Properties of the stochastic approximation EM algorithm with mini-batch sampling

To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation–Maximization algorithm for general latent variable models is proposed. For exponential models the algorithm is shown to be convergent under classical conditions as the number of...

Full description

Saved in:
Bibliographic Details
Published inStatistics and computing Vol. 30; no. 6; pp. 1725 - 1739
Main Authors Kuhn, Estelle, Matias, Catherine, Rebafka, Tabea
Format Journal Article
LanguageEnglish
Published New York Springer US 01.11.2020
Springer Nature B.V
Springer Verlag (Germany)
Subjects
Online AccessGet full text
ISSN0960-3174
1573-1375
1573-1375
DOI10.1007/s11222-020-09968-0

Cover

Abstract To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation–Maximization algorithm for general latent variable models is proposed. For exponential models the algorithm is shown to be convergent under classical conditions as the number of iterations increases. Numerical experiments illustrate the performance of the mini-batch algorithm in various models. In particular, we highlight that mini-batch sampling results in an important speed-up of the convergence of the sequence of estimators generated by the algorithm. Moreover, insights on the effect of the mini-batch size on the limit distribution are presented. Finally, we illustrate how to use mini-batch sampling in practice to improve results when a constraint on the computing time is given.
AbstractList To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation–Maximization algorithm for general latent variable models is proposed. For exponential models the algorithm is shown to be convergent under classical conditions as the number of iterations increases. Numerical experiments illustrate the performance of the mini-batch algorithm in various models. In particular, we highlight that mini-batch sampling results in an important speed-up of the convergence of the sequence of estimators generated by the algorithm. Moreover, insights on the effect of the mini-batch size on the limit distribution are presented. Finally, we illustrate how to use mini-batch sampling in practice to improve results when a constraint on the computing time is given.
To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation-Maximization algorithm for general latent variable models is proposed. For exponential models the algorithm is shown to be convergent under classicalconditions as the number of iterations increases. Numerical experiments illustrate the performance of the mini-batch algorithm in various models.In particular, we highlight that mini-batch sampling results in an important speed-up of the convergence of the sequence of estimators generated by the algorithm. Moreover, insights on the effect of the mini-batch size on the limit distribution are presented. Finally, we illustrate how to use mini-batch sampling in practice to improve results when a constraint on the computing time is given.
Author Matias, Catherine
Rebafka, Tabea
Kuhn, Estelle
Author_xml – sequence: 1
  givenname: Estelle
  surname: Kuhn
  fullname: Kuhn, Estelle
  organization: MaIAGE, INRAE, Université Paris-Saclay
– sequence: 2
  givenname: Catherine
  surname: Matias
  fullname: Matias, Catherine
  organization: Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Sorbonne Université, Université de Paris, CNRS
– sequence: 3
  givenname: Tabea
  orcidid: 0000-0002-8998-7109
  surname: Rebafka
  fullname: Rebafka, Tabea
  email: tabea.rebafka@upmc.fr
  organization: Laboratoire de Probabilités, Statistique et Modélisation (LPSM), Sorbonne Université, Université de Paris, CNRS
BackLink https://hal.science/hal-02189215$$DView record in HAL
BookMark eNqNkEtLAzEUhYMo2Kp_wFXAlYtoHpOZyVJKfUDFLnQd7kzTTmQ6GZPU6r837QiCC3GTC-Gce8_5xuiwc51B6JzRK0ZpcR0Y45wTyimhSuUloQdoxGQhCBOFPEQjqnJKBCuyYzQO4ZVSxnKRjdB87l1vfLQmYLfEsTE4RFc3EKKtMfS9dx92DdG6Dk8fMbQr521s1nibXry2nSUVxLrBAdZ9a7vVKTpaQhvM2fc8QS-30-fJPZk93T1MbmakFqqIpCplpXKmSsFNrviiys1CpRJQcVkywRf5sjCC0UIaI7O8ggzKTIAALmtplBEnSAx7N10Pn1toW937lNR_akb1DooeoOgERe-haJpcl4OrgR-9A6vvb2Z690c5KxVn8l0k7cWgTQzeNiZE_eo2vkulNM8kFUzJcqfig6r2LgRvlv-LUf4y1TbuIUcPtv3b-t07pDvdyvifVH-4vgB7aKIj
CitedBy_id crossref_primary_10_1016_j_jspi_2024_106231
crossref_primary_10_1093_cz_zoae052
crossref_primary_10_1016_j_apm_2023_08_016
crossref_primary_10_1101_gr_277525_122
crossref_primary_10_1214_24_AOAS1965
crossref_primary_10_1051_ps_2021015
crossref_primary_10_1111_anzs_12356
crossref_primary_10_3390_a15030078
Cites_doi 10.1198/jcgs.2011.09109
10.1016/j.csda.2004.07.002
10.1111/j.1467-9868.2009.00698.x
10.1007/978-1-4757-4145-2
10.1111/j.1467-9868.2007.00574.x
10.1090/S0025-5718-2015-02952-4
10.1007/BF01908075
10.3150/09-BEJ229
10.1109/34.291440
10.1051/proc/201447004
10.1239/jap/1044476831
10.1007/s11222-019-09919-4
10.1137/S0363012902417267
10.1214/aos/1018031103
10.1051/ps:2004007
10.1111/j.2517-6161.1995.tb02037.x
10.1111/j.2517-6161.1984.tb01296.x
10.1111/j.2517-6161.1977.tb01600.x
10.3115/1620754.1620843
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2020
Springer Science+Business Media, LLC, part of Springer Nature 2020.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2020
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2020.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
VOOES
ADTOC
UNPAY
DOI 10.1007/s11222-020-09968-0
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList

ProQuest Computer Science Collection
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1573-1375
EndPage 1739
ExternalDocumentID oai:HAL:hal-02189215v1
oai:HAL:hal-02189215v3
10_1007_s11222_020_09968_0
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR-18-CE02-0010
  funderid: http://dx.doi.org/10.13039/501100001665
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z81
Z83
Z87
Z88
Z8O
Z8R
Z8U
Z8W
Z91
Z92
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c397t-b85b9619832e692db6ed9112ab258132d6f7e31075ee546ba4a843a3a25c5e9e3
IEDL.DBID U2A
ISSN 0960-3174
1573-1375
IngestDate Sun Oct 26 04:15:03 EDT 2025
Tue Oct 14 19:55:11 EDT 2025
Mon Oct 06 16:41:56 EDT 2025
Wed Oct 01 02:57:22 EDT 2025
Thu Apr 24 23:04:55 EDT 2025
Fri Feb 21 02:34:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Stochastic approximation
Mini-batch sampling
62F12
65C60
EM algorithm
Monte Carlo Markov chain
stochastic approximation
mini-batch sampling
Monte Carlo Markov chain Mathematics Subject Classification 65C60 · 62F12
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-b85b9619832e692db6ed9112ab258132d6f7e31075ee546ba4a843a3a25c5e9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8998-7109
0000-0001-6665-2421
0000-0002-1236-8190
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.archives-ouvertes.fr/hal-02189215
PQID 2450319583
PQPubID 2043829
PageCount 15
ParticipantIDs unpaywall_primary_10_1007_s11222_020_09968_0
hal_primary_oai_HAL_hal_02189215v3
proquest_journals_2450319583
crossref_primary_10_1007_s11222_020_09968_0
crossref_citationtrail_10_1007_s11222_020_09968_0
springer_journals_10_1007_s11222_020_09968_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Statistics and computing
PublicationTitleAbbrev Stat Comput
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Springer Verlag (Germany)
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag (Germany)
References Hubert, Arabie (CR12) 1985; 2
Cappé (CR4) 2011; 20
Lange (CR18) 1995; 2
Davidian, Giltinan (CR6) 1995
Duchateau, Janssen (CR9) 2008
Matias, Robin (CR20) 2014; 47
CR19
Andrieu, Moulines, Priouret (CR3) 2005; 44
CR16
Cappé, Moulines (CR5) 2009; 71
Dempster, Laird, Rubin (CR8) 1977; 39
CR15
Robert, Casella (CR23) 2004
CR14
Neal, Hinton, Jordan (CR21) 1999
Hull (CR13) 1994; 16
Fort, Jourdain, Kuhn, Lelièvre, Stoltz (CR11) 2015; 84
Fort, Moulines, Roberts, Rosenthal (CR10) 2003; 40
Kuhn, Lavielle (CR17) 2005; 49
Titterington (CR24) 1984; 2
Allassonnière, Kuhn, Trouvé (CR2) 2010; 16
Allassonnière, Amit, Trouvé (CR1) 2007; 69
Delyon, Lavielle, Moulines (CR7) 1999; 27
Nguyen, Forbes, McLachlan (CR22) 2020
L Hubert (9968_CR12) 1985; 2
S Allassonnière (9968_CR1) 2007; 69
AP Dempster (9968_CR8) 1977; 39
G Fort (9968_CR11) 2015; 84
C Matias (9968_CR20) 2014; 47
E Kuhn (9968_CR17) 2005; 49
9968_CR16
9968_CR15
RM Neal (9968_CR21) 1999
L Duchateau (9968_CR9) 2008
DM Titterington (9968_CR24) 1984; 2
9968_CR19
O Cappé (9968_CR5) 2009; 71
CP Robert (9968_CR23) 2004
H Nguyen (9968_CR22) 2020
O Cappé (9968_CR4) 2011; 20
9968_CR14
K Lange (9968_CR18) 1995; 2
JJ Hull (9968_CR13) 1994; 16
S Allassonnière (9968_CR2) 2010; 16
M Davidian (9968_CR6) 1995
G Fort (9968_CR10) 2003; 40
C Andrieu (9968_CR3) 2005; 44
B Delyon (9968_CR7) 1999; 27
References_xml – volume: 20
  start-page: 728
  issue: 3
  year: 2011
  end-page: 749
  ident: CR4
  article-title: Online EM algorithm for hidden Markov models
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/jcgs.2011.09109
– volume: 49
  start-page: 1020
  issue: 4
  year: 2005
  end-page: 1038
  ident: CR17
  article-title: Maximum likelihood estimation in nonlinear mixed effects models
  publication-title: Comput. Stat. Data Ann.
  doi: 10.1016/j.csda.2004.07.002
– volume: 71
  start-page: 593
  issue: 3
  year: 2009
  end-page: 613
  ident: CR5
  article-title: On-line expectation-maximization algorithm for latent data models
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2009.00698.x
– ident: CR19
– year: 2004
  ident: CR23
  publication-title: Monte Carlo statistical methods
  doi: 10.1007/978-1-4757-4145-2
– volume: 2
  start-page: 257
  issue: 46
  year: 1984
  end-page: 267
  ident: CR24
  article-title: Recursive parameter estimation using incomplete data
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 69
  start-page: 3
  year: 2007
  end-page: 29
  ident: CR1
  article-title: Toward a coherent statistical framework for dense deformable template estimation
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2007.00574.x
– ident: CR14
– ident: CR15
– ident: CR16
– volume: 84
  start-page: 2297
  issue: 295
  year: 2015
  end-page: 2327
  ident: CR11
  article-title: Convergence of the Wang-Landau algorithm
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2015-02952-4
– volume: 2
  start-page: 193
  year: 1985
  end-page: 218
  ident: CR12
  article-title: Comparing partitions
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– volume: 16
  start-page: 641
  issue: 3
  year: 2010
  end-page: 678
  ident: CR2
  article-title: Construction of Bayesian deformable models via a stochastic approximation algorithm: a convergence study
  publication-title: Bernoulli
  doi: 10.3150/09-BEJ229
– volume: 16
  start-page: 550
  issue: 5
  year: 1994
  end-page: 554
  ident: CR13
  article-title: A database for handwritten text recognition research
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.291440
– volume: 47
  start-page: 55
  year: 2014
  end-page: 74
  ident: CR20
  article-title: Modeling heterogeneity in random graphs through latent space models: a selective review
  publication-title: ESAIM Proce. Surv.
  doi: 10.1051/proc/201447004
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 38
  ident: CR8
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– start-page: 355
  year: 1999
  end-page: 368
  ident: CR21
  article-title: A view of the EM algorithm that justifies incremental, sparse, and other variants
  publication-title: Learning in Graphical Models
– year: 2008
  ident: CR9
  publication-title: The Frailty Model
– volume: 40
  start-page: 123
  year: 2003
  end-page: 146
  ident: CR10
  article-title: On the geometric ergodicity of hybrid samplers
  publication-title: J. Appl. Probab.
  doi: 10.1239/jap/1044476831
– year: 2020
  ident: CR22
  publication-title: Mini-batch learning of exponential family finite mixture models
  doi: 10.1007/s11222-019-09919-4
– volume: 44
  start-page: 283
  issue: 1
  year: 2005
  end-page: 312
  ident: CR3
  article-title: Stability of stochastic approximation under verifiable conditions
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/S0363012902417267
– volume: 2
  start-page: 425
  issue: 57
  year: 1995
  end-page: 437
  ident: CR18
  article-title: A gradient algorithm locally equivalent to the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B
– volume: 27
  start-page: 94
  issue: 1
  year: 1999
  end-page: 128
  ident: CR7
  article-title: Convergence of a stochastic approximation version of the EM algorithm
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1018031103
– year: 1995
  ident: CR6
  publication-title: Nonlinear Models for Repeated Measurement Data
– volume-title: Mini-batch learning of exponential family finite mixture models
  year: 2020
  ident: 9968_CR22
  doi: 10.1007/s11222-019-09919-4
– volume: 2
  start-page: 193
  year: 1985
  ident: 9968_CR12
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
– volume: 27
  start-page: 94
  issue: 1
  year: 1999
  ident: 9968_CR7
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1018031103
– volume: 40
  start-page: 123
  year: 2003
  ident: 9968_CR10
  publication-title: J. Appl. Probab.
  doi: 10.1239/jap/1044476831
– ident: 9968_CR16
  doi: 10.1051/ps:2004007
– volume: 16
  start-page: 550
  issue: 5
  year: 1994
  ident: 9968_CR13
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.291440
– volume: 69
  start-page: 3
  year: 2007
  ident: 9968_CR1
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2007.00574.x
– volume: 2
  start-page: 425
  issue: 57
  year: 1995
  ident: 9968_CR18
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1995.tb02037.x
– start-page: 355
  volume-title: Learning in Graphical Models
  year: 1999
  ident: 9968_CR21
– volume: 84
  start-page: 2297
  issue: 295
  year: 2015
  ident: 9968_CR11
  publication-title: Math. Comput.
  doi: 10.1090/S0025-5718-2015-02952-4
– volume: 49
  start-page: 1020
  issue: 4
  year: 2005
  ident: 9968_CR17
  publication-title: Comput. Stat. Data Ann.
  doi: 10.1016/j.csda.2004.07.002
– volume: 2
  start-page: 257
  issue: 46
  year: 1984
  ident: 9968_CR24
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1984.tb01296.x
– volume-title: Monte Carlo statistical methods
  year: 2004
  ident: 9968_CR23
  doi: 10.1007/978-1-4757-4145-2
– volume: 71
  start-page: 593
  issue: 3
  year: 2009
  ident: 9968_CR5
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.1467-9868.2009.00698.x
– volume: 16
  start-page: 641
  issue: 3
  year: 2010
  ident: 9968_CR2
  publication-title: Bernoulli
  doi: 10.3150/09-BEJ229
– volume: 44
  start-page: 283
  issue: 1
  year: 2005
  ident: 9968_CR3
  publication-title: SIAM J. Control. Optim.
  doi: 10.1137/S0363012902417267
– volume: 20
  start-page: 728
  issue: 3
  year: 2011
  ident: 9968_CR4
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/jcgs.2011.09109
– ident: 9968_CR14
– volume: 47
  start-page: 55
  year: 2014
  ident: 9968_CR20
  publication-title: ESAIM Proce. Surv.
  doi: 10.1051/proc/201447004
– ident: 9968_CR15
– volume-title: Nonlinear Models for Repeated Measurement Data
  year: 1995
  ident: 9968_CR6
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 9968_CR8
  publication-title: J. R. Stat. Soc. Ser. B
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 9968_CR19
  doi: 10.3115/1620754.1620843
– volume-title: The Frailty Model
  year: 2008
  ident: 9968_CR9
SSID ssj0011634
Score 2.3691099
Snippet To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation–Maximization algorithm for general...
To deal with very large datasets a mini-batch version of the Monte Carlo Markov Chain Stochastic Approximation Expectation-Maximization algorithm for general...
SourceID unpaywall
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1725
SubjectTerms Algorithms
Approximation
Artificial Intelligence
Computing time
Convergence
Markov chains
Mathematical analysis
Mathematics and Statistics
Methodology
Probability and Statistics in Computer Science
Sampling
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
Statistics Theory
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3B9kB7oLCAWGiRhbhRV_my4xxXqNWqYld7YKVyiuzEbqou2Wo3C7S_npl8tXCoyjUzURzN2PMm8XsG-BQ67TsvMTxRLuOR0SHXJhbcOp1nvpf7yhBReDqTk0V0di7OW7I6cWEKRJy61Vzlqy2dSYwNo1uTgVM9SgKilO9IgdB7ADuL2Xz8vdbTk7Se1KrLvohD7oexaEkyDVXOx0rIqVlCTCQV9_4qRE8L2gZ5D2P2v0X34Nm2vNY3v_Ryea_ynO7DrBtzs-Hk6nhbmePs9h85x0e_1At43mJQNm6S5iU8seUQ9rvzHVg73YewN-01XTdD2CVc2sg6v4L5nD7ir0mNla0cQzeGKDIrNNlZLVT--7JhRbKTKdPLi9X6sip-MPruy0jPhBssAgXbaNrSXl68hsXpybcvE94ezsAzhDAVN0qYBLsvXBGsTILcSJvjwhloEwiFLW4uXWwRO8bCWhFJoyOtolCHOhCZsIkN38CgXJX2LTBlpRWxi0hLLlJG6CQTkXNOZp7F9s-MwO8ilWatcjkdoLFM7zSXKbopRjeto5t6I_jc33Pd6HY86P0RQ9E7kuT2ZPw1pWtdeH6GIzjo8iNtJ_omDSJBPDCh0HzU5cyd-aFHHvV59YgRvvs_9_ewG1Cu16TJAxhU6609RPRUmQ_tnPkDGvoRPw
  priority: 102
  providerName: Unpaywall
Title Properties of the stochastic approximation EM algorithm with mini-batch sampling
URI https://link.springer.com/article/10.1007/s11222-020-09968-0
https://www.proquest.com/docview/2450319583
https://hal.science/hal-02189215
https://hal.archives-ouvertes.fr/hal-02189215
UnpaywallVersion submittedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: AFBBN
  dateStart: 19910901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011634
  issn: 0960-3174
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT-MwEB2xcAAOwHYXUb5kob2BpSaxE-cYoUIFFPWwleAU2YlNkUqK2rIf_56ZNElZCaHlmNhxorzx-I3teQb4ETjtuU5seKxcxoXRAdcmktw6nWdeJ_eUoUTh_m3YG4qrO3lXJYXN6t3u9ZJk6amXyW4ejmWcwh1kNaHiGKivSZLzQise-kmzdoAMoxSNQm6OHiYSVarM-238Mxx9GdFmyDdMs1kc3YT1l-JZ__2tx-M348_FDmxVxJElC6S_wootWrBdH8rAqj7ags1-I8Q6a8EGkcmFFvM3GAxo5n1KEqps4hhWY0j9spGmclaqi_95XKQysm6f6fHDZPo4Hz0xmqxlJELCDXruEZtp2odePHyH4UX353mPVycq8Ax5x5wbJU2MIRN2YxvGfm5Cm6O387XxpcK4NA9dZJHwRdJaKUKjhVYi0IH2ZSZtbINdWC0mhd0DpmxoZeQECcAJZaSOMymcc2HWsRizmTZ49Y9Ns0punE69GKdLoWQCI0Uw0hKMtNOG0-aZ54XYxoe1TxCvpiLpZPeSm5TuEXFBw5C_gjYc1nCmVe-cpb6QlLwlFRaf1RAviz965VljBv_xhfufa_0ANnwyzTLT8RBW59MXe4SUZ26OYS25vL_uHpeWjlfD20Fy_wpBqfdW
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9B97DtgUEB0THAQrwxT01iJ85jhToKa6c9rNJ4smzHXidKOrXp-PjrOeerA6GJvcaO49jnu9_Zdz8DvIucClw_1TQVzlCmVUSVTji1TmUm6GeB0D5ReHIaj6bs8wW_qJPCVk20e3MkWWrqTbJbgLaMencHUU0sKDrqWwwdlLADW4OPX06G7ekBYoySNgrROeqYhNXJMv9u5Q-D9HDmwyFvYc32eHQXttf5tfr5Xc3ntyzQ8R5Mm75XgSdfj9aFPjK__qJ1vO_PPYZHNSQlg0qGnsADm3dhr7nugdSrvwu7k5biddWFHQ9TK5bnp3B25vf0l56clSwcwWoEQaWZKV9OSt7yH1dVkiQZToiaXy6WV8XsG_HbwMTTm1CNNmFGVspHuOeXz2B6PDz_MKL1XQ3UIKIpqBZcp-iMoYKwcRpmOrYZ6tFQ6ZAL9Hiz2CUWoWTCreUs1oopwSIVqZAbblMbPYdOvsjtCyDCxpYnjnlqOSY0V6nhzDkXm75Fb1D3IGgmTJqayNzfpzGXGwpmP5oSR1OWoyn7PXjfvnNd0XjcWfstykFb0TNwjwZj6Z95SJQiTLqJenDQiIms1_1Khoz7tDAusPiwmelN8V2fPGzF6z96uH-_1t_A9uh8MpbjT6cnL2En9HJW5lMeQKdYru0rBFaFfl2vo9891RP_
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL2CIcH2wEcZWmGAhXhj1prETpzHClYVWKc-UGlvlp3Y66SSVm024N9zb75aJDTBa-x8KOfaPtf2OQZ4H3kT-EFqeap8xoU1ETc2kdx5k2fBIA-UJaHw5CIez8SXS3m5o-Kvdru3S5K1poFcmorydJX7063wLcBxjVPqgwwnVhyT9geCjBIwomfhsFtHQLZRGUghT8feJhGNbObvz_hjaLo_p42RO6yzWyg9gEc3xcr8-mEWi52xaPQUHjckkg1r1J_BPVf04El7QANr2msPDiadKeumB_tELGtf5ucwndIs_JrsVNnSM6zGkAZmc0PlrHIa_3ldyxrZ2YSZxdVyfV3OvzOauGVkSMIt9uJztjG0J724OoTZ6OzbxzFvTlfgGXKQklslbYrpEzZpF6dhbmOXY88XGhtKhTlqHvvEIflLpHNSxNYIo0RkIhPKTLrURS9gr1gW7giYcrGTiRdkBieUlSbNpPDex9nAYf5m-xC0P1ZnjfU4nYCx0FvTZAJDIxi6AkMP-vChu2dVG2_cWfsd4tVVJM_s8fBc0zUiMSlGxm3Uh-MWTt201I0OhSQhl1RYfNJCvC2-65UnXRj8wxe-_L-nv4WH008jff754usr2A8pSisB5DHslesb9xqZUGnfVMH-G-dr-zo
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3B9kB7oLCAWGiRhbhRV_my4xxXqNWqYld7YKVyiuzEbqou2Wo3C7S_npl8tXCoyjUzURzN2PMm8XsG-BQ67TsvMTxRLuOR0SHXJhbcOp1nvpf7yhBReDqTk0V0di7OW7I6cWEKRJy61Vzlqy2dSYwNo1uTgVM9SgKilO9IgdB7ADuL2Xz8vdbTk7Se1KrLvohD7oexaEkyDVXOx0rIqVlCTCQV9_4qRE8L2gZ5D2P2v0X34Nm2vNY3v_Ryea_ynO7DrBtzs-Hk6nhbmePs9h85x0e_1At43mJQNm6S5iU8seUQ9rvzHVg73YewN-01XTdD2CVc2sg6v4L5nD7ir0mNla0cQzeGKDIrNNlZLVT--7JhRbKTKdPLi9X6sip-MPruy0jPhBssAgXbaNrSXl68hsXpybcvE94ezsAzhDAVN0qYBLsvXBGsTILcSJvjwhloEwiFLW4uXWwRO8bCWhFJoyOtolCHOhCZsIkN38CgXJX2LTBlpRWxi0hLLlJG6CQTkXNOZp7F9s-MwO8ilWatcjkdoLFM7zSXKbopRjeto5t6I_jc33Pd6HY86P0RQ9E7kuT2ZPw1pWtdeH6GIzjo8iNtJ_omDSJBPDCh0HzU5cyd-aFHHvV59YgRvvs_9_ewG1Cu16TJAxhU6609RPRUmQ_tnPkDGvoRPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Properties+of+the+stochastic+approximation+EM+algorithm+with+mini-batch+sampling&rft.jtitle=Statistics+and+computing&rft.au=Kuhn%2C+Estelle&rft.au=Matias%2C+Catherine&rft.au=Rebafka%2C+Tabea&rft.date=2020-11-01&rft.pub=Springer+US&rft.issn=0960-3174&rft.eissn=1573-1375&rft.volume=30&rft.issue=6&rft.spage=1725&rft.epage=1739&rft_id=info:doi/10.1007%2Fs11222-020-09968-0&rft.externalDocID=10_1007_s11222_020_09968_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-3174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-3174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-3174&client=summon