Real-time optical flow processing on embedded GPU: an hardware-aware algorithm to implementation strategy

Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real time, the whole algorithm deployment chain must be thought of for efficiency first. The development is usually divided into two parts: first, designing an algorith...

Full description

Saved in:
Bibliographic Details
Published inJournal of real-time image processing Vol. 19; no. 2; pp. 317 - 329
Main Authors Seznec, Mickaël, Gac, Nicolas, Orieux, François, Naik, Alvin Sashala
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN1861-8200
1861-8219
1861-8219
DOI10.1007/s11554-021-01187-8

Cover

Abstract Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real time, the whole algorithm deployment chain must be thought of for efficiency first. The development is usually divided into two parts: first, designing an algorithm that meets precision constraints, then, implementing and optimizing its execution on the targeted platform. We argue that unifying those operations enhances performance on the embedded processor. This paper is based on an industrial use case of computer vision. The objective is to determine dense optical flow in real time on an embedded GPU platform: the Nvidia AGX Xavier. The CLG (combined local–global) optical flow method, initially chosen, is analyzed to understand the convergence speed of its underlying optimization problem. The Jacobi solver is selected for implementation because of its parallel nature. The whole multi-level processing is then ported to the GPU, using several specific optimization strategies. In particular, we analyze the impact of fusing the solver’s iterations with the roofline model. As a result, with a 30 W power budget, our implementation runs at 60FPS, on 640 × 512 images, with a four-level processing. Hopefully, this example should provide feedback on the issues that arise when trying to port a method to a parallel platform and serve for further implementations of computer vision algorithms on specialized hardware.
AbstractList Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real time, the whole algorithm deployment chain must be thought of for efficiency first. The development is usually divided into two parts: first, designing an algorithm that meets precision constraints, then, implementing and optimizing its execution on the targeted platform. We argue that unifying those operations enhances performance on the embedded processor. This paper is based on an industrial use case of computer vision. The objective is to determine dense optical flow in real time on an embedded GPU platform: the Nvidia AGX Xavier. The CLG (combined local–global) optical flow method, initially chosen, is analyzed to understand the convergence speed of its underlying optimization problem. The Jacobi solver is selected for implementation because of its parallel nature. The whole multi-level processing is then ported to the GPU, using several specific optimization strategies. In particular, we analyze the impact of fusing the solver’s iterations with the roofline model. As a result, with a 30 W power budget, our implementation runs at 60FPS, on 640 × 512 images, with a four-level processing. Hopefully, this example should provide feedback on the issues that arise when trying to port a method to a parallel platform and serve for further implementations of computer vision algorithms on specialized hardware.
Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real time, the whole algorithm deployment chain must be thought of for efficiency first. The development is usually divided into two parts: first, designing an algorithm that meets precision constraints, then, implementing and optimizing its execution on the targeted platform. We argue that unifying those operations enhances performance on the embedded processor. This paper is based on an industrial use case of computer vision. The objective is to determine dense optical flow in real time on an embedded GPU platform: the Nvidia AGX Xavier. The CLG (combined local–global) optical flow method, initially chosen, is analyzed to understand the convergence speed of its underlying optimization problem. The Jacobi solver is selected for implementation because of its parallel nature. The whole multi-level processing is then ported to the GPU, using several specific optimization strategies. In particular, we analyze the impact of fusing the solver’s iterations with the roofline model. As a result, with a 30 W power budget, our implementation runs at 60FPS, on 640×512 images, with a four-level processing. Hopefully, this example should provide feedback on the issues that arise when trying to port a method to a parallel platform and serve for further implementations of computer vision algorithms on specialized hardware.
Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real-time, the whole algorithm deployment chain must be thought of for efficiency first. The development is usually divided into two parts: first, designing an algorithm that meets precision constraints, then, implementing and optimizing its execution on the targeted platform. We argue that unifying those operations enhances performance on the embedded processor. This paper is based on an industrial use case of computer vision. The objective is to determine dense optical flow in real-time on an embedded GPU platform: the Nvidia AGX Xavier. The CLG (Combined Local-Global) optical flow method, initially chosen, is analyzed to understand the convergence speed of its underlying optimization problem. The Jacobi solver is selected for implementation because of its parallel nature. The whole multi-level processing is then ported to the GPU, using several specific optimization strategies. In particular, we analyze the impact of fusing the solver's iterations with the roofline model. As a result, with a 30W power budget, our implementation runs at 60FPS, on 640 × 512 images, with a four-level processing. Hopefully, this example should provide feedback on the issues that arise when trying to port a method to a parallel platform and serve for further implementations of computer vision algorithms on specialized hardware.
Author Seznec, Mickaël
Orieux, François
Naik, Alvin Sashala
Gac, Nicolas
Author_xml – sequence: 1
  givenname: Mickaël
  orcidid: 0000-0002-6012-8685
  surname: Seznec
  fullname: Seznec, Mickaël
  email: mickael.seznec@gmail.com
  organization: Thales Research and Technology, Laboratoire des Signaux et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec
– sequence: 2
  givenname: Nicolas
  surname: Gac
  fullname: Gac, Nicolas
  organization: Laboratoire des Signaux et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec
– sequence: 3
  givenname: François
  surname: Orieux
  fullname: Orieux, François
  organization: Laboratoire des Signaux et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec
– sequence: 4
  givenname: Alvin Sashala
  surname: Naik
  fullname: Naik, Alvin Sashala
  organization: Thales Research and Technology
BackLink https://hal.science/hal-03457011$$DView record in HAL
BookMark eNqNkE1rFTEUhoNUsK3-AVcBVy6iyXwl464U2woXFLHrcGZy5t6UTDImuV7uvzfXKRZcFDdJODxvOO9zQc588EjIW8E_CM7lxyRE2zaMV4JxIZRk6gU5F6oTTFWiP_v75vwVuUjpgfNOdnV7Tux3BMeynZGGJdsRHJ1cONAlhhFTsn5Lg6c4D2gMGnr77f4TBU93EM0BIjI4nRTcNkSbdzPNgdp5cTijz5BtyaYcIeP2-Jq8nMAlfPN4X5L7m88_ru_Y5uvtl-urDRvrXmYGaAbBTcUbWQHv6p4P0gwtH6ax6tHIRjbTIAaFlemUqpt-aAWoemhHBU1noL4k9frv3i9wPIBzeol2hnjUguuTLb3a0sWW_mNLq5J6v6Z28MQHsPruaqNPM143rSz0L1HYdytbJP3cY8r6IeyjL6V01RfRsqjtCqVWaowhpYiTHu2qpAix7vllqn-i_9XgsXcqsN9ifNrqmdRvd8Cr4A
CitedBy_id crossref_primary_10_3390_rs15123156
crossref_primary_10_1007_s00348_024_03849_2
crossref_primary_10_1007_s11554_023_01288_6
crossref_primary_10_3390_rs15225424
Cites_doi 10.1007/978-3-540-74936-322
10.1007/s11227-018-2653-6
10.1007/978-3-540-24673-23
10.1016/0004-3702(81)90024-2
10.1007/s11263-013-0644-x
10.1007/978-3-662-48096-052
10.1023/B:VISI.0000045324.43199.43
10.1007/978-3-319-96983-146
10.5201/ipol.2015.44
10.1137/1.9780898718003
10.1007/s11227-014-1102-4
10.1016/S1076-6332(03)80098-3
10.1177/0278364913491297
10.1007/s11227-015-1483-z
10.1007/s11263-010-0390-2
10.1016/0024-3795(80)90259-1
10.1109/LRA.2017.2658940
10.1007/3-540-45103-X50
10.1109/PMBS49563.2019.00007
10.1109/ICIP40778.2020.9191164
10.1109/IV47402.2020.9304777
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
1XC
VOOES
ADTOC
UNPAY
DOI 10.1007/s11554-021-01187-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1861-8219
EndPage 329
ExternalDocumentID oai:HAL:hal-03457011v1
10_1007_s11554_021_01187_8
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
1N0
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LLZTM
M4Y
MA-
N2Q
N9A
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c397t-aedb10d20472a06390b7db50bfc29ed7474fb1b8e2d688349b51a83b5c8a46da3
IEDL.DBID UNPAY
ISSN 1861-8200
1861-8219
IngestDate Sun Oct 26 03:46:42 EDT 2025
Tue Oct 14 20:04:29 EDT 2025
Fri Jul 25 23:24:06 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Wed Oct 01 02:48:31 EDT 2025
Fri Feb 21 02:47:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords GPU optimization
Linear solvers
Algorithm design
Image processing
Optical flow
Linear Solvers
Image Processing
Optical Flow
GPU Optimization
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-aedb10d20472a06390b7db50bfc29ed7474fb1b8e2d688349b51a83b5c8a46da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6012-8685
0000-0001-5638-3416
0000-0001-6981-0368
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-03457011
PQID 2918677636
PQPubID 2044148
PageCount 13
ParticipantIDs unpaywall_primary_10_1007_s11554_021_01187_8
hal_primary_oai_HAL_hal_03457011v1
proquest_journals_2918677636
crossref_citationtrail_10_1007_s11554_021_01187_8
crossref_primary_10_1007_s11554_021_01187_8
springer_journals_10_1007_s11554_021_01187_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220400
2022-04-00
20220401
2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 4
  year: 2022
  text: 20220400
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of real-time image processing
PublicationTitleAbbrev J Real-Time Image Proc
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer Verlag
References Tabik, Ortega, Garzón (CR23) 2014; 70
Bruhn, Weickert, Schnörr (CR4) 2005; 61
Moussu (CR16) 2010
Geiger, Lenz, Stiller, Urtasun (CR11) 2010; 32
CR14
Aliaga, Pérez, Quintana-Ortí, Träff, Hunold, Versaci (CR1) 2015
Baker, Scharstein, Lewis, Roth, Black, Szeliski (CR2) 1993; 92
Dougherty, Asmuth, Gefter (CR8) 2003; 10
Butler, Wulff, Stanley, Black, Fitzgibbon (CR5) 2012
Filipovič, Madzin, Fousek, Matyska (CR10) 2015; 71
Nguyen, Castonguay, Laurendeau (CR17) 2019; 75
McGuire, de Croon, De Wagter, Tuyls, Kappen (CR15) 2017; 2
Saad (CR19) 2003
Shewchuk (CR21) 1994
CR6
Podestá, Castro, do Nascimento, Aldinucci, Padovani, Torquati (CR18) 2018
CR7
Woźniakowski (CR25) 1980; 29
Farnebäck, Bigun, Gustavsson (CR9) 2003
Brox, Bruhn, Papenberg, Weickert, Pajdla, Matas (CR3) 2004
CR20
Jara-Wilde, Cerda, Delpiano, Härtel (CR13) 2015; 5
Horn, Schunck (CR12) 1993; 17
Williams (CR24) 2008
Zach, Pock, Bischof, Hamprecht, Schnörr, Jähne (CR26) 2007
Sun, Roth, Black (CR22) 2014; 106
C Zach (1187_CR26) 2007
E Podestá (1187_CR18) 2018
1187_CR20
JI Aliaga (1187_CR1) 2015
K McGuire (1187_CR15) 2017; 2
L Dougherty (1187_CR8) 2003; 10
J Filipovič (1187_CR10) 2015; 71
C Moussu (1187_CR16) 2010
JR Shewchuk (1187_CR21) 1994
A Geiger (1187_CR11) 2010; 32
S Tabik (1187_CR23) 2014; 70
H Woźniakowski (1187_CR25) 1980; 29
A Bruhn (1187_CR4) 2005; 61
SW Williams (1187_CR24) 2008
DJ Butler (1187_CR5) 2012
D Sun (1187_CR22) 2014; 106
1187_CR7
Y Saad (1187_CR19) 2003
1187_CR6
1187_CR14
T Brox (1187_CR3) 2004
G Farnebäck (1187_CR9) 2003
J Jara-Wilde (1187_CR13) 2015; 5
MT Nguyen (1187_CR17) 2019; 75
S Baker (1187_CR2) 1993; 92
BKP Horn (1187_CR12) 1993; 17
References_xml – start-page: 611
  year: 2012
  end-page: 625
  ident: CR5
  article-title: A naturalistic open source movie for optical flow evaluation
  publication-title: European Conf on Computer Vision (ECCV) Part IV LNCS 7577
– start-page: 214
  year: 2007
  end-page: 223
  ident: CR26
  article-title: A duality based approach for realtime TV-L 1 optical flow
  publication-title: Pattern Recognition
  doi: 10.1007/978-3-540-74936-322
– year: 2010
  ident: CR16
  publication-title: GPU Based Real-Time Optical Flow Computation
– ident: CR14
– volume: 75
  start-page: 2562
  issue: 5
  year: 2019
  end-page: 2583
  ident: CR17
  article-title: GPU parallelization of multigrid RANS solver for three-dimensional aerodynamic simulations on multiblock grids
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-018-2653-6
– year: 2004
  ident: CR3
  article-title: High accuracy optical flow estimation based on a theory for warping
  publication-title: Computer Vision - ECCV
  doi: 10.1007/978-3-540-24673-23
– ident: CR6
– year: 2008
  ident: CR24
  publication-title: Auto-Tuning Performance on Multicore Computers
– volume: 17
  start-page: 185
  issue: 1
  year: 1993
  end-page: 203
  ident: CR12
  article-title: Determining optical flow
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(81)90024-2
– volume: 106
  start-page: 115
  issue: 2
  year: 2014
  end-page: 137
  ident: CR22
  article-title: A quantitative analysis of current practices in optical flow estimation and the principles behind them
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0644-x
– year: 2015
  ident: CR1
  article-title: Systematic fusion of CUDA kernels for iterative sparse linear system solvers
  publication-title: Euro-Par 2015: Parallel Processin
  doi: 10.1007/978-3-662-48096-052
– volume: 61
  start-page: 1
  issue: 3
  year: 2005
  end-page: 21
  ident: CR4
  article-title: Lucas/kanade meets horn/schunck: combining local and global optic flow methods
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000045324.43199.43
– year: 2018
  ident: CR18
  article-title: Energy efficient stencil computations on the low-power manycore MPPA-256 processor
  publication-title: Euro-Par 2018: Parallel Processing
  doi: 10.1007/978-3-319-96983-146
– volume: 5
  start-page: 139
  year: 2015
  end-page: 158
  ident: CR13
  article-title: An implementation of combined local-global optical flow
  publication-title: Image Process. On Line
  doi: 10.5201/ipol.2015.44
– year: 2003
  ident: CR19
  publication-title: Iterative Methods for Sparse Linear Systems
  doi: 10.1137/1.9780898718003
– volume: 70
  start-page: 577
  issue: 2
  year: 2014
  end-page: 587
  ident: CR23
  article-title: Performance evaluation of kernel fusion BLAS routines on the GPU: iterative solvers as case study
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-014-1102-4
– volume: 10
  start-page: 249
  issue: 3
  year: 2003
  end-page: 254
  ident: CR8
  article-title: Alignment of CT lung volumes with an optical flow method
  publication-title: Acad. Radiol.
  doi: 10.1016/S1076-6332(03)80098-3
– volume: 32
  start-page: 1231
  issue: 11
  year: 2010
  end-page: 1237
  ident: CR11
  article-title: Vision meets robotics: the KITTI dataset
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913491297
– volume: 71
  start-page: 3934
  issue: 10
  year: 2015
  end-page: 3957
  ident: CR10
  article-title: Optimizing CUDA code by kernel fusion-application on BLAS
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-015-1483-z
– year: 1994
  ident: CR21
  publication-title: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain
– volume: 92
  start-page: 1
  issue: 1
  year: 1993
  end-page: 31
  ident: CR2
  article-title: A database and evaluation methodology for optical flow
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-010-0390-2
– volume: 29
  start-page: 507
  year: 1980
  end-page: 529
  ident: CR25
  article-title: Roundoff-error analysis of a new class of conjugate-gradient algorithms
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(80)90259-1
– ident: CR7
– volume: 2
  start-page: 1070
  issue: 2
  year: 2017
  end-page: 1076
  ident: CR15
  article-title: Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2658940
– start-page: 363
  year: 2003
  end-page: 370
  ident: CR9
  article-title: Two-frame motion estimation based on polynomial expansion
  publication-title: Image Analysis Lecture Notes in Computer Science
  doi: 10.1007/3-540-45103-X50
– ident: CR20
– volume: 106
  start-page: 115
  issue: 2
  year: 2014
  ident: 1187_CR22
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-013-0644-x
– ident: 1187_CR7
  doi: 10.1109/PMBS49563.2019.00007
– volume: 5
  start-page: 139
  year: 2015
  ident: 1187_CR13
  publication-title: Image Process. On Line
  doi: 10.5201/ipol.2015.44
– volume: 75
  start-page: 2562
  issue: 5
  year: 2019
  ident: 1187_CR17
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-018-2653-6
– volume-title: Euro-Par 2018: Parallel Processing
  year: 2018
  ident: 1187_CR18
  doi: 10.1007/978-3-319-96983-146
– volume: 17
  start-page: 185
  issue: 1
  year: 1993
  ident: 1187_CR12
  publication-title: Artif. Intell.
  doi: 10.1016/0004-3702(81)90024-2
– volume: 10
  start-page: 249
  issue: 3
  year: 2003
  ident: 1187_CR8
  publication-title: Acad. Radiol.
  doi: 10.1016/S1076-6332(03)80098-3
– volume: 2
  start-page: 1070
  issue: 2
  year: 2017
  ident: 1187_CR15
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2017.2658940
– ident: 1187_CR20
  doi: 10.1109/ICIP40778.2020.9191164
– start-page: 611
  volume-title: European Conf on Computer Vision (ECCV) Part IV LNCS 7577
  year: 2012
  ident: 1187_CR5
– ident: 1187_CR14
– volume-title: Iterative Methods for Sparse Linear Systems
  year: 2003
  ident: 1187_CR19
  doi: 10.1137/1.9780898718003
– volume: 70
  start-page: 577
  issue: 2
  year: 2014
  ident: 1187_CR23
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-014-1102-4
– volume: 61
  start-page: 1
  issue: 3
  year: 2005
  ident: 1187_CR4
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/B:VISI.0000045324.43199.43
– ident: 1187_CR6
  doi: 10.1109/IV47402.2020.9304777
– volume-title: Auto-Tuning Performance on Multicore Computers
  year: 2008
  ident: 1187_CR24
– start-page: 363
  volume-title: Image Analysis Lecture Notes in Computer Science
  year: 2003
  ident: 1187_CR9
  doi: 10.1007/3-540-45103-X50
– volume: 29
  start-page: 507
  year: 1980
  ident: 1187_CR25
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(80)90259-1
– volume: 92
  start-page: 1
  issue: 1
  year: 1993
  ident: 1187_CR2
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-010-0390-2
– volume-title: Euro-Par 2015: Parallel Processin
  year: 2015
  ident: 1187_CR1
  doi: 10.1007/978-3-662-48096-052
– volume: 71
  start-page: 3934
  issue: 10
  year: 2015
  ident: 1187_CR10
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-015-1483-z
– volume-title: Computer Vision - ECCV
  year: 2004
  ident: 1187_CR3
  doi: 10.1007/978-3-540-24673-23
– volume: 32
  start-page: 1231
  issue: 11
  year: 2010
  ident: 1187_CR11
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364913491297
– start-page: 214
  volume-title: Pattern Recognition
  year: 2007
  ident: 1187_CR26
  doi: 10.1007/978-3-540-74936-322
– volume-title: GPU Based Real-Time Optical Flow Computation
  year: 2010
  ident: 1187_CR16
– volume-title: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain
  year: 1994
  ident: 1187_CR21
SSID ssj0067635
Score 2.276075
Snippet Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real time, the whole...
Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real-time, the whole...
SourceID unpaywall
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 317
SubjectTerms Accuracy
Algorithms
Computer Graphics
Computer Science
Computer vision
Embedded systems
Engineering Sciences
Field programmable gate arrays
Graphics processing units
Hardware
Image Processing and Computer Vision
Impact analysis
Industrial applications
Linear algebra
Methods
Microprocessors
Multimedia Information Systems
Numerical analysis
Optical flow (image analysis)
Optimization
Original Research Paper
Pattern Recognition
Real time
Signal and Image processing
Signal,Image and Speech Processing
Solvers
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7Bcmh7KH2qS6Gyqt6K1TiJjVOpQlBBV1W7QqgrcYv8SkHKJgFCV_z7epJ4l15WveSQOLHlmcyM7ZnvA_ggI8u5dIZGRmR-gWIQ8lYlNOaO28wqm2gscP45FZNZ-v2CX2zANNTCYFplsImdoba1wT3yT3HWQa-JRBw21xRZo_B0NVBoqIFawX7pIMY2YStGZKwRbB2fTM_Og20WCL-GSzApGPW-LxrKaPpiOnStFFMWOg5uKv9xVZuXmCj5IApdHpw-gUd3VaPuF6osH_im02fwdAgqyVGvBc9hw1UvYDsQNpDh_30JV-c-LKRIJ0_qptvEJkVZL0jTVwv4fkhdETfXzpsjS76dzT4TVREszFqoG0cVXokqf_uJaS_npK3J1TwkoKOEyW0Pdnv_CmanJ7--TujAtUCNj0haqpzVLLIxgkcqDFsifWA1j3Rh4sxZv-hIC820dLEVUiZppjlTMtHcSJUKq5LXMKrqyr0BUmgtYllk_mvMB2ssU7qQJikyfhAhOtkYWJjW3AxA5MiHUeYrCGUURe5FkXeiyOUYPi7faXoYjrWt33tpLRsigvbk6EeO96Ik9cNg7A8bw24QZj78t7f5SsvGsB8EvHq8rsv9pRL8xwh31nf-Fh7HWGbRZQjtwqi9uXN7Pvhp9btBo_8CBO79Zw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oPKgHf4vzF0G8aaBpm5p6G6IOURFx4K0kTeoGXTu26th_b17XbgoieumhTZPQL8n70rz3PYBT4WjOhYmpEweh3aDEKHkrPepyw3WopfYUBjg_PAbtjn_3yl-roLBR7e1eH0mWK_U82A1NH0WXgjJHNhWLsMRRzsuO4o7bqtffACXWcJslAkatfXOqUJmf6_hmjha76Az5hWnODkdXYfk9G8jJWKbpF_tzswFrFXEkrSnSm7Bgsi1Yr5MykGqObkPv2VI_iinjST4of1STJM3HZDCNCLDtkDwjpq-MXXI0uX3qXBKZEQy-GsuhoRKvRKZv-bBXdPukyEmvXzuZI4pkNBW0nexA5-b65apNq3wKNLaso6DSaMUc7aJApERq4qgLrbijktgNjbYbCz9RTAnj6kAIzw8VZ1J4isdC-oGW3i40sjwze0ASpQJXJKGtjVlCxkKpEhF7ScgvHFQgawKrP2sUV2LjmPMijeYyyQhFZKGISigi0YSz2TuDqdTGr6VPLFqzgqiS3W7dR3jP8XzbDcY-WBMOazCjam6OIjcsRfxsN5twXgM8f_xbk-ezQfCHHu7_r_YDWHExtKL0CjqERjF8N0eW8BTquBzfn1p2868
  priority: 102
  providerName: Springer Nature
Title Real-time optical flow processing on embedded GPU: an hardware-aware algorithm to implementation strategy
URI https://link.springer.com/article/10.1007/s11554-021-01187-8
https://www.proquest.com/docview/2918677636
https://hal.science/hal-03457011
UnpaywallVersion submittedVersion
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8219
  databaseCode: AFBBN
  dateStart: 20060301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1861-8219
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0067635
  issn: 1861-8219
  databaseCode: BENPR
  dateStart: 20060301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0067635
  issn: 1861-8219
  databaseCode: AGYKE
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1861-8219
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0067635
  issn: 1861-8219
  databaseCode: U2A
  dateStart: 20061001
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswEB0k9qHoIemKukgNouitYaCNCtWbUnhBF8MIKiA5CaRI1UZkybDlGunXh6PFTnsw2otEUJREaYacR2nmDcAHbinGuE6olfiBWaAkSHkrXOowzVSghHIlBjh_n_jjyPtyw26OgLSxMDODOJu5H8vUcj12aWHwbtdnBm13oBtNpuEtrqO4b1NjwKx92Q6auJg6Og5tJUUfhCqpNuV_2J7jGXo-PoKVuz-hT-HJJl-K-63IskfGZnhaOz2uK45C9DG5u9iU8iL5_ReD46HneAYnDdIkYa0az-FI5y_gtM3iQJpB_RLm1wYrUswxT4pl9WWbpFmxJcs6hMD0lRQ50QupzRylyGgafSIiJxittRUrTQVuich-Fqt5OVuQsiDzReuVjmIn65oB9_4VRMPBj89j2iRgoImBKSUVWknbUg4ySgrEMpa8VJJZMk2cQCuzEvFSaUuuHeVz7nqBZLbgrmQJF56vhPsaOnmR6zdAUil9h6eBuZptEJwdCJnyxE0D81aQsqwHdiuaOGnYyTFJRhbveZVRnLERZ1yJM-Y9-Lg7Z1lzcxxs_d4IYtcQabXH4bcY61rh_LJ7cNYqRNwM5nXsBBXrn-lmD85bJdkfPnTL850i_UMP3_5f8zPolKuNfmdAUSn7cMyHoz50w9Ht14HZXw0m02tTGzlhvxkzDzfhCUc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71cSg98EYsFLAQnKhFnFcdpAoVaNnS7aqqulJvwY6dtlI2Cd2U1f45fhszeeyWy4pLLznEjm15JvOwZ74BeCcdEwTSJtxJwggdlIQgb5XH3cAGJjLKeJoSnI-HYX_k_zgPzlfgT5cLQ2GVnUysBbUpEjoj_-hGNfRa6IWfy1-cqkbR7WpXQkO1pRXMbg0x1iZ2HNnZFF24ye7hN6T3e9c92D_72udtlQGeoC6uuLJGC8e4BJuoSGE7esfowNFp4kbWoLntp1poaV0TSun5kQ6Ekp4OEqn80CgPx12FdR9b0Plb_7I_PDntdEFIcG_k8slQcNS1Tpu20yTvkSrnFCJR1_zm8h_VuHpJgZm3rN75Re0mbNzkpZpNVZbd0oUHD-F-a8SyvYbrHsGKzR_Dg65ABGvlxRO4OkUzlFP5elaU9aE5S7NiysomOwHnYUXO7FhbFH-GfT8ZfWIqZ5QINlXXlit6MpVdICGqyzGrCnY17gLeiaPYpAHXnT2F0Z3s-jNYy4vcPgeWah26Mo1wNIHGoYiUTmXipVGw4xAaWg9Et61x0gKfU_2NLF5ANhMpYiRFXJMilj34MP-mbGA_lvZ-i9SadyTE7v7eIKZ3jufjMoT4LXqw1REzbuXEJF5wdQ-2OwIvmpdNuT1ngv9Y4Yvlk7-Bjf7Z8SAeHA6PXsI9l1I86uikLVirrm_sKzS8Kv265W4GP-_6h_oL3HI65A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VKkF7oOWj6hZKLdQbWMRJHBxuK9rt0gJCFStxs-zYKStlk2gJXfHv68nH7laqULnkkDi2lWd7xvG8NwCfhWc4FzahXhLFboOSoOStCqjPLTexUSbQSHC-vIqGo_D7Lb9dYvHX0e7dkWTDaUCVprw6Lk16vCC-oRmkGF5Q58umYgVehiiU4Eb0yO93a3GEcmu45RIRo87WeS1t5t91_GWaVu4wMHLJ65wflL6G9Ye8VI8zlWVLtmjwFjZaJ5L0G9Q34YXNt-BNl6CBtPN1G8Y_nRtIMX08Kcr6pzVJs2JGyoYd4NohRU7sRFu3_Bjy7Xp0SlROkIg1U1NLFV6Jyn4V03F1NyFVQcaTLuAcESX3jbjt4w6MBl9vzoa0za1AE-eBVFRZo5lnfBSLVOimePrEaO7pNPFja9wmI0w108L6JhIiCGPNmRKB5olQYWRU8A5W8yK374GkWke-SGNXG3POGYuVTkUSpDE_8VCNrAes-6wyaYXHMf9FJheSyQiFdFDIGgopenA4f6dsZDeeLH3g0JoXRMXsYf9C4j0vCF03GPvNerDXgSnbeXov_bgW9HPd7MFRB_Di8VNNHs0HwX_08MPzav8Ea9dfBvLi_OrHLrzykXFRBwvtwWo1fbAfnR9U6f16qP8BQ9b61w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5S51B6aPqkLklZSm_NBq2kVXZzM6GpCW0IJYbkJPal2lSWjC3HJL8-O3rYaQ-muYhFGkkrzezOt9LMNwBfRGA5F87QwCTSL1AMUt6qiIbccSutspHGBOefF8lwFJ9f8-sdIF0uzNgjznbuxzYNopgfB5i8u5twj7Z7sDu6uBzc4DpKJIx6BxZs2ky2eTFNdhz6SooxCHVRbSr-8j3Pxhj5-AhWrv-EvoDny2Km7lYqzx85m7O9JuhxUXMUYozJn6NlpY_M_T8Mjtue4xW8bJEmGTSm8Rp2XPEG9roqDqQd1G9h8stjRYo15kk5q79skywvV2TWpBD4vpKyIG6qnZ-jLPl-OTohqiCYrbVSc0cVbonKf5fzSTWekqokk2kXlY5qJ4uGAffuHYzOvl2dDmlbgIEaD1MqqpzVLLAhMkoqxDKBPraaBzozoXTWr0TiTDMtXGgTIaJYas6UiDQ3QsWJVdF76BVl4T4AybROQpFJfzXmERyTSmfCRJn0bwUpy_rAOtWkpmUnxyIZebrhVUZ1pl6daa3OVPTh6_qcWcPNsVX6s1fEWhBptYeDHynu65Rzy_qw3xlE2g7mRRrKmvXPd7MPh52RbA5vu-Xh2pD-o4cfnya-D71qvnQHHhRV-lM7Lh4AhF4ESg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+optical+flow+processing+on+embedded+GPU%3A+an+hardware-aware+algorithm+to+implementation+strategy&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Seznec%2C+Micka%C3%ABl&rft.au=Gac%2C+Nicolas&rft.au=Orieux%2C+Fran%C3%A7ois&rft.au=Naik%2C+Alvin+Sashala&rft.date=2022-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=19&rft.issue=2&rft.spage=317&rft.epage=329&rft_id=info:doi/10.1007%2Fs11554-021-01187-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon