Aircraft detection in remote sensing images based on saliency and convolution neural network
New algorithms and architectures for the current industrial wireless sensor networks shall be explored to ensure the efficiency, robustness, and consistence in variable application environments which concern different issues, such as the smart grid, water supply, and gas monitoring. Object detection...
Saved in:
Published in | EURASIP journal on wireless communications and networking Vol. 2018; no. 1; pp. 1 - 16 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2018
SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1687-1499 1687-1499 |
DOI | 10.1186/s13638-018-1022-8 |
Cover
Abstract | New algorithms and architectures for the current industrial wireless sensor networks shall be explored to ensure the efficiency, robustness, and consistence in variable application environments which concern different issues, such as the smart grid, water supply, and gas monitoring. Object detection automatic in remote sensing images has always been a hot topic. Using the conventional deep convolution network based on region proposal for detection, there are many negative samples in the generated region proposal, which will affect the model detection precision and efficiency. Saliency uses the human visual attention mechanism to achieve the bottom-up object detection. Since replacing the selective search with saliency can greatly reduce the number of proposal areas, we will get some region of interests (RoIs) and their position information by using the saliency algorithm based on the background priori for the remote sensing image. And then, the position information is mapped to the feature vector of the whole image obtained by deep convolution neural network. Finally, the each RoI will be classified and fine-tuned bounding box. In this paper, our model is compared with Fast-RCNN that is the current state-of-the-art detection model. The mAP of our model reaches 99%, which is 12.4% higher than that of Fast-RCNN. In addition, we also study the effect of different iterations on model and find the model of 10,000 iterations already has a higher accuracy. Finally, we compare the results of different number of negative samples and find the detection accuracy is highest when the number of negative samples reaches 400. |
---|---|
AbstractList | Abstract New algorithms and architectures for the current industrial wireless sensor networks shall be explored to ensure the efficiency, robustness, and consistence in variable application environments which concern different issues, such as the smart grid, water supply, and gas monitoring. Object detection automatic in remote sensing images has always been a hot topic. Using the conventional deep convolution network based on region proposal for detection, there are many negative samples in the generated region proposal, which will affect the model detection precision and efficiency. Saliency uses the human visual attention mechanism to achieve the bottom-up object detection. Since replacing the selective search with saliency can greatly reduce the number of proposal areas, we will get some region of interests (RoIs) and their position information by using the saliency algorithm based on the background priori for the remote sensing image. And then, the position information is mapped to the feature vector of the whole image obtained by deep convolution neural network. Finally, the each RoI will be classified and fine-tuned bounding box. In this paper, our model is compared with Fast-RCNN that is the current state-of-the-art detection model. The mAP of our model reaches 99%, which is 12.4% higher than that of Fast-RCNN. In addition, we also study the effect of different iterations on model and find the model of 10,000 iterations already has a higher accuracy. Finally, we compare the results of different number of negative samples and find the detection accuracy is highest when the number of negative samples reaches 400. New algorithms and architectures for the current industrial wireless sensor networks shall be explored to ensure the efficiency, robustness, and consistence in variable application environments which concern different issues, such as the smart grid, water supply, and gas monitoring. Object detection automatic in remote sensing images has always been a hot topic. Using the conventional deep convolution network based on region proposal for detection, there are many negative samples in the generated region proposal, which will affect the model detection precision and efficiency. Saliency uses the human visual attention mechanism to achieve the bottom-up object detection. Since replacing the selective search with saliency can greatly reduce the number of proposal areas, we will get some region of interests (RoIs) and their position information by using the saliency algorithm based on the background priori for the remote sensing image. And then, the position information is mapped to the feature vector of the whole image obtained by deep convolution neural network. Finally, the each RoI will be classified and fine-tuned bounding box. In this paper, our model is compared with Fast-RCNN that is the current state-of-the-art detection model. The mAP of our model reaches 99%, which is 12.4% higher than that of Fast-RCNN. In addition, we also study the effect of different iterations on model and find the model of 10,000 iterations already has a higher accuracy. Finally, we compare the results of different number of negative samples and find the detection accuracy is highest when the number of negative samples reaches 400. |
ArticleNumber | 26 |
Author | Xiong, Naixue Hu, Guoxiong Huang, Li Yang, Zhong Han, Jiaming Gong, Jun |
Author_xml | – sequence: 1 givenname: Guoxiong orcidid: 0000-0002-7780-5646 surname: Hu fullname: Hu, Guoxiong organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, College of Software, Jiangxi Normal University – sequence: 2 givenname: Zhong surname: Yang fullname: Yang, Zhong email: YZ.NUAA@163.com organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics – sequence: 3 givenname: Jiaming surname: Han fullname: Han, Jiaming organization: College of Automation Engineering, Nanjing University of Aeronautics and Astronautics – sequence: 4 givenname: Li surname: Huang fullname: Huang, Li organization: Elementary Education College, Jiangxi Normal University – sequence: 5 givenname: Jun surname: Gong fullname: Gong, Jun organization: College of Software, Jiangxi Normal University – sequence: 6 givenname: Naixue surname: Xiong fullname: Xiong, Naixue organization: Department of Mathematics and Computer Science, Northeastern State University |
BookMark | eNp9kMtKBDEQRYMo-PwAd_mB1lSnzWMp4gsEN7oTQjpdGTK2iSQZxb834yiICzdVRVHncuvuk-2YIhJyDOwEQInTAlxw1TFQHbC-79QW2QOhZAeD1tu_5l2yX8qSMc4H3e-Rp_OQXba-0gkruhpSpCHSjC-pIi0YS4gLGl7sAgsdbcGJtoti54DRfVAbJ-pSfEvz6guNuMp2bq2-p_x8SHa8nQseffcD8nh1-XBx093dX99enN91jmtZO6EdKDeMYhqZVl4xN3LNmZy89B5QgmbSw8A98HHqle2V4G5SbFTrV4XmB-R2ozsluzSvudnNHybZYL4WKS-MzTW4GY0ExAGE77WSg2i1lzAODM_0oM_aqmnJjZbLqZSM3rhQ7fq5mm2YDTCzDtxsAjctcLN2YVQj4Q_54-Q_pt8wpd3GBWazTKscW1j_QJ-qVpRn |
CitedBy_id | crossref_primary_10_3390_app12031291 crossref_primary_10_1109_JIOT_2022_3144987 crossref_primary_10_3390_rs13112207 crossref_primary_10_46632_eae_2_1_13 crossref_primary_10_1109_TGRS_2020_3037087 crossref_primary_10_1109_TGRS_2021_3101359 crossref_primary_10_7717_peerj_cs_772 crossref_primary_10_1109_TGRS_2021_3064599 crossref_primary_10_1007_s10470_023_02208_1 crossref_primary_10_1186_s13638_018_1195_1 crossref_primary_10_3390_s22166258 crossref_primary_10_3390_electronics8121504 crossref_primary_10_1088_1757_899X_490_4_042011 crossref_primary_10_3389_fbioe_2022_905583 |
Cites_doi | 10.1007/s11265-015-1097-y 10.1007/s11042-014-2381-8 10.1109/34.730558 10.1109/TIP.2009.2030969 10.1007/s10586-015-0499-8 10.1016/j.isprsjprs.2016.03.014 10.1109/TPAMI.2011.272 10.1016/j.ins.2016.12.030 10.1109/TSMC.2016.2557225 10.1109/TPAMI.2010.70 10.1109/TC.1972.5008949 10.3390/s17061303 10.1016/j.ins.2017.04.035 10.1016/0031-3203(87)90080-X 10.1145/3065386 10.3390/s141222408 10.1007/s11263-013-0620-5 10.1109/TPAMI.2012.120 10.1109/TPAMI.2014.2345401 10.1016/j.ins.2014.06.022 10.1109/TPAMI.2016.2577031 10.1109/TIP.2016.2602079 10.14257/ijsip.2016.9.5.27 10.1109/LGRS.2014.2328358 10.1109/JSAC.2009.090512 10.1109/LGRS.2012.2214022 10.1109/ACCESS.2017.2672561 10.1007/s11227-016-1821-9 10.1109/LGRS.2017.2715858 10.1109/LGRS.2017.2672560 10.1109/LGRS.2012.2183337 10.5120/20084-2026 10.1016/j.ins.2009.12.001 10.1109/TPAMI.2015.2389824 10.1007/s11042-016-3857-5 10.1016/j.neucom.2016.10.073 10.1109/CVPR.2016.260 10.1109/CVPR.2017.351 10.1109/CVPR.2017.106 10.1109/CVPR.2009.5206596 10.1109/CVPR.2014.81 10.7551/mitpress/7503.001.0001 10.1109/CVPR.2015.7298798 10.1007/s11042-016-3877-1 10.1109/CVPR.2012.6247711 10.1109/CVPR.2016.314 10.6138/JIT.2015.16.7.20151103a 10.1109/CVPR.2016.98 10.1007/978-3-319-10602-1_26 10.1109/CVPR.2007.383267 10.1109/CVPR.2014.360 10.1109/CVPR.2013.151 10.1007/978-3-319-46448-0_2 10.3390/s17010174 10.1109/ICCV.2011.6126348 10.1145/1180639.1180824 10.1109/ICMLC.2006.258434 10.1109/CVPR.2012.6247743 10.1109/IGARSS.2016.7729355 10.1109/CVPR.2016.91 10.1016/j.neucom.2012.12.064 10.1109/ICCV.2015.169 10.6138/JIT.2016.17.7.20161108 10.1007/978-3-319-46493-0_22 10.1109/ICCV.2013.370 10.1109/CVPR.2016.234 10.1109/CVPR.2017.87 10.1109/ICIP.2016.7533079 |
ContentType | Journal Article |
Copyright | The Author(s). 2018 |
Copyright_xml | – notice: The Author(s). 2018 |
DBID | C6C AAYXX CITATION DOA |
DOI | 10.1186/s13638-018-1022-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-1499 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_71ee416f298746298271b40e59495874 10_1186_s13638_018_1022_8 |
GrantInformation_xml | – fundername: Aeronautical Science Foundation of China(Key laboratory) grantid: 20162852031 – fundername: the National Science Foundation of Jiangxi Province grantid: 20171BAB212014 – fundername: The special scientific instrument development of Ministry of science and technology of China grantid: 2016YFF0103702 – fundername: the National Natural Science Foundation of China grantid: 61473144; 41661083; 61602222; 61562044 |
GroupedDBID | -A0 .4S .DC 0R~ 29G 2WC 3V. 4.4 40G 5GY 5VS 6OB 8FE 8FG 8R4 8R5 AAFWJ AAJSJ AAKKN AAKPC ABDBF ABEEZ ABFTD ABUWG ACACY ACGFS ACUHS ACULB ADBBV ADDVE ADINQ ADMLS AENEX AFGXO AFKRA AFPKN AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DU5 DWQXO E3Z EAD EAP EAS EBLON EBS EDO EJD EMK ESX GNUQQ GROUPED_DOAJ HCIFZ HZ~ I-F K6V K7- KQ8 M0N M~E OK1 P2P P62 PIMPY PQQKQ PROAC Q2X RHU RNS RSV SEG SOJ TUS U2A XSB AASML AAYXX CITATION OVT PHGZM PHGZT PUEGO |
ID | FETCH-LOGICAL-c397t-69c18c4b6db098f80cb39307df7ff1e71907f143f13bd28a2863cd80b81022693 |
IEDL.DBID | DOA |
ISSN | 1687-1499 |
IngestDate | Wed Aug 27 01:13:58 EDT 2025 Thu Apr 24 23:09:43 EDT 2025 Tue Jul 01 00:40:52 EDT 2025 Fri Feb 21 02:35:28 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Remote sensing image, Detection, Saliency, Convolution neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-69c18c4b6db098f80cb39307df7ff1e71907f143f13bd28a2863cd80b81022693 |
ORCID | 0000-0002-7780-5646 |
OpenAccessLink | https://doaj.org/article/71ee416f298746298271b40e59495874 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_71ee416f298746298271b40e59495874 crossref_citationtrail_10_1186_s13638_018_1022_8 crossref_primary_10_1186_s13638_018_1022_8 springer_journals_10_1186_s13638_018_1022_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham |
PublicationTitle | EURASIP journal on wireless communications and networking |
PublicationTitleAbbrev | J Wireless Com Network |
PublicationYear | 2018 |
Publisher | Springer International Publishing SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: SpringerOpen |
References | Guo, Zhang (CR51) 2010; 19 Zahn, Roskies (CR25) 1972; C-21 Koch, Ullman (CR43) 1985; 4 Fang, Fang, Yuan, Yang, Yang, Xiong (CR17) 2017; 47 CR39 CR37 CR35 CR34 Li, Sun, Wang, Sun, Li (CR29) 2012; 9 CR31 CR74 CR73 CR72 CR71 CR70 Zhang, Liu, Wu, Liu, Xiong (CR5) 2016; 17 Lin, Hwang (CR24) 1987; 20 Gui, Hui, Xiong (CR3) 2017; 5 Shu, Fang, Fang, Yang, Fei, Xiong (CR10) 2016; 9 CR4 Krizhevsky, Sutskever, Hinton (CR30) 2017; 60 Fang, Li, Zhang, Xiong, Lai, Vasilakos (CR11) 2014; 283 Hou, Wan, Lee, Hwang, Okopal, Pitton (CR56) 2017; 86 Uijlings, van de Sande, Gevers, Smeulders (CR32) 2013; 104 CR9 CR49 CR48 CR47 Cheng, Han (CR26) 2016; 117 CR44 CR42 CR41 CR40 Achanta, Shaji, Smith, Lucchi, Fua, Susstrunk (CR75) 2012; 34 Lim, Kim (CR54) 2012; 5 Liu, Yuan, Sun, Wang, Zheng, Tang, Shum (CR45) 2011; 33 Xiong, Vasilakos, Yang, Wang, Kannan, Chang, Pan (CR15) 2010; 180 Yang, Tong, Huang, Lin (CR16) 2014; 14 He, Zhang, Ren, Sun (CR61) 2015; 37 Ren, He, Girshick, Sun (CR62) 2017; 39 Goferman, Zelnikmanor, Tal (CR38) 2012; 34 CR19 Reecha, Senthamilarasu, Kutty, Sunita (CR55) 2015; 114 Goferman, Zelnik-Manor, Tal (CR46) 2012; 34 Itti, Koch, Niebur (CR33) 1998; 20 CR59 Liu, Sun, Fu, Wang (CR27) 2013; 10 CR58 CR57 Xia, Xiong, Vasilakos, Sun (CR8) 2017; 387 Zhao, Fu, Wang, Zuo, Zhang, Hu, Wang (CR20) 2017; 14 Gao, Yu, Chen, Xiong (CR7) 2016; 19 CR50 Zhang, Wu, Liu, Xiong (CR14) 2015; 16 Li, Zhang, Lu, Zhang (CR18) 2017; 14 Wu, Sun, Sun, Zhang, Fu, Wang (CR28) 2015; 12 Zhang, Zhuo, Huang, Chen, Kankanhalli (CR53) 2017; 257 Xiong, Vasilakos, Yang, Song, Pan, Kannan, Li, Li (CR12) 2009; 27 Li, Yu (CR52) 2016; 25 CR69 CR68 Wang, Chen, Yu, Xiong, Leung, Zhou, Zhu (CR2) 2017; 408 CR23 CR67 Lu, Tu, Zhou, Xiong, Sun (CR13) 2017; 73 CR66 CR65 Xia, Wang, Sun, Liu, Xiong (CR6) 2016; 75 CR64 CR63 CR60 Wu, Xiao, Sha, Huang, Wang, Xiong (CR1) 2017; 17 Hai, Ya, Guang (CR22) 2014; 128 Lin, He, Tai, Chen, Yin (CR21) 2017; 76 Cheng, Mitra, Huang, Torr, Hu (CR36) 2015; 37 LP Gao (1022_CR7) 2016; 19 1022_CR19 R Achanta (1022_CR75) 2012; 34 1022_CR57 1022_CR4 1022_CR59 1022_CR58 1022_CR9 MM Cheng (1022_CR36) 2015; 37 P Zhang (1022_CR53) 2017; 257 WW Fang (1022_CR11) 2014; 283 JRR Uijlings (1022_CR32) 2013; 104 L Hou (1022_CR56) 2017; 86 C Koch (1022_CR43) 1985; 4 T Li (1022_CR18) 2017; 14 PF Wu (1022_CR1) 2017; 17 1022_CR50 JR Hai (1022_CR22) 2014; 128 1022_CR49 L Shu (1022_CR10) 2016; 9 Y Li (1022_CR29) 2012; 9 A Zhao (1022_CR20) 2017; 14 YM Fang (1022_CR17) 2017; 47 1022_CR48 1022_CR47 ZH Xia (1022_CR8) 2017; 387 NX Xiong (1022_CR12) 2009; 27 J Gui (1022_CR3) 2017; 5 JS Lim (1022_CR54) 2012; 5 L Itti (1022_CR33) 1998; 20 CL Guo (1022_CR51) 2010; 19 YH Wang (1022_CR2) 2017; 408 1022_CR42 1022_CR41 1022_CR44 1022_CR40 CT Zahn (1022_CR25) 1972; C-21 QC Wu (1022_CR28) 2015; 12 1022_CR39 1022_CR35 KM He (1022_CR61) 2015; 37 1022_CR34 1022_CR37 S Goferman (1022_CR46) 2012; 34 PY Reecha (1022_CR55) 2015; 114 S Goferman (1022_CR38) 2012; 34 ZH Xia (1022_CR6) 2016; 75 A Krizhevsky (1022_CR30) 2017; 60 CY Zhang (1022_CR14) 2015; 16 X Lu (1022_CR13) 2017; 73 CS Lin (1022_CR24) 1987; 20 1022_CR31 1022_CR74 Y Yang (1022_CR16) 2014; 14 1022_CR71 1022_CR70 1022_CR73 1022_CR72 G Liu (1022_CR27) 2013; 10 SQ Ren (1022_CR62) 2017; 39 1022_CR68 1022_CR23 1022_CR67 T Liu (1022_CR45) 2011; 33 1022_CR69 YD Lin (1022_CR21) 2017; 76 G Cheng (1022_CR26) 2016; 117 G Li (1022_CR52) 2016; 25 1022_CR64 1022_CR63 1022_CR66 NX Xiong (1022_CR15) 2010; 180 1022_CR65 1022_CR60 H Zhang (1022_CR5) 2016; 17 |
References_xml | – ident: CR70 – volume: 86 start-page: 27 issue: 1 year: 2017 end-page: 39 ident: CR56 article-title: Robust human tracking based on DPM constrained multiple-kernel from a moving camera publication-title: Journal of Signal Processing Systems. doi: 10.1007/s11265-015-1097-y – volume: 75 start-page: 1947 issue: 4 year: 2016 end-page: 1962 ident: CR6 article-title: Steganalysis of LSB matching using differences between nonadjacent pixels publication-title: Multimedia Tools & Applications doi: 10.1007/s11042-014-2381-8 – volume: 20 start-page: 1254 issue: 11 year: 1998 end-page: 1259 ident: CR33 article-title: A model of saliency-based visual attention for rapid scene analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.730558 – ident: CR49 – volume: 19 start-page: 185 issue: 1 year: 2010 end-page: 198 ident: CR51 article-title: A novel multiresolution spatiotemporal saliency detection model and its applications in image and video compression publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2009.2030969 – ident: CR68 – ident: CR74 – volume: 19 start-page: 255 issue: 1 year: 2016 end-page: 267 ident: CR7 article-title: Consistency maintenance of do and undo/redo operations in real-time collaborative bitmap editing systems publication-title: Clust. Comput. doi: 10.1007/s10586-015-0499-8 – volume: 117 start-page: 11 year: 2016 end-page: 28 ident: CR26 article-title: A survey on object detection in optical remote sensing images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.014 – volume: 34 start-page: 1915 issue: 10 year: 2012 end-page: 1926 ident: CR46 article-title: Context-aware saliency detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.272 – ident: CR4 – ident: CR39 – volume: 387 start-page: 195 year: 2017 end-page: 204 ident: CR8 article-title: An efficient and privacy-preserving content-based image retrieval scheme in cloud computing publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.12.030 – volume: 47 start-page: 2956 issue: 11 year: 2017 end-page: 2966 ident: CR17 article-title: Optimized multioperator image retargeting based on perceptual similarity measure publication-title: IEEE Transactions on Systems Man Cybernetics-Systems doi: 10.1109/TSMC.2016.2557225 – volume: 34 start-page: 1915 issue: 10 year: 2012 end-page: 1926 ident: CR38 article-title: Context-aware saliency detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.272 – volume: 33 start-page: 353 issue: 2 year: 2011 end-page: 367 ident: CR45 article-title: Learning to detect a salient object publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.70 – volume: C-21 start-page: 269 issue: 3 year: 1972 end-page: 281 ident: CR25 article-title: Fourier descriptors for plane closed curves publication-title: IEEE Trans. Comput. doi: 10.1109/TC.1972.5008949 – ident: CR35 – volume: 17 start-page: 1303 issue: 6 year: 2017 ident: CR1 article-title: Node scheduling strategies for achieving full-view area coverage in camera sensor networks publication-title: Sensors doi: 10.3390/s17061303 – ident: CR58 – ident: CR42 – volume: 408 start-page: 70 year: 2017 end-page: 83 ident: CR2 article-title: Dynamic propagation characteristics estimation and tracking based on an EM-EKF algorithm in time-variant MIMO channel publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.035 – volume: 20 start-page: 535 issue: 5 year: 1987 end-page: 545 ident: CR24 article-title: New forms of shape invariants from elliptic fourier descriptors publication-title: Pattern Recogn. doi: 10.1016/0031-3203(87)90080-X – ident: CR71 – ident: CR19 – volume: 60 start-page: 84 issue: 6 year: 2017 end-page: 90 ident: CR30 article-title: ImageNet classification with deep convolutional neural networks publication-title: Commun. ACM doi: 10.1145/3065386 – volume: 14 start-page: 22408 issue: 12 year: 2014 end-page: 22430 ident: CR16 article-title: Dual-tree complex wavelet transform and image block residual-based multi-focus image fusion in visual sensor networks publication-title: Sensors doi: 10.3390/s141222408 – volume: 104 start-page: 154 issue: 2 year: 2013 end-page: 171 ident: CR32 article-title: Selective search for object recognition publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0620-5 – ident: CR67 – volume: 34 start-page: 2274 issue: 11 year: 2012 end-page: 2281 ident: CR75 article-title: SLIC superpixels compared to state-of-the-art superpixel methods publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – ident: CR50 – volume: 37 start-page: 569 issue: 3 year: 2015 end-page: 582 ident: CR36 article-title: Global contrast based salient region detection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2345401 – ident: CR9 – ident: CR57 – volume: 283 start-page: 79 year: 2014 end-page: 93 ident: CR11 article-title: On the throughput-energy tradeoff for data transmission between cloud and mobile devices publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.06.022 – ident: CR60 – volume: 39 start-page: 1137 issue: 6 year: 2017 end-page: 1149 ident: CR62 article-title: Faster R-CNN: towards real-time object detection with region proposal networks publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence doi: 10.1109/TPAMI.2016.2577031 – ident: CR64 – volume: 25 start-page: 5012 issue: 11 year: 2016 end-page: 5024 ident: CR52 article-title: Visual saliency detection based on multiscale deep CNN features publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2602079 – volume: 5 start-page: 243 issue: 2 year: 2012 end-page: 248 ident: CR54 article-title: Detection of multiple humans using motion information and adaboost algorithm based on harr-like features publication-title: International Journal of Hybrid Information Technology – volume: 9 start-page: 297 issue: 5 year: 2016 end-page: 308 ident: CR10 article-title: A novel objective quality assessment for super- resolution images publication-title: International Journal of Signal Processing, Image Processing and Pattern Recognition doi: 10.14257/ijsip.2016.9.5.27 – ident: CR66 – ident: CR47 – ident: CR72 – volume: 128 start-page: 166 issue: 27 year: 2014 end-page: 174 ident: CR22 article-title: Aircraft recognition using modular extreme learning machine publication-title: Neurocomputing – volume: 12 start-page: 112 issue: 1 year: 2015 end-page: 116 ident: CR28 article-title: Aircraft recognition in high-resolution optical satellite remote sensing images publication-title: IEEE Geoscience Remote Sensing Letters doi: 10.1109/LGRS.2014.2328358 – volume: 17 start-page: 1391 issue: 7 year: 2016 end-page: 1403 ident: CR5 article-title: Non-convex total generalized variation with spatially adaptive regularization parameters for edge-preserving image restoration publication-title: Journal of Internet Technology – ident: CR37 – volume: 27 start-page: 495 issue: 4 year: 2009 end-page: 509 ident: CR12 article-title: Comparative analysis of quality of service and memory usage for adaptive failure detectors in healthcare systems publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2009.090512 – volume: 10 start-page: 573 issue: 3 year: 2013 end-page: 577 ident: CR27 article-title: Aircraft recognition in high-resolution satellite images using coarse-to-fine shape prior publication-title: IEEE Geoscience Remote Sensing Letters doi: 10.1109/LGRS.2012.2214022 – ident: CR40 – ident: CR63 – volume: 4 start-page: 219 issue: 4 year: 1985 end-page: 227 ident: CR43 article-title: Shifts in selective visual attention: towards the underlying neural circuitry publication-title: Hum. Neurobiol. – volume: 5 start-page: 2396 year: 2017 end-page: 2416 ident: CR3 article-title: A game-based localized multi-objective topology control scheme in heterogeneous wireless networks publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2672561 – volume: 73 start-page: 3562 issue: 8 year: 2017 end-page: 3578 ident: CR13 article-title: ViMediaNet: an emulation system for interactive multimedia based telepresence services publication-title: J. Supercomput. doi: 10.1007/s11227-016-1821-9 – volume: 14 start-page: 1413 issue: 8 year: 2017 end-page: 1417 ident: CR20 article-title: Aircraft recognition based on landmark detection in remote sensing images publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2715858 – ident: CR23 – volume: 14 start-page: 699 issue: 5 year: 2017 end-page: 703 ident: CR18 article-title: SDBD: A hierarchical region-of-interest detection approach in large-scale remote sensing image publication-title: IEEE Geoscience & Remote Sensing Letters. doi: 10.1109/LGRS.2017.2672560 – volume: 9 start-page: 886 issue: 5 year: 2012 end-page: 890 ident: CR29 article-title: Automatic target detection in high-resolution remote sensing images using a contour-based spatial model publication-title: IEEE Geoscience Remote Sensing Letters doi: 10.1109/LGRS.2012.2183337 – ident: CR69 – volume: 114 start-page: 10 issue: 19 year: 2015 end-page: 16 ident: CR55 article-title: Implementation of robust HOG-SVM based pedestrian classification publication-title: International Journal of Computer Applications doi: 10.5120/20084-2026 – ident: CR44 – ident: CR48 – ident: CR73 – ident: CR65 – volume: 16 start-page: 1301 issue: 7 year: 2015 end-page: 1319 ident: CR14 article-title: Non-local regularized variational model for image deblurring under mixed Gaussian-impulse noise publication-title: Journal of Internet Technology – ident: CR31 – ident: CR34 – volume: 180 start-page: 2249 issue: 11 year: 2010 end-page: 2263 ident: CR15 article-title: A novel self-tuning feedback controller for active queue management supporting TCP flows publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.12.001 – volume: 37 start-page: 1904 issue: 9 year: 2015 end-page: 1916 ident: CR61 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – volume: 76 start-page: 14461 issue: 12 year: 2017 end-page: 14483 ident: CR21 article-title: Rotation and scale invariant target detection in optical remote sensing images based on pose-consistency voting publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-3857-5 – ident: CR59 – ident: CR41 – volume: 257 start-page: 115 year: 2017 end-page: 127 ident: CR53 article-title: Online object tracking based on CNN with spatial-temporal saliency guided sampling publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.073 – ident: 1022_CR67 doi: 10.1109/CVPR.2016.260 – volume: 39 start-page: 1137 issue: 6 year: 2017 ident: 1022_CR62 publication-title: IEEE Transactions on Pattern Analysis & Machine Intelligence doi: 10.1109/TPAMI.2016.2577031 – ident: 1022_CR68 doi: 10.1109/CVPR.2017.351 – ident: 1022_CR70 doi: 10.1109/CVPR.2017.106 – volume: 387 start-page: 195 year: 2017 ident: 1022_CR8 publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.12.030 – volume: C-21 start-page: 269 issue: 3 year: 1972 ident: 1022_CR25 publication-title: IEEE Trans. Comput. doi: 10.1109/TC.1972.5008949 – ident: 1022_CR63 – ident: 1022_CR37 doi: 10.1109/CVPR.2009.5206596 – volume: 75 start-page: 1947 issue: 4 year: 2016 ident: 1022_CR6 publication-title: Multimedia Tools & Applications doi: 10.1007/s11042-014-2381-8 – volume: 27 start-page: 495 issue: 4 year: 2009 ident: 1022_CR12 publication-title: IEEE Journal on Selected Areas in Communications doi: 10.1109/JSAC.2009.090512 – ident: 1022_CR31 doi: 10.1109/CVPR.2014.81 – volume: 408 start-page: 70 year: 2017 ident: 1022_CR2 publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.035 – ident: 1022_CR73 – volume: 37 start-page: 569 issue: 3 year: 2015 ident: 1022_CR36 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2014.2345401 – volume: 25 start-page: 5012 issue: 11 year: 2016 ident: 1022_CR52 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2602079 – volume: 20 start-page: 535 issue: 5 year: 1987 ident: 1022_CR24 publication-title: Pattern Recogn. doi: 10.1016/0031-3203(87)90080-X – volume: 14 start-page: 699 issue: 5 year: 2017 ident: 1022_CR18 publication-title: IEEE Geoscience & Remote Sensing Letters. doi: 10.1109/LGRS.2017.2672560 – ident: 1022_CR44 doi: 10.7551/mitpress/7503.001.0001 – volume: 86 start-page: 27 issue: 1 year: 2017 ident: 1022_CR56 publication-title: Journal of Signal Processing Systems. doi: 10.1007/s11265-015-1097-y – volume: 76 start-page: 14461 issue: 12 year: 2017 ident: 1022_CR21 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-016-3857-5 – volume: 33 start-page: 353 issue: 2 year: 2011 ident: 1022_CR45 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2010.70 – volume: 283 start-page: 79 year: 2014 ident: 1022_CR11 publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.06.022 – volume: 73 start-page: 3562 issue: 8 year: 2017 ident: 1022_CR13 publication-title: J. Supercomput. doi: 10.1007/s11227-016-1821-9 – ident: 1022_CR42 doi: 10.1109/CVPR.2015.7298798 – volume: 9 start-page: 886 issue: 5 year: 2012 ident: 1022_CR29 publication-title: IEEE Geoscience Remote Sensing Letters doi: 10.1109/LGRS.2012.2183337 – ident: 1022_CR9 doi: 10.1007/s11042-016-3877-1 – ident: 1022_CR47 doi: 10.1109/CVPR.2012.6247711 – ident: 1022_CR58 doi: 10.1109/CVPR.2016.314 – volume: 16 start-page: 1301 issue: 7 year: 2015 ident: 1022_CR14 publication-title: Journal of Internet Technology doi: 10.6138/JIT.2015.16.7.20151103a – volume: 47 start-page: 2956 issue: 11 year: 2017 ident: 1022_CR17 publication-title: IEEE Transactions on Systems Man Cybernetics-Systems doi: 10.1109/TSMC.2016.2557225 – volume: 117 start-page: 11 year: 2016 ident: 1022_CR26 publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.014 – volume: 12 start-page: 112 issue: 1 year: 2015 ident: 1022_CR28 publication-title: IEEE Geoscience Remote Sensing Letters doi: 10.1109/LGRS.2014.2328358 – ident: 1022_CR59 doi: 10.1109/CVPR.2016.98 – ident: 1022_CR66 doi: 10.1007/978-3-319-10602-1_26 – volume: 17 start-page: 1303 issue: 6 year: 2017 ident: 1022_CR1 publication-title: Sensors doi: 10.3390/s17061303 – ident: 1022_CR40 doi: 10.1109/CVPR.2007.383267 – volume: 9 start-page: 297 issue: 5 year: 2016 ident: 1022_CR10 publication-title: International Journal of Signal Processing, Image Processing and Pattern Recognition doi: 10.14257/ijsip.2016.9.5.27 – ident: 1022_CR74 – volume: 34 start-page: 1915 issue: 10 year: 2012 ident: 1022_CR38 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.272 – ident: 1022_CR35 doi: 10.1109/CVPR.2014.360 – volume: 37 start-page: 1904 issue: 9 year: 2015 ident: 1022_CR61 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – ident: 1022_CR49 doi: 10.1109/CVPR.2013.151 – volume: 34 start-page: 2274 issue: 11 year: 2012 ident: 1022_CR75 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.120 – volume: 20 start-page: 1254 issue: 11 year: 1998 ident: 1022_CR33 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.730558 – volume: 14 start-page: 1413 issue: 8 year: 2017 ident: 1022_CR20 publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2017.2715858 – ident: 1022_CR65 doi: 10.1007/978-3-319-46448-0_2 – volume: 14 start-page: 22408 issue: 12 year: 2014 ident: 1022_CR16 publication-title: Sensors doi: 10.3390/s141222408 – ident: 1022_CR4 doi: 10.3390/s17010174 – ident: 1022_CR48 doi: 10.1109/ICCV.2011.6126348 – volume: 19 start-page: 185 issue: 1 year: 2010 ident: 1022_CR51 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2009.2030969 – volume: 19 start-page: 255 issue: 1 year: 2016 ident: 1022_CR7 publication-title: Clust. Comput. doi: 10.1007/s10586-015-0499-8 – volume: 60 start-page: 84 issue: 6 year: 2017 ident: 1022_CR30 publication-title: Commun. ACM doi: 10.1145/3065386 – ident: 1022_CR39 doi: 10.1145/1180639.1180824 – volume: 5 start-page: 243 issue: 2 year: 2012 ident: 1022_CR54 publication-title: International Journal of Hybrid Information Technology – volume: 114 start-page: 10 issue: 19 year: 2015 ident: 1022_CR55 publication-title: International Journal of Computer Applications doi: 10.5120/20084-2026 – ident: 1022_CR23 doi: 10.1109/ICMLC.2006.258434 – ident: 1022_CR50 doi: 10.1109/CVPR.2012.6247743 – volume: 34 start-page: 1915 issue: 10 year: 2012 ident: 1022_CR46 publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.272 – ident: 1022_CR19 doi: 10.1109/IGARSS.2016.7729355 – ident: 1022_CR64 doi: 10.1109/CVPR.2016.91 – volume: 128 start-page: 166 issue: 27 year: 2014 ident: 1022_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.064 – volume: 4 start-page: 219 issue: 4 year: 1985 ident: 1022_CR43 publication-title: Hum. Neurobiol. – ident: 1022_CR34 doi: 10.1109/ICCV.2015.169 – volume: 10 start-page: 573 issue: 3 year: 2013 ident: 1022_CR27 publication-title: IEEE Geoscience Remote Sensing Letters doi: 10.1109/LGRS.2012.2214022 – ident: 1022_CR71 – volume: 104 start-page: 154 issue: 2 year: 2013 ident: 1022_CR32 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-013-0620-5 – volume: 17 start-page: 1391 issue: 7 year: 2016 ident: 1022_CR5 publication-title: Journal of Internet Technology doi: 10.6138/JIT.2016.17.7.20161108 – ident: 1022_CR69 doi: 10.1007/978-3-319-46493-0_22 – ident: 1022_CR41 doi: 10.1109/ICCV.2013.370 – ident: 1022_CR60 doi: 10.1109/CVPR.2016.234 – volume: 180 start-page: 2249 issue: 11 year: 2010 ident: 1022_CR15 publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.12.001 – ident: 1022_CR72 doi: 10.1109/CVPR.2017.87 – volume: 5 start-page: 2396 year: 2017 ident: 1022_CR3 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2672561 – ident: 1022_CR57 doi: 10.1109/ICIP.2016.7533079 – volume: 257 start-page: 115 year: 2017 ident: 1022_CR53 publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.073 |
SSID | ssj0033492 |
Score | 2.2723856 |
Snippet | New algorithms and architectures for the current industrial wireless sensor networks shall be explored to ensure the efficiency, robustness, and consistence in... Abstract New algorithms and architectures for the current industrial wireless sensor networks shall be explored to ensure the efficiency, robustness, and... |
SourceID | doaj crossref springer |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms and Architectures for Industrial Wireless Sensor Networks Communications Engineering Engineering Information Systems Applications (incl.Internet) Networks Remote sensing image, Detection, Saliency, Convolution neural network Signal,Image and Speech Processing |
SummonAdditionalLinks | – databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 dbid: 40G link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JS8UwEA4uFz2IKz43cvCkFLuk6eSooj4EPfnAgxDaLPJAq7T1_zuT14riAl56CJMGJjOZb8jMF8YOCyhlKnIRYXYBkTAijkAJzHlK77IiEwZyahS-uZXjibi-z-_7Pu52qHYfriTDSR3cGuRJm2RoK5j6Eh0pZlAwzxZzRMdEmC_iq-H4zYhur7--_HHalwAUePq_XYKG2HK5ylZ6UMhPZ7u4xuZcvc6WP1EFbrCH02ljmtJ33LoulE_VfFrzxqGqHW-pDL1-5NNnPB5aTqHJcpRoEWVTbyUva8upwLw3NE40lrhiPSsC32STy4u783HUv4wQGcQPXSSVScCIStoqVuAhNlWm0FutL7xPXIFRvvCIhHySVTaFMgWZGQtxBaQDqbIttlC_1G6b8Yp6TxH1CGeFyH2pclUaqjkFYVE8H7F4UJc2PW04vV7xpEP6AFLPNKxRw5r-rmHEjj6mvM44M_4SPqM9-BAkuusw8NI86t57dJE4h8jRpwoKIfGbFkklYpcrzO9waMSOhx3UvQ-2vy-58y_pXbaUkvWESu09ttA1b24fgUhXHQTDewd_RdMd priority: 102 providerName: Springer Nature |
Title | Aircraft detection in remote sensing images based on saliency and convolution neural network |
URI | https://link.springer.com/article/10.1186/s13638-018-1022-8 https://doaj.org/article/71ee416f298746298271b40e59495874 |
Volume | 2018 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: KQ8 dateStart: 20040101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: DOA dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: ABDBF dateStart: 20060101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: ADMLS dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: AAJSJ dateStart: 20041201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: C24 dateStart: 20041201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: C6C dateStart: 20041201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: 40G dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1687-1499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0033492 issn: 1687-1499 databaseCode: U2A dateStart: 20111201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF60XvQgPrE-yh48KaF5bDabY1tai2ARsdCDsGRfUtAoTfz_ziRpqYh68bKQZZINs7M737Az3xJymYiMhyxmHkQXwmOa-Z5IGcQ8mbNREjEtYiwUvpvw8ZTdzuLZ2lVfmBNW0wPXiusmgbUAGlwIwTHj0IZJoJhv4xSgPXTh7gtubBlM1XtwhJx7zRlmIHi3CCKwMwibkcoUoi_xxQtVZP3fTkIrBzPaI7sNMqS9-o_2yYbND8jOGl_gIXnqzRd6kbmSGltWOVQ5ned0YUHflhaYi54_0_kr7BEFRf9kKEgUALWxwJJmuaGYZd5YG0UuSxgxrzPBj8h0NHwcjL3megRPA4goPZ7qQGimuFF-KpzwtYpSWLLGJc4FNgFXnziAQy6IlAlFFgoeaSN8JVAHPI2OSSt_y-0JoQoLUAH6MGsYi12WxmmmMfFUMAPicZv4S3VJ3XCH4xUWL7KKIQSXtYYlaFji16Vok6vVK-81ccZvwn2cg5Ugcl5XHWAJsrEE-ZcltMn1cgZlsxCLn4c8_Y8hz8h2iEZVZXGfk1a5-LAXAFJK1SGbzL_pkK3-cHL_AE-DkGHLB53KUqGdhr1P3WPh7Q |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELZgOZQeKmiL2LaAD5xaRc3DccbHLWK1wO6eQOJQyUr8WK3UBpSk_78zTnbVqhSJSw7WOJbm4ZnRzHxm7LyAUqYiFxFmFxAJI-IIlMCcp_QuKzJhIKdB4cVSzu7E9X1-P8xxt5tu901JMtzUwaxBfm2TDHUFU1-CI8UMCnbZHpUw6dmCCxpx6K_fjOD2hvLlk9v-ckABp_-fImjwLdMD9mYICvmkl-Ih23H1W_b6D6jAd-z7ZN2YpvQdt64L7VM1X9e8cchqx1tqQ69XfP0Tr4eWk2uyHClajLJptpKXteXUYD4oGicYSzyx7pvA37O76eXtxSwaXkaIDMYPXSSVScCIStoqVuAhNlWm0FqtL7xPXIFevvAYCfkkq2wKZQoyMxbiCogHUmVHbFQ_1O6Y8YpmTzHqEc4KkftS5ao01HMKwiJ5Pmbxhl3aDLDh9HrFDx3SB5C657BGDmv6u4Yx-7zd8thjZjxH_I1ksCUkuOuw8NCs9GA9ukicw8jRpwoKIfGbFkklYpcrzO9wacy-bCSoBxts_3_khxdRn7FXs9vFXM-vljcf2X5KmhS6tj-xUdf8cicYlHTVaVDC336F1gE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZpAqU5hKRN6SZpq0NPLWb9kOXRMUmzbNN26aELewgIW4-w0GgX2_n_mbG9S0uTQi8-iJEF89DMMDOfGPtQQClTkYsIswuIhBFxBEpgzlN6lxWZMJDToPD3mZzOxfUiXwzvnDabbvdNSbKfaSCUptCO19b3Jg5y3CQZ6g2mwQRNitkUPGN7BNXVVWtp3KG_ijOC3htKmY9u-8MZdZj9fxVEOz8zOWQHQ4DIz3uJHrEdF16y_d9gA1-xm_NlberSt9y6tmulCnwZeO2Q7Y431JIebvnyDq-KhpObshwpGoy4ac6Sl8FyajYflI4TpCWeGPqG8GM2n1z9vJxGwysJkcFYoo2kMgkYUUlbxQo8xKbKFFqu9YX3iSvQ4xceoyKfZJVNoUxBZsZCXAHxQKrsNdsNq-DeMF7RHCpGQMJZIXJfqlyVhvpPQVgkz0cs3rBLmwFCnF6y-KW7VAKk7jmskcOa_q5hxD5ut6x7_Ix_EV-QDLaEBH3dLazqWz1Yki4S5zCK9KmCQkj8pkVSidjlCnM9XBqxTxsJ6sEem6ePPPkv6vfs-Y_PE_3ty-zrKXuRkiJ1DdxnbLet791bjE_a6l2ngw8fxdpG |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Aircraft+detection+in+remote+sensing+images+based+on+saliency+and+convolution+neural+network&rft.jtitle=EURASIP+journal+on+wireless+communications+and+networking&rft.au=Guoxiong+Hu&rft.au=Zhong+Yang&rft.au=Jiaming+Han&rft.au=Li+Huang&rft.date=2018-02-01&rft.pub=SpringerOpen&rft.eissn=1687-1499&rft.volume=2018&rft.issue=1&rft.spage=1&rft.epage=16&rft_id=info:doi/10.1186%2Fs13638-018-1022-8&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_71ee416f298746298271b40e59495874 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1499&client=summon |