Fast Bayesian approach for modal identification using forced vibration data considering the ambient effect
•Bayesian framework for modal identification using forced and ambient vibration data was developed.•Efficient strategies were developed and investigated for well-separated mode case (common case).•Fast algorithms were developed for practical application.•Verification using synthetic data and applica...
Saved in:
| Published in | Mechanical systems and signal processing Vol. 105; pp. 113 - 128 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin
Elsevier Ltd
15.05.2018
Elsevier BV |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0888-3270 1096-1216 |
| DOI | 10.1016/j.ymssp.2017.11.007 |
Cover
| Summary: | •Bayesian framework for modal identification using forced and ambient vibration data was developed.•Efficient strategies were developed and investigated for well-separated mode case (common case).•Fast algorithms were developed for practical application.•Verification using synthetic data and application into field data of a footbridge.
Modal identification based on vibration response measured from real structures is becoming more popular, especially after benefiting from the great improvement of the measurement technology. The results are reliable to estimate the dynamic performance, which fits the increasing requirement of different design configurations of the new structures. However, the high-quality vibration data collection technology calls for a more accurate modal identification method to improve the accuracy of the results. Through the whole measurement process of dynamic testing, there are many aspects that will cause the rise of uncertainty, such as measurement noise, alignment error and modeling error, since the test conditions are not directly controlled. Depending on these demands, a Bayesian statistical approach is developed in this work to estimate the modal parameters using the forced vibration response of structures, simultaneously considering the effect of the ambient vibration. This method makes use of the Fast Fourier Transform (FFT) of the data in a selected frequency band to identify the modal parameters of the mode dominating this frequency band and estimate the remaining uncertainty of the parameters correspondingly. In the existing modal identification methods for forced vibration, it is generally assumed that the forced vibration response dominates the measurement data and the influence of the ambient vibration response is ignored. However, ambient vibration will cause modeling error and affect the accuracy of the identified results. The influence is shown in the spectra as some phenomena that are difficult to explain and irrelevant to the mode to be identified. These issues all mean that careful choice of assumptions in the identification model and fundamental formulation to account for uncertainty are necessary. During the calculation, computational difficulties associated with calculating the posterior statistics are addressed. Finally, a fast computational algorithm is proposed so that the method can be practically implemented. Numerical verification with synthetic data and applicable investigation with full-scale field structures data are all carried out for the proposed method. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0888-3270 1096-1216 |
| DOI: | 10.1016/j.ymssp.2017.11.007 |