Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms
Development of energy-efficient and high-performance bioreactors requires progress in methods for assessing the key parameters of the biosynthesis process. With a wide variety of approaches and methods for determining the phase contact area in gas–liquid flows, the question of obtaining its accurate...
Saved in:
| Published in | Algorithms Vol. 16; no. 3; p. 125 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.03.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1999-4893 1999-4893 |
| DOI | 10.3390/a16030125 |
Cover
| Abstract | Development of energy-efficient and high-performance bioreactors requires progress in methods for assessing the key parameters of the biosynthesis process. With a wide variety of approaches and methods for determining the phase contact area in gas–liquid flows, the question of obtaining its accurate quantitative estimation remains open. Particularly challenging are the issues of getting information about the mass transfer coefficients instantly, as well as the development of predictive capabilities for the implementation of effective flow control in continuous fermentation both on the laboratory and industrial scales. Motivated by the opportunity to explore the possibility of applying classical and non-classical computer vision methods to the results of high-precision video records of bubble flows obtained during the experiment in the bioreactor vessel, we obtained a number of results presented in the paper. Characteristics of the bioreactor’s bubble flow were estimated first by classical computer vision (CCV) methods including an elliptic regression approach for single bubble boundaries selection and clustering, image transformation through a set of filters and developing an algorithm for separation of the overlapping bubbles. The application of the developed method for the entire video filming makes it possible to obtain parameter distributions and set dropout thresholds in order to obtain better estimates due to averaging. The developed CCV methodology was also tested and verified on a collected and labeled manual dataset. An onwards deep neural network (NN) approach was also applied, for instance the segmentation task, and has demonstrated certain advantages in terms of high segmentation resolution, while the classical one tends to be more speedy. Thus, in the current manuscript both advantages and disadvantages of the classical computer vision method (CCV) and neural network approach (NN) are discussed based on evaluation of bubbles’ number and their area defined. An approach to mass transfer coefficient estimation methodology in virtue of obtained results is also represented. |
|---|---|
| AbstractList | Development of energy-efficient and high-performance bioreactors requires progress in methods for assessing the key parameters of the biosynthesis process. With a wide variety of approaches and methods for determining the phase contact area in gas–liquid flows, the question of obtaining its accurate quantitative estimation remains open. Particularly challenging are the issues of getting information about the mass transfer coefficients instantly, as well as the development of predictive capabilities for the implementation of effective flow control in continuous fermentation both on the laboratory and industrial scales. Motivated by the opportunity to explore the possibility of applying classical and non-classical computer vision methods to the results of high-precision video records of bubble flows obtained during the experiment in the bioreactor vessel, we obtained a number of results presented in the paper. Characteristics of the bioreactor’s bubble flow were estimated first by classical computer vision (CCV) methods including an elliptic regression approach for single bubble boundaries selection and clustering, image transformation through a set of filters and developing an algorithm for separation of the overlapping bubbles. The application of the developed method for the entire video filming makes it possible to obtain parameter distributions and set dropout thresholds in order to obtain better estimates due to averaging. The developed CCV methodology was also tested and verified on a collected and labeled manual dataset. An onwards deep neural network (NN) approach was also applied, for instance the segmentation task, and has demonstrated certain advantages in terms of high segmentation resolution, while the classical one tends to be more speedy. Thus, in the current manuscript both advantages and disadvantages of the classical computer vision method (CCV) and neural network approach (NN) are discussed based on evaluation of bubbles’ number and their area defined. An approach to mass transfer coefficient estimation methodology in virtue of obtained results is also represented. |
| Audience | Academic |
| Author | Starodumov, Ilya Kraev, Simon Blyakhman, Felix Hamitov, Timur Zinovev, Alexei Mityashin, Timofey Chernushkin, Dmitrii Mikushin, Pavel Ivanov, Sergey Simkin, Ivan Kalyuzhnaya, Anna Palmin, Vladimir Nozik, Alexander Svitich, Vladislav Nikishina, Margarita Yurchenko, Stanislav Vikharev, Sergey Nizovtseva, Irina Mogilev, Matvey |
| Author_xml | – sequence: 1 givenname: Irina orcidid: 0000-0002-7766-7351 surname: Nizovtseva fullname: Nizovtseva, Irina – sequence: 2 givenname: Vladimir orcidid: 0000-0003-1199-4314 surname: Palmin fullname: Palmin, Vladimir – sequence: 3 givenname: Ivan orcidid: 0000-0003-1650-4177 surname: Simkin fullname: Simkin, Ivan – sequence: 4 givenname: Ilya orcidid: 0000-0001-6397-488X surname: Starodumov fullname: Starodumov, Ilya – sequence: 5 givenname: Pavel orcidid: 0000-0003-3455-5381 surname: Mikushin fullname: Mikushin, Pavel – sequence: 6 givenname: Alexander orcidid: 0000-0001-9075-0080 surname: Nozik fullname: Nozik, Alexander – sequence: 7 givenname: Timur orcidid: 0000-0001-9099-4587 surname: Hamitov fullname: Hamitov, Timur – sequence: 8 givenname: Sergey orcidid: 0000-0002-1128-2942 surname: Ivanov fullname: Ivanov, Sergey – sequence: 9 givenname: Sergey orcidid: 0000-0003-1217-9397 surname: Vikharev fullname: Vikharev, Sergey – sequence: 10 givenname: Alexei orcidid: 0000-0002-0172-2625 surname: Zinovev fullname: Zinovev, Alexei – sequence: 11 givenname: Vladislav orcidid: 0000-0002-3699-3193 surname: Svitich fullname: Svitich, Vladislav – sequence: 12 givenname: Matvey orcidid: 0000-0003-0025-9031 surname: Mogilev fullname: Mogilev, Matvey – sequence: 13 givenname: Margarita orcidid: 0000-0001-5408-4498 surname: Nikishina fullname: Nikishina, Margarita – sequence: 14 givenname: Simon orcidid: 0000-0002-9929-9502 surname: Kraev fullname: Kraev, Simon – sequence: 15 givenname: Stanislav orcidid: 0000-0001-6821-904X surname: Yurchenko fullname: Yurchenko, Stanislav – sequence: 16 givenname: Timofey orcidid: 0000-0002-0897-5932 surname: Mityashin fullname: Mityashin, Timofey – sequence: 17 givenname: Dmitrii orcidid: 0000-0002-4822-6055 surname: Chernushkin fullname: Chernushkin, Dmitrii – sequence: 18 givenname: Anna orcidid: 0000-0002-9612-8601 surname: Kalyuzhnaya fullname: Kalyuzhnaya, Anna – sequence: 19 givenname: Felix orcidid: 0000-0003-4434-2873 surname: Blyakhman fullname: Blyakhman, Felix |
| BookMark | eNp1kcFvFCEYxSemJrbVg_8BiSdNtoVhYIbjuqla09ZL9Uq-gY9d1llYgc2mN_900TGNMRoOkC_v93jwzpqTEAM2zUtGLzhX9BKYpJyyVjxpTplSatENip_8cX7WnOW8pVQKJdlp832ZM-bsw5qUDZJbyJncJwjZYSKriM554zEU4gP5iIW89TEhmBJTJkdfNmQ1VcQbmKp6tz-Uin3x2cdAbrFsos0EgiV3eEhVcoflGNPXTJbTOqaK7_Lz5qmDKeOL3_t58_nd1f3qw-Lm0_vr1fJmYbjqy0IJpgaHnZVCtqxDJaQAMY7AHZV0tC3w1hgDAxWjYZwLY5EiWm6B4ygcP2-uZ18bYav3ye8gPegIXv8axLTWkIo3E2qrJPaomBRGdS1tVd9hOwIDOtTbAKvXm9nrEPbwcIRpejRkVP_sQT_2UMWvZvE-xW8HzEVv4yGF-lbd9ooJSQfaVdXFrFpDTeCDiyWBqcvizpvasfN1vuw73kmmRFuByxkwKeac0GnjC5T68RX00z-DvP6L-H_oH_7jtsY |
| CitedBy_id | crossref_primary_10_1088_1361_665X_ad10be crossref_primary_10_1140_epjs_s11734_024_01395_w crossref_primary_10_3390_inventions9010009 crossref_primary_10_3390_math13010127 crossref_primary_10_3390_math12233864 crossref_primary_10_3390_su16198598 crossref_primary_10_1140_epjs_s11734_024_01378_x |
| Cites_doi | 10.1016/j.bej.2019.107458 10.1038/s42003-019-0400-z 10.1016/0167-7799(85)90101-5 10.3390/app12020750 10.1155/2018/7068349 10.1016/j.egyr.2022.02.072 10.1016/j.scitotenv.2022.160141 10.1016/j.ces.2018.05.029 10.1016/j.procs.2019.08.206 10.1016/j.jiec.2020.03.009 10.1038/s41598-021-88334-0 10.1016/j.bej.2020.107854 10.1007/s10618-016-0483-9 10.1016/0160-9327(90)90086-7 10.1016/j.ces.2004.04.012 10.1039/D2RE00309K 10.1109/IJCNN52387.2021.9534417 10.1016/j.biotechadv.2023.108096 10.1016/j.ijmultiphaseflow.2022.104169 10.1038/s41598-017-17204-5 10.1080/00029890.1971.11992746 10.1016/0009-2509(92)85137-Z 10.1016/j.cherd.2018.08.033 10.1016/S0892-6875(01)00023-1 10.1016/j.cherd.2018.06.026 10.1016/j.cej.2022.136579 10.1016/j.ces.2019.04.004 10.1016/j.jece.2020.104718 10.1109/34.868688 10.1002/9783527683369.ch10 10.1109/34.1000236 10.1002/cite.201900134 10.3390/fluids7120366 10.1007/BF00369405 10.1007/978-1-4613-8748-0 10.1007/978-3-030-00931-1 10.1016/j.advmem.2023.100061 10.1016/j.dche.2022.100040 10.2202/1934-2659.1474 10.1016/j.cjche.2020.07.051 10.1007/978-3-030-17795-9_10 10.1016/j.aquaculture.2020.735885 10.1002/bit.26084 10.1016/j.bej.2009.07.001 10.12688/f1000research.27019.1 10.1002/mma.8132 10.1007/BF01908075 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/a16030125 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Health Research Premium Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1999-4893 |
| ExternalDocumentID | oai_doaj_org_article_d96e7e9165c94202974e2ba1a083f0ae 10.3390/a16030125 A743461952 10_3390_a16030125 |
| GeographicLocations | Russia |
| GeographicLocations_xml | – name: Russia |
| GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c397t-95198fe4d656214e9565a5bba3f060bd2a32ccca805bc1335cde0eed3da3eb5f3 |
| IEDL.DBID | DOA |
| ISSN | 1999-4893 |
| IngestDate | Fri Oct 03 12:42:14 EDT 2025 Sun Oct 26 03:58:16 EDT 2025 Fri Jul 25 12:00:34 EDT 2025 Mon Oct 20 16:08:34 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Thu Oct 16 04:31:32 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c397t-95198fe4d656214e9565a5bba3f060bd2a32ccca805bc1335cde0eed3da3eb5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9929-9502 0000-0001-6821-904X 0000-0003-1650-4177 0000-0001-9075-0080 0000-0003-1217-9397 0000-0002-0897-5932 0000-0003-1199-4314 0000-0002-0172-2625 0000-0002-9612-8601 0000-0003-3455-5381 0000-0002-4822-6055 0000-0001-5408-4498 0000-0002-7766-7351 0000-0003-0025-9031 0000-0001-6397-488X 0000-0003-4434-2873 0000-0001-9099-4587 0000-0002-3699-3193 0000-0002-1128-2942 |
| OpenAccessLink | https://doaj.org/article/d96e7e9165c94202974e2ba1a083f0ae |
| PQID | 2791560804 |
| PQPubID | 2032439 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d96e7e9165c94202974e2ba1a083f0ae unpaywall_primary_10_3390_a16030125 proquest_journals_2791560804 gale_infotracacademiconefile_A743461952 crossref_citationtrail_10_3390_a16030125 crossref_primary_10_3390_a16030125 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-03-01 |
| PublicationDateYYYYMMDD | 2023-03-01 |
| PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Algorithms |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Maischberger (ref_52) 2019; 91 ref_14 ref_13 ref_12 Gemello (ref_18) 2018; 136 Cerqueira (ref_47) 2018; 189 Ho (ref_10) 2020; 87 ref_55 Petersen (ref_31) 2017; 114 Comaniciu (ref_34) 2002; 24 ref_51 Hatamipour (ref_11) 2021; 34 Mandal (ref_50) 2004; 59 Patel (ref_21) 2009; 47 Fynn (ref_24) 1990; 14 Nizovtseva (ref_16) 2022; 45 Fu (ref_41) 2019; 204 Bagnall (ref_53) 2017; 31 Sharif (ref_25) 2021; 531 Wu (ref_54) 2022; 8 Wang (ref_45) 2021; 9 Voulodimos (ref_1) 2018; 2018 ref_23 Hubert (ref_33) 1985; 2 Zohar (ref_6) 2019; 2 Rahimi (ref_15) 2018; 139 (ref_29) 1993; 9 ref_28 Aroniada (ref_9) 2020; 155 Charles (ref_17) 1985; 3 Xu (ref_26) 2023; 63 Shi (ref_36) 2000; 22 ref_35 Klamkin (ref_49) 1971; 78 Alavijeh (ref_7) 2022; 4 ref_32 Kim (ref_40) 2021; 11 ref_30 Hessenkemper (ref_42) 2022; 155 ref_39 ref_38 ref_37 Bankhead (ref_46) 2017; 7 Linek (ref_20) 1992; 47 Fazeli (ref_48) 2020; 9 Woolley (ref_27) 2023; 859 Bi (ref_44) 2020; 18 Ignacz (ref_4) 2023; 3 Finkler (ref_19) 2021; 166 Chen (ref_22) 2001; 14 Khodnenko (ref_56) 2019; 156 ref_43 ref_2 Shafizadeh (ref_3) 2022; 445 ref_8 ref_5 |
| References_xml | – volume: 155 start-page: 107458 year: 2020 ident: ref_9 article-title: Estimation of volumetric mass transfer coefficient (kLa)—Review of classical approaches and contribution of a novel methodology publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2019.107458 – volume: 2 start-page: 7068349 year: 2019 ident: ref_6 article-title: Multi-flow channel bioreactor enables real-time monitoring of cellular dynamics in 3D engineered tissue publication-title: Commun. Biol. doi: 10.1038/s42003-019-0400-z – volume: 3 start-page: 134 year: 1985 ident: ref_17 article-title: Fermentation scale-up: Problems and possibilities publication-title: Trends Biotechnol. doi: 10.1016/0167-7799(85)90101-5 – ident: ref_32 – ident: ref_55 – ident: ref_23 doi: 10.3390/app12020750 – volume: 2018 start-page: 7068349 year: 2018 ident: ref_1 article-title: Deep Learning for Computer Vision: A Brief Review publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/7068349 – volume: 8 start-page: 3041 year: 2022 ident: ref_54 article-title: Application of Bayesian regularization back propagation neural network in sensorless measurement of pump operational state publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.02.072 – volume: 859 start-page: 160141 year: 2023 ident: ref_27 article-title: Gas to protein: Microbial single cell protein is an alternative to fishmeal in aquaculture publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.160141 – volume: 189 start-page: 1 year: 2018 ident: ref_47 article-title: Image processing techniques for the measurement of two-phase bubbly pipe flows using particle image and tracking velocimetry (PIV/PTV) publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2018.05.029 – volume: 156 start-page: 300 year: 2019 ident: ref_56 article-title: Detection of lost circulation in drilling wells employing sensor data using machine learning technique publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.08.206 – ident: ref_35 – volume: 87 start-page: 1 year: 2020 ident: ref_10 article-title: Enhancing gas–liquid volumetric mass transfer coefficient publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2020.03.009 – volume: 11 start-page: 8940 year: 2021 ident: ref_40 article-title: Deep learning-based automated and universal bubble detection and mask extraction in complex two-phase flows publication-title: Sci. Rep. doi: 10.1038/s41598-021-88334-0 – volume: 166 start-page: 107854 year: 2021 ident: ref_19 article-title: A model-based strategy for scaling-up traditional packed-bed bioreactors for solid-state fermentation based on measurement of O2 uptake rates publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2020.107854 – volume: 31 start-page: 606 year: 2017 ident: ref_53 article-title: The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-016-0483-9 – volume: 14 start-page: 100 year: 1990 ident: ref_24 article-title: Bioprotein manufacture: A critical assessment: By David H. Sharp. Pp. 140. Ellis Horwood, Chichester. 1989. £34.95 publication-title: Endeavour doi: 10.1016/0160-9327(90)90086-7 – volume: 59 start-page: 2705 year: 2004 ident: ref_50 article-title: Gas-holdup distribution and energy dissipation in an ejector-induced downflow bubble column: The case of non-Newtonian liquid publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2004.04.012 – ident: ref_5 doi: 10.1039/D2RE00309K – ident: ref_13 – ident: ref_38 – ident: ref_43 doi: 10.1109/IJCNN52387.2021.9534417 – volume: 63 start-page: 108096 year: 2023 ident: ref_26 article-title: Embracing a low-carbon future by the production and marketing of C1 gas protein publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2023.108096 – volume: 155 start-page: 104169 year: 2022 ident: ref_42 article-title: Bubble identification from images with machine learning methods publication-title: Int. J. Multiph. Flow doi: 10.1016/j.ijmultiphaseflow.2022.104169 – volume: 7 start-page: 16878 year: 2017 ident: ref_46 article-title: QuPath: Open source software for digital pathology image analysis publication-title: Sci. Rep. doi: 10.1038/s41598-017-17204-5 – volume: 78 start-page: 280 year: 1971 ident: ref_49 article-title: Elementary approximations to the area of n-dimensional ellipsoids publication-title: Am. Math. Mon. doi: 10.1080/00029890.1971.11992746 – volume: 47 start-page: 3885 year: 1992 ident: ref_20 article-title: Critical assessment of the dynamic double-response method for measuring kLa: Experimental elimination of dispersion effects publication-title: Chem. Eng. Sci. doi: 10.1016/0009-2509(92)85137-Z – ident: ref_28 – volume: 139 start-page: 283 year: 2018 ident: ref_15 article-title: Computational fluid dynamics study of full-scale aerobic bioreactors: Evaluation of gas–liquid mass transfer, oxygen uptake, and dynamic oxygen distribution publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2018.08.033 – volume: 14 start-page: 427 year: 2001 ident: ref_22 article-title: Technical note bubble size measurement in flotation machines publication-title: Miner. Eng. doi: 10.1016/S0892-6875(01)00023-1 – volume: 136 start-page: 846 year: 2018 ident: ref_18 article-title: CFD-based scale-up of hydrodynamics and mixing in bubble columns publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2018.06.026 – volume: 445 start-page: 136579 year: 2022 ident: ref_3 article-title: Machine learning predicts and optimizes hydrothermal liquefaction of biomass publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136579 – volume: 204 start-page: 35 year: 2019 ident: ref_41 article-title: BubGAN: Bubble generative adversarial networks for synthesizing realistic bubbly flow images publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.04.004 – volume: 9 start-page: 104718 year: 2021 ident: ref_45 article-title: Intensification on mass transfer between gas and liquid in fine bubble jet reactor publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2020.104718 – volume: 22 start-page: 888 year: 2000 ident: ref_36 article-title: Normalized Cuts and Image Segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.868688 – ident: ref_51 doi: 10.1002/9783527683369.ch10 – volume: 24 start-page: 603 year: 2002 ident: ref_34 article-title: Mean Shift: A Robust Approach Toward Feature Space Analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.1000236 – volume: 91 start-page: 1719 year: 2019 ident: ref_52 article-title: Optimized process and bioreactor characterization publication-title: Chem. Ing. Tech. doi: 10.1002/cite.201900134 – ident: ref_37 – ident: ref_8 doi: 10.3390/fluids7120366 – volume: 9 start-page: 215 year: 1993 ident: ref_29 article-title: Comparison of different bioreactor performances publication-title: Bioprocess Eng. doi: 10.1007/BF00369405 – ident: ref_30 doi: 10.1007/978-1-4613-8748-0 – ident: ref_39 doi: 10.1007/978-3-030-00931-1 – volume: 3 start-page: 100061 year: 2023 ident: ref_4 article-title: Explainable machine learning for unraveling solvent effects in polyimide organic solvent nanofiltration membranes publication-title: Adv. Membr. doi: 10.1016/j.advmem.2023.100061 – volume: 4 start-page: 100040 year: 2022 ident: ref_7 article-title: Digitally enabled approaches for the scale up of mammalian cell bioreactors publication-title: Digit. Chem. Eng. doi: 10.1016/j.dche.2022.100040 – ident: ref_14 doi: 10.2202/1934-2659.1474 – volume: 34 start-page: 61 year: 2021 ident: ref_11 article-title: Experimental determination of gas holdup and volumetric mass transfer coefficient in a jet bubbling reactor publication-title: Chin. J. Chem. Eng. doi: 10.1016/j.cjche.2020.07.051 – ident: ref_12 – ident: ref_2 doi: 10.1007/978-3-030-17795-9_10 – volume: 531 start-page: 735885 year: 2021 ident: ref_25 article-title: Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition publication-title: Aquaculture doi: 10.1016/j.aquaculture.2020.735885 – volume: 114 start-page: 344 year: 2017 ident: ref_31 article-title: Mixing and mass transfer in a pilot scale U-loop bioreactor publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26084 – volume: 47 start-page: 48 year: 2009 ident: ref_21 article-title: Enhanced in situ dynamic method for measuring KLa in fermentation media publication-title: Biochem. Eng. J. doi: 10.1016/j.bej.2009.07.001 – volume: 18 start-page: 20190102 year: 2020 ident: ref_44 article-title: Experimental Study on Bubble Size Distribution in Gas-Liquid Reversed Jet Loop Reactor publication-title: Int. J. Chem. React. Eng. – volume: 9 start-page: 1279 year: 2020 ident: ref_48 article-title: Automated cell tracking using StarDist and TrackMate publication-title: F1000Research doi: 10.12688/f1000research.27019.1 – volume: 45 start-page: 8216 year: 2022 ident: ref_16 article-title: Simulation of two-phase air–liquid flows in a closed bioreactor loop: Numerical modeling, experiments, and verification publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.8132 – volume: 2 start-page: 193 year: 1985 ident: ref_33 article-title: Comparing partitions publication-title: J. Classif. doi: 10.1007/BF01908075 |
| SSID | ssj0065961 |
| Score | 2.3099957 |
| Snippet | Development of energy-efficient and high-performance bioreactors requires progress in methods for assessing the key parameters of the biosynthesis process.... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 125 |
| SubjectTerms | Algorithms Artificial neural networks bioreactor Bioreactors Biosynthesis bubble detection Bubbles Clustering Coefficients Comparative analysis Computer vision Design Efficiency Fermentation Flow control Fluid dynamics Gas flow Gases gas—liquid flows Image segmentation jet stream Liquid flow Machine vision Mass transfer Methods Neural networks phase contact area Physiological aspects Process parameters Productivity |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4tDxFoCALkOASNfEj2RxQtVu1qirtCiGKeotsxy6VlmTppkK98dOZcR6AeFyjUeR47JlvHM_3AbzWcqqtE2msC6diKbyPi9ybuHIIDkwmXMqpd3ixzE7O5Om5Ot-C5dALQ9cqh5gYAnXVWDoj3-d5QU2_00QerL_GpBpFf1cHCQ3dSytU7wLF2C3Y5sSMNYHt-dHy_YchNmeqyNKOX0hgsb-vSWQZQ7T6LSsF8v4_Q_RduH1dr_XNN71a_ZKDju_BTg8e2azz9n3YcvUD2B2EGVi_Tx_C9-5XLmYlhviOLRAgs5CUPFodNi7QRmC2YZc1O3Utm182iB2D8A6jg1kWpDLJfWx8-afQhM4WQXF6w3RdMSL2QJNld5N8w2arC5yx9vOXzSM4Oz76eHgS91ILsUVA0saIs4qpd7JCeMdT6bBqUloZo4VPssRUXAtu0dnTRBmLZa2y6ExMr6LSwhnlxWOY1E3tngCzufTOKm-tcbJAOKFNZjI01jzzIhcRvB2murQ9DznJYaxKrEfIK-XolQhejqbrjnzjb0Zz8tdoQHzZ4UFzdVH226-siszlDqGwsoXkJNglHTc61YhAfaJdBG_I2yXtahyM1X1zAn4S8WOVMwRaEmtNxSPYGxZE2W_3TflzcUbwalwk_x7z0_-_5BncIVX77qrbHkzaq2v3HLFPa170C_oH2mQGVg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5B9wB7YHmKwIIsQIJLtklsJ80JdVesViu14kDRcrJsx15VlKRq0kVw4qczdtyIp4S45BCNI0cez3xjz3wD8EKyidSGprEsDY8ZtTYuC6viyiA4UDk1aeZqh2fz_GzBzi_4RThwa0NaJYbiS2-kfYm8Y0cZp_kYHxkfryv7-iqcJLkbBHSwaVlch72cIxYfwd5i_nb6wV8lh7E9nRDF2H4sXU9ltMj8Jyfkufp_t8j7cGNbr-WXz3K1-sHlnB6A2E22zzT5eLTt1JH--guP4___zW24FdAomfbqcweumfouHOw6PZCw8e_Bt_5uGN0cQcBIZoi4ifdyFqVOGuN5KNB9kWVNzk1HjpcNglHfyYe4k17ie286fSDDx9_7qnYy8y2sWyLrijimEBSZ96npLZmuLpsNDv_U3ofF6Zt3J2dx6N0Qa0Q4XYzArZxYwyrEi1nKDIZhXHKlJLVJnqgqkzTTqD2ThCuNcTLXqB3or2klqVHc0gcwqpvaPASiC2aN5lZrZViJ-ESqXOUoLLPc0oJG8Gq3mEIHYnPXX2MlMMBx6y6GdY_g2SC67tk8_iR07DRiEHAE3P5Fs7kUYT-LqsxNYRBbc12yzHUAYyZTMpUIaW0iTQQvnT4JZyZwMlqGagf8JUe4JaaI3BgGrzyL4HCnciLYj1ZkRelK3CcJi-D5oIZ_n_Ojf5J6DDdxqrRPoTuEUbfZmieIqTr1NGyc7_gOHWU priority: 102 providerName: Unpaywall |
| Title | Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms |
| URI | https://www.proquest.com/docview/2791560804 https://www.mdpi.com/1999-4893/16/3/125/pdf?version=1679639197 https://doaj.org/article/d96e7e9165c94202974e2ba1a083f0ae |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: AMVHM dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central (subscription) customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BOQAHvlED7coCJLhETfyV-Lhbdakq7apCLCqnyHZsVGmbrbpbIW78dMZ2NiqiiAvHRLOR4xl73mQ97wG807zW1rEy18qJnDPvc1V5k7cOwYGRzJU09A7P5vJ4wU_OxNkNqa9wJizRA6eJO2iVdJVDECOs4jRILXFHjS41YgdfaBd236JW22Iq7cFSKFkmHiGGRf2BDmLKuBWL37JPJOn_cyt-CPevu0v947teLm_kmukTeNSDRDJOg3sKd1z3DB5vBRhIvx6fw8_0ly1mH4I4jswQCJOYfDxaHa5cpIfArELOO3LiNmRyvkKMGAV2SPgAS6IkZnATGR7-JTabk1lUll4T3bUkEHigyTydGF-T8fLb6gp_frF-AYvp0efD47yXVMgtAo9NjnhK1d7xFmEcLbnD6khoYYzGuZSFaalm1KJT60IYi-WrsOg0TKOs1cwZ4dlL2OlWndsFYivunRXeWuO4QtigjTQSjTWVnlUsgw_bqW5szzceZC-WDdYdwSvN4JUM3gyml4lk4zajSfDXYBB4seMNjJamj5bmX9GSwfvg7SasXhyM1X0TAr5S4MFqxgioONaUgmawtw2Ipl_W64ZWKnSe1wXP4O0QJH8f86v_MebX8CBo3KeDb3uws7m6dvuIhDZmBHfr6ccR3JsczU8_jeISwKvF_HT89RcI1QxB |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48EYEClg8BJeoiR_J5lCh3dJq-9gVQi3qzdiO3VbaJkuzVdUbv4zfxjgvQDxuvUYjy86M_X2TeOYDeK34QBnL4lBlVoScORdmqdNhbpEc6ITZmPra4ck0GR_y3SNxtATfu1oYf62yOxPrgzovjf9Gvk7TzBf9DiL-fv419KpR_u9qJ6GhWmmFfKNuMdYWduzZq0tM4aqNnQ_o7zeUbm8dbI7DVmUgNIjFixApRjZwlufIbGjMLSYMQgmtFXNREumcKkYNrnMQCW0woxMG14HIwnLFrBaO4bg3YIUznmHytzLamn781GFBIrIkbvoZMZZF68qLOiMkiN9QsBYL-BMSbsHqRTFXV5dqNvsF87bvwu2WrJJhE133YMkW9-FOJwRB2nPhAXxrfh0jChLkk2SChJzUIOjQarO0dZsKRDdyWpBduyCj0xK5ai30Q_yHYFJLc_pwIf3gn-uidzKpFa4rooqc-EYiaDJtbq5XZDg7Rg8tTs6qh3B4LS_9ESwXZWEfAzEpd9YIZ4y2PEP6onSiEzRWNHEsZQG86161NG3fcy-_MZOY_3ivyN4rAbzsTedNs4-_GY28v3oD35-7flCeH8t2u8s8S2xqkXoLk3HqBcK4pVrFChmvi5QN4K33tvSnCE7GqLYYApfk-3HJIRI7jrmtoAGsdQEh2-Olkj83QwCv-iD595yf_H-QF7A6Ppjsy_2d6d5TuInzZc01uzVYXpxf2GfIuxb6eRvcBL5c9376AUIURNg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE48EYNFLB4CC7RJn4kmwNC25alD3bFgaLejO3YbaUlWZpUVW_8Ln4d47wA8bj1Go0sOzOe73PimQ_gueJjZSyLQ5VZEXLmXJilToe5RXKgE2Zj6muHZ_Nke5_vHoiDFfje18L4a5V9TmwSdV4a_418RNPMF_2OIz5y3bWID1vTN8uvoVeQ8n9aezmNNkT27PkZHt-q1ztb6OsXlE7fftzcDjuFgdAgDtch0ots7CzPkdXQmFs8LAgltFbMRUmkc6oYNbjGcSS0wdOcMLgGRBWWK2a1cAzHvQSXU9_F3VepT9_1KJCILInbTkaMZdFIeTlnBAPxG_41MgF_gsF1uHpaLNX5mVosfkG76S240dFUMmnj6jas2OIO3OwlIEiXEe7Ct_anMeIfQSZJZkjFSQN_Dq02S9s0qEBcI8cF2bU12TgukaU2Ej_EfwImjSinDxQyDP6pKXcns0bbuiKqyIlvIYIm8_bOekUmi0P0R330pboH-xfyyu_DalEWdg2ISbmzRjhjtOUZEhelE52gsaKJYykL4FX_qqXpOp574Y2FxJOP94ocvBLA08F02bb5-JvRhvfXYOA7czcPypND2W10mWeJTS2SbmEyTr00GLdUq1gh13WRsgG89N6WPn_gZIzqyiBwSb4Tl5wgpeN4qhU0gPU-IGSXWCr5cxsE8GwIkn_P-cH_B3kCV3AXyfc7872HcA2ny9r7deuwWp-c2kdIuGr9uIlsAp8veiv9AHEmQnI |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5B9wB7YHmKwIIsQIJLtklsJ80JdVesViu14kDRcrJsx15VlKRq0kVw4qczdtyIp4S45BCNI0cez3xjz3wD8EKyidSGprEsDY8ZtTYuC6viyiA4UDk1aeZqh2fz_GzBzi_4RThwa0NaJYbiS2-kfYm8Y0cZp_kYHxkfryv7-iqcJLkbBHSwaVlch72cIxYfwd5i_nb6wV8lh7E9nRDF2H4sXU9ltMj8Jyfkufp_t8j7cGNbr-WXz3K1-sHlnB6A2E22zzT5eLTt1JH--guP4___zW24FdAomfbqcweumfouHOw6PZCw8e_Bt_5uGN0cQcBIZoi4ifdyFqVOGuN5KNB9kWVNzk1HjpcNglHfyYe4k17ie286fSDDx9_7qnYy8y2sWyLrijimEBSZ96npLZmuLpsNDv_U3ofF6Zt3J2dx6N0Qa0Q4XYzArZxYwyrEi1nKDIZhXHKlJLVJnqgqkzTTqD2ThCuNcTLXqB3or2klqVHc0gcwqpvaPASiC2aN5lZrZViJ-ESqXOUoLLPc0oJG8Gq3mEIHYnPXX2MlMMBx6y6GdY_g2SC67tk8_iR07DRiEHAE3P5Fs7kUYT-LqsxNYRBbc12yzHUAYyZTMpUIaW0iTQQvnT4JZyZwMlqGagf8JUe4JaaI3BgGrzyL4HCnciLYj1ZkRelK3CcJi-D5oIZ_n_Ojf5J6DDdxqrRPoTuEUbfZmieIqTr1NGyc7_gOHWU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+Mass+Transfer+Coefficient+in+Jet+Bioreactors+with+Classical+Computer+Vision+Methods+and+Neural+Networks+Algorithms&rft.jtitle=Algorithms&rft.au=Nizovtseva%2C+Irina&rft.au=Palmin%2C+Vladimir&rft.au=Simkin%2C+Ivan&rft.au=Starodumov%2C+Ilya&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=16&rft.issue=3&rft_id=info:doi/10.3390%2Fa16030125&rft.externalDocID=A743461952 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |