Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms

Development of energy-efficient and high-performance bioreactors requires progress in methods for assessing the key parameters of the biosynthesis process. With a wide variety of approaches and methods for determining the phase contact area in gas–liquid flows, the question of obtaining its accurate...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 16; no. 3; p. 125
Main Authors Nizovtseva, Irina, Palmin, Vladimir, Simkin, Ivan, Starodumov, Ilya, Mikushin, Pavel, Nozik, Alexander, Hamitov, Timur, Ivanov, Sergey, Vikharev, Sergey, Zinovev, Alexei, Svitich, Vladislav, Mogilev, Matvey, Nikishina, Margarita, Kraev, Simon, Yurchenko, Stanislav, Mityashin, Timofey, Chernushkin, Dmitrii, Kalyuzhnaya, Anna, Blyakhman, Felix
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.03.2023
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a16030125

Cover

Abstract Development of energy-efficient and high-performance bioreactors requires progress in methods for assessing the key parameters of the biosynthesis process. With a wide variety of approaches and methods for determining the phase contact area in gas–liquid flows, the question of obtaining its accurate quantitative estimation remains open. Particularly challenging are the issues of getting information about the mass transfer coefficients instantly, as well as the development of predictive capabilities for the implementation of effective flow control in continuous fermentation both on the laboratory and industrial scales. Motivated by the opportunity to explore the possibility of applying classical and non-classical computer vision methods to the results of high-precision video records of bubble flows obtained during the experiment in the bioreactor vessel, we obtained a number of results presented in the paper. Characteristics of the bioreactor’s bubble flow were estimated first by classical computer vision (CCV) methods including an elliptic regression approach for single bubble boundaries selection and clustering, image transformation through a set of filters and developing an algorithm for separation of the overlapping bubbles. The application of the developed method for the entire video filming makes it possible to obtain parameter distributions and set dropout thresholds in order to obtain better estimates due to averaging. The developed CCV methodology was also tested and verified on a collected and labeled manual dataset. An onwards deep neural network (NN) approach was also applied, for instance the segmentation task, and has demonstrated certain advantages in terms of high segmentation resolution, while the classical one tends to be more speedy. Thus, in the current manuscript both advantages and disadvantages of the classical computer vision method (CCV) and neural network approach (NN) are discussed based on evaluation of bubbles’ number and their area defined. An approach to mass transfer coefficient estimation methodology in virtue of obtained results is also represented.
AbstractList Development of energy-efficient and high-performance bioreactors requires progress in methods for assessing the key parameters of the biosynthesis process. With a wide variety of approaches and methods for determining the phase contact area in gas–liquid flows, the question of obtaining its accurate quantitative estimation remains open. Particularly challenging are the issues of getting information about the mass transfer coefficients instantly, as well as the development of predictive capabilities for the implementation of effective flow control in continuous fermentation both on the laboratory and industrial scales. Motivated by the opportunity to explore the possibility of applying classical and non-classical computer vision methods to the results of high-precision video records of bubble flows obtained during the experiment in the bioreactor vessel, we obtained a number of results presented in the paper. Characteristics of the bioreactor’s bubble flow were estimated first by classical computer vision (CCV) methods including an elliptic regression approach for single bubble boundaries selection and clustering, image transformation through a set of filters and developing an algorithm for separation of the overlapping bubbles. The application of the developed method for the entire video filming makes it possible to obtain parameter distributions and set dropout thresholds in order to obtain better estimates due to averaging. The developed CCV methodology was also tested and verified on a collected and labeled manual dataset. An onwards deep neural network (NN) approach was also applied, for instance the segmentation task, and has demonstrated certain advantages in terms of high segmentation resolution, while the classical one tends to be more speedy. Thus, in the current manuscript both advantages and disadvantages of the classical computer vision method (CCV) and neural network approach (NN) are discussed based on evaluation of bubbles’ number and their area defined. An approach to mass transfer coefficient estimation methodology in virtue of obtained results is also represented.
