conference on Robotics and Automation. ICRA, pp. 9214–9220. – start-page: 1195 year: 2017 end-page: 1204 ident: b34 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results publication-title: Advances in Neural Information Processing Systems, Vol. 30 – year: 2019 ident: b8 article-title: See better before looking closer: Weakly supervised data augmentation network for fine-grained visual classification – volume: 187 start-page: 79 year: 2022 end-page: 100 ident: b20 article-title: Weakly supervised semantic segmentation of airborne laser scanning point clouds publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Shao, F., Luo, Y., Liu, P., Chen, J., Yang, Y., Lu, Y., Xiao, J., 2022. Active Learning for Point Cloud Semantic Segmentation via Spatial-Structural Diversity Reasoning. In: Proceedings of the 30th ACM International Conference on Multimedia. MM ’22, pp. 2575–2585. – reference: Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N., Markham, A., 2020. RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. CVPR, pp. 11105–11114. – reference: Huang, S., Wang, T., Xiong, H., Huan, J., Dou, D., 2021. Semi-Supervised Active Learning With Temporal Output Discrepancy. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 3447–3456. – volume: 9 start-page: 2910 year: 2016 end-page: 2922 ident: b25 article-title: Combining active and semisupervised learning of remote sensing data within a renyi entropy regularization framework publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – volume: 102 start-page: 78 year: 2022 end-page: 88 ident: b5 article-title: A weakly supervised framework for real-world point cloud classification publication-title: Comput. Graph. – reference: Chibane, J., Engelmann, F., Anh Tran, T., Pons-Moll, G., 2022. Box2Mask: Weakly Supervised 3D Semantic Instance Segmentation using Bounding Boxes. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (Eds.), Computer Vision – ECCV 2022. pp. 681–699. – reference: Laine, S., Aila, T., 2017. Temporal Ensembling for Semi-Supervised Learning. In: International Conference on Learning Representations. – volume: 66 start-page: 260 year: 2011 end-page: 271 ident: b45 article-title: Extraction and motion estimation of vehicles in single-pass airborne LiDAR data towards urban traffic analysis publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Sener, O., Savarese, S., 2018. Active Learning for Convolutional Neural Networks: A Core-Set Approach. In: International Conference on Learning Representations. – reference: Zhang, Y., Qu, Y., Xie, Y., Li, Z., Zheng, S., Li, C., 2021b. Perturbed Self-Distillation: Weakly Supervised Large-Scale Point Cloud Semantic Segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. ICCV, pp. 15520–15528. – start-page: 1195 year: 2017 ident: 10.1016/j.isprsjprs.2023.09.002_b34 article-title: Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results – ident: 10.1016/j.isprsjprs.2023.09.002_b42 doi: 10.1109/ICCV48922.2021.01522 – ident: 10.1016/j.isprsjprs.2023.09.002_b13 doi: 10.1109/CVPR.2019.00521 – start-page: 1 year: 2022 ident: 10.1016/j.isprsjprs.2023.09.002_b21 article-title: FG-net: A fast and accurate framework for large-scale LiDAR point cloud understanding publication-title: IEEE Trans. Cybern. – year: 2022 ident: 10.1016/j.isprsjprs.2023.09.002_b22 – ident: 10.1016/j.isprsjprs.2023.09.002_b49 doi: 10.1609/aaai.v35i4.16455 – ident: 10.1016/j.isprsjprs.2023.09.002_b7 doi: 10.1109/CVPR46437.2021.01533 – ident: 10.1016/j.isprsjprs.2023.09.002_b10 doi: 10.1109/CVPR42600.2020.01112 – volume: V-2-2022 start-page: 151 year: 2022 ident: 10.1016/j.isprsjprs.2023.09.002_b38 article-title: Exploring label initialization for weakly supervised ALS point cloud semantic segmentation publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. doi: 10.5194/isprs-annals-V-2-2022-151-2022 – ident: 10.1016/j.isprsjprs.2023.09.002_b30 – start-page: 309 year: 2001 ident: 10.1016/j.isprsjprs.2023.09.002_b29 article-title: Active hidden Markov models for information extraction – ident: 10.1016/j.isprsjprs.2023.09.002_b35 doi: 10.1109/ICCV.2019.00651 – ident: 10.1016/j.isprsjprs.2023.09.002_b50 doi: 10.1109/ICCV48922.2021.01523 – ident: 10.1016/j.isprsjprs.2023.09.002_b40 doi: 10.1109/CVPR42600.2020.00444 – volume: 9 start-page: 2910 issue: 7 year: 2016 ident: 10.1016/j.isprsjprs.2023.09.002_b25 article-title: Combining active and semisupervised learning of remote sensing data within a renyi entropy regularization framework publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2015.2510867 – ident: 10.1016/j.isprsjprs.2023.09.002_b1 doi: 10.1109/CVPR.2017.16 – volume: 188 start-page: 237 year: 2022 ident: 10.1016/j.isprsjprs.2023.09.002_b39 article-title: A new weakly supervised approach for ALS point cloud semantic segmentation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.04.016 – ident: 10.1016/j.isprsjprs.2023.09.002_b4 doi: 10.1109/ICRA46639.2022.9811904 – ident: 10.1016/j.isprsjprs.2023.09.002_b18 doi: 10.1109/CVPR52688.2022.01451 – year: 2017 ident: 10.1016/j.isprsjprs.2023.09.002_b26 article-title: PointNet++: Deep hierarchical feature learning on point sets in a metric space – ident: 10.1016/j.isprsjprs.2023.09.002_b32 doi: 10.1145/3503161.3547820 – volume: 46 start-page: 234 issue: sup1 year: 1970 ident: 10.1016/j.isprsjprs.2023.09.002_b36 article-title: A computer movie simulating urban growth in the detroit region publication-title: Econ. Geogr. doi: 10.2307/143141 – volume: 1 year: 2021 ident: 10.1016/j.isprsjprs.2023.09.002_b15 article-title: The hessigheim 3D (H3D) benchmark on semantic segmentation of high-resolution 3D point clouds and textured meshes from UAV LiDAR and Multi-View-Stereo publication-title: ISPRS Open J. Photogramm. Remote Sens. – ident: 10.1016/j.isprsjprs.2023.09.002_b17 – volume: 27 start-page: 379 issue: 3 year: 1948 ident: 10.1016/j.isprsjprs.2023.09.002_b31 article-title: A mathematical theory of communication publication-title: Bell Syst. Tech. J. doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: 10.1016/j.isprsjprs.2023.09.002_b11 doi: 10.1109/ICCV48922.2021.00343 – volume: 54 issue: 9 year: 2021 ident: 10.1016/j.isprsjprs.2023.09.002_b27 article-title: A survey of deep active learning publication-title: ACM Comput. Surv. doi: 10.1145/3472291 – volume: 37 start-page: 545 issue: 6 year: 2018 ident: 10.1016/j.isprsjprs.2023.09.002_b28 article-title: Paris-lille-3D: A large and high-quality ground-truth urban point cloud dataset for automatic segmentation and classification publication-title: Int. J. Robot. Res. doi: 10.1177/0278364918767506 – ident: 10.1016/j.isprsjprs.2023.09.002_b51 doi: 10.1109/ICCV48922.2021.01595 – volume: IV-1/W1 start-page: 91 year: 2017 ident: 10.1016/j.isprsjprs.2023.09.002_b6 article-title: Semantic3D.net: A new large-scale point cloud classification benchmark publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. doi: 10.5194/isprs-annals-IV-1-W1-91-2017 – ident: 10.1016/j.isprsjprs.2023.09.002_b37 doi: 10.1109/CVPR52688.2022.00272 – volume: 163 start-page: 62 year: 2020 ident: 10.1016/j.isprsjprs.2023.09.002_b12 article-title: Deep point embedding for urban classification using ALS point clouds: A new perspective from local to global publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.02.020 – ident: 10.1016/j.isprsjprs.2023.09.002_b14 doi: 10.1109/ICCV48922.2021.00636 – year: 2019 ident: 10.1016/j.isprsjprs.2023.09.002_b8 – volume: vol. 108 start-page: 1308 year: 2020 ident: 10.1016/j.isprsjprs.2023.09.002_b33 article-title: Deep active learning: Unified and principled method for query and training – ident: 10.1016/j.isprsjprs.2023.09.002_b16 – ident: 10.1016/j.isprsjprs.2023.09.002_b44 doi: 10.1109/CVPR42600.2020.01372 – volume: 187 start-page: 79 year: 2022 ident: 10.1016/j.isprsjprs.2023.09.002_b20 article-title: Weakly supervised semantic segmentation of airborne laser scanning point clouds publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.03.001 – volume: 169 start-page: 73 year: 2020 ident: 10.1016/j.isprsjprs.2023.09.002_b19 article-title: Active and incremental learning for semantic ALS point cloud segmentation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.09.003 – ident: 10.1016/j.isprsjprs.2023.09.002_b48 – volume: 6 start-page: 5953 issue: 3 year: 2021 ident: 10.1016/j.isprsjprs.2023.09.002_b46 article-title: 3D segmentation learning from sparse annotations and hierarchical descriptors publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2021.3088796 – ident: 10.1016/j.isprsjprs.2023.09.002_b3 doi: 10.1007/978-3-031-19821-2_39 – year: 2021 ident: 10.1016/j.isprsjprs.2023.09.002_b41 – ident: 10.1016/j.isprsjprs.2023.09.002_b2 doi: 10.1609/aaai.v35i2.16200 – ident: 10.1016/j.isprsjprs.2023.09.002_b23 doi: 10.1109/CVPR46437.2021.00177 – volume: 105 start-page: 252 year: 2015 ident: 10.1016/j.isprsjprs.2023.09.002_b24 article-title: Detection of fallen trees in ALS point clouds using a normalized cut approach trained by simulation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.01.010 – ident: 10.1016/j.isprsjprs.2023.09.002_b9 doi: 10.1007/978-3-031-19812-0_35 – ident: 10.1016/j.isprsjprs.2023.09.002_b43 doi: 10.1007/978-3-030-58580-8_34 – volume: 102 start-page: 78 year: 2022 ident: 10.1016/j.isprsjprs.2023.09.002_b5 article-title: A weakly supervised framework for real-world point cloud classification publication-title: Comput. Graph. doi: 10.1016/j.cag.2021.12.008 – volume: 66 start-page: 260 issue: 3 year: 2011 ident: 10.1016/j.isprsjprs.2023.09.002_b45 article-title: Extraction and motion estimation of vehicles in single-pass airborne LiDAR data towards urban traffic analysis publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.10.005 – ident: 10.1016/j.isprsjprs.2023.09.002_b47 doi: 10.1109/CVPR.2019.00018 |
SSID | ssj0001568 |
Score | 2.4754858 |
Snippet | Reliance on vast annotations to achieve leading performance severely restricts the practicality of large-scale point cloud semantic segmentation. For the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 89 |
SubjectTerms | Active learning class data collection lidar photogrammetry Point cloud prediction Semantic segmentation uncertainty Weakly supervised learning |
Title | One Class One Click: Quasi scene-level weakly supervised point cloud semantic segmentation with active learning |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2023.09.002 https://www.proquest.com/docview/3153196985 |
Volume | 204 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1RS90wFD7o9WHbw9jcxpxOMthrvG2Tpje-iSh3G3OMTfAtNMmpVq9tsbcMX_ztS9r0okPwYQ-FtPTQkpN-5yQ9-T6Az1YwrgshaSJSRrm1Kc3TxFCmhZwxzKzp2fa_n4j5Kf96lp6tweG4F8aXVQbsHzC9R-twZRp6c9qU5fRX5KYOiSdAYj7wcL4OG4mL9rMJbBx8-TY_WQFyPOyI8_dTb_CgzKtsm5v20h17Xki85zwNSyyPBKl_4LqPQcev4GVIHsnB8H6vYQ2rTXhxj1JwE54FVfOL2zdQ_6iQ9KqXZGiV5mqf_OzytiSexAnpwpcMkT-YXy1uSds1HjhatKSpy2pJzKLuLGnx2vV-aVzj_DrsVKqIX78leQ-WJChPnL-F0-Oj34dzGgQWqHFpyJJiUUSaFXGqmYnRYCZynQmpE821lIYxW3DG7cyduswPPRNPohODuohiHWUFeweTqq7wPRDN0co8FSwzbkKH0st5uGww1dJKnfF8C8TYo8oE9nEvgrFQY5nZpVq5QnlXqEgq54otiFaGzUDA8bTJ_ugy9WAsKRcmnjb-NDpZuS_N_z7JK6y7VrG4xys5Sz_8zwO24bk_GwoCd2CyvOnwo0tslnoX1vfu4t0wfP8CNwr7xw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3R5UB7qFraqvTTlXp1N4kdZ80NoaKlwFZVQeJmxfYEAksSkY0q_n3txFmVqhKHHiI5H6NEnuTN2Bm_B_DZCsZ1ISRNRMootzaleZoYyrSQM4aZNT3b_slCzM_4t_P0fAP2x7UwvqwyYP-A6T1ahyPT0JvTpiynPyM3dEg8ARLzgYfzR7DJvaj1BDb3Do_mizUgx8OKOH899Qb3yrzKtrltr9z2xQuJ95ynYYrlH0HqL7juY9DBM3gakkeyNzzfc9jAahue_EEpuA1bQdX88u4F1N8rJL3qJRlapbneJT-6vC2JJ3FCuvQlQ-QX5tfLO9J2jQeOFi1p6rJaEbOsO0tavHG9XxrXuLgJK5Uq4udvSd6DJQnKExcv4ezg6-n-nAaBBWpcGrKiWBSRZkWcamZiNJiJXGdC6kRzLaVhzBaccTtzuy7zQ8_Ek-jEoC6iWEdZwV7BpKorfA1Ec7QyTwXLjBvQofRyHi4bTLW0Umc83wEx9qgygX3ci2As1VhmdqXWrlDeFSqSyrliB6K1YTMQcDxssju6TN17l5QLEw8bfxqdrNyX5n-f5BXWXatY3OOVnKVv_ucGH2FrfnpyrI4PF0dv4bE_MxQHvoPJ6rbD9y7JWekP4SX-DSZk_a0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One+Class+One+Click%3A+Quasi+scene-level+weakly+supervised+point+cloud+semantic+segmentation+with+active+learning&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Wang%2C+Puzuo&rft.au=Yao%2C+Wei&rft.au=Shao%2C+Jie&rft.date=2023-10-01&rft.issn=0924-2716&rft.volume=204+p.89-104&rft.spage=89&rft.epage=104&rft_id=info:doi/10.1016%2Fj.isprsjprs.2023.09.002&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |