Characteristics of a plasma information variable in phenomenology-based, statistically-tuned virtual metrology to predict silicon dioxide etching depth

A phenomenology-based virtual metrology (VM) for monitoring SiO2 etching depth was proposed by Park (2015). It achieved high prediction accuracy by introducing newly developed plasma information (PI) variables as designated inputs, called PI-VM. The PI variables represent the state of the plasma, th...

Full description

Saved in:
Bibliographic Details
Published inCurrent applied physics Vol. 19; no. 10; pp. 1068 - 1075
Main Authors Jang, Yunchang, Roh, Hyun-Joon, Park, Seolhye, Jeong, Sangmin, Ryu, Sanywon, Kwon, Ji-Won, Kim, Nam-Kyun, Kim, Gon-Ho
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.10.2019
한국물리학회
Subjects
Online AccessGet full text
ISSN1567-1739
1878-1675
1567-1739
DOI10.1016/j.cap.2019.06.001

Cover

Abstract A phenomenology-based virtual metrology (VM) for monitoring SiO2 etching depth was proposed by Park (2015). It achieved high prediction accuracy by introducing newly developed plasma information (PI) variables as designated inputs, called PI-VM. The PI variables represent the state of the plasma, the sheath, and the target during the process. We investigate how a PI variable can help to improve prediction accuracy of VM and how it plays a special role in the statistical selection. We choose only PIEEDF among the three PI variables to focus on the investigation. The PIEEDF is determined from the ratio of line-intensities of optical emission spectroscopy. We apply Pearson's correlation filter (PCF), principal component analysis (PCA), and stepwise variable selection (SVS) as statistical selection methods on the variables set including PIEEDF or not. Multilinear regression is used to model the VM. This study reveals that PIEEDF variable is a good variable in terms of independence from other input variables and explanatory power for an output variable. Especially, VM using SVS method applied to variable sets including PIEEDF achieves the highest accuracy, comparable to Park's PI-VM. This study shows that PIEEDF variable is particularly useful for monitoring of the fine variations in semiconductor manufacturing process and it also extends the utilization of OES sensor data.
AbstractList A phenomenology-based virtual metrology (VM) for monitoring SiO2 etching depth was proposed by Park (2015). It achieved high prediction accuracy by introducing newly developed plasma information (PI) variables as designated inputs, called PI-VM. The PI variables represent the state of the plasma, the sheath, and the target during the process. We investigate how a PI variable can help to improve prediction accuracy of VM and how it plays a special role in the statistical selection. We choose only PIEEDF among the three PI variables to focus on the investigation. The PIEEDF is determined from the ratio of line-intensities of optical emission spectroscopy. We apply Pearson's correlation filter (PCF), principal component analysis (PCA), and stepwise variable selection (SVS) as statistical selection methods on the variables set including PIEEDF or not. Multilinear regression is used to model the VM. This study reveals that PIEEDF variable is a good variable in terms of independence from other input variables and explanatory power for an output variable. Especially, VM using SVS method applied to variable sets including PIEEDF achieves the highest accuracy, comparable to Park's PI-VM. This study shows that PIEEDF variable is particularly useful for monitoring of the fine variations in semiconductor manufacturing process and it also extends the utilization of OES sensor data. KCI Citation Count: 1
A phenomenology-based virtual metrology (VM) for monitoring SiO2 etching depth was proposed by Park (2015). It achieved high prediction accuracy by introducing newly developed plasma information (PI) variables as designated inputs, called PI-VM. The PI variables represent the state of the plasma, the sheath, and the target during the process. We investigate how a PI variable can help to improve prediction accuracy of VM and how it plays a special role in the statistical selection. We choose only PIEEDF among the three PI variables to focus on the investigation. The PIEEDF is determined from the ratio of line-intensities of optical emission spectroscopy. We apply Pearson's correlation filter (PCF), principal component analysis (PCA), and stepwise variable selection (SVS) as statistical selection methods on the variables set including PIEEDF or not. Multilinear regression is used to model the VM. This study reveals that PIEEDF variable is a good variable in terms of independence from other input variables and explanatory power for an output variable. Especially, VM using SVS method applied to variable sets including PIEEDF achieves the highest accuracy, comparable to Park's PI-VM. This study shows that PIEEDF variable is particularly useful for monitoring of the fine variations in semiconductor manufacturing process and it also extends the utilization of OES sensor data.
Author Ryu, Sanywon
Jeong, Sangmin
Roh, Hyun-Joon
Kim, Gon-Ho
Jang, Yunchang
Park, Seolhye
Kwon, Ji-Won
Kim, Nam-Kyun
Author_xml – sequence: 1
  givenname: Yunchang
  orcidid: 0000-0003-1100-2055
  surname: Jang
  fullname: Jang, Yunchang
– sequence: 2
  givenname: Hyun-Joon
  surname: Roh
  fullname: Roh, Hyun-Joon
– sequence: 3
  givenname: Seolhye
  surname: Park
  fullname: Park, Seolhye
– sequence: 4
  givenname: Sangmin
  surname: Jeong
  fullname: Jeong, Sangmin
– sequence: 5
  givenname: Sanywon
  surname: Ryu
  fullname: Ryu, Sanywon
– sequence: 6
  givenname: Ji-Won
  surname: Kwon
  fullname: Kwon, Ji-Won
– sequence: 7
  givenname: Nam-Kyun
  surname: Kim
  fullname: Kim, Nam-Kyun
– sequence: 8
  givenname: Gon-Ho
  surname: Kim
  fullname: Kim, Gon-Ho
  email: ghkim@snu.ac.kr
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002516016$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kc1qGzEUhYeSQpO0D9CdtoXOVBqP9UNXwfQnECiUdC000h37OhppkBRTP0lft7LdVRdZXO5FnO-AzrlprkIM0DTvGe0YZfzTvrNm6XrKVEd5Ryl71VwzKWTLuFhf1XvNRcvESr1pbnLeVwEf6HDd_NnsTDK2QMJc0GYSJ2LI4k2eDcEwxTSbgjGQg0loRg_1kSw7CHGu4-P22I4mg_tIcqnCk4fx_tiW5wCOHDCVZ-PJDCWdxaREsiRwaAvJ6NFWZ4fxNzogUOwOw5Y4WMrubfN6Mj7Du3_7tvn19cvj5nv78OPb_ebuobUrJUoruGTTOPSSUjHw0Yy95EpKoFL0qobhFBtVz9S6p1xIJqcVHZlTRjhO5bCG1W3z4eIb0qSfLOpo8Ly3UT8lfffz8V5zxnvFeNWyi9ammHOCSS8JZ5OOmlF9akHvdW1Bn1rQlOsacmXEf4zFck60JIP-RfLzhYT6_QNC0tkiBFvDS2CLdhFfoP8CiqKmbg
CitedBy_id crossref_primary_10_1109_TSM_2024_3447074
crossref_primary_10_1002_ppap_202200238
crossref_primary_10_1016_j_compchemeng_2022_107696
crossref_primary_10_1116_6_0001277
crossref_primary_10_1016_j_cap_2022_11_007
crossref_primary_10_1109_TPS_2023_3268170
crossref_primary_10_1007_s40042_022_00452_8
crossref_primary_10_1088_1361_6463_ad2339
crossref_primary_10_3390_coatings12081064
Cites_doi 10.1116/1.580357
10.1016/j.tsf.2016.01.051
10.1143/JJAP.48.08HC01
10.1109/TSM.2007.907609
10.1002/cem.2736
10.1109/66.554484
10.1116/1.1331294
10.1109/TSM.2016.2594033
10.1016/j.neucom.2015.12.114
10.1016/j.jprocont.2008.04.014
10.1016/j.compeleceng.2013.11.024
10.3938/jkps.64.1819
10.1109/TSM.2015.2432576
10.1109/TSM.2008.2011185
10.1109/TASE.2016.2642997
10.1109/TSM.2011.2104372
10.1109/TSM.2018.2824314
10.1116/1.1349728
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
ACYCR
DOI 10.1016/j.cap.2019.06.001
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1878-1675
1567-1739
EndPage 1075
ExternalDocumentID oai_kci_go_kr_ARTI_6162916
10_1016_j_cap_2019_06_001
S1567173919301634
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9ZL
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSQ
SSZ
T5K
UHS
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ACYCR
ID FETCH-LOGICAL-c397t-7681fb42800746bab286988e08729019d91b921952067818f30b1d9a7d60845e3
IEDL.DBID .~1
ISSN 1567-1739
IngestDate Sun Mar 09 07:51:11 EDT 2025
Wed Oct 01 01:55:12 EDT 2025
Thu Apr 24 22:59:00 EDT 2025
Fri Feb 23 02:29:59 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords PI-VM
Silicon oxide etching
Virtual metrology (VM)
Optical emission spectroscopy (OES)
Plasma information (PI) variable
Statistical selection method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-7681fb42800746bab286988e08729019d91b921952067818f30b1d9a7d60845e3
ORCID 0000-0003-1100-2055
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_6162916
crossref_primary_10_1016_j_cap_2019_06_001
crossref_citationtrail_10_1016_j_cap_2019_06_001
elsevier_sciencedirect_doi_10_1016_j_cap_2019_06_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
2019-10
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationTitle Current applied physics
PublicationYear 2019
Publisher Elsevier B.V
한국물리학회
Publisher_xml – name: Elsevier B.V
– name: 한국물리학회
References Reports (bib1) 2015
Zhang, Kushner (bib24) 2001; 19
Chandrashekar, Sahin (bib12) 2014; 40
Fukasawa, Kawashima, Kuboi, Takagi, Tanaka, Sakayori, Oshima, Nagahata, Tatsumi (bib10) 2009; 48
Huang, Cheng, Chen (bib11) 2006
Park, Jeong, Jang, Ryu, Roh, Kim (bib21) 2015; 28
Roh, Ryu, Jang, Kim, Jin, Park, Kim (bib23) 2018; 31
Khan, Moyne, Tilbury (bib3) 2007; 20
Chen, Huang, Spanos, Gatto (bib16) 1996; 14
Shmueli, Patel, Bruce (bib8) 2010
Kramida, Ralchenko, Reader (bib25) 2016
White, Boning, Butler, Barna (bib15) 1997; 10
Cheng, Chang, Huang, Kao, Chen, Peng (bib14) 2011; 24
Guyon, Elisseeff (bib7) 2003; 3
Zeng (bib9) 2012
Park, Choe, Roh, Kim (bib20) 2014; 64
Yue, Qin, Wiseman, Toprac (bib17) 2001; 19
Montgomery, Peck, Vining (bib27) 2006
Pan, Zhou, Qiao, Wu (bib2) 2018; 15
Kang, Kim, Cho (bib13) 2016; 29
Lin, Cheng, Wu, Kao, Ye, Chang (bib19) 2009; 22
Park, Roh, Jang, Jeong, Ryu, Choe, Kim (bib22) 2016; 603
de Myttenaere, Golden, Le Grand, Rossi (bib28) 2016; 192
ITRS Reports (bib5) 2015
Khan, Moyne, Tilbury (bib4) 2008; 18
Afifi, Clarke, May (bib26) 2004
Farrés, Platikanov, Tsakovski, Tauler (bib29) 2015; 29
Lynn, Ringwood, Ragnoli, McLoone, MacGearailt (bib18) 2009
Liu, Motoda (bib6) 1998
Kang (10.1016/j.cap.2019.06.001_bib13) 2016; 29
Reports (10.1016/j.cap.2019.06.001_bib1) 2015
ITRS Reports (10.1016/j.cap.2019.06.001_bib5) 2015
Cheng (10.1016/j.cap.2019.06.001_bib14) 2011; 24
Zeng (10.1016/j.cap.2019.06.001_bib9) 2012
Park (10.1016/j.cap.2019.06.001_bib21) 2015; 28
Zhang (10.1016/j.cap.2019.06.001_bib24) 2001; 19
Pan (10.1016/j.cap.2019.06.001_bib2) 2018; 15
Guyon (10.1016/j.cap.2019.06.001_bib7) 2003; 3
Huang (10.1016/j.cap.2019.06.001_bib11) 2006
de Myttenaere (10.1016/j.cap.2019.06.001_bib28) 2016; 192
Farrés (10.1016/j.cap.2019.06.001_bib29) 2015; 29
Park (10.1016/j.cap.2019.06.001_bib20) 2014; 64
Khan (10.1016/j.cap.2019.06.001_bib4) 2008; 18
Roh (10.1016/j.cap.2019.06.001_bib23) 2018; 31
Montgomery (10.1016/j.cap.2019.06.001_bib27) 2006
Lynn (10.1016/j.cap.2019.06.001_bib18) 2009
Yue (10.1016/j.cap.2019.06.001_bib17) 2001; 19
Fukasawa (10.1016/j.cap.2019.06.001_bib10) 2009; 48
Shmueli (10.1016/j.cap.2019.06.001_bib8) 2010
Lin (10.1016/j.cap.2019.06.001_bib19) 2009; 22
Park (10.1016/j.cap.2019.06.001_bib22) 2016; 603
Chen (10.1016/j.cap.2019.06.001_bib16) 1996; 14
Kramida (10.1016/j.cap.2019.06.001_bib25) 2016
Liu (10.1016/j.cap.2019.06.001_bib6) 1998
White (10.1016/j.cap.2019.06.001_bib15) 1997; 10
Chandrashekar (10.1016/j.cap.2019.06.001_bib12) 2014; 40
Afifi (10.1016/j.cap.2019.06.001_bib26) 2004
Khan (10.1016/j.cap.2019.06.001_bib3) 2007; 20
References_xml – year: 2004
  ident: bib26
  publication-title: Computer-Aided Multivariate Analysis
– volume: 192
  start-page: 38
  year: 2016
  end-page: 48
  ident: bib28
  article-title: Mean absolute percentage error for regression models
  publication-title: Neurocomputing
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: bib12
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
– year: 2016
  ident: bib25
  article-title: Nist Atomic Spectra Database Version 5.4
– volume: 29
  start-page: 528
  year: 2015
  end-page: 536
  ident: bib29
  article-title: Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation
  publication-title: J. Chemom.
– year: 2015
  ident: bib1
  article-title: International Technology Roadmap for Semiconductors 2.0 More Moore
– volume: 14
  start-page: 1901
  year: 1996
  end-page: 1906
  ident: bib16
  article-title: Plasma etch modeling using optical emission spectroscopy
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film
– volume: 22
  start-page: 204
  year: 2009
  end-page: 211
  ident: bib19
  article-title: NN-based key-variable selection method for enhancing virtual metrology accuracy
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: bib7
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 29
  start-page: 391
  year: 2016
  end-page: 398
  ident: bib13
  article-title: Efficient feature selection-based on random forward search for virtual metrology modeling
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 10
  start-page: 52
  year: 1997
  end-page: 61
  ident: bib15
  article-title: Spatial characterization of wafer state using principal component analysis of optical emission spectra in plasma etch
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 18
  start-page: 961
  year: 2008
  end-page: 974
  ident: bib4
  article-title: Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares
  publication-title: J. Process Control
– volume: 24
  start-page: 261
  year: 2011
  end-page: 272
  ident: bib14
  article-title: Benefit model of virtual metrology and integrating AVM into MES
  publication-title: IEEE Trans. Semicond. Manuf.
– year: 2010
  ident: bib8
  article-title: Data Mining for Business Intelligence
– start-page: 143
  year: 2009
  end-page: 148
  ident: bib18
  article-title: Virtual metrology for plasma etch using tool variables
  publication-title: ASMC (Advanced Semicond
– year: 2012
  ident: bib9
  article-title: Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing
– start-page: 3727
  year: 2006
  end-page: 3732
  ident: bib11
  article-title: Importance of data quality in virtual metrology
  publication-title: IECON 2006 - 32nd Annu. Conf. IEEE Ind. Electron
– year: 2006
  ident: bib27
  publication-title: Introduction to Linear Regression Analysis
– year: 2015
  ident: bib5
  article-title: International Technology Roadmap for Semiconductors (ITRS) 2.0 Factory Integration
– volume: 64
  start-page: 1819
  year: 2014
  end-page: 1827
  ident: bib20
  article-title: Characteristics of a non-Maxwellian electron energy distribution in a low-pressure argon plasma
  publication-title: J. Korean Phys. Soc.
– volume: 19
  start-page: 66
  year: 2001
  end-page: 75
  ident: bib17
  article-title: Plasma etching endpoint detection using multiple wavelengths for small open-area wafers
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film
– volume: 31
  start-page: 232
  year: 2018
  end-page: 241
  ident: bib23
  article-title: Development of the virtual metrology for the nitride thickness in multi-layer plasma-enhanced chemical vapor deposition using plasma-information variables
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 48
  start-page: 0
  year: 2009
  end-page: 5
  ident: bib10
  article-title: Prediction of fluctuations in plasma-wall interactions using an equipment engineering system
  publication-title: Jpn. J. Appl. Phys.
– volume: 20
  start-page: 364
  year: 2007
  end-page: 375
  ident: bib3
  article-title: An approach for factory-wide control utilizing virtual metrology
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 28
  start-page: 241
  year: 2015
  end-page: 246
  ident: bib21
  article-title: Enhancement of the virtual metrology performance for plasma-assisted oxide etching processes by using plasma information (PI) parameters
  publication-title: IEEE Trans. Semicond. Manuf.
– volume: 603
  start-page: 154
  year: 2016
  end-page: 159
  ident: bib22
  article-title: Vacuum pump age effects by the exposure to the corrosive gases on the Cr etch rate as observed using optical emission spectroscopy in an Ar/O2/Cl2mixed plasma
  publication-title: Thin Solid Films
– volume: 15
  start-page: 586
  year: 2018
  end-page: 601
  ident: bib2
  article-title: Scheduling cluster tools in semiconductor manufacturing: recent advances and challenges
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 19
  start-page: 524
  year: 2001
  end-page: 538
  ident: bib24
  article-title: Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film
– year: 1998
  ident: bib6
  article-title: Feature Extraction, Construction and Selection: A Data Mining Perspective
– volume: 14
  start-page: 1901
  year: 1996
  ident: 10.1016/j.cap.2019.06.001_bib16
  article-title: Plasma etch modeling using optical emission spectroscopy
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film
  doi: 10.1116/1.580357
– volume: 603
  start-page: 154
  year: 2016
  ident: 10.1016/j.cap.2019.06.001_bib22
  article-title: Vacuum pump age effects by the exposure to the corrosive gases on the Cr etch rate as observed using optical emission spectroscopy in an Ar/O2/Cl2mixed plasma
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.01.051
– volume: 48
  start-page: 0
  year: 2009
  ident: 10.1016/j.cap.2019.06.001_bib10
  article-title: Prediction of fluctuations in plasma-wall interactions using an equipment engineering system
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.48.08HC01
– year: 2006
  ident: 10.1016/j.cap.2019.06.001_bib27
– volume: 20
  start-page: 364
  year: 2007
  ident: 10.1016/j.cap.2019.06.001_bib3
  article-title: An approach for factory-wide control utilizing virtual metrology
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2007.907609
– volume: 29
  start-page: 528
  year: 2015
  ident: 10.1016/j.cap.2019.06.001_bib29
  article-title: Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation
  publication-title: J. Chemom.
  doi: 10.1002/cem.2736
– volume: 10
  start-page: 52
  year: 1997
  ident: 10.1016/j.cap.2019.06.001_bib15
  article-title: Spatial characterization of wafer state using principal component analysis of optical emission spectra in plasma etch
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/66.554484
– volume: 19
  start-page: 66
  year: 2001
  ident: 10.1016/j.cap.2019.06.001_bib17
  article-title: Plasma etching endpoint detection using multiple wavelengths for small open-area wafers
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film
  doi: 10.1116/1.1331294
– volume: 29
  start-page: 391
  year: 2016
  ident: 10.1016/j.cap.2019.06.001_bib13
  article-title: Efficient feature selection-based on random forward search for virtual metrology modeling
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2016.2594033
– volume: 192
  start-page: 38
  year: 2016
  ident: 10.1016/j.cap.2019.06.001_bib28
  article-title: Mean absolute percentage error for regression models
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.12.114
– volume: 18
  start-page: 961
  year: 2008
  ident: 10.1016/j.cap.2019.06.001_bib4
  article-title: Virtual metrology and feedback control for semiconductor manufacturing processes using recursive partial least squares
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2008.04.014
– volume: 40
  start-page: 16
  year: 2014
  ident: 10.1016/j.cap.2019.06.001_bib12
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 64
  start-page: 1819
  year: 2014
  ident: 10.1016/j.cap.2019.06.001_bib20
  article-title: Characteristics of a non-Maxwellian electron energy distribution in a low-pressure argon plasma
  publication-title: J. Korean Phys. Soc.
  doi: 10.3938/jkps.64.1819
– year: 2010
  ident: 10.1016/j.cap.2019.06.001_bib8
– year: 2012
  ident: 10.1016/j.cap.2019.06.001_bib9
– start-page: 3727
  year: 2006
  ident: 10.1016/j.cap.2019.06.001_bib11
  article-title: Importance of data quality in virtual metrology
– volume: 28
  start-page: 241
  year: 2015
  ident: 10.1016/j.cap.2019.06.001_bib21
  article-title: Enhancement of the virtual metrology performance for plasma-assisted oxide etching processes by using plasma information (PI) parameters
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2015.2432576
– year: 2015
  ident: 10.1016/j.cap.2019.06.001_bib1
– volume: 22
  start-page: 204
  year: 2009
  ident: 10.1016/j.cap.2019.06.001_bib19
  article-title: NN-based key-variable selection method for enhancing virtual metrology accuracy
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2008.2011185
– volume: 15
  start-page: 586
  year: 2018
  ident: 10.1016/j.cap.2019.06.001_bib2
  article-title: Scheduling cluster tools in semiconductor manufacturing: recent advances and challenges
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2016.2642997
– start-page: 143
  year: 2009
  ident: 10.1016/j.cap.2019.06.001_bib18
  article-title: Virtual metrology for plasma etch using tool variables
– volume: 24
  start-page: 261
  year: 2011
  ident: 10.1016/j.cap.2019.06.001_bib14
  article-title: Benefit model of virtual metrology and integrating AVM into MES
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2011.2104372
– year: 2004
  ident: 10.1016/j.cap.2019.06.001_bib26
– year: 1998
  ident: 10.1016/j.cap.2019.06.001_bib6
– volume: 31
  start-page: 232
  year: 2018
  ident: 10.1016/j.cap.2019.06.001_bib23
  article-title: Development of the virtual metrology for the nitride thickness in multi-layer plasma-enhanced chemical vapor deposition using plasma-information variables
  publication-title: IEEE Trans. Semicond. Manuf.
  doi: 10.1109/TSM.2018.2824314
– year: 2015
  ident: 10.1016/j.cap.2019.06.001_bib5
– year: 2016
  ident: 10.1016/j.cap.2019.06.001_bib25
– volume: 3
  start-page: 1157
  year: 2003
  ident: 10.1016/j.cap.2019.06.001_bib7
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 19
  start-page: 524
  year: 2001
  ident: 10.1016/j.cap.2019.06.001_bib24
  article-title: Investigations of surface reactions during C2F6 plasma etching of SiO2 with equipment and feature scale models
  publication-title: J. Vac. Sci. Technol. A Vac. Surf. Film
  doi: 10.1116/1.1349728
SSID ssj0016404
Score 2.2851615
Snippet A phenomenology-based virtual metrology (VM) for monitoring SiO2 etching depth was proposed by Park (2015). It achieved high prediction accuracy by introducing...
SourceID nrf
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 1068
SubjectTerms Optical emission spectroscopy (OES)
PI-VM
Plasma information (PI) variable
Silicon oxide etching
Statistical selection method
Virtual metrology (VM)
물리학
Title Characteristics of a plasma information variable in phenomenology-based, statistically-tuned virtual metrology to predict silicon dioxide etching depth
URI https://dx.doi.org/10.1016/j.cap.2019.06.001
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002516016
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Current Applied Physics, 2019, 19(10), , pp.1068-1075
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: AIKHN
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: ACRLP
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: .~1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-1675
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016404
  issn: 1567-1739
  databaseCode: AKRWK
  dateStart: 20010101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYWKiQuVR8gKAWNqp4qvLvZPH1EK9BCVS6AxM2yYwcCSxKFgODC3-jf7YyToO6BPXCKEo2tyOPMI_PNZ8Z-6iATRoUx9zR-5EEiNNfWN9ynDCiI08x3Xa5_TqPZRXByGV4O2LTvhSFYZWf7W5vurHX3ZNSt5qjK89EZZh5UQhYYgmDc4hMnKLF_4Z4evrzCPDAbcEcIkjAn6b6y6TBeqSLKSk8M25LEW75ppaiz_7zO0Sf2sQsX4aB9o89sYIsvbM3BNtP7r-zvdJFvGcoMFFQYEd8p6DhRaeXhEVNiapLCh0CoLuJdcD_UObkxsw_UWOTmUPP5M28e0PrCY15TdwncWUKzozA0JVQ1lXYauM_nuIkKMHn5lBsLpH50g2Bs1VxvsIujw_PpjHdHLfAUA5KGY9LhZRpTEXf-iFZ6kkQiSew4ianQKozwtEDjFhLbO_r4zB9rzwgVm2icBKH1N9lqURZ2i4HylVbhRBnfs0FkEhVghBgLhYNEiPZhm437RZZpx0NOx2HMZQ84u5GoF0l6kS3obpv9eh1StSQcy4SDXnNyYSdJdBLLhv1ALcvbNJfEuE3Xq1Le1hLzimMZedEEA-lv75t7h63TXYsB_M5Wm_rB7mIs0-g9t1n32IeD49-z0398xfPS
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61WyG4IJ6iPEeIE8LsZuM8fKxWVLu03Qut1Jtlx04J3SZRmlbwS_i7zORR0QM9cIrkeKLIM5n5JvMC-GBlrpyJEhFY-shlqqywPnQiZA9IJlkedlWuR-t4eSK_nkanW7AYa2E4rXLQ_b1O77T1sDIdTnNaF8X0G3keHEJWBEEIt4RyG3ZkRDp5Ajt7q4Pl-iaYEMtuiiDvF0wwBje7NK_McNfKQH3uoxL_Mk_bZZP_ZXj2H8HDATHiXv9Sj2HLl0_gXpe5mV0-hd-L2y2XscrRYE2g-MLg0BaVDx-vySvmOilaRE7s4tYL3T91wZbMfUKuLeqeYTabX6K9IgWM10XDBSZ44TmhnTZjW2HdcHSnxctiQ3JUoiuqn4XzyBJAlhCdr9vvz-Bk_8vxYimGaQsiI0zSCvI7gtySN9KNILHGztNYpamfpQnHWpVTgVWk3yJu-E5mPg9nNnDKJC6epTLy4XOYlFXpXwCa0FgTzY0LAy9jlxpJIDFRhohURCpiF2bjIetsaEXOEzE2esw5-6GJL5r5ovu8u134eENS93047tosR87pW8KkyU7cRfaeuKzPs0Jz022-nlX6vNHkWqx0HMRzwtIv_-_Z7-D-8vjoUB-u1gev4AHf6VMCX8Okba78G4I2rX07iO4fxlz2fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristics+of+a+plasma+information+variable+in+phenomenology-based%2C+statistically-tuned+virtual+metrology+to+predict+silicon+dioxide+etching+depth&rft.jtitle=Current+applied+physics&rft.au=Jang%2C+Yunchang&rft.au=Roh%2C+Hyun-Joon&rft.au=Park%2C+Seolhye&rft.au=Jeong%2C+Sangmin&rft.date=2019-10-01&rft.issn=1567-1739&rft.volume=19&rft.issue=10&rft.spage=1068&rft.epage=1075&rft_id=info:doi/10.1016%2Fj.cap.2019.06.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cap_2019_06_001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1567-1739&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1567-1739&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1567-1739&client=summon