Real-time optical flow processing on embedded GPU: an hardware-aware algorithm to implementation strategy
Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real time, the whole algorithm deployment chain must be thought of for efficiency first. The development is usually divided into two parts: first, designing an algorith...
Saved in:
| Published in | Journal of real-time image processing Vol. 19; no. 2; pp. 317 - 329 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.04.2022
Springer Nature B.V Springer Verlag |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1861-8200 1861-8219 1861-8219 |
| DOI | 10.1007/s11554-021-01187-8 |
Cover
| Abstract | Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real time, the whole algorithm deployment chain must be thought of for efficiency first. The development is usually divided into two parts: first, designing an algorithm that meets precision constraints, then, implementing and optimizing its execution on the targeted platform. We argue that unifying those operations enhances performance on the embedded processor. This paper is based on an industrial use case of computer vision. The objective is to determine dense optical flow in real time on an embedded GPU platform: the Nvidia AGX Xavier. The CLG (combined local–global) optical flow method, initially chosen, is analyzed to understand the convergence speed of its underlying optimization problem. The Jacobi solver is selected for implementation because of its parallel nature. The whole multi-level processing is then ported to the GPU, using several specific optimization strategies. In particular, we analyze the impact of fusing the solver’s iterations with the roofline model. As a result, with a 30 W power budget, our implementation runs at 60FPS, on
640
×
512
images, with a four-level processing. Hopefully, this example should provide feedback on the issues that arise when trying to port a method to a parallel platform and serve for further implementations of computer vision algorithms on specialized hardware. |
|---|---|
| AbstractList | Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real time, the whole algorithm deployment chain must be thought of for efficiency first. The development is usually divided into two parts: first, designing an algorithm that meets precision constraints, then, implementing and optimizing its execution on the targeted platform. We argue that unifying those operations enhances performance on the embedded processor. This paper is based on an industrial use case of computer vision. The objective is to determine dense optical flow in real time on an embedded GPU platform: the Nvidia AGX Xavier. The CLG (combined local–global) optical flow method, initially chosen, is analyzed to understand the convergence speed of its underlying optimization problem. The Jacobi solver is selected for implementation because of its parallel nature. The whole multi-level processing is then ported to the GPU, using several specific optimization strategies. In particular, we analyze the impact of fusing the solver’s iterations with the roofline model. As a result, with a 30 W power budget, our implementation runs at 60FPS, on
640
×
512
images, with a four-level processing. Hopefully, this example should provide feedback on the issues that arise when trying to port a method to a parallel platform and serve for further implementations of computer vision algorithms on specialized hardware. Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real time, the whole algorithm deployment chain must be thought of for efficiency first. The development is usually divided into two parts: first, designing an algorithm that meets precision constraints, then, implementing and optimizing its execution on the targeted platform. We argue that unifying those operations enhances performance on the embedded processor. This paper is based on an industrial use case of computer vision. The objective is to determine dense optical flow in real time on an embedded GPU platform: the Nvidia AGX Xavier. The CLG (combined local–global) optical flow method, initially chosen, is analyzed to understand the convergence speed of its underlying optimization problem. The Jacobi solver is selected for implementation because of its parallel nature. The whole multi-level processing is then ported to the GPU, using several specific optimization strategies. In particular, we analyze the impact of fusing the solver’s iterations with the roofline model. As a result, with a 30 W power budget, our implementation runs at 60FPS, on 640×512 images, with a four-level processing. Hopefully, this example should provide feedback on the issues that arise when trying to port a method to a parallel platform and serve for further implementations of computer vision algorithms on specialized hardware. Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real-time, the whole algorithm deployment chain must be thought of for efficiency first. The development is usually divided into two parts: first, designing an algorithm that meets precision constraints, then, implementing and optimizing its execution on the targeted platform. We argue that unifying those operations enhances performance on the embedded processor. This paper is based on an industrial use case of computer vision. The objective is to determine dense optical flow in real-time on an embedded GPU platform: the Nvidia AGX Xavier. The CLG (Combined Local-Global) optical flow method, initially chosen, is analyzed to understand the convergence speed of its underlying optimization problem. The Jacobi solver is selected for implementation because of its parallel nature. The whole multi-level processing is then ported to the GPU, using several specific optimization strategies. In particular, we analyze the impact of fusing the solver's iterations with the roofline model. As a result, with a 30W power budget, our implementation runs at 60FPS, on 640 × 512 images, with a four-level processing. Hopefully, this example should provide feedback on the issues that arise when trying to port a method to a parallel platform and serve for further implementations of computer vision algorithms on specialized hardware. |
| Author | Seznec, Mickaël Orieux, François Naik, Alvin Sashala Gac, Nicolas |
| Author_xml | – sequence: 1 givenname: Mickaël orcidid: 0000-0002-6012-8685 surname: Seznec fullname: Seznec, Mickaël email: mickael.seznec@gmail.com organization: Thales Research and Technology, Laboratoire des Signaux et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec – sequence: 2 givenname: Nicolas surname: Gac fullname: Gac, Nicolas organization: Laboratoire des Signaux et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec – sequence: 3 givenname: François surname: Orieux fullname: Orieux, François organization: Laboratoire des Signaux et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec – sequence: 4 givenname: Alvin Sashala surname: Naik fullname: Naik, Alvin Sashala organization: Thales Research and Technology |
| BackLink | https://hal.science/hal-03457011$$DView record in HAL |
| BookMark | eNqNkE1rFTEUhoNUsK3-AVcBVy6iyXwl464U2woXFLHrcGZy5t6UTDImuV7uvzfXKRZcFDdJODxvOO9zQc588EjIW8E_CM7lxyRE2zaMV4JxIZRk6gU5F6oTTFWiP_v75vwVuUjpgfNOdnV7Tux3BMeynZGGJdsRHJ1cONAlhhFTsn5Lg6c4D2gMGnr77f4TBU93EM0BIjI4nRTcNkSbdzPNgdp5cTijz5BtyaYcIeP2-Jq8nMAlfPN4X5L7m88_ru_Y5uvtl-urDRvrXmYGaAbBTcUbWQHv6p4P0gwtH6ax6tHIRjbTIAaFlemUqpt-aAWoemhHBU1noL4k9frv3i9wPIBzeol2hnjUguuTLb3a0sWW_mNLq5J6v6Z28MQHsPruaqNPM143rSz0L1HYdytbJP3cY8r6IeyjL6V01RfRsqjtCqVWaowhpYiTHu2qpAix7vllqn-i_9XgsXcqsN9ifNrqmdRvd8Cr4A |
| CitedBy_id | crossref_primary_10_3390_rs15123156 crossref_primary_10_1007_s00348_024_03849_2 crossref_primary_10_1007_s11554_023_01288_6 crossref_primary_10_3390_rs15225424 |
| Cites_doi | 10.1007/978-3-540-74936-322 10.1007/s11227-018-2653-6 10.1007/978-3-540-24673-23 10.1016/0004-3702(81)90024-2 10.1007/s11263-013-0644-x 10.1007/978-3-662-48096-052 10.1023/B:VISI.0000045324.43199.43 10.1007/978-3-319-96983-146 10.5201/ipol.2015.44 10.1137/1.9780898718003 10.1007/s11227-014-1102-4 10.1016/S1076-6332(03)80098-3 10.1177/0278364913491297 10.1007/s11227-015-1483-z 10.1007/s11263-010-0390-2 10.1016/0024-3795(80)90259-1 10.1109/LRA.2017.2658940 10.1007/3-540-45103-X50 10.1109/PMBS49563.2019.00007 10.1109/ICIP40778.2020.9191164 10.1109/IV47402.2020.9304777 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI 1XC VOOES ADTOC UNPAY |
| DOI | 10.1007/s11554-021-01187-8 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1861-8219 |
| EndPage | 329 |
| ExternalDocumentID | oai:HAL:hal-03457011v1 10_1007_s11554_021_01187_8 |
| GroupedDBID | -59 -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 1N0 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LLZTM M4Y MA- N2Q N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P9O PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI 1XC VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c397t-aedb10d20472a06390b7db50bfc29ed7474fb1b8e2d688349b51a83b5c8a46da3 |
| IEDL.DBID | UNPAY |
| ISSN | 1861-8200 1861-8219 |
| IngestDate | Sun Oct 26 03:46:42 EDT 2025 Tue Oct 14 20:04:29 EDT 2025 Fri Jul 25 23:24:06 EDT 2025 Thu Apr 24 23:10:43 EDT 2025 Wed Oct 01 02:48:31 EDT 2025 Fri Feb 21 02:47:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | GPU optimization Linear solvers Algorithm design Image processing Optical flow Linear Solvers Image Processing Optical Flow GPU Optimization |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c397t-aedb10d20472a06390b7db50bfc29ed7474fb1b8e2d688349b51a83b5c8a46da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6012-8685 0000-0001-5638-3416 0000-0001-6981-0368 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-03457011 |
| PQID | 2918677636 |
| PQPubID | 2044148 |
| PageCount | 13 |
| ParticipantIDs | unpaywall_primary_10_1007_s11554_021_01187_8 hal_primary_oai_HAL_hal_03457011v1 proquest_journals_2918677636 crossref_citationtrail_10_1007_s11554_021_01187_8 crossref_primary_10_1007_s11554_021_01187_8 springer_journals_10_1007_s11554_021_01187_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20220400 2022-04-00 20220401 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 4 year: 2022 text: 20220400 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Journal of real-time image processing |
| PublicationTitleAbbrev | J Real-Time Image Proc |
| PublicationYear | 2022 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer Verlag |
| References | Tabik, Ortega, Garzón (CR23) 2014; 70 Bruhn, Weickert, Schnörr (CR4) 2005; 61 Moussu (CR16) 2010 Geiger, Lenz, Stiller, Urtasun (CR11) 2010; 32 CR14 Aliaga, Pérez, Quintana-Ortí, Träff, Hunold, Versaci (CR1) 2015 Baker, Scharstein, Lewis, Roth, Black, Szeliski (CR2) 1993; 92 Dougherty, Asmuth, Gefter (CR8) 2003; 10 Butler, Wulff, Stanley, Black, Fitzgibbon (CR5) 2012 Filipovič, Madzin, Fousek, Matyska (CR10) 2015; 71 Nguyen, Castonguay, Laurendeau (CR17) 2019; 75 McGuire, de Croon, De Wagter, Tuyls, Kappen (CR15) 2017; 2 Saad (CR19) 2003 Shewchuk (CR21) 1994 CR6 Podestá, Castro, do Nascimento, Aldinucci, Padovani, Torquati (CR18) 2018 CR7 Woźniakowski (CR25) 1980; 29 Farnebäck, Bigun, Gustavsson (CR9) 2003 Brox, Bruhn, Papenberg, Weickert, Pajdla, Matas (CR3) 2004 CR20 Jara-Wilde, Cerda, Delpiano, Härtel (CR13) 2015; 5 Horn, Schunck (CR12) 1993; 17 Williams (CR24) 2008 Zach, Pock, Bischof, Hamprecht, Schnörr, Jähne (CR26) 2007 Sun, Roth, Black (CR22) 2014; 106 C Zach (1187_CR26) 2007 E Podestá (1187_CR18) 2018 1187_CR20 JI Aliaga (1187_CR1) 2015 K McGuire (1187_CR15) 2017; 2 L Dougherty (1187_CR8) 2003; 10 J Filipovič (1187_CR10) 2015; 71 C Moussu (1187_CR16) 2010 JR Shewchuk (1187_CR21) 1994 A Geiger (1187_CR11) 2010; 32 S Tabik (1187_CR23) 2014; 70 H Woźniakowski (1187_CR25) 1980; 29 A Bruhn (1187_CR4) 2005; 61 SW Williams (1187_CR24) 2008 DJ Butler (1187_CR5) 2012 D Sun (1187_CR22) 2014; 106 1187_CR7 Y Saad (1187_CR19) 2003 1187_CR6 1187_CR14 T Brox (1187_CR3) 2004 G Farnebäck (1187_CR9) 2003 J Jara-Wilde (1187_CR13) 2015; 5 MT Nguyen (1187_CR17) 2019; 75 S Baker (1187_CR2) 1993; 92 BKP Horn (1187_CR12) 1993; 17 |
| References_xml | – start-page: 611 year: 2012 end-page: 625 ident: CR5 article-title: A naturalistic open source movie for optical flow evaluation publication-title: European Conf on Computer Vision (ECCV) Part IV LNCS 7577 – start-page: 214 year: 2007 end-page: 223 ident: CR26 article-title: A duality based approach for realtime TV-L 1 optical flow publication-title: Pattern Recognition doi: 10.1007/978-3-540-74936-322 – year: 2010 ident: CR16 publication-title: GPU Based Real-Time Optical Flow Computation – ident: CR14 – volume: 75 start-page: 2562 issue: 5 year: 2019 end-page: 2583 ident: CR17 article-title: GPU parallelization of multigrid RANS solver for three-dimensional aerodynamic simulations on multiblock grids publication-title: J. Supercomput. doi: 10.1007/s11227-018-2653-6 – year: 2004 ident: CR3 article-title: High accuracy optical flow estimation based on a theory for warping publication-title: Computer Vision - ECCV doi: 10.1007/978-3-540-24673-23 – ident: CR6 – year: 2008 ident: CR24 publication-title: Auto-Tuning Performance on Multicore Computers – volume: 17 start-page: 185 issue: 1 year: 1993 end-page: 203 ident: CR12 article-title: Determining optical flow publication-title: Artif. Intell. doi: 10.1016/0004-3702(81)90024-2 – volume: 106 start-page: 115 issue: 2 year: 2014 end-page: 137 ident: CR22 article-title: A quantitative analysis of current practices in optical flow estimation and the principles behind them publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0644-x – year: 2015 ident: CR1 article-title: Systematic fusion of CUDA kernels for iterative sparse linear system solvers publication-title: Euro-Par 2015: Parallel Processin doi: 10.1007/978-3-662-48096-052 – volume: 61 start-page: 1 issue: 3 year: 2005 end-page: 21 ident: CR4 article-title: Lucas/kanade meets horn/schunck: combining local and global optic flow methods publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000045324.43199.43 – year: 2018 ident: CR18 article-title: Energy efficient stencil computations on the low-power manycore MPPA-256 processor publication-title: Euro-Par 2018: Parallel Processing doi: 10.1007/978-3-319-96983-146 – volume: 5 start-page: 139 year: 2015 end-page: 158 ident: CR13 article-title: An implementation of combined local-global optical flow publication-title: Image Process. On Line doi: 10.5201/ipol.2015.44 – year: 2003 ident: CR19 publication-title: Iterative Methods for Sparse Linear Systems doi: 10.1137/1.9780898718003 – volume: 70 start-page: 577 issue: 2 year: 2014 end-page: 587 ident: CR23 article-title: Performance evaluation of kernel fusion BLAS routines on the GPU: iterative solvers as case study publication-title: J. Supercomput. doi: 10.1007/s11227-014-1102-4 – volume: 10 start-page: 249 issue: 3 year: 2003 end-page: 254 ident: CR8 article-title: Alignment of CT lung volumes with an optical flow method publication-title: Acad. Radiol. doi: 10.1016/S1076-6332(03)80098-3 – volume: 32 start-page: 1231 issue: 11 year: 2010 end-page: 1237 ident: CR11 article-title: Vision meets robotics: the KITTI dataset publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913491297 – volume: 71 start-page: 3934 issue: 10 year: 2015 end-page: 3957 ident: CR10 article-title: Optimizing CUDA code by kernel fusion-application on BLAS publication-title: J. Supercomput. doi: 10.1007/s11227-015-1483-z – year: 1994 ident: CR21 publication-title: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain – volume: 92 start-page: 1 issue: 1 year: 1993 end-page: 31 ident: CR2 article-title: A database and evaluation methodology for optical flow publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-010-0390-2 – volume: 29 start-page: 507 year: 1980 end-page: 529 ident: CR25 article-title: Roundoff-error analysis of a new class of conjugate-gradient algorithms publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(80)90259-1 – ident: CR7 – volume: 2 start-page: 1070 issue: 2 year: 2017 end-page: 1076 ident: CR15 article-title: Efficient optical flow and stereo vision for velocity estimation and obstacle avoidance on an autonomous pocket drone publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2658940 – start-page: 363 year: 2003 end-page: 370 ident: CR9 article-title: Two-frame motion estimation based on polynomial expansion publication-title: Image Analysis Lecture Notes in Computer Science doi: 10.1007/3-540-45103-X50 – ident: CR20 – volume: 106 start-page: 115 issue: 2 year: 2014 ident: 1187_CR22 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0644-x – ident: 1187_CR7 doi: 10.1109/PMBS49563.2019.00007 – volume: 5 start-page: 139 year: 2015 ident: 1187_CR13 publication-title: Image Process. On Line doi: 10.5201/ipol.2015.44 – volume: 75 start-page: 2562 issue: 5 year: 2019 ident: 1187_CR17 publication-title: J. Supercomput. doi: 10.1007/s11227-018-2653-6 – volume-title: Euro-Par 2018: Parallel Processing year: 2018 ident: 1187_CR18 doi: 10.1007/978-3-319-96983-146 – volume: 17 start-page: 185 issue: 1 year: 1993 ident: 1187_CR12 publication-title: Artif. Intell. doi: 10.1016/0004-3702(81)90024-2 – volume: 10 start-page: 249 issue: 3 year: 2003 ident: 1187_CR8 publication-title: Acad. Radiol. doi: 10.1016/S1076-6332(03)80098-3 – volume: 2 start-page: 1070 issue: 2 year: 2017 ident: 1187_CR15 publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2017.2658940 – ident: 1187_CR20 doi: 10.1109/ICIP40778.2020.9191164 – start-page: 611 volume-title: European Conf on Computer Vision (ECCV) Part IV LNCS 7577 year: 2012 ident: 1187_CR5 – ident: 1187_CR14 – volume-title: Iterative Methods for Sparse Linear Systems year: 2003 ident: 1187_CR19 doi: 10.1137/1.9780898718003 – volume: 70 start-page: 577 issue: 2 year: 2014 ident: 1187_CR23 publication-title: J. Supercomput. doi: 10.1007/s11227-014-1102-4 – volume: 61 start-page: 1 issue: 3 year: 2005 ident: 1187_CR4 publication-title: Int. J. Comput. Vis. doi: 10.1023/B:VISI.0000045324.43199.43 – ident: 1187_CR6 doi: 10.1109/IV47402.2020.9304777 – volume-title: Auto-Tuning Performance on Multicore Computers year: 2008 ident: 1187_CR24 – start-page: 363 volume-title: Image Analysis Lecture Notes in Computer Science year: 2003 ident: 1187_CR9 doi: 10.1007/3-540-45103-X50 – volume: 29 start-page: 507 year: 1980 ident: 1187_CR25 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(80)90259-1 – volume: 92 start-page: 1 issue: 1 year: 1993 ident: 1187_CR2 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-010-0390-2 – volume-title: Euro-Par 2015: Parallel Processin year: 2015 ident: 1187_CR1 doi: 10.1007/978-3-662-48096-052 – volume: 71 start-page: 3934 issue: 10 year: 2015 ident: 1187_CR10 publication-title: J. Supercomput. doi: 10.1007/s11227-015-1483-z – volume-title: Computer Vision - ECCV year: 2004 ident: 1187_CR3 doi: 10.1007/978-3-540-24673-23 – volume: 32 start-page: 1231 issue: 11 year: 2010 ident: 1187_CR11 publication-title: Int. J. Robot. Res. doi: 10.1177/0278364913491297 – start-page: 214 volume-title: Pattern Recognition year: 2007 ident: 1187_CR26 doi: 10.1007/978-3-540-74936-322 – volume-title: GPU Based Real-Time Optical Flow Computation year: 2010 ident: 1187_CR16 – volume-title: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain year: 1994 ident: 1187_CR21 |
| SSID | ssj0067635 |
| Score | 2.276075 |
| Snippet | Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real time, the whole... Determining the optical flow of a video is a compute-intensive task essential for computer vision. For achieving this processing in real-time, the whole... |
| SourceID | unpaywall hal proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 317 |
| SubjectTerms | Accuracy Algorithms Computer Graphics Computer Science Computer vision Embedded systems Engineering Sciences Field programmable gate arrays Graphics processing units Hardware Image Processing and Computer Vision Impact analysis Industrial applications Linear algebra Methods Microprocessors Multimedia Information Systems Numerical analysis Optical flow (image analysis) Optimization Original Research Paper Pattern Recognition Real time Signal and Image processing Signal,Image and Speech Processing Solvers |
| SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7Bcmh7KH2qS6Gyqt6K1TiJjVOpQlBBV1W7QqgrcYv8SkHKJgFCV_z7epJ4l15WveSQOLHlmcyM7ZnvA_ggI8u5dIZGRmR-gWIQ8lYlNOaO28wqm2gscP45FZNZ-v2CX2zANNTCYFplsImdoba1wT3yT3HWQa-JRBw21xRZo_B0NVBoqIFawX7pIMY2YStGZKwRbB2fTM_Og20WCL-GSzApGPW-LxrKaPpiOnStFFMWOg5uKv9xVZuXmCj5IApdHpw-gUd3VaPuF6osH_im02fwdAgqyVGvBc9hw1UvYDsQNpDh_30JV-c-LKRIJ0_qptvEJkVZL0jTVwv4fkhdETfXzpsjS76dzT4TVREszFqoG0cVXokqf_uJaS_npK3J1TwkoKOEyW0Pdnv_CmanJ7--TujAtUCNj0haqpzVLLIxgkcqDFsifWA1j3Rh4sxZv-hIC820dLEVUiZppjlTMtHcSJUKq5LXMKrqyr0BUmgtYllk_mvMB2ssU7qQJikyfhAhOtkYWJjW3AxA5MiHUeYrCGUURe5FkXeiyOUYPi7faXoYjrWt33tpLRsigvbk6EeO96Ik9cNg7A8bw24QZj78t7f5SsvGsB8EvHq8rsv9pRL8xwh31nf-Fh7HWGbRZQjtwqi9uXN7Pvhp9btBo_8CBO79Zw priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oPKgHf4vzF0G8aaBpm5p6G6IOURFx4K0kTeoGXTu26th_b17XbgoieumhTZPQL8n70rz3PYBT4WjOhYmpEweh3aDEKHkrPepyw3WopfYUBjg_PAbtjn_3yl-roLBR7e1eH0mWK_U82A1NH0WXgjJHNhWLsMRRzsuO4o7bqtffACXWcJslAkatfXOqUJmf6_hmjha76Az5hWnODkdXYfk9G8jJWKbpF_tzswFrFXEkrSnSm7Bgsi1Yr5MykGqObkPv2VI_iinjST4of1STJM3HZDCNCLDtkDwjpq-MXXI0uX3qXBKZEQy-GsuhoRKvRKZv-bBXdPukyEmvXzuZI4pkNBW0nexA5-b65apNq3wKNLaso6DSaMUc7aJApERq4qgLrbijktgNjbYbCz9RTAnj6kAIzw8VZ1J4isdC-oGW3i40sjwze0ASpQJXJKGtjVlCxkKpEhF7ScgvHFQgawKrP2sUV2LjmPMijeYyyQhFZKGISigi0YSz2TuDqdTGr6VPLFqzgqiS3W7dR3jP8XzbDcY-WBMOazCjam6OIjcsRfxsN5twXgM8f_xbk-ezQfCHHu7_r_YDWHExtKL0CjqERjF8N0eW8BTquBzfn1p2868 priority: 102 providerName: Springer Nature |
| Title | Real-time optical flow processing on embedded GPU: an hardware-aware algorithm to implementation strategy |
| URI | https://link.springer.com/article/10.1007/s11554-021-01187-8 https://www.proquest.com/docview/2918677636 https://hal.science/hal-03457011 |
| UnpaywallVersion | submittedVersion |
| Volume | 19 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1861-8219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8219 databaseCode: AFBBN dateStart: 20060301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1861-8219 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0067635 issn: 1861-8219 databaseCode: BENPR dateStart: 20060301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1861-8219 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0067635 issn: 1861-8219 databaseCode: AGYKE dateStart: 20060101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1861-8219 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0067635 issn: 1861-8219 databaseCode: U2A dateStart: 20061001 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JbtswEB0k9qHoIemKukgNouitYaCNCtWbUnhBF8MIKiA5CaRI1UZkybDlGunXh6PFTnsw2otEUJREaYacR2nmDcAHbinGuE6olfiBWaAkSHkrXOowzVSghHIlBjh_n_jjyPtyw26OgLSxMDODOJu5H8vUcj12aWHwbtdnBm13oBtNpuEtrqO4b1NjwKx92Q6auJg6Og5tJUUfhCqpNuV_2J7jGXo-PoKVuz-hT-HJJl-K-63IskfGZnhaOz2uK45C9DG5u9iU8iL5_ReD46HneAYnDdIkYa0az-FI5y_gtM3iQJpB_RLm1wYrUswxT4pl9WWbpFmxJcs6hMD0lRQ50QupzRylyGgafSIiJxittRUrTQVuich-Fqt5OVuQsiDzReuVjmIn65oB9_4VRMPBj89j2iRgoImBKSUVWknbUg4ySgrEMpa8VJJZMk2cQCuzEvFSaUuuHeVz7nqBZLbgrmQJF56vhPsaOnmR6zdAUil9h6eBuZptEJwdCJnyxE0D81aQsqwHdiuaOGnYyTFJRhbveZVRnLERZ1yJM-Y9-Lg7Z1lzcxxs_d4IYtcQabXH4bcY61rh_LJ7cNYqRNwM5nXsBBXrn-lmD85bJdkfPnTL850i_UMP3_5f8zPolKuNfmdAUSn7cMyHoz50w9Ht14HZXw0m02tTGzlhvxkzDzfhCUc |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71cSg98EYsFLAQnKhFnFcdpAoVaNnS7aqqulJvwY6dtlI2Cd2U1f45fhszeeyWy4pLLznEjm15JvOwZ74BeCcdEwTSJtxJwggdlIQgb5XH3cAGJjLKeJoSnI-HYX_k_zgPzlfgT5cLQ2GVnUysBbUpEjoj_-hGNfRa6IWfy1-cqkbR7WpXQkO1pRXMbg0x1iZ2HNnZFF24ye7hN6T3e9c92D_72udtlQGeoC6uuLJGC8e4BJuoSGE7esfowNFp4kbWoLntp1poaV0TSun5kQ6Ekp4OEqn80CgPx12FdR9b0Plb_7I_PDntdEFIcG_k8slQcNS1Tpu20yTvkSrnFCJR1_zm8h_VuHpJgZm3rN75Re0mbNzkpZpNVZbd0oUHD-F-a8SyvYbrHsGKzR_Dg65ABGvlxRO4OkUzlFP5elaU9aE5S7NiysomOwHnYUXO7FhbFH-GfT8ZfWIqZ5QINlXXlit6MpVdICGqyzGrCnY17gLeiaPYpAHXnT2F0Z3s-jNYy4vcPgeWah26Mo1wNIHGoYiUTmXipVGw4xAaWg9Et61x0gKfU_2NLF5ANhMpYiRFXJMilj34MP-mbGA_lvZ-i9SadyTE7v7eIKZ3jufjMoT4LXqw1REzbuXEJF5wdQ-2OwIvmpdNuT1ngv9Y4Yvlk7-Bjf7Z8SAeHA6PXsI9l1I86uikLVirrm_sKzS8Kv265W4GP-_6h_oL3HI65A |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0VKkF7oOWj6hZKLdQbWMRJHBxuK9rt0gJCFStxs-zYKStlk2gJXfHv68nH7laqULnkkDi2lWd7xvG8NwCfhWc4FzahXhLFboOSoOStCqjPLTexUSbQSHC-vIqGo_D7Lb9dYvHX0e7dkWTDaUCVprw6Lk16vCC-oRmkGF5Q58umYgVehiiU4Eb0yO93a3GEcmu45RIRo87WeS1t5t91_GWaVu4wMHLJ65wflL6G9Ye8VI8zlWVLtmjwFjZaJ5L0G9Q34YXNt-BNl6CBtPN1G8Y_nRtIMX08Kcr6pzVJs2JGyoYd4NohRU7sRFu3_Bjy7Xp0SlROkIg1U1NLFV6Jyn4V03F1NyFVQcaTLuAcESX3jbjt4w6MBl9vzoa0za1AE-eBVFRZo5lnfBSLVOimePrEaO7pNPFja9wmI0w108L6JhIiCGPNmRKB5olQYWRU8A5W8yK374GkWke-SGNXG3POGYuVTkUSpDE_8VCNrAes-6wyaYXHMf9FJheSyQiFdFDIGgopenA4f6dsZDeeLH3g0JoXRMXsYf9C4j0vCF03GPvNerDXgSnbeXov_bgW9HPd7MFRB_Di8VNNHs0HwX_08MPzav8Ea9dfBvLi_OrHLrzykXFRBwvtwWo1fbAfnR9U6f16qP8BQ9b61w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB5S51B6aPqkLklZSm_NBq2kVXZzM6GpCW0IJYbkJPal2lSWjC3HJL8-O3rYaQ-muYhFGkkrzezOt9LMNwBfRGA5F87QwCTSL1AMUt6qiIbccSutspHGBOefF8lwFJ9f8-sdIF0uzNgjznbuxzYNopgfB5i8u5twj7Z7sDu6uBzc4DpKJIx6BxZs2ky2eTFNdhz6SooxCHVRbSr-8j3Pxhj5-AhWrv-EvoDny2Km7lYqzx85m7O9JuhxUXMUYozJn6NlpY_M_T8Mjtue4xW8bJEmGTSm8Rp2XPEG9roqDqQd1G9h8stjRYo15kk5q79skywvV2TWpBD4vpKyIG6qnZ-jLPl-OTohqiCYrbVSc0cVbonKf5fzSTWekqokk2kXlY5qJ4uGAffuHYzOvl2dDmlbgIEaD1MqqpzVLLAhMkoqxDKBPraaBzozoXTWr0TiTDMtXGgTIaJYas6UiDQ3QsWJVdF76BVl4T4AybROQpFJfzXmERyTSmfCRJn0bwUpy_rAOtWkpmUnxyIZebrhVUZ1pl6daa3OVPTh6_qcWcPNsVX6s1fEWhBptYeDHynu65Rzy_qw3xlE2g7mRRrKmvXPd7MPh52RbA5vu-Xh2pD-o4cfnya-D71qvnQHHhRV-lM7Lh4AhF4ESg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+optical+flow+processing+on+embedded+GPU%3A+an+hardware-aware+algorithm+to+implementation+strategy&rft.jtitle=Journal+of+real-time+image+processing&rft.au=Seznec%2C+Micka%C3%ABl&rft.au=Gac%2C+Nicolas&rft.au=Orieux%2C+Fran%C3%A7ois&rft.au=Naik%2C+Alvin+Sashala&rft.date=2022-04-01&rft.pub=Springer+Nature+B.V&rft.issn=1861-8200&rft.eissn=1861-8219&rft.volume=19&rft.issue=2&rft.spage=317&rft.epage=329&rft_id=info:doi/10.1007%2Fs11554-021-01187-8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1861-8200&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1861-8200&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1861-8200&client=summon |