How constraint programming can help chemists to generate Benzenoid structures and assess the local Aromaticity of Benzenoids

Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are widely studied in theoretical chemistry and have a lot of concrete applications. Then, there is a lot of problems relative to this subject, lik...

Full description

Saved in:
Bibliographic Details
Published inConstraints : an international journal Vol. 27; no. 3; pp. 192 - 248
Main Authors Carissan, Yannick, Hagebaum-Reignier, Denis, Prcovic, Nicolas, Terrioux, Cyril, Varet, Adrien
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2022
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN1383-7133
1572-9354
DOI10.1007/s10601-022-09328-x

Cover

Abstract Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are widely studied in theoretical chemistry and have a lot of concrete applications. Then, there is a lot of problems relative to this subject, like the enumeration of all its Kekulé structures (i.e. all valid configurations of double bonds). In this article, we focus our attention on two issues: the generation of benzenoid structures and the assessment of the local aromaticity. On the one hand, generating benzenoids that have certain structural and/or chemical properties (e.g. having a given number of hexagons or a particular structure from a graph viewpoint) is an interesting and important problem. It constitutes a preliminary step for studying their chemical properties. In this paper, we show that modeling this problem in Choco Solver and just letting its search engine generate the solutions is a fast enough and very flexible approach. It can allow to generate many different kinds of benzenoids with predefined structural properties by posting new constraints, saving the efforts of developing bespoke algorithmic methods for each kind of benzenoids. On the other hand, we want to assess the local aromaticity of a given benzenoid. This is a central issue in theoretical chemistry since aromaticity cannot be measured. Nowadays, computing aromaticity requires quantum chemistry calculations that are too expensive to be used on medium to large-sized molecules. In this article, we describe how constraint programming can be useful in order to assess the aromaticity of benzenoids. Moreover, we show that our method is much faster than the reference one, namely NICS.
AbstractList Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are widely studied in theoretical chemistry and have a lot of concrete applications. Then, there is a lot of problems relative to this subject, like the enumeration of all its Kekulé structures (i.e. all valid configurations of double bonds). In this article, we focus our attention on two issues: the generation of benzenoid structures and the assessment of the local aromaticity. On the one hand, generating benzenoids that have certain structural and/or chemical properties (e.g. having a given number of hexagons or a particular structure from a graph viewpoint) is an interesting and important problem. It constitutes a preliminary step for studying their chemical properties. In this paper, we show that modeling this problem in Choco Solver and just letting its search engine generate the solutions is a fast enough and very flexible approach. It can allow to generate many different kinds of benzenoids with predefined structural properties by posting new constraints, saving the efforts of developing bespoke algorithmic methods for each kind of benzenoids. On the other hand, we want to assess the local aromaticity of a given benzenoid. This is a central issue in theoretical chemistry since aromaticity cannot be measured. Nowadays, computing aromaticity requires quantum chemistry calculations that are too expensive to be used on medium to large-sized molecules. In this article, we describe how constraint programming can be useful in order to assess the aromaticity of benzenoids. Moreover, we show that our method is much faster than the reference one, namely NICS.
Author Prcovic, Nicolas
Varet, Adrien
Carissan, Yannick
Terrioux, Cyril
Hagebaum-Reignier, Denis
Author_xml – sequence: 1
  givenname: Yannick
  orcidid: 0000-0002-9876-0272
  surname: Carissan
  fullname: Carissan, Yannick
  organization: Aix Marseille Univ, CNRS, Centrale Marseille, ISM2
– sequence: 2
  givenname: Denis
  orcidid: 0000-0001-8761-1047
  surname: Hagebaum-Reignier
  fullname: Hagebaum-Reignier, Denis
  organization: Aix Marseille Univ, CNRS, Centrale Marseille, ISM2
– sequence: 3
  givenname: Nicolas
  orcidid: 0000-0002-3580-4071
  surname: Prcovic
  fullname: Prcovic, Nicolas
  organization: Aix Marseille Univ, Université de Toulon, CNRS, LIS
– sequence: 4
  givenname: Cyril
  orcidid: 0000-0002-9779-9108
  surname: Terrioux
  fullname: Terrioux, Cyril
  email: cyril.terrioux@univ-amu.fr
  organization: Aix Marseille Univ, Université de Toulon, CNRS, LIS
– sequence: 5
  givenname: Adrien
  orcidid: 0000-0003-3170-4484
  surname: Varet
  fullname: Varet, Adrien
  organization: Aix Marseille Univ, Université de Toulon, CNRS, LIS
BackLink https://amu.hal.science/hal-03684890$$DView record in HAL
BookMark eNp9kc1uGyEURlGVSHV-XiArpK6ymPYCMwaWTtTGlSx1k6wRg-_YY82AAzhNqjx8cadqpC6yAqFzLlffd0ZOfPBIyBWDzwxAfkkM5sAq4LwCLbiqnj-QGWskr7Ro6pNyF0pUkgnxkZyltAMALUU9I6_L8JO64FOOtveZ7mPYRDuOvd9QZz3d4rCnbotjn3KiOdANeow2I71B_wt96Ne0uAeXDxETtX5NbUqYCrtFOgRnB7qIYbS5d31-oaF7E9MFOe3skPDy73lOHr59vb9dVqsfd99vF6vKCS1zNWdNXQNyp7pWNiA6yTvb1p1FBFkI0aDUdVuAFmTD9NrJumuFcuCkEmotzsn1NHdrB7OP_Wjjiwm2N8vFyhzfQMxVrTQ8scJ-mtiSxOMBUza7cIi-rGf4XGutuORNofhEuRhSitj9G8vAHBsxUyOmNGL-NGKei6T-k0okJZjgj-EP76tiUlP5x28wvm31jvUbly6khA
CitedBy_id crossref_primary_10_1039_D4CP00096J
Cites_doi 10.1039/C5CS00183H
10.1016/j.comptc.2011.08.010
10.1021/jp806987f
10.3847/1538-4357/ab3124
10.1016/S0196-6774(02)00215-8
10.1186/s13015-014-0023-3
10.1007/978-3-662-01665-7
10.1021/ci990136k
10.1021/acs.jpca.9b01014
10.1038/s41565-019-0577-9
10.1038/s41557-020-00627-5
10.1088/0004-637X/754/1/75
10.1002/anie.202014621
10.1021/jacs.0c05268
10.1002/jcc.25760
10.1007/s10910-017-0799-8
10.1080/00268976300100501
10.1021/jacs.9b05319
10.1021/acsnano.8b07225
10.1021/cr9903656
10.1002/anie.201913200
10.1021/ci00018a019
10.1021/ci990016c
10.1021/jp403380t
10.1021/jp503054j
10.1021/jacs.9b04080
10.1021/ja062026h
10.1002/jlac.18661370202
10.1021/acs.jpclett.0c02518
10.1002/(SICI)1097-461X(1996)60:8<1851::AID-QUA13>3.0.CO;2-2
10.1002/9780470611821
10.1021/jp040179q
10.1007/BF01339530
10.1021/ci00064a002
10.1021/ci970116n
10.1002/qua.25657
10.1007/978-3-319-40970-2_8
10.1086/311843
10.1039/D0FD00023J
10.1021/acs.jpca.7b11095
10.1021/ja00380a040
10.1021/acs.joc.0c01097
10.3847/1538-4365/aaa019
10.1021/cr030088+
10.1007/978-3-030-58475-7_40
10.1007/978-3-030-58475-7_39
10.1002/anie.202100343
10.1002/chem.202004720
10.1016/0009-2614(76)80257-6
10.1002/anie.202102757
10.1039/C7SC03628K
10.1007/978-3-642-58150-2_3
10.1016/j.jms.2021.111458
10.1007/978-3-540-30201-8_87
10.1051/eas/1146003
10.1002/anie.202008838
10.1051/0004-6361/201834130
10.1021/acs.jpcc.1c02514
10.1142/p306
10.1002/ange.202001211
10.1002/tcr.201900016
10.1021/acs.jctc.5b00594
10.1086/533424
10.1080/0025570X.2001.11953063
10.1021/jacs.6b01181
10.1002/poc.1644
10.1021/ja01069a041
10.1021/cr068010r
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
JQ2
1XC
VOOES
DOI 10.1007/s10601-022-09328-x
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList

ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Chemistry
EISSN 1572-9354
EndPage 248
ExternalDocumentID oai_HAL_hal_03684890v1
10_1007_s10601_022_09328_x
GrantInformation_xml – fundername: Agence National de la Recherche
  grantid: ANR-16-CE40-0028
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
JQ2
1XC
VOOES
ID FETCH-LOGICAL-c397t-615440e2c8fb7503f72fab4faee0739735e794be2cb07519dc74fb38c0c7838d3
IEDL.DBID AGYKE
ISSN 1383-7133
IngestDate Fri Sep 12 12:23:34 EDT 2025
Wed Sep 17 23:56:31 EDT 2025
Tue Jul 01 02:58:25 EDT 2025
Thu Apr 24 23:07:24 EDT 2025
Fri Feb 21 02:46:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Graph variables and constraints
Theoretical chemistry
Modeling
Constraint programming
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-615440e2c8fb7503f72fab4faee0739735e794be2cb07519dc74fb38c0c7838d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8761-1047
0000-0002-9779-9108
0000-0003-3170-4484
0000-0002-9876-0272
0000-0002-3580-4071
OpenAccessLink https://amu.hal.science/hal-03684890
PQID 2699982725
PQPubID 2043864
PageCount 57
ParticipantIDs hal_primary_oai_HAL_hal_03684890v1
proquest_journals_2699982725
crossref_primary_10_1007_s10601_022_09328_x
crossref_citationtrail_10_1007_s10601_022_09328_x
springer_journals_10_1007_s10601_022_09328_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Constraints : an international journal
PublicationTitleAbbrev Constraints
PublicationYear 2022
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References KimYKimJWKimZKimWYEfficient prediction of reaction paths through molecular graph and reaction network analysisChemical Science20189482583510.1039/C7SC03628K
MishraSBeyerDEimreKKezilebiekeSBergerRGröningOPignedoliCAMüllenKLiljerothPRuffieuxPFengXFaselRTopological frustration induces unconventional magnetism in a nanographeneNature Nanotechnology2020151222810.1038/s41565-019-0577-9
Lecoutre, C. (2009). Constraint networks: Techniques and algorithms. Wiley.
BouwmanJLinnartzHTielensAGMid-infrared spectroscopic signatures of dibenzopyrene cations – the effect of symmetry on pah ir spectroscopyJournal of Molecular Spectroscopy202137811145810.1016/j.jms.2021.111458
Wu, C. W. (2004). Modelling chemical reactions using constraint programming and molecular graphs. In Principles and practice of constraint programming, pp. 808–808.
Carissan, Y., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2021). Exhaustive generation of benzenoid structures sharing common patterns. In CP, pp. 19:1–19:18.
KekuléAUntersuchungen über aromatische verbindungen ueber die constitution der aromatischen verbindungenJustus Liebigs Annalen der Chemie1866137212919610.1002/jlac.18661370202
Ruiz-MoralesYThe agreement between clar structures and Nucleus-Independent chemical shift values in pericondensed benzenoid polycyclic aromatic hydrocarbons: an application of the Y-RuleThe Journal of Physical Chemistry. A2004108108731089610.1021/jp040179q
AllamandolaLJHudginsDMSandfordSAModeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbonsThe Astrophysical Journal19995112L115L11910.1086/311843
TrinquierGMalrieuJPPredicting the Open-Shell character of polycyclic hydrocarbons in terms of clar sextetsThe Journal of Physical Chemistry A201812241088110310.1021/acs.jpca.7b11095
BauschlicherCWJrPeetersEAllamandolaLJThe infrared spectra of very large, compact, highly symmetric, polycyclic aromatic hydrocarbons (PAHs)The Astrophysical Journal2008678131632710.1086/533424
LinCEfficient method for calculating the resonance energy expression of benzenoid hydrocarbons based on the enumeration of conjugated circuitsJournal of Chemical Information and Computer Sciences20004077878310.1021/ci990136k
Carissan, Y., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2020). Using constraint programming to generate benzenoid structures in theoretical chemistry. In CP, pp. 690–706.
LiuJFengXSynthetic tailoring of graphene nanostructures with Zigzag-Edged topologies: Progress and perspectivesAngewandte Chemie International Edition20205921810.1002/anie.202008838
Di GiovannantonioMYaoXEimreKUrgelJIRuffieuxPPignedoliCAMüllenKFaselRNaritaALarge-Cavity Coronoids with different inner and outer edge structuresJournal of the American Chemical Society202014228120461205010.1021/jacs.0c05268
RiccaABauschlicherCWBoersmaCTielensAGGMAllamandolaLJThe Infrared spectroscopy of compact polycyclic aromatic hydrocarbons containing up to 384 carbonsThe Astrophysical Journal201275417510.1088/0004-637X/754/1/75
KancherlaSJørgensenKBSynthesis of Phenacene-Helicene Hybrids by Directed Remote MetalationJ. Org. Chem.20208517111401115310.1021/acs.joc.0c01097
DiasJRStructure and electronic characteristics of coronoid polycyclic aromatic hydrocarbons as potential models of graphite layers with hole defectsThe Journal of Physical Chemistry A200811247122811229210.1021/jp806987f
ChenYLinCLuoZYinZShiHZhuYWangJDouble π-extended Undecabenzo[7]heliceneAngew. Chem. Int. Ed.202160147796780110.1002/anie.202014621
Devriendt, J., Bogaerts, B., Bruynooghe, M., & Denecker, M. (2016). Improved static symmetry breaking for sat. In N. Creignou D. Le Berre (Eds.) Theory and Applications of Satisfiability Testing – SAT 2016 (pp. 104–122).
BrunvollJCyvinRNCyvinSJEnumeration and classification of double coronoid hydrocarbons – appendix: Triple coronoidsCroatica Chemica Acta1990634585601
CaporossiGHansenPEnumeration of polyhex hydrocarbons to h = 21Journal of Chemical Information and Computer Sciences199838461061910.1021/ci970116n
ChenZWannereCSCorminboeufCPuchtaRvon Ragué SchleyerPNucleus-Independent Chemical shifts (NICS) as an aromaticity criterionChemical Reviews20051053842388810.1021/cr030088
RiegerRMüllenKForever young: Polycyclic aromatic hydrocarbons as model cases for structural and optical studiesJournal of Physical Organic Chemistry201023431532510.1002/poc.1644
EatonPEColeTWCubaneJournal of the American Chemical Society196486153157315810.1021/ja01069a041
LuchAThe carcinogenic effects of polycyclic aromatic hydrocarbons2005LondonImperial College Press10.1142/p306https://www.worldscientific.com/worldscibooks/10.1142/p306
UryuMHiragaTKogaYSaitoYMurakamiKItamiKSynthesis of polybenzoacenes: Annulative dimerization of phenylene triflate by twofold C-H activationAngewandte Chemie2020132166613661610.1002/ange.202001211
SilvaPVGirãoECElectronic and transport properties of graphene nanoribbons based on Super-Heptazethrene molecular blocksThe Journal of Physical Chemistry C202112520112351124810.1021/acs.jpcc.1c02514
Bérczi-KovácsEBernáthAThe complexity of the Clar number problem and an exact algorithmJournal of Mathematical Chemistry201856597605374581710.1007/s10910-017-0799-81385.92058
Carissan, Y., Dim, C. A., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2020). Computing the local aromaticity of benzenoids thanks to constraint programming. In CP, pp. 673–689.
RiccaARoserJEPeetersEBoersmaCPolycyclic aromatic hydrocarbons with armchair edges: Potential emitters in class b sourcesThe Astrophysical Journal201988215610.3847/1538-4357/ab3124
Rossi, F., van Beek, P., & Walsh, T. (2006). Handbook of constraint programming elsevier.
AumaitreCMorinJFPolycyclic aromatic hydrocarbons as potential building blocks for organic solar cellsThe Chemical Record20191961142115410.1002/tcr.201900016
MishraSBeyerDEimreKLiuJBergerRGröningOPignedoliCAMüllenKFaselRFengXRuffieuxPSynthesis and Characterization of π-extended TrianguleneJournal of the American Chemical Society201914127106211062510.1021/jacs.9b05319
RoyMBerezhnaiaVVillaMVanthuyneNGiorgiMNaubronJVPoyerSMonnierVCharlesLCarissanYHagebaum-ReignierDRodriguezJGingrasMCoquerelYStereoselective syntheses, structures, and properties of extremely distorted chiral nanographenes embedding hextuple helicenesAngewandte Chemie International Edition20205983264327110.1002/anie.201913200
IsmailIStuttaford-FowlerHBVAOchan AshokCRobertsonCHabershonSAutomatic proposal of multistep reaction mechanisms using a graph-driven searchThe Journal of Physical Chemistry A2019123153407341710.1021/acs.jpca.9b01014
Randić, M., & Balaban, A. T. (2018). Local aromaticity and aromatic sextet theory beyond clar. Int. J. Quantum Chem 108(17).
Régin, J. C. (1994). A filtering algorithm for constraints of difference in CSPs. In Proceedings of AAAI, pp. 362–367.
XiaZPunSHChenHMiaoQSynthesis of zigzag carbon nanobelts through scholl reactionsAngew. Chem. Int. Ed.20216018103111031810.1002/anie.202100343
KastlerMSchmidtJPisulaWSebastianiDMüllenKFrom armchair to zigzag peripheries in nanographenesJournal of the American Chemical Society2006128299526953410.1021/ja062026h
Konishi, A., Horii, K., Shiomi, D., Sato, K., Takui, T., & Yasuda, M. (2019). Open-Shell And antiaromatic character induced by the highly symmetric geometry of the planar heptalene structure: Synthesis and characterization of a nonalternant isomer of bisanthene journal of the american chemical society. https://doi.org/10.1021/jacs.9b04080.
NaritaAWangXYFengXMüllenKNew advances in nanographene chemistryChemical Society Reviews201544186616664310.1039/C5CS00183H
Clar, E. (1972). The aromatic sextet wiley.
RispoliFJCounting perfect matchings in hexagonal systems associated with benzenoidsMathematics Magazine200114194200210491310.1080/0025570X.2001.11953063
CheungKYWatanabeKSegawaYItamiKSynthesis of a zigzag carbon nanobeltNature Chemistry202113325525910.1038/s41557-020-00627-5
CocchiCPrezziDRuiniACaldasMJMolinariEAnisotropy and size effects on the optical spectra of polycyclic aromatic hydrocarbonsThe Journal of Physical Chemistry A2014118336507651310.1021/jp503054j
MishraSLohrTGPignedoliCALiuJBergerRUrgelJIMüllenKFengXRuffieuxPFaselRTailoring bond topologies in Open-Shell graphene nanostructuresACS Nano20181212119171192710.1021/acsnano.8b07225
Longuet-HigginsHThe symmetry groups of non-rigid moleculesMolecular Physics19636544546010.1080/002689763001005010121.45702
BouwmanJCastellanosPBulakMTerwisscha van ScheltingaJCamiJLinnartzHTielensAGGMEffect of molecular structure on the infrared signatures of astronomically relevant pahsA&A2019621A8010.1051/0004-6361/201834130
Fages, J. G., Lorca, X., & Prud’homme, C. Choco solver user guide documentation. https://choco-solver.readthedocs.io/en/latest/.
Mann, M., & Thiel, B. (2013). Kekulé Structures Enumeration Yields Unique SMILES. In Proceedings of Workshop on Constraint Based Methods for Bioinformatics.
CyvinJBrunvollJCyvinBNSearch for Concealed non-kekuléan Benzenoids and CoronoidsJournal of Chemical Information and Computer Sciences19892942370703.92026
Kasteleyn, P. W. (1967). Graph theory and crystal physics, p. 43–110 Academic Press.
Sánchez-GrandeAUrgelJIVeisLEdalatmaneshSSantosJLauwaetKMutomboPGallegoJMBrabecJBeranPNachtigallováDMirandaRMartínNJelínekPÉcijaDUnravelling the Open-Shell character of peripentacene on au(111)The Journal of Physical Chemistry Letters202112133033610.1021/acs.jpclett.0c02518
LinCFanGAlgorithms for the count of linearly independent and minimal conjugated circuits in benzenoid hydrocarbonsJ. Chem. Inf. Comput. Sci19993978278710.1021/ci990016c
RandićMBenzenoid rings resonance energies and local aromaticity of benzenoid hydrocarbonsJournal of Computational Chemistry201940575376210.1002/jcc.25760
SimonciniDAlloucheDde GivrySDelmasCBarbeSSchiexTGuaranteed discrete energy optimization on large protein design problemsJournal of Chemical Theory and Computation201511125980598910.1021/acs.jctc.5b00594
WuJPisulaWMüllenKGraphenes as potential material for electronicsChemical Reviews20071
A Luch (9328_CR45) 2005
RJ Ternansky (9328_CR72) 1982; 104
KY Cheung (9328_CR18) 2021; 13
H Longuet-Higgins (9328_CR44) 1963; 6
G Caporossi (9328_CR12) 1998; 38
C Cocchi (9328_CR21) 2014; 118
CWJr Bauschlicher (9328_CR5) 2008; 678
9328_CR29
S Mishra (9328_CR49) 2019; 141
CW Bauschlicher (9328_CR4) 2018; 234
9328_CR60
M Roy (9328_CR66) 2020; 59
9328_CR23
9328_CR65
J Wu (9328_CR76) 2007; 107
J Bouwman (9328_CR8) 2019; 621
S Rayne (9328_CR59) 2011; 976
S Kancherla (9328_CR34) 2020; 85
Z Xia (9328_CR77) 2021; 60
9328_CR15
S Mishra (9328_CR50) 2018; 12
9328_CR13
M Randić (9328_CR54) 2003; 103
9328_CR57
9328_CR14
9328_CR19
JR Dias (9328_CR25) 2008; 112
K Fujise (9328_CR31) 2021; 27
S Mishra (9328_CR48) 2020; 15
PE Eaton (9328_CR28) 1964; 86
M Di Giovannantonio (9328_CR24) 2020; 142
9328_CR52
PV Silva (9328_CR69) 2021; 125
9328_CR56
J Bouwman (9328_CR7) 2021; 378
E Hückel (9328_CR32) 1931; 70
9328_CR10
M Randić (9328_CR58) 1996; 60
LJ Allamandola (9328_CR2) 1999; 511
C Lin (9328_CR41) 2000; 40
BT Draine (9328_CR27) 2011; 46
A Sánchez-Grande (9328_CR68) 2021; 12
Y Chen (9328_CR16) 2021; 60
R Rieger (9328_CR63) 2010; 23
A Kekulé (9328_CR37) 1866; 137
Y Kim (9328_CR38) 2018; 9
Y Ruiz-Morales (9328_CR67) 2004; 108
G Trinquier (9328_CR73) 2018; 122
C Aumaitre (9328_CR3) 2019; 19
9328_CR47
A Ricca (9328_CR61) 2012; 754
9328_CR40
C Lin (9328_CR42) 1999; 39
9328_CR1
U Beser (9328_CR6) 2016; 138
J Liu (9328_CR43) 2020; 59
M Uryu (9328_CR74) 2020; 132
A Narita (9328_CR51) 2015; 44
M Mann (9328_CR46) 2014; 9
E Bérczi-Kovács (9328_CR9) 2018; 56
I Ismail (9328_CR33) 2019; 123
M Kastler (9328_CR36) 2006; 128
D Simoncini (9328_CR70) 2015; 11
M Randić (9328_CR53) 1976; 38
E Clar (9328_CR20) 1964
JR Dias (9328_CR26) 2013; 117
9328_CR35
J Brunvoll (9328_CR11) 1990; 63
Z Chen (9328_CR17) 2005; 105
9328_CR39
9328_CR30
9328_CR71
J Cyvin (9328_CR22) 1989; 29
A Ricca (9328_CR62) 2019; 882
9328_CR75
FJ Rispoli (9328_CR64) 2001; 14
M Randić (9328_CR55) 2019; 40
References_xml – reference: Longuet-HigginsHThe symmetry groups of non-rigid moleculesMolecular Physics19636544546010.1080/002689763001005010121.45702
– reference: NaritaAWangXYFengXMüllenKNew advances in nanographene chemistryChemical Society Reviews201544186616664310.1039/C5CS00183H
– reference: RandićMAromaticity of polycyclic conjugated hydrocarbonsChemical Reviews200310393449360610.1021/cr9903656
– reference: Carissan, Y., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2021). Exhaustive generation of benzenoid structures sharing common patterns. In CP, pp. 19:1–19:18.
– reference: Wu, C. W. (2004). Modelling chemical reactions using constraint programming and molecular graphs. In Principles and practice of constraint programming, pp. 808–808.
– reference: RiegerRMüllenKForever young: Polycyclic aromatic hydrocarbons as model cases for structural and optical studiesJournal of Physical Organic Chemistry201023431532510.1002/poc.1644
– reference: AumaitreCMorinJFPolycyclic aromatic hydrocarbons as potential building blocks for organic solar cellsThe Chemical Record20191961142115410.1002/tcr.201900016
– reference: LiuJFengXSynthetic tailoring of graphene nanostructures with Zigzag-Edged topologies: Progress and perspectivesAngewandte Chemie International Edition20205921810.1002/anie.202008838
– reference: LuchAThe carcinogenic effects of polycyclic aromatic hydrocarbons2005LondonImperial College Press10.1142/p306https://www.worldscientific.com/worldscibooks/10.1142/p306
– reference: WuJPisulaWMüllenKGraphenes as potential material for electronicsChemical Reviews2007107371874710.1021/cr068010r
– reference: BouwmanJCastellanosPBulakMTerwisscha van ScheltingaJCamiJLinnartzHTielensAGGMEffect of molecular structure on the infrared signatures of astronomically relevant pahsA&A2019621A8010.1051/0004-6361/201834130
– reference: Lecoutre, C. (2009). Constraint networks: Techniques and algorithms. Wiley.
– reference: TrinquierGMalrieuJPPredicting the Open-Shell character of polycyclic hydrocarbons in terms of clar sextetsThe Journal of Physical Chemistry A201812241088110310.1021/acs.jpca.7b11095
– reference: UryuMHiragaTKogaYSaitoYMurakamiKItamiKSynthesis of polybenzoacenes: Annulative dimerization of phenylene triflate by twofold C-H activationAngewandte Chemie2020132166613661610.1002/ange.202001211
– reference: Di GiovannantonioMYaoXEimreKUrgelJIRuffieuxPPignedoliCAMüllenKFaselRNaritaALarge-Cavity Coronoids with different inner and outer edge structuresJournal of the American Chemical Society202014228120461205010.1021/jacs.0c05268
– reference: RayneSForestKSinglet-triplet (s0 → t1) excitation energies of the [4 × n] rectangular graphene nanoribbon series (n = 2-6): a comparative theoretical studyComput. Theor. Chem.201197610511210.1016/j.comptc.2011.08.010
– reference: Clar, E. (1972). The aromatic sextet wiley.
– reference: LinCEfficient method for calculating the resonance energy expression of benzenoid hydrocarbons based on the enumeration of conjugated circuitsJournal of Chemical Information and Computer Sciences20004077878310.1021/ci990136k
– reference: Rossi, F., van Beek, P., & Walsh, T. (2006). Handbook of constraint programming elsevier.
– reference: KastlerMSchmidtJPisulaWSebastianiDMüllenKFrom armchair to zigzag peripheries in nanographenesJournal of the American Chemical Society2006128299526953410.1021/ja062026h
– reference: RoyMBerezhnaiaVVillaMVanthuyneNGiorgiMNaubronJVPoyerSMonnierVCharlesLCarissanYHagebaum-ReignierDRodriguezJGingrasMCoquerelYStereoselective syntheses, structures, and properties of extremely distorted chiral nanographenes embedding hextuple helicenesAngewandte Chemie International Edition20205983264327110.1002/anie.201913200
– reference: Ajayakumar, M. R., Ma, J., Lucotti, A., Schellhammer, K. S., Serra, G., Dmitrieva, E., Rosenkranz, M., Komber, H., Liu, J., Ortmann, F., Tommasini, M., & Feng, X. (2021). Persistent peri-Heptacene: Synthesis and In Situ Characterization Angew. Chem. Int Ed. https://doi.org/10.1002/anie.202102757.
– reference: Carissan, Y., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2020). Using constraint programming to generate benzenoid structures in theoretical chemistry. In CP, pp. 690–706.
– reference: SimonciniDAlloucheDde GivrySDelmasCBarbeSSchiexTGuaranteed discrete energy optimization on large protein design problemsJournal of Chemical Theory and Computation201511125980598910.1021/acs.jctc.5b00594
– reference: Régin, J. C. (1994). A filtering algorithm for constraints of difference in CSPs. In Proceedings of AAAI, pp. 362–367.
– reference: BauschlicherCWRiccaABoersmaCAllamandolaLJThe NASA ames PAH IR spectroscopic database: Computational version 3.00 with updated content and the introduction of multiple scaling factorsThe Astrophysical Journal Supplement Series201823423210.3847/1538-4365/aaa019
– reference: Mann, M., & Thiel, B. (2013). Kekulé Structures Enumeration Yields Unique SMILES. In Proceedings of Workshop on Constraint Based Methods for Bioinformatics.
– reference: BeserUKastlerMMaghsoumiAWagnerMCastiglioniCTommasiniMNaritaAFengXMüllenKA C216-Nanographene molecule with defined cavity as extended coronoidJournal of the American Chemical Society2016138134322432510.1021/jacs.6b01181
– reference: ClarESchoentalRPolycyclic Hydrocarbons Volume, Vol. 11964BerlinSpringer10.1007/978-3-662-01665-7
– reference: DraineBTAstronomical Models of PAHs and DustEAS Publications Series201146294210.1051/eas/1146003
– reference: LinCFanGAlgorithms for the count of linearly independent and minimal conjugated circuits in benzenoid hydrocarbonsJ. Chem. Inf. Comput. Sci19993978278710.1021/ci990016c
– reference: RiccaABauschlicherCWBoersmaCTielensAGGMAllamandolaLJThe Infrared spectroscopy of compact polycyclic aromatic hydrocarbons containing up to 384 carbonsThe Astrophysical Journal201275417510.1088/0004-637X/754/1/75
– reference: HückelEQuantentheoretische beiträge zum BenzolproblemZeitschrift fü,r Physik19317020428610.1007/BF01339530
– reference: MishraSBeyerDEimreKLiuJBergerRGröningOPignedoliCAMüllenKFaselRFengXRuffieuxPSynthesis and Characterization of π-extended TrianguleneJournal of the American Chemical Society201914127106211062510.1021/jacs.9b05319
– reference: RandićMGuoXKleinDJAnalytical Expressions for the Count of LM-conjugated Circuits of Benzenoid HydrocarbonsInternational Journal of Quantum Chemistry19966094395810.1002/(SICI)1097-461X(1996)60:8<1851::AID-QUA13>3.0.CO;2-2
– reference: KancherlaSJørgensenKBSynthesis of Phenacene-Helicene Hybrids by Directed Remote MetalationJ. Org. Chem.20208517111401115310.1021/acs.joc.0c01097
– reference: Brinkmann, G., Caporossi, G., & Hansen, P. (2002). A constructive enumeration of fusenes and benzenoids journal of algorithms 45(2).
– reference: DiasJRValence-bond determination of diradical character of polycyclic aromatic hydrocarbons: From acenes to rectangular benzenoidsThe Journal of Physical Chemistry. A20131174716472510.1021/jp403380t
– reference: Randić, M., & Guo, X. (1994). Recursive method for enumeration of linearly independent and minimal conjugated circuits of benzenoid hydrocarbons. Journal of Chemical Information and Modeling 34(2).
– reference: RandićMConjugated circuits and resonance energies of benzenoid hydrocarbonsChemical Physics Letters197638687041697410.1016/0009-2614(76)80257-6
– reference: AllamandolaLJHudginsDMSandfordSAModeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbonsThe Astrophysical Journal19995112L115L11910.1086/311843
– reference: Carissan, Y., Dim, C. A., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2020). Computing the local aromaticity of benzenoids thanks to constraint programming. In CP, pp. 673–689.
– reference: Fages, J. G., Lorca, X., & Prud’homme, C. Choco solver user guide documentation. https://choco-solver.readthedocs.io/en/latest/.
– reference: Konishi, A., Horii, K., Shiomi, D., Sato, K., Takui, T., & Yasuda, M. (2019). Open-Shell And antiaromatic character induced by the highly symmetric geometry of the planar heptalene structure: Synthesis and characterization of a nonalternant isomer of bisanthene journal of the american chemical society. https://doi.org/10.1021/jacs.9b04080.
– reference: FujiseKTsurumakiEWakamatsuKToyotaSConstruction of helical structures with multiple fused anthracenes: Structures and properties of long expanded helicenesChemistry - A European Journal202127144548455210.1002/chem.202004720
– reference: Qiu, Z., Narita, A., & Müllen, K. (2020). Carbon nanostructures by macromolecular design from branched polyphenylenes to nanographenes and graphene nanoribbons. Faraday Discussions. https://doi.org/10.1039/D0FD00023J. Publisher: The Royal Society of Chemistry.
– reference: XiaZPunSHChenHMiaoQSynthesis of zigzag carbon nanobelts through scholl reactionsAngew. Chem. Int. Ed.20216018103111031810.1002/anie.202100343
– reference: BouwmanJLinnartzHTielensAGMid-infrared spectroscopic signatures of dibenzopyrene cations – the effect of symmetry on pah ir spectroscopyJournal of Molecular Spectroscopy202137811145810.1016/j.jms.2021.111458
– reference: RispoliFJCounting perfect matchings in hexagonal systems associated with benzenoidsMathematics Magazine200114194200210491310.1080/0025570X.2001.11953063
– reference: CocchiCPrezziDRuiniACaldasMJMolinariEAnisotropy and size effects on the optical spectra of polycyclic aromatic hydrocarbonsThe Journal of Physical Chemistry A2014118336507651310.1021/jp503054j
– reference: IsmailIStuttaford-FowlerHBVAOchan AshokCRobertsonCHabershonSAutomatic proposal of multistep reaction mechanisms using a graph-driven searchThe Journal of Physical Chemistry A2019123153407341710.1021/acs.jpca.9b01014
– reference: Ruiz-MoralesYThe agreement between clar structures and Nucleus-Independent chemical shift values in pericondensed benzenoid polycyclic aromatic hydrocarbons: an application of the Y-RuleThe Journal of Physical Chemistry. A2004108108731089610.1021/jp040179q
– reference: SilvaPVGirãoECElectronic and transport properties of graphene nanoribbons based on Super-Heptazethrene molecular blocksThe Journal of Physical Chemistry C202112520112351124810.1021/acs.jpcc.1c02514
– reference: CyvinJBrunvollJCyvinBNSearch for Concealed non-kekuléan Benzenoids and CoronoidsJournal of Chemical Information and Computer Sciences19892942370703.92026
– reference: EatonPEColeTWCubaneJournal of the American Chemical Society196486153157315810.1021/ja01069a041
– reference: CaporossiGHansenPEnumeration of polyhex hydrocarbons to h = 21Journal of Chemical Information and Computer Sciences199838461061910.1021/ci970116n
– reference: KimYKimJWKimZKimWYEfficient prediction of reaction paths through molecular graph and reaction network analysisChemical Science20189482583510.1039/C7SC03628K
– reference: Taylor, P. R. (1992). Molecular symmetry and quantum chemistry. In B. O. Roos (Ed.) Lecture Notes in Quantum Chemistry: European Summer School in Quantum Chemistry, Lecture Notes in Chemistry.
– reference: BauschlicherCWJrPeetersEAllamandolaLJThe infrared spectra of very large, compact, highly symmetric, polycyclic aromatic hydrocarbons (PAHs)The Astrophysical Journal2008678131632710.1086/533424
– reference: KekuléAUntersuchungen über aromatische verbindungen ueber die constitution der aromatischen verbindungenJustus Liebigs Annalen der Chemie1866137212919610.1002/jlac.18661370202
– reference: Devriendt, J., Bogaerts, B., Bruynooghe, M., & Denecker, M. (2016). Improved static symmetry breaking for sat. In N. Creignou D. Le Berre (Eds.) Theory and Applications of Satisfiability Testing – SAT 2016 (pp. 104–122).
– reference: DiasJRStructure and electronic characteristics of coronoid polycyclic aromatic hydrocarbons as potential models of graphite layers with hole defectsThe Journal of Physical Chemistry A200811247122811229210.1021/jp806987f
– reference: Sánchez-GrandeAUrgelJIVeisLEdalatmaneshSSantosJLauwaetKMutomboPGallegoJMBrabecJBeranPNachtigallováDMirandaRMartínNJelínekPÉcijaDUnravelling the Open-Shell character of peripentacene on au(111)The Journal of Physical Chemistry Letters202112133033610.1021/acs.jpclett.0c02518
– reference: BrunvollJCyvinRNCyvinSJEnumeration and classification of double coronoid hydrocarbons – appendix: Triple coronoidsCroatica Chemica Acta1990634585601
– reference: ChenZWannereCSCorminboeufCPuchtaRvon Ragué SchleyerPNucleus-Independent Chemical shifts (NICS) as an aromaticity criterionChemical Reviews20051053842388810.1021/cr030088+
– reference: CheungKYWatanabeKSegawaYItamiKSynthesis of a zigzag carbon nanobeltNature Chemistry202113325525910.1038/s41557-020-00627-5
– reference: Kasteleyn, P. W. (1967). Graph theory and crystal physics, p. 43–110 Academic Press.
– reference: ChenYLinCLuoZYinZShiHZhuYWangJDouble π-extended Undecabenzo[7]heliceneAngew. Chem. Int. Ed.202160147796780110.1002/anie.202014621
– reference: MannMNaharFSchnorrNBackofenRStadlerPFFlammCAtom mapping with constraint programmingAlgorithms for Molecular Biology2014912310.1186/s13015-014-0023-3
– reference: MishraSBeyerDEimreKKezilebiekeSBergerRGröningOPignedoliCAMüllenKLiljerothPRuffieuxPFengXFaselRTopological frustration induces unconventional magnetism in a nanographeneNature Nanotechnology2020151222810.1038/s41565-019-0577-9
– reference: Bérczi-KovácsEBernáthAThe complexity of the Clar number problem and an exact algorithmJournal of Mathematical Chemistry201856597605374581710.1007/s10910-017-0799-81385.92058
– reference: MishraSLohrTGPignedoliCALiuJBergerRUrgelJIMüllenKFengXRuffieuxPFaselRTailoring bond topologies in Open-Shell graphene nanostructuresACS Nano20181212119171192710.1021/acsnano.8b07225
– reference: Fages, J. (2014). Exploitation de structures de graphe en programmation par contraintes. Ph.D. thesis, École des mines de Nantes, France.
– reference: RandićMBenzenoid rings resonance energies and local aromaticity of benzenoid hydrocarbonsJournal of Computational Chemistry201940575376210.1002/jcc.25760
– reference: RiccaARoserJEPeetersEBoersmaCPolycyclic aromatic hydrocarbons with armchair edges: Potential emitters in class b sourcesThe Astrophysical Journal201988215610.3847/1538-4357/ab3124
– reference: TernanskyRJBaloghDWPaquetteLADodecahedraneJournal of the American Chemical Society1982104164503450410.1021/ja00380a040
– reference: Randić, M., & Balaban, A. T. (2018). Local aromaticity and aromatic sextet theory beyond clar. Int. J. Quantum Chem 108(17).
– volume: 44
  start-page: 6616
  issue: 18
  year: 2015
  ident: 9328_CR51
  publication-title: Chemical Society Reviews
  doi: 10.1039/C5CS00183H
– volume: 976
  start-page: 105
  year: 2011
  ident: 9328_CR59
  publication-title: Comput. Theor. Chem.
  doi: 10.1016/j.comptc.2011.08.010
– ident: 9328_CR47
– volume: 112
  start-page: 12281
  issue: 47
  year: 2008
  ident: 9328_CR25
  publication-title: The Journal of Physical Chemistry A
  doi: 10.1021/jp806987f
– volume: 882
  start-page: 56
  issue: 1
  year: 2019
  ident: 9328_CR62
  publication-title: The Astrophysical Journal
  doi: 10.3847/1538-4357/ab3124
– ident: 9328_CR10
  doi: 10.1016/S0196-6774(02)00215-8
– volume: 9
  start-page: 23
  issue: 1
  year: 2014
  ident: 9328_CR46
  publication-title: Algorithms for Molecular Biology
  doi: 10.1186/s13015-014-0023-3
– volume-title: Polycyclic Hydrocarbons Volume, Vol. 1
  year: 1964
  ident: 9328_CR20
  doi: 10.1007/978-3-662-01665-7
– volume: 40
  start-page: 778
  year: 2000
  ident: 9328_CR41
  publication-title: Journal of Chemical Information and Computer Sciences
  doi: 10.1021/ci990136k
– volume: 123
  start-page: 3407
  issue: 15
  year: 2019
  ident: 9328_CR33
  publication-title: The Journal of Physical Chemistry A
  doi: 10.1021/acs.jpca.9b01014
– volume: 15
  start-page: 22
  issue: 1
  year: 2020
  ident: 9328_CR48
  publication-title: Nature Nanotechnology
  doi: 10.1038/s41565-019-0577-9
– ident: 9328_CR30
– ident: 9328_CR15
– volume: 13
  start-page: 255
  issue: 3
  year: 2021
  ident: 9328_CR18
  publication-title: Nature Chemistry
  doi: 10.1038/s41557-020-00627-5
– ident: 9328_CR19
– volume: 754
  start-page: 75
  issue: 1
  year: 2012
  ident: 9328_CR61
  publication-title: The Astrophysical Journal
  doi: 10.1088/0004-637X/754/1/75
– volume: 60
  start-page: 7796
  issue: 14
  year: 2021
  ident: 9328_CR16
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202014621
– volume: 142
  start-page: 12046
  issue: 28
  year: 2020
  ident: 9328_CR24
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/jacs.0c05268
– volume: 40
  start-page: 753
  issue: 5
  year: 2019
  ident: 9328_CR55
  publication-title: Journal of Computational Chemistry
  doi: 10.1002/jcc.25760
– volume: 56
  start-page: 597
  year: 2018
  ident: 9328_CR9
  publication-title: Journal of Mathematical Chemistry
  doi: 10.1007/s10910-017-0799-8
– ident: 9328_CR65
– volume: 6
  start-page: 445
  issue: 5
  year: 1963
  ident: 9328_CR44
  publication-title: Molecular Physics
  doi: 10.1080/00268976300100501
– volume: 141
  start-page: 10621
  issue: 27
  year: 2019
  ident: 9328_CR49
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/jacs.9b05319
– volume: 12
  start-page: 11917
  issue: 12
  year: 2018
  ident: 9328_CR50
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b07225
– volume: 103
  start-page: 3449
  issue: 9
  year: 2003
  ident: 9328_CR54
  publication-title: Chemical Reviews
  doi: 10.1021/cr9903656
– volume: 59
  start-page: 3264
  issue: 8
  year: 2020
  ident: 9328_CR66
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201913200
– ident: 9328_CR57
  doi: 10.1021/ci00018a019
– volume: 39
  start-page: 782
  year: 1999
  ident: 9328_CR42
  publication-title: J. Chem. Inf. Comput. Sci
  doi: 10.1021/ci990016c
– volume: 117
  start-page: 4716
  year: 2013
  ident: 9328_CR26
  publication-title: The Journal of Physical Chemistry. A
  doi: 10.1021/jp403380t
– volume: 118
  start-page: 6507
  issue: 33
  year: 2014
  ident: 9328_CR21
  publication-title: The Journal of Physical Chemistry A
  doi: 10.1021/jp503054j
– ident: 9328_CR39
  doi: 10.1021/jacs.9b04080
– volume: 128
  start-page: 9526
  issue: 29
  year: 2006
  ident: 9328_CR36
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja062026h
– volume: 137
  start-page: 129
  issue: 2
  year: 1866
  ident: 9328_CR37
  publication-title: Justus Liebigs Annalen der Chemie
  doi: 10.1002/jlac.18661370202
– volume: 12
  start-page: 330
  issue: 1
  year: 2021
  ident: 9328_CR68
  publication-title: The Journal of Physical Chemistry Letters
  doi: 10.1021/acs.jpclett.0c02518
– volume: 60
  start-page: 943
  year: 1996
  ident: 9328_CR58
  publication-title: International Journal of Quantum Chemistry
  doi: 10.1002/(SICI)1097-461X(1996)60:8<1851::AID-QUA13>3.0.CO;2-2
– ident: 9328_CR40
  doi: 10.1002/9780470611821
– volume: 108
  start-page: 10873
  year: 2004
  ident: 9328_CR67
  publication-title: The Journal of Physical Chemistry. A
  doi: 10.1021/jp040179q
– volume: 70
  start-page: 204
  year: 1931
  ident: 9328_CR32
  publication-title: Zeitschrift fü,r Physik
  doi: 10.1007/BF01339530
– ident: 9328_CR60
– volume: 29
  start-page: 237
  issue: 4
  year: 1989
  ident: 9328_CR22
  publication-title: Journal of Chemical Information and Computer Sciences
  doi: 10.1021/ci00064a002
– volume: 38
  start-page: 610
  issue: 4
  year: 1998
  ident: 9328_CR12
  publication-title: Journal of Chemical Information and Computer Sciences
  doi: 10.1021/ci970116n
– ident: 9328_CR56
  doi: 10.1002/qua.25657
– ident: 9328_CR23
  doi: 10.1007/978-3-319-40970-2_8
– volume: 511
  start-page: L115
  issue: 2
  year: 1999
  ident: 9328_CR2
  publication-title: The Astrophysical Journal
  doi: 10.1086/311843
– ident: 9328_CR52
  doi: 10.1039/D0FD00023J
– volume: 122
  start-page: 1088
  issue: 4
  year: 2018
  ident: 9328_CR73
  publication-title: The Journal of Physical Chemistry A
  doi: 10.1021/acs.jpca.7b11095
– volume: 104
  start-page: 4503
  issue: 16
  year: 1982
  ident: 9328_CR72
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja00380a040
– volume: 85
  start-page: 11140
  issue: 17
  year: 2020
  ident: 9328_CR34
  publication-title: J. Org. Chem.
  doi: 10.1021/acs.joc.0c01097
– volume: 234
  start-page: 32
  issue: 2
  year: 2018
  ident: 9328_CR4
  publication-title: The Astrophysical Journal Supplement Series
  doi: 10.3847/1538-4365/aaa019
– volume: 105
  start-page: 3842
  year: 2005
  ident: 9328_CR17
  publication-title: Chemical Reviews
  doi: 10.1021/cr030088+
– ident: 9328_CR14
  doi: 10.1007/978-3-030-58475-7_40
– ident: 9328_CR13
  doi: 10.1007/978-3-030-58475-7_39
– volume: 60
  start-page: 10311
  issue: 18
  year: 2021
  ident: 9328_CR77
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202100343
– volume: 27
  start-page: 4548
  issue: 14
  year: 2021
  ident: 9328_CR31
  publication-title: Chemistry - A European Journal
  doi: 10.1002/chem.202004720
– volume: 38
  start-page: 68
  year: 1976
  ident: 9328_CR53
  publication-title: Chemical Physics Letters
  doi: 10.1016/0009-2614(76)80257-6
– ident: 9328_CR1
  doi: 10.1002/anie.202102757
– volume: 9
  start-page: 825
  issue: 4
  year: 2018
  ident: 9328_CR38
  publication-title: Chemical Science
  doi: 10.1039/C7SC03628K
– ident: 9328_CR71
  doi: 10.1007/978-3-642-58150-2_3
– volume: 378
  start-page: 111458
  year: 2021
  ident: 9328_CR7
  publication-title: Journal of Molecular Spectroscopy
  doi: 10.1016/j.jms.2021.111458
– ident: 9328_CR29
– ident: 9328_CR75
  doi: 10.1007/978-3-540-30201-8_87
– volume: 46
  start-page: 29
  year: 2011
  ident: 9328_CR27
  publication-title: EAS Publications Series
  doi: 10.1051/eas/1146003
– volume: 59
  start-page: 2
  year: 2020
  ident: 9328_CR43
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.202008838
– volume: 621
  start-page: A80
  year: 2019
  ident: 9328_CR8
  publication-title: A&A
  doi: 10.1051/0004-6361/201834130
– volume: 125
  start-page: 11235
  issue: 20
  year: 2021
  ident: 9328_CR69
  publication-title: The Journal of Physical Chemistry C
  doi: 10.1021/acs.jpcc.1c02514
– volume-title: The carcinogenic effects of polycyclic aromatic hydrocarbons
  year: 2005
  ident: 9328_CR45
  doi: 10.1142/p306
– volume: 132
  start-page: 6613
  issue: 16
  year: 2020
  ident: 9328_CR74
  publication-title: Angewandte Chemie
  doi: 10.1002/ange.202001211
– volume: 19
  start-page: 1142
  issue: 6
  year: 2019
  ident: 9328_CR3
  publication-title: The Chemical Record
  doi: 10.1002/tcr.201900016
– volume: 11
  start-page: 5980
  issue: 12
  year: 2015
  ident: 9328_CR70
  publication-title: Journal of Chemical Theory and Computation
  doi: 10.1021/acs.jctc.5b00594
– volume: 678
  start-page: 316
  issue: 1
  year: 2008
  ident: 9328_CR5
  publication-title: The Astrophysical Journal
  doi: 10.1086/533424
– volume: 14
  start-page: 194
  year: 2001
  ident: 9328_CR64
  publication-title: Mathematics Magazine
  doi: 10.1080/0025570X.2001.11953063
– volume: 138
  start-page: 4322
  issue: 13
  year: 2016
  ident: 9328_CR6
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/jacs.6b01181
– volume: 63
  start-page: 585
  issue: 4
  year: 1990
  ident: 9328_CR11
  publication-title: Croatica Chemica Acta
– volume: 23
  start-page: 315
  issue: 4
  year: 2010
  ident: 9328_CR63
  publication-title: Journal of Physical Organic Chemistry
  doi: 10.1002/poc.1644
– volume: 86
  start-page: 3157
  issue: 15
  year: 1964
  ident: 9328_CR28
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja01069a041
– volume: 107
  start-page: 718
  issue: 3
  year: 2007
  ident: 9328_CR76
  publication-title: Chemical Reviews
  doi: 10.1021/cr068010r
– ident: 9328_CR35
SSID ssj0009734
Score 2.2914057
Snippet Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 192
SubjectTerms Aromaticity
Artificial Intelligence
Benzenoids
Carbon
Chemical properties
Chemical Sciences
Chemistry
Chemists
Computer Science
Enumeration
Hexagons
Operations Research/Decision Theory
Optimization
or physical chemistry
Quantum chemistry
Search engines
Theoretical and
Title How constraint programming can help chemists to generate Benzenoid structures and assess the local Aromaticity of Benzenoids
URI https://link.springer.com/article/10.1007/s10601-022-09328-x
https://www.proquest.com/docview/2699982725
https://amu.hal.science/hal-03684890
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9sKFlpdYKKsR4gapEsdZu8fdqsuqhZ5YqZwiPyYUUZJKmwKq-PGME6dbKkDqNfErtsf-vsz4M8BrbyeTile-xIucEpk5mxjGAQkJLxR5Z10Vfg18OJkslvLotDiNh8JWQ7T74JLsVuobh90mgfoyeWIWLnTCyHGrYILC5rg1fffp-HAttqt6bzKzrySQsHhY5u-l_LEhbZyFcMgbWPOWe7TbdebbsBza2webfN27bO2eu7ol5XjXD9qBBxGG4rSfNw_hHtWPYHu44gGjxT-GX4vmB7qAIcNVEi3GcK5vXA_yoOAZnV-g6y-NW2Hb4OdOxrolnFF9RXXzxWMvUXvJvB5N7dF0bmZk4IndRsqNaDrdWOYD2FTrjKsnsJwffjxYJPHChsQxrGmZhhZSpiScrmzwj1ZKVMbKyhAFh6DKC2Lzt5zAMlLJ9r1TsrK5dqlTOtc-fwqbdVPTM0CTpk54IidTL0krzQUqozMKR28NmRFkw6iVLqqZh544L9c6zKF7S-7esuve8ucI3lznuei1PP6b-hVPhuuEQYZ7MX1fhme862up99Pv2Qh2h7lSRuNfldxCJrFCiWIEb4ehX7_-d5XP75b8BdwX3ewJwcO7sMmjSS8ZIrV2zBYxn81OxtEyxrCxFNPfnRMLiQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbocqCXtrzEtrSMEDeIlDjetfe4rYpSWDixEjfLjwkgQYK06UNVf3zHTsJCRSv1mowdy2N7vi_zMGMH3o7HJZ18iec5JiJzNjGEAxLknkv0zroy_Bo4Ox8Xc3FyObrsksIWfbR775KMJ_WjZLdxoL5EnoiFc5UQclwNbsZAueZ8uiy1K1tfMnGvJFCwLlXm-T6emKMX1yEY8hHS_MM5Gm3O8Rv2qgOLMG21u85WsNpgr_uLGKDbl5vsV1F_BxeQXrjwoYEu6OqOOgWaOrjG23tw7dVuC2hquIrFphuEj1j9xKq-8dAWkv1K7BtM5cFEZzAQPIRo7mgQdazuSqgd6nLZcLHF5sefLz4VSXetQuIIfDREFkdCpMidKm3wYpaSl8aK0iAGt53MR0ib1JKAJTyRTbyTorS5cqmTKlc-32aDqq5wh4FJU8c9ohOpF6ikog6lURmGBFmDZsiyfna162qOh5m41ctqyUEjmjSio0b0jyE7fGhz31bc-Kf0PintQTAUyy6mMx2ekW1WQk3Sb9mQ7fY61d0WXWgaIVFNLvloyI56PS9f__2Tb_9PfI-tFRdnMz37cn76jr3kcfGFcN9dNiDN4nsCNY39ENfwb_al7ss
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJc-uAhFlpqIW6QNnG8a_e4tF0WWioOVCony48xRbTJSptCVfXHM86ju1SAhLgmTuLYE_v7MjPfALz0djgMtPIlnueYiMzZxBAOSJB7LtE760L8NfDhaDg5Fu9PBicLWfx1tHvnkmxyGqJKU1FtT33YXkh8G0YaTESKGDlXCaHIJRFrSPRgafT288H-XHhXNp5lYmJJJGRt4szv7_LL5nT3NIZGLuDOW67Segcar4Dp-t4Ennzbuqjslru6Jev4Py-3CsstPGWjxp7W4A4WD2ClK_3A2pXgIVxPyh_MRWwZS0xUrA3zOqdnMposdopnU-aaYnIzVpXsSy1vXSF7g8UVFuVXzxrp2gvi-8wUnpna_cwIkLJ6g6VOlLWeLPEEVob5hbNHcDze_7Q7SdpCDokjuFMRPR0IkSJ3KtjoNw2SB2NFMIjRUSjzAdKyYKmBJQST7XgnRbC5cqmTKlc-fwy9oizwCTCTpo57RCdSL1BJRTeURmUYU3INmj5k3Qxq16qcx5E403N95ji8moZX18OrL_vw6uaaaaPx8dfWL8gwbhpGee7J6FDHY4QGlFA76fesD-ud3eh2UZhp6iGRWy75oA-vOzOYn_7zI5_-W_NNuPdxb6wP3x0dPIP7vDakGF-8Dj2aWNwgFFXZ5-2H8hM0DRTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+constraint+programming+can+help+chemists+to+generate+Benzenoid+structures+and+assess+the+local+Aromaticity+of+Benzenoids&rft.jtitle=Constraints+%3A+an+international+journal&rft.au=Carissan+Yannick&rft.au=Hagebaum-Reignier+Denis&rft.au=Prcovic+Nicolas&rft.au=Terrioux+Cyril&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1383-7133&rft.eissn=1572-9354&rft.volume=27&rft.issue=3&rft.spage=192&rft.epage=248&rft_id=info:doi/10.1007%2Fs10601-022-09328-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-7133&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-7133&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-7133&client=summon