Audience Academic
Author Starodumov, Ilya
Kraev, Simon
Blyakhman, Felix
Hamitov, Timur
Zinovev, Alexei
Mityashin, Timofey
Chernushkin, Dmitrii
Mikushin, Pavel
Ivanov, Sergey
Simkin, Ivan
Kalyuzhnaya, Anna
Palmin, Vladimir
Nozik, Alexander
Svitich, Vladislav
Nikishina, Margarita
Yurchenko, Stanislav
Vikharev, Sergey
Nizovtseva, Irina
Mogilev, Matvey
Author_xml – sequence: 1
  givenname: Irina
  orcidid: 0000-0002-7766-7351
  surname: Nizovtseva
  fullname: Nizovtseva, Irina
– sequence: 2
  givenname: Vladimir
  orcidid: 0000-0003-1199-4314
  surname: Palmin
  fullname: Palmin, Vladimir
– sequence: 3
  givenname: Ivan
  orcidid: 0000-0003-1650-4177
  surname: Simkin
  fullname: Simkin, Ivan
– sequence: 4
  givenname: Ilya
  orcidid: 0000-0001-6397-488X
  surname: Starodumov
  fullname: Starodumov, Ilya
– sequence: 5
  givenname: Pavel
  orcidid: 0000-0003-3455-5381
  surname: Mikushin
  fullname: Mikushin, Pavel
– sequence: 6
  givenname: Alexander
  orcidid: 0000-0001-9075-0080
  surname: Nozik
  fullname: Nozik, Alexander
– sequence: 7
  givenname: Timur
  orcidid: 0000-0001-9099-4587
  surname: Hamitov
  fullname: Hamitov, Timur
– sequence: 8
  givenname: Sergey
  orcidid: 0000-0002-1128-2942
  surname: Ivanov
  fullname: Ivanov, Sergey
– sequence: 9
  givenname: Sergey
  orcidid: 0000-0003-1217-9397
  surname: Vikharev
  fullname: Vikharev, Sergey
– sequence: 10
  givenname: Alexei
  orcidid: 0000-0002-0172-2625
  surname: Zinovev
  fullname: Zinovev, Alexei
– sequence: 11
  givenname: Vladislav
  orcidid: 0000-0002-3699-3193
  surname: Svitich
  fullname: Svitich, Vladislav
– sequence: 12
  givenname: Matvey
  orcidid: 0000-0003-0025-9031
  surname: Mogilev
  fullname: Mogilev, Matvey
– sequence: 13
  givenname: Margarita
  orcidid: 0000-0001-5408-4498
  surname: Nikishina
  fullname: Nikishina, Margarita
– sequence: 14
  givenname: Simon
  orcidid: 0000-0002-9929-9502
  surname: Kraev
  fullname: Kraev, Simon
– sequence: 15
  givenname: Stanislav
  orcidid: 0000-0001-6821-904X
  surname: Yurchenko
  fullname: Yurchenko, Stanislav
– sequence: 16
  givenname: Timofey
  orcidid: 0000-0002-0897-5932
  surname: Mityashin
  fullname: Mityashin, Timofey
– sequence: 17
  givenname: Dmitrii
  orcidid: 0000-0002-4822-6055
  surname: Chernushkin
  fullname: Chernushkin, Dmitrii
– sequence: 18
  givenname: Anna
  orcidid: 0000-0002-9612-8601
  surname: Kalyuzhnaya
  fullname: Kalyuzhnaya, Anna
– sequence: 19
  givenname: Felix
  orcidid: 0000-0003-4434-2873
  surname: Blyakhman
  fullname: Blyakhman, Felix
BookMark eNp1kcFvFCEYxSemJrbVg_8BiSdNtoVhYIbjuqla09ZL9Uq-gY9d1llYgc2mN_900TGNMRoOkC_v93jwzpqTEAM2zUtGLzhX9BKYpJyyVjxpTplSatENip_8cX7WnOW8pVQKJdlp832ZM-bsw5qUDZJbyJncJwjZYSKriM554zEU4gP5iIW89TEhmBJTJkdfNmQ1VcQbmKp6tz-Uin3x2cdAbrFsos0EgiV3eEhVcoflGNPXTJbTOqaK7_Lz5qmDKeOL3_t58_nd1f3qw-Lm0_vr1fJmYbjqy0IJpgaHnZVCtqxDJaQAMY7AHZV0tC3w1hgDAxWjYZwLY5EiWm6B4ygcP2-uZ18bYav3ye8gPegIXv8axLTWkIo3E2qrJPaomBRGdS1tVd9hOwIDOtTbAKvXm9nrEPbwcIRpejRkVP_sQT_2UMWvZvE-xW8HzEVv4yGF-lbd9ooJSQfaVdXFrFpDTeCDiyWBqcvizpvasfN1vuw73kmmRFuByxkwKeac0GnjC5T68RX00z-DvP6L-H_oH_7jtsY
CitedBy_id crossref_primary_10_1088_1361_665X_ad10be
crossref_primary_10_1140_epjs_s11734_024_01395_w
crossref_primary_10_3390_inventions9010009
crossref_primary_10_3390_math13010127
crossref_primary_10_3390_math12233864
crossref_primary_10_3390_su16198598
crossref_primary_10_1140_epjs_s11734_024_01378_x
Cites_doi 10.1016/j.bej.2019.107458
10.1038/s42003-019-0400-z
10.1016/0167-7799(85)90101-5
10.3390/app12020750
10.1155/2018/7068349
10.1016/j.egyr.2022.02.072
10.1016/j.scitotenv.2022.160141
10.1016/j.ces.2018.05.029
10.1016/j.procs.2019.08.206
10.1016/j.jiec.2020.03.009
10.1038/s41598-021-88334-0
10.1016/j.bej.2020.107854
10.1007/s10618-016-0483-9
10.1016/0160-9327(90)90086-7
10.1016/j.ces.2004.04.012
10.1039/D2RE00309K
10.1109/IJCNN52387.2021.9534417
10.1016/j.biotechadv.2023.108096
10.1016/j.ijmultiphaseflow.2022.104169
10.1038/s41598-017-17204-5
10.1080/00029890.1971.11992746
10.1016/0009-2509(92)85137-Z
10.1016/j.cherd.2018.08.033
10.1016/S0892-6875(01)00023-1
10.1016/j.cherd.2018.06.026
10.1016/j.cej.2022.136579
10.1016/j.ces.2019.04.004
10.1016/j.jece.2020.104718
10.1109/34.868688
10.1002/9783527683369.ch10
10.1109/34.1000236
10.1002/cite.201900134
10.3390/fluids7120366
10.1007/BF00369405
10.1007/978-1-4613-8748-0
10.1007/978-3-030-00931-1
10.1016/j.advmem.2023.100061
10.1016/j.dche.2022.100040
10.2202/1934-2659.1474
10.1016/j.cjche.2020.07.051
10.1007/978-3-030-17795-9_10
10.1016/j.aquaculture.2020.735885
10.1002/bit.26084
10.1016/j.bej.2009.07.001
10.12688/f1000research.27019.1
10.1002/mma.8132
10.1007/BF01908075
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/a16030125
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_d96e7e9165c94202974e2ba1a083f0ae
10.3390/a16030125
A743461952
10_3390_a16030125
GeographicLocations Russia
GeographicLocations_xml – name: Russia
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c397t-95198fe4d656214e9565a5bba3f060bd2a32ccca805bc1335cde0eed3da3eb5f3
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Fri Oct 03 12:42:14 EDT 2025
Sun Oct 26 03:58:16 EDT 2025
Fri Jul 25 12:00:34 EDT 2025
Mon Oct 20 16:08:34 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Thu Oct 16 04:31:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-95198fe4d656214e9565a5bba3f060bd2a32ccca805bc1335cde0eed3da3eb5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9929-9502
0000-0001-6821-904X
0000-0003-1650-4177
0000-0001-9075-0080
0000-0003-1217-9397
0000-0002-0897-5932
0000-0003-1199-4314
0000-0002-0172-2625
0000-0002-9612-8601
0000-0003-3455-5381
0000-0002-4822-6055
0000-0001-5408-4498
0000-0002-7766-7351
0000-0003-0025-9031
0000-0001-6397-488X
0000-0003-4434-2873
0000-0001-9099-4587
0000-0002-3699-3193
0000-0002-1128-2942
OpenAccessLink https://doaj.org/article/d96e7e9165c94202974e2ba1a083f0ae
PQID 2791560804
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_d96e7e9165c94202974e2ba1a083f0ae
unpaywall_primary_10_3390_a16030125
proquest_journals_2791560804
gale_infotracacademiconefile_A743461952
crossref_citationtrail_10_3390_a16030125
crossref_primary_10_3390_a16030125
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Maischberger (ref_52) 2019; 91
ref_14
ref_13
ref_12
Gemello (ref_18) 2018; 136
Cerqueira (ref_47) 2018; 189
Ho (ref_10) 2020; 87
ref_55
Petersen (ref_31) 2017; 114
Comaniciu (ref_34) 2002; 24
ref_51
Hatamipour (ref_11) 2021; 34
Mandal (ref_50) 2004; 59
Patel (ref_21) 2009; 47
Fynn (ref_24) 1990; 14
Nizovtseva (ref_16) 2022; 45
Fu (ref_41) 2019; 204
Bagnall (ref_53) 2017; 31
Sharif (ref_25) 2021; 531
Wu (ref_54) 2022; 8
Wang (ref_45) 2021; 9
Voulodimos (ref_1) 2018; 2018
ref_23
Hubert (ref_33) 1985; 2
Zohar (ref_6) 2019; 2
Rahimi (ref_15) 2018; 139
(ref_29) 1993; 9
ref_28
Aroniada (ref_9) 2020; 155
Charles (ref_17) 1985; 3
Xu (ref_26) 2023; 63
Shi (ref_36) 2000; 22
ref_35
Klamkin (ref_49) 1971; 78
Alavijeh (ref_7) 2022; 4
ref_32
Kim (ref_40) 2021; 11
ref_30
Hessenkemper (ref_42) 2022; 155
ref_39
ref_38
ref_37
Bankhead (ref_46) 2017; 7
Linek (ref_20) 1992; 47
Fazeli (ref_48) 2020; 9
Woolley (ref_27) 2023; 859
Bi (ref_44) 2020; 18
Ignacz (ref_4) 2023; 3
Finkler (ref_19) 2021; 166
Chen (ref_22) 2001; 14
Khodnenko (ref_56) 2019; 156
ref_43
ref_2
Shafizadeh (ref_3) 2022; 445
ref_8
ref_5
References_xml – volume: 155
  start-page: 107458
  year: 2020
  ident: ref_9
  article-title: Estimation of volumetric mass transfer coefficient (kLa)—Review of classical approaches and contribution of a novel methodology
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2019.107458
– volume: 2
  start-page: 7068349
  year: 2019
  ident: ref_6
  article-title: Multi-flow channel bioreactor enables real-time monitoring of cellular dynamics in 3D engineered tissue
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-019-0400-z
– volume: 3
  start-page: 134
  year: 1985
  ident: ref_17
  article-title: Fermentation scale-up: Problems and possibilities
  publication-title: Trends Biotechnol.
  doi: 10.1016/0167-7799(85)90101-5
– ident: ref_32
– ident: ref_55
– ident: ref_23
  doi: 10.3390/app12020750
– volume: 2018
  start-page: 7068349
  year: 2018
  ident: ref_1
  article-title: Deep Learning for Computer Vision: A Brief Review
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2018/7068349
– volume: 8
  start-page: 3041
  year: 2022
  ident: ref_54
  article-title: Application of Bayesian regularization back propagation neural network in sensorless measurement of pump operational state
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.02.072
– volume: 859
  start-page: 160141
  year: 2023
  ident: ref_27
  article-title: Gas to protein: Microbial single cell protein is an alternative to fishmeal in aquaculture
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.160141
– volume: 189
  start-page: 1
  year: 2018
  ident: ref_47
  article-title: Image processing techniques for the measurement of two-phase bubbly pipe flows using particle image and tracking velocimetry (PIV/PTV)
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2018.05.029
– volume: 156
  start-page: 300
  year: 2019
  ident: ref_56
  article-title: Detection of lost circulation in drilling wells employing sensor data using machine learning technique
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.08.206
– ident: ref_35
– volume: 87
  start-page: 1
  year: 2020
  ident: ref_10
  article-title: Enhancing gas–liquid volumetric mass transfer coefficient
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2020.03.009
– volume: 11
  start-page: 8940
  year: 2021
  ident: ref_40
  article-title: Deep learning-based automated and universal bubble detection and mask extraction in complex two-phase flows
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-88334-0
– volume: 166
  start-page: 107854
  year: 2021
  ident: ref_19
  article-title: A model-based strategy for scaling-up traditional packed-bed bioreactors for solid-state fermentation based on measurement of O2 uptake rates
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2020.107854
– volume: 31
  start-page: 606
  year: 2017
  ident: ref_53
  article-title: The great time series classification bake off: A review and experimental evaluation of recent algorithmic advances
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-016-0483-9
– volume: 14
  start-page: 100
  year: 1990
  ident: ref_24
  article-title: Bioprotein manufacture: A critical assessment: By David H. Sharp. Pp. 140. Ellis Horwood, Chichester. 1989. £34.95
  publication-title: Endeavour
  doi: 10.1016/0160-9327(90)90086-7
– volume: 59
  start-page: 2705
  year: 2004
  ident: ref_50
  article-title: Gas-holdup distribution and energy dissipation in an ejector-induced downflow bubble column: The case of non-Newtonian liquid
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2004.04.012
– ident: ref_5
  doi: 10.1039/D2RE00309K
– ident: ref_13
– ident: ref_38
– ident: ref_43
  doi: 10.1109/IJCNN52387.2021.9534417
– volume: 63
  start-page: 108096
  year: 2023
  ident: ref_26
  article-title: Embracing a low-carbon future by the production and marketing of C1 gas protein
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2023.108096
– volume: 155
  start-page: 104169
  year: 2022
  ident: ref_42
  article-title: Bubble identification from images with machine learning methods
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/j.ijmultiphaseflow.2022.104169
– volume: 7
  start-page: 16878
  year: 2017
  ident: ref_46
  article-title: QuPath: Open source software for digital pathology image analysis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17204-5
– volume: 78
  start-page: 280
  year: 1971
  ident: ref_49
  article-title: Elementary approximations to the area of n-dimensional ellipsoids
  publication-title: Am. Math. Mon.
  doi: 10.1080/00029890.1971.11992746
– volume: 47
  start-page: 3885
  year: 1992
  ident: ref_20
  article-title: Critical assessment of the dynamic double-response method for measuring kLa: Experimental elimination of dispersion effects
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(92)85137-Z
– ident: ref_28
– volume: 139
  start-page: 283
  year: 2018
  ident: ref_15
  article-title: Computational fluid dynamics study of full-scale aerobic bioreactors: Evaluation of gas–liquid mass transfer, oxygen uptake, and dynamic oxygen distribution
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2018.08.033
– volume: 14
  start-page: 427
  year: 2001
  ident: ref_22
  article-title: Technical note bubble size measurement in flotation machines
  publication-title: Miner. Eng.
  doi: 10.1016/S0892-6875(01)00023-1
– volume: 136
  start-page: 846
  year: 2018
  ident: ref_18
  article-title: CFD-based scale-up of hydrodynamics and mixing in bubble columns
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2018.06.026
– volume: 445
  start-page: 136579
  year: 2022
  ident: ref_3
  article-title: Machine learning predicts and optimizes hydrothermal liquefaction of biomass
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136579
– volume: 204
  start-page: 35
  year: 2019
  ident: ref_41
  article-title: BubGAN: Bubble generative adversarial networks for synthesizing realistic bubbly flow images
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.04.004
– volume: 9
  start-page: 104718
  year: 2021
  ident: ref_45
  article-title: Intensification on mass transfer between gas and liquid in fine bubble jet reactor
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2020.104718
– volume: 22
  start-page: 888
  year: 2000
  ident: ref_36
  article-title: Normalized Cuts and Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.868688
– ident: ref_51
  doi: 10.1002/9783527683369.ch10
– volume: 24
  start-page: 603
  year: 2002
  ident: ref_34
  article-title: Mean Shift: A Robust Approach Toward Feature Space Analysis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.1000236
– volume: 91
  start-page: 1719
  year: 2019
  ident: ref_52
  article-title: Optimized process and bioreactor characterization
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.201900134
– ident: ref_37
– ident: ref_8
  doi: 10.3390/fluids7120366
– volume: 9
  start-page: 215
  year: 1993
  ident: ref_29
  article-title: Comparison of different bioreactor performances
  publication-title: Bioprocess Eng.
  doi: 10.1007/BF00369405
– ident: ref_30
  doi: 10.1007/978-1-4613-8748-0
– ident: ref_39
  doi: 10.1007/978-3-030-00931-1
– volume: 3
  start-page: 100061
  year: 2023
  ident: ref_4
  article-title: Explainable machine learning for unraveling solvent effects in polyimide organic solvent nanofiltration membranes
  publication-title: Adv. Membr.
  doi: 10.1016/j.advmem.2023.100061
– volume: 4
  start-page: 100040
  year: 2022
  ident: ref_7
  article-title: Digitally enabled approaches for the scale up of mammalian cell bioreactors
  publication-title: Digit. Chem. Eng.
  doi: 10.1016/j.dche.2022.100040
– ident: ref_14
  doi: 10.2202/1934-2659.1474
– volume: 34
  start-page: 61
  year: 2021
  ident: ref_11
  article-title: Experimental determination of gas holdup and volumetric mass transfer coefficient in a jet bubbling reactor
  publication-title: Chin. J. Chem. Eng.
  doi: 10.1016/j.cjche.2020.07.051
– ident: ref_12
– ident: ref_2
  doi: 10.1007/978-3-030-17795-9_10
– volume: 531
  start-page: 735885
  year: 2021
  ident: ref_25
  article-title: Single cell protein: Sources, mechanism of production, nutritional value and its uses in aquaculture nutrition
  publication-title: Aquaculture
  doi: 10.1016/j.aquaculture.2020.735885
– volume: 114
  start-page: 344
  year: 2017
  ident: ref_31
  article-title: Mixing and mass transfer in a pilot scale U-loop bioreactor
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26084
– volume: 47
  start-page: 48
  year: 2009
  ident: ref_21
  article-title: Enhanced in situ dynamic method for measuring KLa in fermentation media
  publication-title: Biochem. Eng. J.
  doi: 10.1016/j.bej.2009.07.001
– volume: 18
  start-page: 20190102
  year: 2020
  ident: ref_44
  article-title: Experimental Study on Bubble Size Distribution in Gas-Liquid Reversed Jet Loop Reactor
  publication-title: Int. J. Chem. React. Eng.
– volume: 9
  start-page: 1279
  year: 2020
  ident: ref_48
  article-title: Automated cell tracking using StarDist and TrackMate
  publication-title: F1000Research
  doi: 10.12688/f1000research.27019.1
– volume: 45
  start-page: 8216
  year: 2022
  ident: ref_16
  article-title: Simulation of two-phase air–liquid flows in a closed bioreactor loop: Numerical modeling, experiments, and verification
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.8132
– volume: 2
  start-page: 193
  year: 1985
  ident: ref_33
  article-title: Comparing partitions
  publication-title: J. Classif.
  doi: 10.1007/BF01908075
SSID ssj0065961
Score 2.3099957
Snippet Development of energy-efficient and high-performance bioreactors requires progress in methods for assessing the key parameters of the biosynthesis process....
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 125
SubjectTerms Algorithms
Artificial neural networks
bioreactor
Bioreactors
Biosynthesis
bubble detection
Bubbles
Clustering
Coefficients
Comparative analysis
Computer vision
Design
Efficiency
Fermentation
Flow control
Fluid dynamics
Gas flow
Gases
gas—liquid flows
Image segmentation
jet stream
Liquid flow
Machine vision
Mass transfer
Methods
Neural networks
phase contact area
Physiological aspects
Process parameters
Productivity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4tDxFoCALkOASNfEj2RxQtVu1qirtCiGKeotsxy6VlmTppkK98dOZcR6AeFyjUeR47JlvHM_3AbzWcqqtE2msC6diKbyPi9ybuHIIDkwmXMqpd3ixzE7O5Om5Ot-C5dALQ9cqh5gYAnXVWDoj3-d5QU2_00QerL_GpBpFf1cHCQ3dSytU7wLF2C3Y5sSMNYHt-dHy_YchNmeqyNKOX0hgsb-vSWQZQ7T6LSsF8v4_Q_RduH1dr_XNN71a_ZKDju_BTg8e2azz9n3YcvUD2B2EGVi_Tx_C9-5XLmYlhviOLRAgs5CUPFodNi7QRmC2YZc1O3Utm182iB2D8A6jg1kWpDLJfWx8-afQhM4WQXF6w3RdMSL2QJNld5N8w2arC5yx9vOXzSM4Oz76eHgS91ILsUVA0saIs4qpd7JCeMdT6bBqUloZo4VPssRUXAtu0dnTRBmLZa2y6ExMr6LSwhnlxWOY1E3tngCzufTOKm-tcbJAOKFNZjI01jzzIhcRvB2murQ9DznJYaxKrEfIK-XolQhejqbrjnzjb0Zz8tdoQHzZ4UFzdVH226-siszlDqGwsoXkJNglHTc61YhAfaJdBG_I2yXtahyM1X1zAn4S8WOVMwRaEmtNxSPYGxZE2W_3TflzcUbwalwk_x7z0_-_5BncIVX77qrbHkzaq2v3HLFPa170C_oH2mQGVg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5B9wB7YHmKwIIsQIJLtklsJ80JdVesViu14kDRcrJsx15VlKRq0kVw4qczdtyIp4S45BCNI0cez3xjz3wD8EKyidSGprEsDY8ZtTYuC6viyiA4UDk1aeZqh2fz_GzBzi_4RThwa0NaJYbiS2-kfYm8Y0cZp_kYHxkfryv7-iqcJLkbBHSwaVlch72cIxYfwd5i_nb6wV8lh7E9nRDF2H4sXU9ltMj8Jyfkufp_t8j7cGNbr-WXz3K1-sHlnB6A2E22zzT5eLTt1JH--guP4___zW24FdAomfbqcweumfouHOw6PZCw8e_Bt_5uGN0cQcBIZoi4ifdyFqVOGuN5KNB9kWVNzk1HjpcNglHfyYe4k17ie286fSDDx9_7qnYy8y2sWyLrijimEBSZ96npLZmuLpsNDv_U3ofF6Zt3J2dx6N0Qa0Q4XYzArZxYwyrEi1nKDIZhXHKlJLVJnqgqkzTTqD2ThCuNcTLXqB3or2klqVHc0gcwqpvaPASiC2aN5lZrZViJ-ESqXOUoLLPc0oJG8Gq3mEIHYnPXX2MlMMBx6y6GdY_g2SC67tk8_iR07DRiEHAE3P5Fs7kUYT-LqsxNYRBbc12yzHUAYyZTMpUIaW0iTQQvnT4JZyZwMlqGagf8JUe4JaaI3BgGrzyL4HCnciLYj1ZkRelK3CcJi-D5oIZ_n_Ojf5J6DDdxqrRPoTuEUbfZmieIqTr1NGyc7_gOHWU
  priority: 102
  providerName: Unpaywall
Title Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms
URI https://www.proquest.com/docview/2791560804
https://www.mdpi.com/1999-4893/16/3/125/pdf?version=1679639197
https://doaj.org/article/d96e7e9165c94202974e2ba1a083f0ae
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: AMVHM
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BOQAHvlED7coCJLhETfyV-Lhbdakq7apCLCqnyHZsVGmbrbpbIW78dMZ2NiqiiAvHRLOR4xl73mQ97wG807zW1rEy18qJnDPvc1V5k7cOwYGRzJU09A7P5vJ4wU_OxNkNqa9wJizRA6eJO2iVdJVDECOs4jRILXFHjS41YgdfaBd236JW22Iq7cFSKFkmHiGGRf2BDmLKuBWL37JPJOn_cyt-CPevu0v947teLm_kmukTeNSDRDJOg3sKd1z3DB5vBRhIvx6fw8_0ly1mH4I4jswQCJOYfDxaHa5cpIfArELOO3LiNmRyvkKMGAV2SPgAS6IkZnATGR7-JTabk1lUll4T3bUkEHigyTydGF-T8fLb6gp_frF-AYvp0efD47yXVMgtAo9NjnhK1d7xFmEcLbnD6khoYYzGuZSFaalm1KJT60IYi-WrsOg0TKOs1cwZ4dlL2OlWndsFYivunRXeWuO4QtigjTQSjTWVnlUsgw_bqW5szzceZC-WDdYdwSvN4JUM3gyml4lk4zajSfDXYBB4seMNjJamj5bmX9GSwfvg7SasXhyM1X0TAr5S4MFqxgioONaUgmawtw2Ipl_W64ZWKnSe1wXP4O0QJH8f86v_MebX8CBo3KeDb3uws7m6dvuIhDZmBHfr6ccR3JsczU8_jeISwKvF_HT89RcI1QxB
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA48EYEClg8BJeoiR_J5lCh3dJq-9gVQi3qzdiO3VbaJkuzVdUbv4zfxjgvQDxuvUYjy86M_X2TeOYDeK34QBnL4lBlVoScORdmqdNhbpEc6ITZmPra4ck0GR_y3SNxtATfu1oYf62yOxPrgzovjf9Gvk7TzBf9DiL-fv419KpR_u9qJ6GhWmmFfKNuMdYWduzZq0tM4aqNnQ_o7zeUbm8dbI7DVmUgNIjFixApRjZwlufIbGjMLSYMQgmtFXNREumcKkYNrnMQCW0woxMG14HIwnLFrBaO4bg3YIUznmHytzLamn781GFBIrIkbvoZMZZF68qLOiMkiN9QsBYL-BMSbsHqRTFXV5dqNvsF87bvwu2WrJJhE133YMkW9-FOJwRB2nPhAXxrfh0jChLkk2SChJzUIOjQarO0dZsKRDdyWpBduyCj0xK5ai30Q_yHYFJLc_pwIf3gn-uidzKpFa4rooqc-EYiaDJtbq5XZDg7Rg8tTs6qh3B4LS_9ESwXZWEfAzEpd9YIZ4y2PEP6onSiEzRWNHEsZQG86161NG3fcy-_MZOY_3ivyN4rAbzsTedNs4-_GY28v3oD35-7flCeH8t2u8s8S2xqkXoLk3HqBcK4pVrFChmvi5QN4K33tvSnCE7GqLYYApfk-3HJIRI7jrmtoAGsdQEh2-Olkj83QwCv-iD595yf_H-QF7A6Ppjsy_2d6d5TuInzZc01uzVYXpxf2GfIuxb6eRvcBL5c9376AUIURNg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIvE48EYNFLB4CC7RJn4kmwNC25alD3bFgaLejO3YbaUlWZpUVW_8Ln4d47wA8bj1Go0sOzOe73PimQ_gueJjZSyLQ5VZEXLmXJilToe5RXKgE2Zj6muHZ_Nke5_vHoiDFfje18L4a5V9TmwSdV4a_418RNPMF_2OIz5y3bWID1vTN8uvoVeQ8n9aezmNNkT27PkZHt-q1ztb6OsXlE7fftzcDjuFgdAgDtch0ots7CzPkdXQmFs8LAgltFbMRUmkc6oYNbjGcSS0wdOcMLgGRBWWK2a1cAzHvQSXU9_F3VepT9_1KJCILInbTkaMZdFIeTlnBAPxG_41MgF_gsF1uHpaLNX5mVosfkG76S240dFUMmnj6jas2OIO3OwlIEiXEe7Ct_anMeIfQSZJZkjFSQN_Dq02S9s0qEBcI8cF2bU12TgukaU2Ej_EfwImjSinDxQyDP6pKXcns0bbuiKqyIlvIYIm8_bOekUmi0P0R330pboH-xfyyu_DalEWdg2ISbmzRjhjtOUZEhelE52gsaKJYykL4FX_qqXpOp574Y2FxJOP94ocvBLA08F02bb5-JvRhvfXYOA7czcPypND2W10mWeJTS2SbmEyTr00GLdUq1gh13WRsgG89N6WPn_gZIzqyiBwSb4Tl5wgpeN4qhU0gPU-IGSXWCr5cxsE8GwIkn_P-cH_B3kCV3AXyfc7872HcA2ny9r7deuwWp-c2kdIuGr9uIlsAp8veiv9AHEmQnI
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB5B9wB7YHmKwIIsQIJLtklsJ80JdVesViu14kDRcrJsx15VlKRq0kVw4qczdtyIp4S45BCNI0cez3xjz3wD8EKyidSGprEsDY8ZtTYuC6viyiA4UDk1aeZqh2fz_GzBzi_4RThwa0NaJYbiS2-kfYm8Y0cZp_kYHxkfryv7-iqcJLkbBHSwaVlch72cIxYfwd5i_nb6wV8lh7E9nRDF2H4sXU9ltMj8Jyfkufp_t8j7cGNbr-WXz3K1-sHlnB6A2E22zzT5eLTt1JH--guP4___zW24FdAomfbqcweumfouHOw6PZCw8e_Bt_5uGN0cQcBIZoi4ifdyFqVOGuN5KNB9kWVNzk1HjpcNglHfyYe4k17ie286fSDDx9_7qnYy8y2sWyLrijimEBSZ96npLZmuLpsNDv_U3ofF6Zt3J2dx6N0Qa0Q4XYzArZxYwyrEi1nKDIZhXHKlJLVJnqgqkzTTqD2ThCuNcTLXqB3or2klqVHc0gcwqpvaPASiC2aN5lZrZViJ-ESqXOUoLLPc0oJG8Gq3mEIHYnPXX2MlMMBx6y6GdY_g2SC67tk8_iR07DRiEHAE3P5Fs7kUYT-LqsxNYRBbc12yzHUAYyZTMpUIaW0iTQQvnT4JZyZwMlqGagf8JUe4JaaI3BgGrzyL4HCnciLYj1ZkRelK3CcJi-D5oIZ_n_Ojf5J6DDdxqrRPoTuEUbfZmieIqTr1NGyc7_gOHWU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+Mass+Transfer+Coefficient+in+Jet+Bioreactors+with+Classical+Computer+Vision+Methods+and+Neural+Networks+Algorithms&rft.jtitle=Algorithms&rft.au=Nizovtseva%2C+Irina&rft.au=Palmin%2C+Vladimir&rft.au=Simkin%2C+Ivan&rft.au=Starodumov%2C+Ilya&rft.date=2023-03-01&rft.pub=MDPI+AG&rft.issn=1999-4893&rft.eissn=1999-4893&rft.volume=16&rft.issue=3&rft_id=info:doi/10.3390%2Fa16030125&rft.externalDocID=A743461952
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon