Machine-Learning-Based Model for Hurricane Storm Surge Forecasting in the Lower Laguna Madre

During every Atlantic hurricane season, storms represent a constant risk to Texan coastal communities and other communities along the Atlantic coast of the United States. A storm surge refers to the abnormal rise of sea water level due to hurricanes and storms; traditionally, hurricane storm surge p...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 16; no. 5; p. 232
Main Authors Davila Hernandez, Cesar, Ho, Jungseok, Kim, Dongchul, Oubeidillah, Abdoul
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 28.04.2023
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a16050232

Cover

Abstract During every Atlantic hurricane season, storms represent a constant risk to Texan coastal communities and other communities along the Atlantic coast of the United States. A storm surge refers to the abnormal rise of sea water level due to hurricanes and storms; traditionally, hurricane storm surge predictions are generated using complex numerical models that require high amounts of computing power to be run, which grow proportionally with the extent of the area covered by the model. In this work, a machine-learning-based storm surge forecasting model for the Lower Laguna Madre is implemented. The model considers gridded forecasted weather data on winds and atmospheric pressure over the Gulf of Mexico, as well as previous sea levels obtained from a Laguna Madre ocean circulation numerical model. Using architectures such as Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) combined, the resulting model is capable of identifying upcoming hurricanes and predicting storm surges, as well as normal conditions in several locations along the Lower Laguna Madre. Overall, the model is able to predict storm surge peaks with an average difference of 0.04 m when compared with a numerical model and an average RMSE of 0.08 for normal conditions and 0.09 for storm surge conditions.
AbstractList During every Atlantic hurricane season, storms represent a constant risk to Texan coastal communities and other communities along the Atlantic coast of the United States. A storm surge refers to the abnormal rise of sea water level due to hurricanes and storms; traditionally, hurricane storm surge predictions are generated using complex numerical models that require high amounts of computing power to be run, which grow proportionally with the extent of the area covered by the model. In this work, a machine-learning-based storm surge forecasting model for the Lower Laguna Madre is implemented. The model considers gridded forecasted weather data on winds and atmospheric pressure over the Gulf of Mexico, as well as previous sea levels obtained from a Laguna Madre ocean circulation numerical model. Using architectures such as Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) combined, the resulting model is capable of identifying upcoming hurricanes and predicting storm surges, as well as normal conditions in several locations along the Lower Laguna Madre. Overall, the model is able to predict storm surge peaks with an average difference of 0.04 m when compared with a numerical model and an average RMSE of 0.08 for normal conditions and 0.09 for storm surge conditions.
Audience Academic
Author Davila Hernandez, Cesar
Oubeidillah, Abdoul
Kim, Dongchul
Ho, Jungseok
Author_xml – sequence: 1
  givenname: Cesar
  orcidid: 0000-0002-7250-8239
  surname: Davila Hernandez
  fullname: Davila Hernandez, Cesar
– sequence: 2
  givenname: Jungseok
  surname: Ho
  fullname: Ho, Jungseok
– sequence: 3
  givenname: Dongchul
  surname: Kim
  fullname: Kim, Dongchul
– sequence: 4
  givenname: Abdoul
  surname: Oubeidillah
  fullname: Oubeidillah, Abdoul
BookMark eNp1kUFr3DAQhUVJoUnaQ_-BoKcWnEjWWtYc09A0AS89pL0VxCCPHC1eaSvbhPz7ausSSmnRYcTwvsebmTN2ElMkxt5KcaEUiEuUWjSiVvULdioBoNoYUCd__F-xs2naCaEb0PKUfd-iewiRqo4wxxCH6iNO1PNt6mnkPmV-u-QcHEbi93PKe36_5IH4TcrkcJoLwUPk8wPxLj1S5h0OS0S-xT7Ta_bS4zjRm9_1nH27-fT1-rbqvny-u77qKqegnSvnayAvUXi3AdkL6l3dNr5RZLyHBrwXWjqptXfSoCrT-Va1aMAASFOTOmd3q2-fcGcPOewxP9mEwf5qpDxYzHNwI1nlZQ3O9a1o_abZODRkpO5BON1ocEevD6vXEg_49Ijj-GwohT3u2D7vuIjfreJDTj8Wmma7S0uOZVZbGwm1rqU8qi5W1YAlQYg-zRldeT3tgyv386H0r9pGGKM16AJcroDLaZoyeevCjHNIsYBh_GeQ938R_w_9E_Oqp-E
CitedBy_id crossref_primary_10_1016_j_coastaleng_2024_104504
crossref_primary_10_3389_fmars_2024_1364929
crossref_primary_10_3390_app142110019
crossref_primary_10_1016_j_oceaneng_2024_116915
crossref_primary_10_3390_jmse11091729
Cites_doi 10.1175/2010WCAS1041.1
10.1007/s10915-011-9555-6
10.1016/j.asoc.2020.106184
10.1175/WCAS-D-14-00049.1
10.3934/geosci.2020016
10.3200/ENVT.49.7.8-21
10.9753/icce.v33.management.8
10.1016/j.piutam.2017.09.002
10.1016/j.engappai.2007.03.002
10.1175/2008JAMC1907.1
10.1109/ACCESS.2020.3017089
10.1016/j.wace.2019.100196
10.1016/S0029-8018(02)00133-6
10.1109/OCEANS.1984.1152341
10.5194/nhess-12-3799-2012
10.20944/preprints201810.0098.v2
10.1007/s11069-014-1508-6
10.1016/S1385-1101(03)00024-8
10.2112/SI85-174.1
10.1175/MWR-D-12-00254.1
10.1061/(ASCE)NH.1527-6996.0000150
10.1007/s11069-015-1652-7
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/a16050232
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database (Proquest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_3f129ccd707f454ca8e816d90c6569ce
10.3390/a16050232
A750886696
10_3390_a16050232
GeographicLocations Texas
Philippines
Gulf of Mexico
United States--US
Laguna Madre
GeographicLocations_xml – name: Philippines
– name: Texas
– name: Gulf of Mexico
– name: Laguna Madre
– name: United States--US
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c397t-cf29ef1a0fc491d0edc275f53e8ff959ff061c166fc18a3023f737a89899182e3
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Fri Oct 03 12:41:18 EDT 2025
Sun Oct 26 04:16:45 EDT 2025
Fri Jul 25 11:58:52 EDT 2025
Mon Oct 20 16:25:26 EDT 2025
Thu Oct 16 04:44:03 EDT 2025
Thu Apr 24 23:08:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-cf29ef1a0fc491d0edc275f53e8ff959ff061c166fc18a3023f737a89899182e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7250-8239
OpenAccessLink https://doaj.org/article/3f129ccd707f454ca8e816d90c6569ce
PQID 2819262112
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_3f129ccd707f454ca8e816d90c6569ce
unpaywall_primary_10_3390_a16050232
proquest_journals_2819262112
gale_infotracacademiconefile_A750886696
crossref_citationtrail_10_3390_a16050232
crossref_primary_10_3390_a16050232
PublicationCentury 2000
PublicationDate 2023-04-28
PublicationDateYYYYMMDD 2023-04-28
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-28
  day: 28
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zachry (ref_3) 2015; 7
Sahoo (ref_19) 2019; 23
Chen (ref_12) 2012; 12
Cutter (ref_4) 2007; 49
ref_13
Morss (ref_2) 2010; 2
ref_10
Kim (ref_16) 2018; 85
Landsea (ref_30) 2013; 141
Cheung (ref_11) 2003; 30
(ref_15) 2009; 48
Dietrich (ref_7) 2012; 52
Yang (ref_21) 2020; 8
Sztobryn (ref_20) 2003; 49
Li (ref_9) 2017; 25
LeCun (ref_25) 1989; 2
Kim (ref_17) 2015; 76
Smith (ref_22) 2012; 1
Davila (ref_27) 2020; 6
ref_24
ref_23
Bensi (ref_14) 2020; 91
Christian (ref_6) 2015; 16
ref_1
Burleson (ref_5) 2015; 77
ref_29
Lee (ref_18) 2008; 21
ref_28
Krizhevsky (ref_26) 2017; 60
ref_8
References_xml – ident: ref_28
– volume: 2
  start-page: 174
  year: 2010
  ident: ref_2
  article-title: Storm surge and “certain death”: Interviews with Texas coastal residents following Hurricane Ike
  publication-title: Weather Clim. Soc.
  doi: 10.1175/2010WCAS1041.1
– volume: 52
  start-page: 468
  year: 2012
  ident: ref_7
  article-title: Performance of the unstructured-mesh, SWAN + ADCIRC model in computing hurricane waves and surge
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-011-9555-6
– ident: ref_24
– volume: 91
  start-page: 106184
  year: 2020
  ident: ref_14
  article-title: Application of surrogate models in estimation of storm surge: A comparative assessment
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106184
– volume: 7
  start-page: 109
  year: 2015
  ident: ref_3
  article-title: A National View of Storm Surge Risk and Inundation
  publication-title: Weather Clim. Soc.
  doi: 10.1175/WCAS-D-14-00049.1
– volume: 6
  start-page: 271
  year: 2020
  ident: ref_27
  article-title: South Texas coastal area storm surge model development and improvement
  publication-title: AIMS Geosci.
  doi: 10.3934/geosci.2020016
– volume: 49
  start-page: 8
  year: 2007
  ident: ref_4
  article-title: The US hurricane coasts: Increasingly vulnerable?
  publication-title: Environ. Sci. Policy Sustain. Dev.
  doi: 10.3200/ENVT.49.7.8-21
– ident: ref_1
– volume: 1
  start-page: management.8
  year: 2012
  ident: ref_22
  article-title: Hawaii hurricane wave and surge modeling and fast forecasting
  publication-title: Coast. Eng. Proc.
  doi: 10.9753/icce.v33.management.8
– volume: 25
  start-page: 3
  year: 2017
  ident: ref_9
  article-title: Storm surge prediction: Present status and future challenges
  publication-title: Procedia IUTAM
  doi: 10.1016/j.piutam.2017.09.002
– ident: ref_23
– volume: 21
  start-page: 63
  year: 2008
  ident: ref_18
  article-title: Back-propagation neural network for the prediction of the short-term storm surge in Taichung harbor, Taiwan
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2007.03.002
– volume: 48
  start-page: 143
  year: 2009
  ident: ref_15
  article-title: Neural network model to predict a storm surge
  publication-title: J. Appl. Meteorol. Climatol.
  doi: 10.1175/2008JAMC1907.1
– volume: 8
  start-page: 159389
  year: 2020
  ident: ref_21
  article-title: Long Short-Term Memory Recurrent Neural Network for Tidal Level Forecasting
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3017089
– volume: 2
  start-page: 396
  year: 1989
  ident: ref_25
  article-title: Handwritten digit recognition with a back-propagation network
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 23
  start-page: 100196
  year: 2019
  ident: ref_19
  article-title: Prediction of storm surge and coastal inundation using Artificial Neural Network–A case study for 1999 Odisha Super Cyclone
  publication-title: Weather Clim. Extrem.
  doi: 10.1016/j.wace.2019.100196
– volume: 30
  start-page: 1353
  year: 2003
  ident: ref_11
  article-title: Modeling of storm-induced coastal flooding for emergency management
  publication-title: Ocean Eng.
  doi: 10.1016/S0029-8018(02)00133-6
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_26
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref_8
  doi: 10.1109/OCEANS.1984.1152341
– volume: 12
  start-page: 3799
  year: 2012
  ident: ref_12
  article-title: Predicting typhoon-induced storm surge tide with a two-dimensional hydrodynamic model and artificial neural network model
  publication-title: Nat. Hazards Earth Syst. Sci.
  doi: 10.5194/nhess-12-3799-2012
– ident: ref_29
– ident: ref_10
– ident: ref_13
  doi: 10.20944/preprints201810.0098.v2
– volume: 76
  start-page: 565
  year: 2015
  ident: ref_17
  article-title: A time-dependent surrogate model for storm surge prediction based on an artificial neural network using high-fidelity synthetic hurricane modeling
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-014-1508-6
– volume: 49
  start-page: 317
  year: 2003
  ident: ref_20
  article-title: Forecast of storm surge by means of artificial neural network
  publication-title: J. Sea Res.
  doi: 10.1016/S1385-1101(03)00024-8
– volume: 85
  start-page: 866
  year: 2018
  ident: ref_16
  article-title: A surrogate modeling for storm surge prediction using an artificial neural network
  publication-title: J. Coast. Res.
  doi: 10.2112/SI85-174.1
– volume: 141
  start-page: 3576
  year: 2013
  ident: ref_30
  article-title: Atlantic hurricane database uncertainty and presentation of a new database format
  publication-title: Mon. Weather. Rev.
  doi: 10.1175/MWR-D-12-00254.1
– volume: 16
  start-page: 04014015
  year: 2015
  ident: ref_6
  article-title: Modeling the Hydraulic Effectiveness of a Proposed Storm Surge Barrier System for the Houston Ship Channel during Hurricane Events
  publication-title: Nat. Hazards Rev.
  doi: 10.1061/(ASCE)NH.1527-6996.0000150
– volume: 77
  start-page: 1183
  year: 2015
  ident: ref_5
  article-title: Vulnerability of an industrial corridor in Texas to storm surge
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-015-1652-7
SSID ssj0065961
Score 2.3151052
Snippet During every Atlantic hurricane season, storms represent a constant risk to Texan coastal communities and other communities along the Atlantic coast of the...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 232
SubjectTerms Analysis
Artificial intelligence
Artificial neural networks
Atmospheric models
CNN
Floods
forecasting
Gulf of Mexico
hurricane
Hurricane forecasting
Hurricanes
Infrastructure
Literature reviews
LSTM
Machine learning
Mathematical models
Meteorological data
Neural networks
Numerical models
Ocean circulation
Ocean currents
Ocean models
Philippines
Rain
Seawater
storm surge
Storm surges
Storms
Texas
Tidal waves
Water levels
Weather
Weather forecasting
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fixMxEB7O3oP64O_D1VOCCvoSrptNspsHkavcUeRaxPPgHoQlO0mKULe11yL-92a22ar443UJSzaTmflmk_k-gBcSS4wxz3BhG82l1g23pdA8D6oM0qIrSmpOnkz1-EK-u1SXezDte2HoWmUfE7tA7RZI_8iP6MBH6FiuiDfLr5xUo-h0tZfQsElawb3uKMauwb4gZqwB7I9Opu8_9LFZK6PzLb9QEYv9I5tHNB-zlvgtK3Xk_X-G6JtwfdMu7fdvdj7_JQed3oFbCTyy462178Keb-_B7V6YgSU_vQ-fJt0VSc8Te-qMj2KycoyEz-YswlQ27v782daz81h0f2Hn1B3NSKcT7RXdhGafWxaxITsjFTV2Zmeb1rKJdSv_AC5OTz6-HfMko8Axgo01xyCMD7kdBpQmd0PvUJQqqMJXIRhlQog5HXOtA-aVJRGhUBalJV1JE6sPXxzAoF20_iEwZVVVoW0aISvpTRG910nrg0YXZFCYwat-GWtMHOMkdTGvY61BK17vVjyDZ7uhyy2xxt8GjcgWuwHEhd09WKxmdXKtuggRsyC6chh3l5JoK1_l2pkhRqxq0GfwkixZk8fGyaBNjQfxk4j7qj4uCaRqbXQGh72x6-TKV_XPjZfB890G-PecH_3_JY_hBinW04GUqA5hsF5t_JOIa9bN07RZfwB1zfas
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxNBEF80fVAfWr-KqVUWFfTlmtzdftw-SSqWIE0RaqCCsOzN7oZivIZ8KPrXO3PZBD9BfDo45mCOmZ35zc7ubxh7JkADxjyTFa5WmVCqzpwuVJZHqaNw4EtNl5NHZ2o4Fm8u5EXacFukY5VYil-2Qbq9Ik_sKL1c9WQPk39v5uPLz2knKVeIjTV1zq6zHSURi3fYzvjs7eB920pO367phEqs7XsuR_COSar4KQm1XP2_R-Rb7MaqmbmvX9x0-kPKOdljdqPs-qTJx6PVsj6Cb7_wOP7_39xmuwmN8sHafe6wa6G5y_Y2kx54Wvj32IdRe-YyZImOdZIdY_bznCapTTniXj5stxJdE_g5VvGf-Dldt-Y0-BPcgo5W88uGI9jkpzSWjZ-6yapxfOT8PNxn45PX714NszSXIQNEL8sMYmFCzF0_gjC57wcPhZZRlqGK0UgTI4IEyJWKkFeOphJFXWpHgyoNljOh3Ged5qoJDxiXTlYVuLouRCWCKTEceOFCVOCjiBK67MXGUBYSaTnNzphaLF7IpnZr0y57shWdrZk6_iR0TNbeChC5dvviaj6xaa3aMiIIAvC6j-4qBbgqVLnypg8Ifg2ELntOvmIpBKAy4NJNBvwlItOyA02oVymjuuxw4042xYaFpdZlobDwRm2ebl3s7zof_JPUQ3azwCc1uorqkHWW81V4hHhpWT9Oi-I793ENzw
  priority: 102
  providerName: Unpaywall
Title Machine-Learning-Based Model for Hurricane Storm Surge Forecasting in the Lower Laguna Madre
URI https://www.proquest.com/docview/2819262112
https://www.mdpi.com/1999-4893/16/5/232/pdf?version=1682672784
https://doaj.org/article/3f129ccd707f454ca8e816d90c6569ce
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: AMVHM
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9RAFB60PqgP3qWr7TKooC-hucz1cVe6LtJdinWhghBOTmaKsI2l3UX8956TZJdKFV98TJjAycy5fCeZ-T4h3ii0SDnPJzlUJlHGVAnY3CRZ1DYqwLqwfDh5NjfThfp4qk-vSX3xnrCOHribuIMiUkVCrG1Kz2qF4ILLTO1TJCTiMXD2TZ3fNFNdDjbam6zjESqoqT-AjFA7Vaf8t-rTkvTfTMX3xd11cwE_f8Byea3WTB6JBz1IlKPOuMfiVmieiIcbAQbZx-NT8XXWboUMSc-SepaMqSjVkgXOlpLgqJy2X_igCfKEmutzecKnoCXrcSJc8Y5n-a2RhAHlEaulySM4WzcgZ1BfhmdiMTn8_H6a9HIJCRKoWCUYcx9iBmlE5bM6DTXmVkddBBej1z5Gqt2YGRMxc8BiQdEWFlg_0lOXEYrnYqf53oRdITVo5xCqKldOBV9QlNYKQjRYRxU1DsS7zTSW2HOJs6TFsqSegme83M74QLzaDr3oCDT-NGjMa7EdwJzX7Q3yhLL3hPJfnjAQb3klS45MMgahP2BAr8QcV-XIMhg1xpuB2NssdtmH7FXJfxRzQ_0wWfN66wB_t_nF_7D5pbjH-vX8eyp3e2JndbkO-4RyVtVQ3HaTD0NxZ3w4P_40bN2brhbz49GXX40s_SM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48EYsFLB4CC5RN47jxIcKdaHVlu6uEG2lHioFx49VpW122Yeq_jl-GzNZZwHxuPUaOZYzM575JvbMB_BamMygz1MR16WMhJRlpDMuo9inmRfa2CSj4uT-QHZPxKfT9HQNvje1MHStsvGJtaO2Y0P_yLfpwIdLTFf4-8m3iFij6HS1odDQgVrB7tQtxkJhx6G7usQUbrZz8BH1_Ybz_b3jD90osAxEBmPxPDKeK-dj3fZGqNi2nTU8S32auNx7lSrvMeSZWEpv4lwTx47PkkwT7aJCcO4SnPcGbIhEKEz-Njp7g89fmlggUyXjZT-jJFHtbR1j9oAz8N-iYE0W8GdIuAWbi2qiry71aPRLzNu_C7cDWGW7S-u6B2uuug93GiIIFvzCAzjr11cyXRS6tQ6jDgZHy4hobcQQFrNu_adRV44dYZJ_wY6oGpsRL6jRM7p5zc4rhliU9Yi1jfX0cFFp1td26h7CybUI9BGsV-PKPQaW6jTPjS5LLnLhVILewgrtvDTWC5-aFrxrxFiY0NOcqDVGBeY2JPFiJfEWvFwNnSwbefxtUId0sRpAvbfrB-PpsAhbuUg8YiRjbNZGa06F0bnLY2lV2yA2Vsa14C1psiAPgYsxOhQ64CdRr61iNyNQLKWSLdhqlF0E1zErfhp6C16tDODfa37y_0lewGb3uN8regeDw6dwk-MrdBjG8y1Yn08X7hliqnn5PBgug6_XvVd-ACOYM8c
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkE58K4IFLB4CC7RJk7sxAeEWsqypbsVUqnUA1LwTuwV0pJd9qGqf41fx0w2WUA8br1GtuXMjOdhz8wH8CzFDEnnmVDaoQ5TrYehzaQOY68yn1osk4yLkwdHuneSvj9Vpxvwva2F4bTKVifWirqcIN-Rd_jBR2oKV2THN2kRH_a7r6ffQkaQ4pfWFk5jJSKH7vyMwrf5q4N94vVzKbtvP77phQ3CQIhkhxchemmcj23kMTVxGbkSZaa8SlzuvVHGezJ3GGvtMc4t4-v4LMksQy4acsxdQutegssZd3HnKvXuu9YKaGV0vOpklCQm6tiY4gaaL3-zfzVMwJ_G4BpcXVZTe35mx-NfrF33Jlxv3FSxu5KrW7Dhqttwo4WAEI1GuAOfBnUypgubPq2jcI_MYikYYm0syCEWvfqO0VZOHFN4_1Uccx22YERQtHPOuRZfKkFeqOgzXpvo29GysmJgy5m7CycXQs5t2KwmlbsHQlmV52iHQ5nmqTMJ6Ykytc5rLH3qFQbwsiVjgU03cwbVGBcU1TDFizXFA3iyHjpdtfD426A95sV6AHfdrj9MZqOiOcRF4sk7QiyziORYpWhzl8e6NBGSV2zQBfCCOVmwbqDNoG1KHOiXuMtWsZuxO6y10QHstMwuGqUxL36KeABP1wLw7z3f__8ij-EKnZCif3B0-AC2JM3gVzCZ78DmYrZ0D8mZWgwf1VIr4PNFH5MfuMIxYQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxNBEF80fVAfWr-KqVUWFfTlmtzdftw-SSqWIE0RaqCCsOzN7oZivIZ8KPrXO3PZBD9BfDo45mCOmZ35zc7ubxh7JkADxjyTFa5WmVCqzpwuVJZHqaNw4EtNl5NHZ2o4Fm8u5EXacFukY5VYil-2Qbq9Ik_sKL1c9WQPk39v5uPLz2knKVeIjTV1zq6zHSURi3fYzvjs7eB920pO367phEqs7XsuR_COSar4KQm1XP2_R-Rb7MaqmbmvX9x0-kPKOdljdqPs-qTJx6PVsj6Cb7_wOP7_39xmuwmN8sHafe6wa6G5y_Y2kx54Wvj32IdRe-YyZImOdZIdY_bznCapTTniXj5stxJdE_g5VvGf-Dldt-Y0-BPcgo5W88uGI9jkpzSWjZ-6yapxfOT8PNxn45PX714NszSXIQNEL8sMYmFCzF0_gjC57wcPhZZRlqGK0UgTI4IEyJWKkFeOphJFXWpHgyoNljOh3Ged5qoJDxiXTlYVuLouRCWCKTEceOFCVOCjiBK67MXGUBYSaTnNzphaLF7IpnZr0y57shWdrZk6_iR0TNbeChC5dvviaj6xaa3aMiIIAvC6j-4qBbgqVLnypg8Ifg2ELntOvmIpBKAy4NJNBvwlItOyA02oVymjuuxw4042xYaFpdZlobDwRm2ebl3s7zof_JPUQ3azwCc1uorqkHWW81V4hHhpWT9Oi-I793ENzw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine-Learning-Based+Model+for+Hurricane+Storm+Surge+Forecasting+in+the+Lower+Laguna+Madre&rft.jtitle=Algorithms&rft.au=Cesar+Davila+Hernandez&rft.au=Jungseok+Ho&rft.au=Dongchul+Kim&rft.au=Abdoul+Oubeidillah&rft.date=2023-04-28&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=16&rft.issue=5&rft.spage=232&rft_id=info:doi/10.3390%2Fa16050232&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3f129ccd707f454ca8e816d90c6569ce
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon