Characteristics of a plasma information variable in phenomenology-based, statistically-tuned virtual metrology to predict silicon dioxide etching depth
A phenomenology-based virtual metrology (VM) for monitoring SiO2 etching depth was proposed by Park (2015). It achieved high prediction accuracy by introducing newly developed plasma information (PI) variables as designated inputs, called PI-VM. The PI variables represent the state of the plasma, th...
Saved in:
Published in | Current applied physics Vol. 19; no. 10; pp. 1068 - 1075 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.10.2019
한국물리학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1567-1739 1878-1675 1567-1739 |
DOI | 10.1016/j.cap.2019.06.001 |
Cover
Abstract | A phenomenology-based virtual metrology (VM) for monitoring SiO2 etching depth was proposed by Park (2015). It achieved high prediction accuracy by introducing newly developed plasma information (PI) variables as designated inputs, called PI-VM. The PI variables represent the state of the plasma, the sheath, and the target during the process. We investigate how a PI variable can help to improve prediction accuracy of VM and how it plays a special role in the statistical selection. We choose only PIEEDF among the three PI variables to focus on the investigation. The PIEEDF is determined from the ratio of line-intensities of optical emission spectroscopy. We apply Pearson's correlation filter (PCF), principal component analysis (PCA), and stepwise variable selection (SVS) as statistical selection methods on the variables set including PIEEDF or not. Multilinear regression is used to model the VM. This study reveals that PIEEDF variable is a good variable in terms of independence from other input variables and explanatory power for an output variable. Especially, VM using SVS method applied to variable sets including PIEEDF achieves the highest accuracy, comparable to Park's PI-VM. This study shows that PIEEDF variable is particularly useful for monitoring of the fine variations in semiconductor manufacturing process and it also extends the utilization of OES sensor data. |
---|---|
AbstractList | A phenomenology-based virtual metrology (VM) for monitoring SiO2 etching depth was proposed by Park (2015). It achieved high prediction accuracy by introducing newly developed plasma information (PI) variables as designated inputs, called PI-VM. The PI variables represent the state of the plasma, the sheath, and the target during the process. We investigate how a PI variable can help to improve prediction accuracy of VM and how it plays a special role in the statistical selection. We choose only PIEEDF among the three PI variables to focus on the investigation. The PIEEDF is determined from the ratio of line-intensities of optical emission spectroscopy. We apply Pearson's correlation filter (PCF), principal component analysis (PCA), and stepwise variable selection (SVS) as statistical selection methods on the variables set including PIEEDF or not. Multilinear regression is used to model the VM. This study reveals that PIEEDF variable is a good variable in terms of independence from other input variables and explanatory power for an output variable. Especially, VM using SVS method applied to variable sets including PIEEDF achieves the highest accuracy, comparable to Park's PI-VM. This study shows that PIEEDF variable is particularly useful for monitoring of the fine variations in semiconductor manufacturing process and it also extends the utilization of OES sensor data. KCI Citation Count: 1 A phenomenology-based virtual metrology (VM) for monitoring SiO2 etching depth was proposed by Park (2015). It achieved high prediction accuracy by introducing newly developed plasma information (PI) variables as designated inputs, called PI-VM. The PI variables represent the state of the plasma, the sheath, and the target during the process. We investigate how a PI variable can help to improve prediction accuracy of VM and how it plays a special role in the statistical selection. We choose only PIEEDF among the three PI variables to focus on the investigation. The PIEEDF is determined from the ratio of line-intensities of optical emission spectroscopy. We apply Pearson's correlation filter (PCF), principal component analysis (PCA), and stepwise variable selection (SVS) as statistical selection methods on the variables set including PIEEDF or not. Multilinear regression is used to model the VM. This study reveals that PIEEDF variable is a good variable in terms of independence from other input variables and explanatory power for an output variable. Especially, VM using SVS method applied to variable sets including PIEEDF achieves the highest accuracy, comparable to Park's PI-VM. This study shows that PIEEDF variable is particularly useful for monitoring of the fine variations in semiconductor manufacturing process and it also extends the utilization of OES sensor data. |
Author | Ryu, Sanywon Jeong, Sangmin Roh, Hyun-Joon Kim, Gon-Ho Jang, Yunchang Park, Seolhye Kwon, Ji-Won Kim, Nam-Kyun |
Author_xml | – sequence: 1 givenname: Yunchang orcidid: 0000-0003-1100-2055 surname: Jang fullname: Jang, Yunchang – sequence: 2 givenname: Hyun-Joon surname: Roh fullname: Roh, Hyun-Joon – sequence: 3 givenname: Seolhye surname: Park fullname: Park, Seolhye – sequence: 4 givenname: Sangmin surname: Jeong fullname: Jeong, Sangmin – sequence: 5 givenname: Sanywon surname: Ryu fullname: Ryu, Sanywon – sequence: 6 givenname: Ji-Won surname: Kwon fullname: Kwon, Ji-Won – sequence: 7 givenname: Nam-Kyun surname: Kim fullname: Kim, Nam-Kyun – sequence: 8 givenname: Gon-Ho surname: Kim fullname: Kim, Gon-Ho email: ghkim@snu.ac.kr |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002516016$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kc1qGzEUhYeSQpO0D9CdtoXOVBqP9UNXwfQnECiUdC000h37OhppkBRTP0lft7LdVRdZXO5FnO-AzrlprkIM0DTvGe0YZfzTvrNm6XrKVEd5Ryl71VwzKWTLuFhf1XvNRcvESr1pbnLeVwEf6HDd_NnsTDK2QMJc0GYSJ2LI4k2eDcEwxTSbgjGQg0loRg_1kSw7CHGu4-P22I4mg_tIcqnCk4fx_tiW5wCOHDCVZ-PJDCWdxaREsiRwaAvJ6NFWZ4fxNzogUOwOw5Y4WMrubfN6Mj7Du3_7tvn19cvj5nv78OPb_ebuobUrJUoruGTTOPSSUjHw0Yy95EpKoFL0qobhFBtVz9S6p1xIJqcVHZlTRjhO5bCG1W3z4eIb0qSfLOpo8Ly3UT8lfffz8V5zxnvFeNWyi9ammHOCSS8JZ5OOmlF9akHvdW1Bn1rQlOsacmXEf4zFck60JIP-RfLzhYT6_QNC0tkiBFvDS2CLdhFfoP8CiqKmbg |
CitedBy_id | crossref_primary_10_1109_TSM_2024_3447074 crossref_primary_10_1002_ppap_202200238 crossref_primary_10_1016_j_compchemeng_2022_107696 crossref_primary_10_1116_6_0001277 crossref_primary_10_1016_j_cap_2022_11_007 crossref_primary_10_1109_TPS_2023_3268170 crossref_primary_10_1007_s40042_022_00452_8 crossref_primary_10_1088_1361_6463_ad2339 crossref_primary_10_3390_coatings12081064 |
Cites_doi | 10.1116/1.580357 10.1016/j.tsf.2016.01.051 10.1143/JJAP.48.08HC01 10.1109/TSM.2007.907609 10.1002/cem.2736 10.1109/66.554484 10.1116/1.1331294 10.1109/TSM.2016.2594033 10.1016/j.neucom.2015.12.114 10.1016/j.jprocont.2008.04.014 10.1016/j.compeleceng.2013.11.024 10.3938/jkps.64.1819 10.1109/TSM.2015.2432576 10.1109/TSM.2008.2011185 10.1109/TASE.2016.2642997 10.1109/TSM.2011.2104372 10.1109/TSM.2018.2824314 10.1116/1.1349728 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1016/j.cap.2019.06.001 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1878-1675 1567-1739 |
EndPage | 1075 |
ExternalDocumentID | oai_kci_go_kr_ARTI_6162916 10_1016_j_cap_2019_06_001 S1567173919301634 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9ZL AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SPD SSQ SSZ T5K UHS ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ACYCR |
ID | FETCH-LOGICAL-c397t-7681fb42800746bab286988e08729019d91b921952067818f30b1d9a7d60845e3 |
IEDL.DBID | .~1 |
ISSN | 1567-1739 |
IngestDate | Sun Mar 09 07:51:11 EDT 2025 Wed Oct 01 01:55:12 EDT 2025 Thu Apr 24 22:59:00 EDT 2025 Fri Feb 23 02:29:59 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | PI-VM Silicon oxide etching Virtual metrology (VM) Optical emission spectroscopy (OES) Plasma information (PI) variable Statistical selection method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-7681fb42800746bab286988e08729019d91b921952067818f30b1d9a7d60845e3 |
ORCID | 0000-0003-1100-2055 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_6162916 crossref_primary_10_1016_j_cap_2019_06_001 crossref_citationtrail_10_1016_j_cap_2019_06_001 elsevier_sciencedirect_doi_10_1016_j_cap_2019_06_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2019 2019-10-00 2019-10 |
PublicationDateYYYYMMDD | 2019-10-01 |
PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
PublicationDecade | 2010 |
PublicationTitle | Current applied physics |
PublicationYear | 2019 |
Publisher | Elsevier B.V 한국물리학회 |
Publisher_xml | – name: Elsevier B.V – name: 한국물리학회 |
References | Reports (bib1) 2015 Zhang, Kushner (bib24) 2001; 19 Chandrashekar, Sahin (bib12) 2014; 40 Fukasawa, Kawashima, Kuboi, Takagi, Tanaka, Sakayori, Oshima, Nagahata, Tatsumi (bib10) 2009; 48 Huang, Cheng, Chen (bib11) 2006 Park, Jeong, Jang, Ryu, Roh, Kim (bib21) 2015; 28 Roh, Ryu, Jang, Kim, Jin, Park, Kim (bib23) 2018; 31 Khan, Moyne, Tilbury (bib3) 2007; 20 Chen, Huang, Spanos, Gatto (bib16) 1996; 14 Shmueli, Patel, Bruce (bib8) 2010 Kramida, Ralchenko, Reader (bib25) 2016 White, Boning, Butler, Barna (bib15) 1997; 10 Cheng, Chang, Huang, Kao, Chen, Peng (bib14) 2011; 24 Guyon, Elisseeff (bib7) 2003; 3 Zeng (bib9) 2012 Park, Choe, Roh, Kim (bib20) 2014; 64 Yue, Qin, Wiseman, Toprac (bib17) 2001; 19 Montgomery, Peck, Vining (bib27) 2006 Pan, Zhou, Qiao, Wu (bib2) 2018; 15 Kang, Kim, Cho (bib13) 2016; 29 Lin, Cheng, Wu, Kao, Ye, Chang (bib19) 2009; 22 Park, Roh, Jang, Jeong, Ryu, Choe, Kim (bib22) 2016; 603 de Myttenaere, Golden, Le Grand, Rossi (bib28) 2016; 192 ITRS Reports (bib5) 2015 Khan, Moyne, Tilbury (bib4) 2008; 18 Afifi, Clarke, May (bib26) 2004 Farrés, Platikanov, Tsakovski, Tauler (bib29) 2015; 29 Lynn, Ringwood, Ragnoli, McLoone, MacGearailt (bib18) 2009 Liu, Motoda (bib6) 1998 Kang (10.1016/j.cap.2019.06.001_bib13) 2016; 29 Reports (10.1016/j.cap.2019.06.001_bib1) 2015 ITRS Reports (10.1016/j.cap.2019.06.001_bib5) 2015 Cheng (10.1016/j.cap.2019.06.001_bib14) 2011; 24 Zeng (10.1016/j.cap.2019.06.001_bib9) 2012 Park (10.1016/j.cap.2019.06.001_bib21) 2015; 28 Zhang (10.1016/j.cap.2019.06.001_bib24) 2001; 19 Pan (10.1016/j.cap.2019.06.001_bib2) 2018; 15 Guyon (10.1016/j.cap.2019.06.001_bib7) 2003; 3 Huang (10.1016/j.cap.2019.06.001_bib11) 2006 de Myttenaere (10.1016/j.cap.2019.06.001_bib28) 2016; 192 Farrés (10.1016/j.cap.2019.06.001_bib29) 2015; 29 Park (10.1016/j.cap.2019.06.001_bib20) 2014; 64 Khan (10.1016/j.cap.2019.06.001_bib4) 2008; 18 Roh (10.1016/j.cap.2019.06.001_bib23) 2018; 31 Montgomery (10.1016/j.cap.2019.06.001_bib27) 2006 Lynn (10.1016/j.cap.2019.06.001_bib18) 2009 Yue (10.1016/j.cap.2019.06.001_bib17) 2001; 19 Fukasawa (10.1016/j.cap.2019.06.001_bib10) 2009; 48 Shmueli (10.1016/j.cap.2019.06.001_bib8) 2010 Lin (10.1016/j.cap.2019.06.001_bib19) 2009; 22 Park (10.1016/j.cap.2019.06.001_bib22) 2016; 603 Chen (10.1016/j.cap.2019.06.001_bib16) 1996; 14 Kramida (10.1016/j.cap.2019.06.001_bib25) 2016 Liu (10.1016/j.cap.2019.06.001_bib6) 1998 White (10.1016/j.cap.2019.06.001_bib15) 1997; 10 Chandrashekar (10.1016/j.cap.2019.06.001_bib12) 2014; 40 Afifi (10.1016/j.cap.2019.06.001_bib26) 2004 Khan (10.1016/j.cap.2019.06.001_bib3) 2007; 20 |
References_xml | – year: 2004 ident: bib26 publication-title: Computer-Aided Multivariate Analysis – volume: 192 start-page: 38 year: 2016 end-page: 48 ident: bib28 article-title: Mean absolute percentage error for regression models publication-title: Neurocomputing – volume: 40 start-page: 16 year: 2014 end-page: 28 ident: bib12 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. – year: 2016 ident: bib25 article-title: Nist Atomic Spectra Database Version 5.4 – volume: 29 start-page: 528 year: 2015 end-page: 536 ident: bib29 article-title: Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation publication-title: J. Chemom. – year: 2015 ident: bib1 article-title: International Technology Roadmap for Semiconductors 2.0 More Moore – volume: 14 start-page: 1901 year: 1996 end-page: 1906 ident: bib16 article-title: Plasma etch modeling using optical emission spectroscopy publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film – volume: 22 start-page: 204 year: 2009 end-page: 211 ident: bib19 article-title: NN-based key-variable selection method for enhancing virtual metrology accuracy publication-title: IEEE Trans. Semicond. Manuf. – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: bib7 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 29 start-page: 391 year: 2016 end-page: 398 ident: bib13 article-title: Efficient feature selection-based on random forward search for virtual metrology modeling publication-title: IEEE Trans. Semicond. Manuf. – volume: 10 start-page: 52 year: 1997 end-page: 61 ident: bib15 article-title: Spatial characterization of wafer state using principal component analysis of optical emission spectra in plasma etch publication-title: IEEE Trans. Semicond. Manuf. – volume: 18 start-page: 961 year: 2008 end-page: 974 ident: bib4 article-title: Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares publication-title: J. Process Control – volume: 24 start-page: 261 year: 2011 end-page: 272 ident: bib14 article-title: Benefit model of virtual metrology and integrating AVM into MES publication-title: IEEE Trans. Semicond. Manuf. – year: 2010 ident: bib8 article-title: Data Mining for Business Intelligence – start-page: 143 year: 2009 end-page: 148 ident: bib18 article-title: Virtual metrology for plasma etch using tool variables publication-title: ASMC (Advanced Semicond – year: 2012 ident: bib9 article-title: Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing – start-page: 3727 year: 2006 end-page: 3732 ident: bib11 article-title: Importance of data quality in virtual metrology publication-title: IECON 2006 - 32nd Annu. Conf. IEEE Ind. Electron – year: 2006 ident: bib27 publication-title: Introduction to Linear Regression Analysis – year: 2015 ident: bib5 article-title: International Technology Roadmap for Semiconductors (ITRS) 2.0 Factory Integration – volume: 64 start-page: 1819 year: 2014 end-page: 1827 ident: bib20 article-title: Characteristics of a non-Maxwellian electron energy distribution in a low-pressure argon plasma publication-title: J. Korean Phys. Soc. – volume: 19 start-page: 66 year: 2001 end-page: 75 ident: bib17 article-title: Plasma etching endpoint detection using multiple wavelengths for small open-area wafers publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film – volume: 31 start-page: 232 year: 2018 end-page: 241 ident: bib23 article-title: Development of the virtual metrology for the nitride thickness in multi-layer plasma-enhanced chemical vapor deposition using plasma-information variables publication-title: IEEE Trans. Semicond. Manuf. – volume: 48 start-page: 0 year: 2009 end-page: 5 ident: bib10 article-title: Prediction of fluctuations in plasma-wall interactions using an equipment engineering system publication-title: Jpn. J. Appl. Phys. – volume: 20 start-page: 364 year: 2007 end-page: 375 ident: bib3 article-title: An approach for factory-wide control utilizing virtual metrology publication-title: IEEE Trans. Semicond. Manuf. – volume: 28 start-page: 241 year: 2015 end-page: 246 ident: bib21 article-title: Enhancement of the virtual metrology performance for plasma-assisted oxide etching processes by using plasma information (PI) parameters publication-title: IEEE Trans. Semicond. Manuf. – volume: 603 start-page: 154 year: 2016 end-page: 159 ident: bib22 article-title: Vacuum pump age effects by the exposure to the corrosive gases on the Cr etch rate as observed using optical emission spectroscopy in an Ar/O2/Cl2mixed plasma publication-title: Thin Solid Films – volume: 15 start-page: 586 year: 2018 end-page: 601 ident: bib2 article-title: Scheduling cluster tools in semiconductor manufacturing: recent advances and challenges publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 19 start-page: 524 year: 2001 end-page: 538 ident: bib24 article-title: Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film – year: 1998 ident: bib6 article-title: Feature Extraction, Construction and Selection: A Data Mining Perspective – volume: 14 start-page: 1901 year: 1996 ident: 10.1016/j.cap.2019.06.001_bib16 article-title: Plasma etch modeling using optical emission spectroscopy publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film doi: 10.1116/1.580357 – volume: 603 start-page: 154 year: 2016 ident: 10.1016/j.cap.2019.06.001_bib22 article-title: Vacuum pump age effects by the exposure to the corrosive gases on the Cr etch rate as observed using optical emission spectroscopy in an Ar/O2/Cl2mixed plasma publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.01.051 – volume: 48 start-page: 0 year: 2009 ident: 10.1016/j.cap.2019.06.001_bib10 article-title: Prediction of fluctuations in plasma-wall interactions using an equipment engineering system publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.48.08HC01 – year: 2006 ident: 10.1016/j.cap.2019.06.001_bib27 – volume: 20 start-page: 364 year: 2007 ident: 10.1016/j.cap.2019.06.001_bib3 article-title: An approach for factory-wide control utilizing virtual metrology publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2007.907609 – volume: 29 start-page: 528 year: 2015 ident: 10.1016/j.cap.2019.06.001_bib29 article-title: Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation publication-title: J. Chemom. doi: 10.1002/cem.2736 – volume: 10 start-page: 52 year: 1997 ident: 10.1016/j.cap.2019.06.001_bib15 article-title: Spatial characterization of wafer state using principal component analysis of optical emission spectra in plasma etch publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/66.554484 – volume: 19 start-page: 66 year: 2001 ident: 10.1016/j.cap.2019.06.001_bib17 article-title: Plasma etching endpoint detection using multiple wavelengths for small open-area wafers publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film doi: 10.1116/1.1331294 – volume: 29 start-page: 391 year: 2016 ident: 10.1016/j.cap.2019.06.001_bib13 article-title: Efficient feature selection-based on random forward search for virtual metrology modeling publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2016.2594033 – volume: 192 start-page: 38 year: 2016 ident: 10.1016/j.cap.2019.06.001_bib28 article-title: Mean absolute percentage error for regression models publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.12.114 – volume: 18 start-page: 961 year: 2008 ident: 10.1016/j.cap.2019.06.001_bib4 article-title: Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares publication-title: J. Process Control doi: 10.1016/j.jprocont.2008.04.014 – volume: 40 start-page: 16 year: 2014 ident: 10.1016/j.cap.2019.06.001_bib12 article-title: A survey on feature selection methods publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2013.11.024 – volume: 64 start-page: 1819 year: 2014 ident: 10.1016/j.cap.2019.06.001_bib20 article-title: Characteristics of a non-Maxwellian electron energy distribution in a low-pressure argon plasma publication-title: J. Korean Phys. Soc. doi: 10.3938/jkps.64.1819 – year: 2010 ident: 10.1016/j.cap.2019.06.001_bib8 – year: 2012 ident: 10.1016/j.cap.2019.06.001_bib9 – start-page: 3727 year: 2006 ident: 10.1016/j.cap.2019.06.001_bib11 article-title: Importance of data quality in virtual metrology – volume: 28 start-page: 241 year: 2015 ident: 10.1016/j.cap.2019.06.001_bib21 article-title: Enhancement of the virtual metrology performance for plasma-assisted oxide etching processes by using plasma information (PI) parameters publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2015.2432576 – year: 2015 ident: 10.1016/j.cap.2019.06.001_bib1 – volume: 22 start-page: 204 year: 2009 ident: 10.1016/j.cap.2019.06.001_bib19 article-title: NN-based key-variable selection method for enhancing virtual metrology accuracy publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2008.2011185 – volume: 15 start-page: 586 year: 2018 ident: 10.1016/j.cap.2019.06.001_bib2 article-title: Scheduling cluster tools in semiconductor manufacturing: recent advances and challenges publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2016.2642997 – start-page: 143 year: 2009 ident: 10.1016/j.cap.2019.06.001_bib18 article-title: Virtual metrology for plasma etch using tool variables – volume: 24 start-page: 261 year: 2011 ident: 10.1016/j.cap.2019.06.001_bib14 article-title: Benefit model of virtual metrology and integrating AVM into MES publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2011.2104372 – year: 2004 ident: 10.1016/j.cap.2019.06.001_bib26 – year: 1998 ident: 10.1016/j.cap.2019.06.001_bib6 – volume: 31 start-page: 232 year: 2018 ident: 10.1016/j.cap.2019.06.001_bib23 article-title: Development of the virtual metrology for the nitride thickness in multi-layer plasma-enhanced chemical vapor deposition using plasma-information variables publication-title: IEEE Trans. Semicond. Manuf. doi: 10.1109/TSM.2018.2824314 – year: 2015 ident: 10.1016/j.cap.2019.06.001_bib5 – year: 2016 ident: 10.1016/j.cap.2019.06.001_bib25 – volume: 3 start-page: 1157 year: 2003 ident: 10.1016/j.cap.2019.06.001_bib7 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 19 start-page: 524 year: 2001 ident: 10.1016/j.cap.2019.06.001_bib24 article-title: Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film doi: 10.1116/1.1349728 |
SSID | ssj0016404 |
Score | 2.2851615 |
Snippet | A phenomenology-based virtual metrology (VM) for monitoring SiO2 etching depth was proposed by Park (2015). It achieved high prediction accuracy by introducing... |
SourceID | nrf crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1068 |
SubjectTerms | Optical emission spectroscopy (OES) PI-VM Plasma information (PI) variable Silicon oxide etching Statistical selection method Virtual metrology (VM) 물리학 |
Title | Characteristics of a plasma information variable in phenomenology-based, statistically-tuned virtual metrology to predict silicon dioxide etching depth |
URI | https://dx.doi.org/10.1016/j.cap.2019.06.001 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002516016 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Current Applied Physics, 2019, 19(10), , pp.1068-1075 |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: AIKHN dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: ACRLP dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: .~1 dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-1675 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016404 issn: 1567-1739 databaseCode: AKRWK dateStart: 20010101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWKiQuVR8gKAWNqp4qvLvZPH1EK9BCVS6AxM2yYwcCSxKFgODC3-jf7YyToO6BPXCKEo2tyOPMI_PNZ8Z-6iATRoUx9zR-5EEiNNfWN9ynDCiI08x3Xa5_TqPZRXByGV4O2LTvhSFYZWf7W5vurHX3ZNSt5qjK89EZZh5UQhYYgmDc4hMnKLF_4Z4evrzCPDAbcEcIkjAn6b6y6TBeqSLKSk8M25LEW75ppaiz_7zO0Sf2sQsX4aB9o89sYIsvbM3BNtP7r-zvdJFvGcoMFFQYEd8p6DhRaeXhEVNiapLCh0CoLuJdcD_UObkxsw_UWOTmUPP5M28e0PrCY15TdwncWUKzozA0JVQ1lXYauM_nuIkKMHn5lBsLpH50g2Bs1VxvsIujw_PpjHdHLfAUA5KGY9LhZRpTEXf-iFZ6kkQiSew4ianQKozwtEDjFhLbO_r4zB9rzwgVm2icBKH1N9lqURZ2i4HylVbhRBnfs0FkEhVghBgLhYNEiPZhm437RZZpx0NOx2HMZQ84u5GoF0l6kS3obpv9eh1StSQcy4SDXnNyYSdJdBLLhv1ALcvbNJfEuE3Xq1Le1hLzimMZedEEA-lv75t7h63TXYsB_M5Wm_rB7mIs0-g9t1n32IeD49-z0398xfPS |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WyG4IJ6iPEeIE8LsZuM8fKxWVLu03Qut1Jtlx04J3SZRmlbwS_i7zORR0QM9cIrkeKLIM5n5JvMC-GBlrpyJEhFY-shlqqywPnQiZA9IJlkedlWuR-t4eSK_nkanW7AYa2E4rXLQ_b1O77T1sDIdTnNaF8X0G3keHEJWBEEIt4RyG3ZkRDp5Ajt7q4Pl-iaYEMtuiiDvF0wwBje7NK_McNfKQH3uoxL_Mk_bZZP_ZXj2H8HDATHiXv9Sj2HLl0_gXpe5mV0-hd-L2y2XscrRYE2g-MLg0BaVDx-vySvmOilaRE7s4tYL3T91wZbMfUKuLeqeYTabX6K9IgWM10XDBSZ44TmhnTZjW2HdcHSnxctiQ3JUoiuqn4XzyBJAlhCdr9vvz-Bk_8vxYimGaQsiI0zSCvI7gtySN9KNILHGztNYpamfpQnHWpVTgVWk3yJu-E5mPg9nNnDKJC6epTLy4XOYlFXpXwCa0FgTzY0LAy9jlxpJIDFRhohURCpiF2bjIetsaEXOEzE2esw5-6GJL5r5ovu8u134eENS93047tosR87pW8KkyU7cRfaeuKzPs0Jz022-nlX6vNHkWqx0HMRzwtIv_-_Z7-D-8vjoUB-u1gev4AHf6VMCX8Okba78G4I2rX07iO4fxlz2fQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+of+a+plasma+information+variable+in+phenomenology-based%2C+statistically-tuned+virtual+metrology+to+predict+silicon+dioxide+etching+depth&rft.jtitle=Current+applied+physics&rft.au=Jang%2C+Yunchang&rft.au=Roh%2C+Hyun-Joon&rft.au=Park%2C+Seolhye&rft.au=Jeong%2C+Sangmin&rft.date=2019-10-01&rft.issn=1567-1739&rft.volume=19&rft.issue=10&rft.spage=1068&rft.epage=1075&rft_id=info:doi/10.1016%2Fj.cap.2019.06.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cap_2019_06_001 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon |