How constraint programming can help chemists to generate Benzenoid structures and assess the local Aromaticity of Benzenoids
Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are widely studied in theoretical chemistry and have a lot of concrete applications. Then, there is a lot of problems relative to this subject, lik...
Saved in:
Published in | Constraints : an international journal Vol. 27; no. 3; pp. 192 - 248 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.07.2022
Springer Nature B.V Springer Verlag |
Subjects | |
Online Access | Get full text |
ISSN | 1383-7133 1572-9354 |
DOI | 10.1007/s10601-022-09328-x |
Cover
Abstract | Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are widely studied in theoretical chemistry and have a lot of concrete applications. Then, there is a lot of problems relative to this subject, like the enumeration of all its Kekulé structures (i.e. all valid configurations of double bonds). In this article, we focus our attention on two issues: the generation of benzenoid structures and the assessment of the local aromaticity. On the one hand, generating benzenoids that have certain structural and/or chemical properties (e.g. having a given number of hexagons or a particular structure from a graph viewpoint) is an interesting and important problem. It constitutes a preliminary step for studying their chemical properties. In this paper, we show that modeling this problem in Choco Solver and just letting its search engine generate the solutions is a fast enough and very flexible approach. It can allow to generate many different kinds of benzenoids with predefined structural properties by posting new constraints, saving the efforts of developing bespoke algorithmic methods for each kind of benzenoids. On the other hand, we want to assess the local aromaticity of a given benzenoid. This is a central issue in theoretical chemistry since aromaticity cannot be measured. Nowadays, computing aromaticity requires quantum chemistry calculations that are too expensive to be used on medium to large-sized molecules. In this article, we describe how constraint programming can be useful in order to assess the aromaticity of benzenoids. Moreover, we show that our method is much faster than the reference one, namely NICS. |
---|---|
AbstractList | Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are widely studied in theoretical chemistry and have a lot of concrete applications. Then, there is a lot of problems relative to this subject, like the enumeration of all its Kekulé structures (i.e. all valid configurations of double bonds). In this article, we focus our attention on two issues: the generation of benzenoid structures and the assessment of the local aromaticity. On the one hand, generating benzenoids that have certain structural and/or chemical properties (e.g. having a given number of hexagons or a particular structure from a graph viewpoint) is an interesting and important problem. It constitutes a preliminary step for studying their chemical properties. In this paper, we show that modeling this problem in Choco Solver and just letting its search engine generate the solutions is a fast enough and very flexible approach. It can allow to generate many different kinds of benzenoids with predefined structural properties by posting new constraints, saving the efforts of developing bespoke algorithmic methods for each kind of benzenoids. On the other hand, we want to assess the local aromaticity of a given benzenoid. This is a central issue in theoretical chemistry since aromaticity cannot be measured. Nowadays, computing aromaticity requires quantum chemistry calculations that are too expensive to be used on medium to large-sized molecules. In this article, we describe how constraint programming can be useful in order to assess the aromaticity of benzenoids. Moreover, we show that our method is much faster than the reference one, namely NICS. |
Author | Prcovic, Nicolas Varet, Adrien Carissan, Yannick Terrioux, Cyril Hagebaum-Reignier, Denis |
Author_xml | – sequence: 1 givenname: Yannick orcidid: 0000-0002-9876-0272 surname: Carissan fullname: Carissan, Yannick organization: Aix Marseille Univ, CNRS, Centrale Marseille, ISM2 – sequence: 2 givenname: Denis orcidid: 0000-0001-8761-1047 surname: Hagebaum-Reignier fullname: Hagebaum-Reignier, Denis organization: Aix Marseille Univ, CNRS, Centrale Marseille, ISM2 – sequence: 3 givenname: Nicolas orcidid: 0000-0002-3580-4071 surname: Prcovic fullname: Prcovic, Nicolas organization: Aix Marseille Univ, Université de Toulon, CNRS, LIS – sequence: 4 givenname: Cyril orcidid: 0000-0002-9779-9108 surname: Terrioux fullname: Terrioux, Cyril email: cyril.terrioux@univ-amu.fr organization: Aix Marseille Univ, Université de Toulon, CNRS, LIS – sequence: 5 givenname: Adrien orcidid: 0000-0003-3170-4484 surname: Varet fullname: Varet, Adrien organization: Aix Marseille Univ, Université de Toulon, CNRS, LIS |
BackLink | https://amu.hal.science/hal-03684890$$DView record in HAL |
BookMark | eNp9kc1uGyEURlGVSHV-XiArpK6ymPYCMwaWTtTGlSx1k6wRg-_YY82AAzhNqjx8cadqpC6yAqFzLlffd0ZOfPBIyBWDzwxAfkkM5sAq4LwCLbiqnj-QGWskr7Ro6pNyF0pUkgnxkZyltAMALUU9I6_L8JO64FOOtveZ7mPYRDuOvd9QZz3d4rCnbotjn3KiOdANeow2I71B_wt96Ne0uAeXDxETtX5NbUqYCrtFOgRnB7qIYbS5d31-oaF7E9MFOe3skPDy73lOHr59vb9dVqsfd99vF6vKCS1zNWdNXQNyp7pWNiA6yTvb1p1FBFkI0aDUdVuAFmTD9NrJumuFcuCkEmotzsn1NHdrB7OP_Wjjiwm2N8vFyhzfQMxVrTQ8scJ-mtiSxOMBUza7cIi-rGf4XGutuORNofhEuRhSitj9G8vAHBsxUyOmNGL-NGKei6T-k0okJZjgj-EP76tiUlP5x28wvm31jvUbly6khA |
CitedBy_id | crossref_primary_10_1039_D4CP00096J |
Cites_doi | 10.1039/C5CS00183H 10.1016/j.comptc.2011.08.010 10.1021/jp806987f 10.3847/1538-4357/ab3124 10.1016/S0196-6774(02)00215-8 10.1186/s13015-014-0023-3 10.1007/978-3-662-01665-7 10.1021/ci990136k 10.1021/acs.jpca.9b01014 10.1038/s41565-019-0577-9 10.1038/s41557-020-00627-5 10.1088/0004-637X/754/1/75 10.1002/anie.202014621 10.1021/jacs.0c05268 10.1002/jcc.25760 10.1007/s10910-017-0799-8 10.1080/00268976300100501 10.1021/jacs.9b05319 10.1021/acsnano.8b07225 10.1021/cr9903656 10.1002/anie.201913200 10.1021/ci00018a019 10.1021/ci990016c 10.1021/jp403380t 10.1021/jp503054j 10.1021/jacs.9b04080 10.1021/ja062026h 10.1002/jlac.18661370202 10.1021/acs.jpclett.0c02518 10.1002/(SICI)1097-461X(1996)60:8<1851::AID-QUA13>3.0.CO;2-2 10.1002/9780470611821 10.1021/jp040179q 10.1007/BF01339530 10.1021/ci00064a002 10.1021/ci970116n 10.1002/qua.25657 10.1007/978-3-319-40970-2_8 10.1086/311843 10.1039/D0FD00023J 10.1021/acs.jpca.7b11095 10.1021/ja00380a040 10.1021/acs.joc.0c01097 10.3847/1538-4365/aaa019 10.1021/cr030088+ 10.1007/978-3-030-58475-7_40 10.1007/978-3-030-58475-7_39 10.1002/anie.202100343 10.1002/chem.202004720 10.1016/0009-2614(76)80257-6 10.1002/anie.202102757 10.1039/C7SC03628K 10.1007/978-3-642-58150-2_3 10.1016/j.jms.2021.111458 10.1007/978-3-540-30201-8_87 10.1051/eas/1146003 10.1002/anie.202008838 10.1051/0004-6361/201834130 10.1021/acs.jpcc.1c02514 10.1142/p306 10.1002/ange.202001211 10.1002/tcr.201900016 10.1021/acs.jctc.5b00594 10.1086/533424 10.1080/0025570X.2001.11953063 10.1021/jacs.6b01181 10.1002/poc.1644 10.1021/ja01069a041 10.1021/cr068010r |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION JQ2 1XC VOOES |
DOI | 10.1007/s10601-022-09328-x |
DatabaseName | CrossRef ProQuest Computer Science Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Chemistry |
EISSN | 1572-9354 |
EndPage | 248 |
ExternalDocumentID | oai_HAL_hal_03684890v1 10_1007_s10601_022_09328_x |
GrantInformation_xml | – fundername: Agence National de la Recherche grantid: ANR-16-CE40-0028 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .VR 06D 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ JQ2 1XC VOOES |
ID | FETCH-LOGICAL-c397t-615440e2c8fb7503f72fab4faee0739735e794be2cb07519dc74fb38c0c7838d3 |
IEDL.DBID | AGYKE |
ISSN | 1383-7133 |
IngestDate | Fri Sep 12 12:23:34 EDT 2025 Wed Sep 17 23:56:31 EDT 2025 Tue Jul 01 02:58:25 EDT 2025 Thu Apr 24 23:07:24 EDT 2025 Fri Feb 21 02:46:26 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Graph variables and constraints Theoretical chemistry Modeling Constraint programming |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-615440e2c8fb7503f72fab4faee0739735e794be2cb07519dc74fb38c0c7838d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8761-1047 0000-0002-9779-9108 0000-0003-3170-4484 0000-0002-9876-0272 0000-0002-3580-4071 |
OpenAccessLink | https://amu.hal.science/hal-03684890 |
PQID | 2699982725 |
PQPubID | 2043864 |
PageCount | 57 |
ParticipantIDs | hal_primary_oai_HAL_hal_03684890v1 proquest_journals_2699982725 crossref_primary_10_1007_s10601_022_09328_x crossref_citationtrail_10_1007_s10601_022_09328_x springer_journals_10_1007_s10601_022_09328_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Constraints : an international journal |
PublicationTitleAbbrev | Constraints |
PublicationYear | 2022 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | KimYKimJWKimZKimWYEfficient prediction of reaction paths through molecular graph and reaction network analysisChemical Science20189482583510.1039/C7SC03628K MishraSBeyerDEimreKKezilebiekeSBergerRGröningOPignedoliCAMüllenKLiljerothPRuffieuxPFengXFaselRTopological frustration induces unconventional magnetism in a nanographeneNature Nanotechnology2020151222810.1038/s41565-019-0577-9 Lecoutre, C. (2009). Constraint networks: Techniques and algorithms. Wiley. BouwmanJLinnartzHTielensAGMid-infrared spectroscopic signatures of dibenzopyrene cations – the effect of symmetry on pah ir spectroscopyJournal of Molecular Spectroscopy202137811145810.1016/j.jms.2021.111458 Wu, C. W. (2004). Modelling chemical reactions using constraint programming and molecular graphs. In Principles and practice of constraint programming, pp. 808–808. Carissan, Y., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2021). Exhaustive generation of benzenoid structures sharing common patterns. In CP, pp. 19:1–19:18. KekuléAUntersuchungen über aromatische verbindungen ueber die constitution der aromatischen verbindungenJustus Liebigs Annalen der Chemie1866137212919610.1002/jlac.18661370202 Ruiz-MoralesYThe agreement between clar structures and Nucleus-Independent chemical shift values in pericondensed benzenoid polycyclic aromatic hydrocarbons: an application of the Y-RuleThe Journal of Physical Chemistry. A2004108108731089610.1021/jp040179q AllamandolaLJHudginsDMSandfordSAModeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbonsThe Astrophysical Journal19995112L115L11910.1086/311843 TrinquierGMalrieuJPPredicting the Open-Shell character of polycyclic hydrocarbons in terms of clar sextetsThe Journal of Physical Chemistry A201812241088110310.1021/acs.jpca.7b11095 BauschlicherCWJrPeetersEAllamandolaLJThe infrared spectra of very large, compact, highly symmetric, polycyclic aromatic hydrocarbons (PAHs)The Astrophysical Journal2008678131632710.1086/533424 LinCEfficient method for calculating the resonance energy expression of benzenoid hydrocarbons based on the enumeration of conjugated circuitsJournal of Chemical Information and Computer Sciences20004077878310.1021/ci990136k Carissan, Y., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2020). Using constraint programming to generate benzenoid structures in theoretical chemistry. In CP, pp. 690–706. LiuJFengXSynthetic tailoring of graphene nanostructures with Zigzag-Edged topologies: Progress and perspectivesAngewandte Chemie International Edition20205921810.1002/anie.202008838 Di GiovannantonioMYaoXEimreKUrgelJIRuffieuxPPignedoliCAMüllenKFaselRNaritaALarge-Cavity Coronoids with different inner and outer edge structuresJournal of the American Chemical Society202014228120461205010.1021/jacs.0c05268 RiccaABauschlicherCWBoersmaCTielensAGGMAllamandolaLJThe Infrared spectroscopy of compact polycyclic aromatic hydrocarbons containing up to 384 carbonsThe Astrophysical Journal201275417510.1088/0004-637X/754/1/75 KancherlaSJørgensenKBSynthesis of Phenacene-Helicene Hybrids by Directed Remote MetalationJ. Org. Chem.20208517111401115310.1021/acs.joc.0c01097 DiasJRStructure and electronic characteristics of coronoid polycyclic aromatic hydrocarbons as potential models of graphite layers with hole defectsThe Journal of Physical Chemistry A200811247122811229210.1021/jp806987f ChenYLinCLuoZYinZShiHZhuYWangJDouble π-extended Undecabenzo[7]heliceneAngew. Chem. Int. Ed.202160147796780110.1002/anie.202014621 Devriendt, J., Bogaerts, B., Bruynooghe, M., & Denecker, M. (2016). Improved static symmetry breaking for sat. In N. Creignou D. Le Berre (Eds.) Theory and Applications of Satisfiability Testing – SAT 2016 (pp. 104–122). BrunvollJCyvinRNCyvinSJEnumeration and classification of double coronoid hydrocarbons – appendix: Triple coronoidsCroatica Chemica Acta1990634585601 CaporossiGHansenPEnumeration of polyhex hydrocarbons to h = 21Journal of Chemical Information and Computer Sciences199838461061910.1021/ci970116n ChenZWannereCSCorminboeufCPuchtaRvon Ragué SchleyerPNucleus-Independent Chemical shifts (NICS) as an aromaticity criterionChemical Reviews20051053842388810.1021/cr030088 RiegerRMüllenKForever young: Polycyclic aromatic hydrocarbons as model cases for structural and optical studiesJournal of Physical Organic Chemistry201023431532510.1002/poc.1644 EatonPEColeTWCubaneJournal of the American Chemical Society196486153157315810.1021/ja01069a041 LuchAThe carcinogenic effects of polycyclic aromatic hydrocarbons2005LondonImperial College Press10.1142/p306https://www.worldscientific.com/worldscibooks/10.1142/p306 UryuMHiragaTKogaYSaitoYMurakamiKItamiKSynthesis of polybenzoacenes: Annulative dimerization of phenylene triflate by twofold C-H activationAngewandte Chemie2020132166613661610.1002/ange.202001211 SilvaPVGirãoECElectronic and transport properties of graphene nanoribbons based on Super-Heptazethrene molecular blocksThe Journal of Physical Chemistry C202112520112351124810.1021/acs.jpcc.1c02514 Bérczi-KovácsEBernáthAThe complexity of the Clar number problem and an exact algorithmJournal of Mathematical Chemistry201856597605374581710.1007/s10910-017-0799-81385.92058 Carissan, Y., Dim, C. A., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2020). Computing the local aromaticity of benzenoids thanks to constraint programming. In CP, pp. 673–689. RiccaARoserJEPeetersEBoersmaCPolycyclic aromatic hydrocarbons with armchair edges: Potential emitters in class b sourcesThe Astrophysical Journal201988215610.3847/1538-4357/ab3124 Rossi, F., van Beek, P., & Walsh, T. (2006). Handbook of constraint programming elsevier. AumaitreCMorinJFPolycyclic aromatic hydrocarbons as potential building blocks for organic solar cellsThe Chemical Record20191961142115410.1002/tcr.201900016 MishraSBeyerDEimreKLiuJBergerRGröningOPignedoliCAMüllenKFaselRFengXRuffieuxPSynthesis and Characterization of π-extended TrianguleneJournal of the American Chemical Society201914127106211062510.1021/jacs.9b05319 RoyMBerezhnaiaVVillaMVanthuyneNGiorgiMNaubronJVPoyerSMonnierVCharlesLCarissanYHagebaum-ReignierDRodriguezJGingrasMCoquerelYStereoselective syntheses, structures, and properties of extremely distorted chiral nanographenes embedding hextuple helicenesAngewandte Chemie International Edition20205983264327110.1002/anie.201913200 IsmailIStuttaford-FowlerHBVAOchan AshokCRobertsonCHabershonSAutomatic proposal of multistep reaction mechanisms using a graph-driven searchThe Journal of Physical Chemistry A2019123153407341710.1021/acs.jpca.9b01014 Randić, M., & Balaban, A. T. (2018). Local aromaticity and aromatic sextet theory beyond clar. Int. J. Quantum Chem 108(17). Régin, J. C. (1994). A filtering algorithm for constraints of difference in CSPs. In Proceedings of AAAI, pp. 362–367. XiaZPunSHChenHMiaoQSynthesis of zigzag carbon nanobelts through scholl reactionsAngew. Chem. Int. Ed.20216018103111031810.1002/anie.202100343 KastlerMSchmidtJPisulaWSebastianiDMüllenKFrom armchair to zigzag peripheries in nanographenesJournal of the American Chemical Society2006128299526953410.1021/ja062026h Konishi, A., Horii, K., Shiomi, D., Sato, K., Takui, T., & Yasuda, M. (2019). Open-Shell And antiaromatic character induced by the highly symmetric geometry of the planar heptalene structure: Synthesis and characterization of a nonalternant isomer of bisanthene journal of the american chemical society. https://doi.org/10.1021/jacs.9b04080. NaritaAWangXYFengXMüllenKNew advances in nanographene chemistryChemical Society Reviews201544186616664310.1039/C5CS00183H Clar, E. (1972). The aromatic sextet wiley. RispoliFJCounting perfect matchings in hexagonal systems associated with benzenoidsMathematics Magazine200114194200210491310.1080/0025570X.2001.11953063 CheungKYWatanabeKSegawaYItamiKSynthesis of a zigzag carbon nanobeltNature Chemistry202113325525910.1038/s41557-020-00627-5 CocchiCPrezziDRuiniACaldasMJMolinariEAnisotropy and size effects on the optical spectra of polycyclic aromatic hydrocarbonsThe Journal of Physical Chemistry A2014118336507651310.1021/jp503054j MishraSLohrTGPignedoliCALiuJBergerRUrgelJIMüllenKFengXRuffieuxPFaselRTailoring bond topologies in Open-Shell graphene nanostructuresACS Nano20181212119171192710.1021/acsnano.8b07225 Longuet-HigginsHThe symmetry groups of non-rigid moleculesMolecular Physics19636544546010.1080/002689763001005010121.45702 BouwmanJCastellanosPBulakMTerwisscha van ScheltingaJCamiJLinnartzHTielensAGGMEffect of molecular structure on the infrared signatures of astronomically relevant pahsA&A2019621A8010.1051/0004-6361/201834130 Fages, J. G., Lorca, X., & Prud’homme, C. Choco solver user guide documentation. https://choco-solver.readthedocs.io/en/latest/. Mann, M., & Thiel, B. (2013). Kekulé Structures Enumeration Yields Unique SMILES. In Proceedings of Workshop on Constraint Based Methods for Bioinformatics. CyvinJBrunvollJCyvinBNSearch for Concealed non-kekuléan Benzenoids and CoronoidsJournal of Chemical Information and Computer Sciences19892942370703.92026 Kasteleyn, P. W. (1967). Graph theory and crystal physics, p. 43–110 Academic Press. Sánchez-GrandeAUrgelJIVeisLEdalatmaneshSSantosJLauwaetKMutomboPGallegoJMBrabecJBeranPNachtigallováDMirandaRMartínNJelínekPÉcijaDUnravelling the Open-Shell character of peripentacene on au(111)The Journal of Physical Chemistry Letters202112133033610.1021/acs.jpclett.0c02518 LinCFanGAlgorithms for the count of linearly independent and minimal conjugated circuits in benzenoid hydrocarbonsJ. Chem. Inf. Comput. Sci19993978278710.1021/ci990016c RandićMBenzenoid rings resonance energies and local aromaticity of benzenoid hydrocarbonsJournal of Computational Chemistry201940575376210.1002/jcc.25760 SimonciniDAlloucheDde GivrySDelmasCBarbeSSchiexTGuaranteed discrete energy optimization on large protein design problemsJournal of Chemical Theory and Computation201511125980598910.1021/acs.jctc.5b00594 WuJPisulaWMüllenKGraphenes as potential material for electronicsChemical Reviews20071 A Luch (9328_CR45) 2005 RJ Ternansky (9328_CR72) 1982; 104 KY Cheung (9328_CR18) 2021; 13 H Longuet-Higgins (9328_CR44) 1963; 6 G Caporossi (9328_CR12) 1998; 38 C Cocchi (9328_CR21) 2014; 118 CWJr Bauschlicher (9328_CR5) 2008; 678 9328_CR29 S Mishra (9328_CR49) 2019; 141 CW Bauschlicher (9328_CR4) 2018; 234 9328_CR60 M Roy (9328_CR66) 2020; 59 9328_CR23 9328_CR65 J Wu (9328_CR76) 2007; 107 J Bouwman (9328_CR8) 2019; 621 S Rayne (9328_CR59) 2011; 976 S Kancherla (9328_CR34) 2020; 85 Z Xia (9328_CR77) 2021; 60 9328_CR15 S Mishra (9328_CR50) 2018; 12 9328_CR13 M Randić (9328_CR54) 2003; 103 9328_CR57 9328_CR14 9328_CR19 JR Dias (9328_CR25) 2008; 112 K Fujise (9328_CR31) 2021; 27 S Mishra (9328_CR48) 2020; 15 PE Eaton (9328_CR28) 1964; 86 M Di Giovannantonio (9328_CR24) 2020; 142 9328_CR52 PV Silva (9328_CR69) 2021; 125 9328_CR56 J Bouwman (9328_CR7) 2021; 378 E Hückel (9328_CR32) 1931; 70 9328_CR10 M Randić (9328_CR58) 1996; 60 LJ Allamandola (9328_CR2) 1999; 511 C Lin (9328_CR41) 2000; 40 BT Draine (9328_CR27) 2011; 46 A Sánchez-Grande (9328_CR68) 2021; 12 Y Chen (9328_CR16) 2021; 60 R Rieger (9328_CR63) 2010; 23 A Kekulé (9328_CR37) 1866; 137 Y Kim (9328_CR38) 2018; 9 Y Ruiz-Morales (9328_CR67) 2004; 108 G Trinquier (9328_CR73) 2018; 122 C Aumaitre (9328_CR3) 2019; 19 9328_CR47 A Ricca (9328_CR61) 2012; 754 9328_CR40 C Lin (9328_CR42) 1999; 39 9328_CR1 U Beser (9328_CR6) 2016; 138 J Liu (9328_CR43) 2020; 59 M Uryu (9328_CR74) 2020; 132 A Narita (9328_CR51) 2015; 44 M Mann (9328_CR46) 2014; 9 E Bérczi-Kovács (9328_CR9) 2018; 56 I Ismail (9328_CR33) 2019; 123 M Kastler (9328_CR36) 2006; 128 D Simoncini (9328_CR70) 2015; 11 M Randić (9328_CR53) 1976; 38 E Clar (9328_CR20) 1964 JR Dias (9328_CR26) 2013; 117 9328_CR35 J Brunvoll (9328_CR11) 1990; 63 Z Chen (9328_CR17) 2005; 105 9328_CR39 9328_CR30 9328_CR71 J Cyvin (9328_CR22) 1989; 29 A Ricca (9328_CR62) 2019; 882 9328_CR75 FJ Rispoli (9328_CR64) 2001; 14 M Randić (9328_CR55) 2019; 40 |
References_xml | – reference: Longuet-HigginsHThe symmetry groups of non-rigid moleculesMolecular Physics19636544546010.1080/002689763001005010121.45702 – reference: NaritaAWangXYFengXMüllenKNew advances in nanographene chemistryChemical Society Reviews201544186616664310.1039/C5CS00183H – reference: RandićMAromaticity of polycyclic conjugated hydrocarbonsChemical Reviews200310393449360610.1021/cr9903656 – reference: Carissan, Y., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2021). Exhaustive generation of benzenoid structures sharing common patterns. In CP, pp. 19:1–19:18. – reference: Wu, C. W. (2004). Modelling chemical reactions using constraint programming and molecular graphs. In Principles and practice of constraint programming, pp. 808–808. – reference: RiegerRMüllenKForever young: Polycyclic aromatic hydrocarbons as model cases for structural and optical studiesJournal of Physical Organic Chemistry201023431532510.1002/poc.1644 – reference: AumaitreCMorinJFPolycyclic aromatic hydrocarbons as potential building blocks for organic solar cellsThe Chemical Record20191961142115410.1002/tcr.201900016 – reference: LiuJFengXSynthetic tailoring of graphene nanostructures with Zigzag-Edged topologies: Progress and perspectivesAngewandte Chemie International Edition20205921810.1002/anie.202008838 – reference: LuchAThe carcinogenic effects of polycyclic aromatic hydrocarbons2005LondonImperial College Press10.1142/p306https://www.worldscientific.com/worldscibooks/10.1142/p306 – reference: WuJPisulaWMüllenKGraphenes as potential material for electronicsChemical Reviews2007107371874710.1021/cr068010r – reference: BouwmanJCastellanosPBulakMTerwisscha van ScheltingaJCamiJLinnartzHTielensAGGMEffect of molecular structure on the infrared signatures of astronomically relevant pahsA&A2019621A8010.1051/0004-6361/201834130 – reference: Lecoutre, C. (2009). Constraint networks: Techniques and algorithms. Wiley. – reference: TrinquierGMalrieuJPPredicting the Open-Shell character of polycyclic hydrocarbons in terms of clar sextetsThe Journal of Physical Chemistry A201812241088110310.1021/acs.jpca.7b11095 – reference: UryuMHiragaTKogaYSaitoYMurakamiKItamiKSynthesis of polybenzoacenes: Annulative dimerization of phenylene triflate by twofold C-H activationAngewandte Chemie2020132166613661610.1002/ange.202001211 – reference: Di GiovannantonioMYaoXEimreKUrgelJIRuffieuxPPignedoliCAMüllenKFaselRNaritaALarge-Cavity Coronoids with different inner and outer edge structuresJournal of the American Chemical Society202014228120461205010.1021/jacs.0c05268 – reference: RayneSForestKSinglet-triplet (s0 → t1) excitation energies of the [4 × n] rectangular graphene nanoribbon series (n = 2-6): a comparative theoretical studyComput. Theor. Chem.201197610511210.1016/j.comptc.2011.08.010 – reference: Clar, E. (1972). The aromatic sextet wiley. – reference: LinCEfficient method for calculating the resonance energy expression of benzenoid hydrocarbons based on the enumeration of conjugated circuitsJournal of Chemical Information and Computer Sciences20004077878310.1021/ci990136k – reference: Rossi, F., van Beek, P., & Walsh, T. (2006). Handbook of constraint programming elsevier. – reference: KastlerMSchmidtJPisulaWSebastianiDMüllenKFrom armchair to zigzag peripheries in nanographenesJournal of the American Chemical Society2006128299526953410.1021/ja062026h – reference: RoyMBerezhnaiaVVillaMVanthuyneNGiorgiMNaubronJVPoyerSMonnierVCharlesLCarissanYHagebaum-ReignierDRodriguezJGingrasMCoquerelYStereoselective syntheses, structures, and properties of extremely distorted chiral nanographenes embedding hextuple helicenesAngewandte Chemie International Edition20205983264327110.1002/anie.201913200 – reference: Ajayakumar, M. R., Ma, J., Lucotti, A., Schellhammer, K. S., Serra, G., Dmitrieva, E., Rosenkranz, M., Komber, H., Liu, J., Ortmann, F., Tommasini, M., & Feng, X. (2021). Persistent peri-Heptacene: Synthesis and In Situ Characterization Angew. Chem. Int Ed. https://doi.org/10.1002/anie.202102757. – reference: Carissan, Y., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2020). Using constraint programming to generate benzenoid structures in theoretical chemistry. In CP, pp. 690–706. – reference: SimonciniDAlloucheDde GivrySDelmasCBarbeSSchiexTGuaranteed discrete energy optimization on large protein design problemsJournal of Chemical Theory and Computation201511125980598910.1021/acs.jctc.5b00594 – reference: Régin, J. C. (1994). A filtering algorithm for constraints of difference in CSPs. In Proceedings of AAAI, pp. 362–367. – reference: BauschlicherCWRiccaABoersmaCAllamandolaLJThe NASA ames PAH IR spectroscopic database: Computational version 3.00 with updated content and the introduction of multiple scaling factorsThe Astrophysical Journal Supplement Series201823423210.3847/1538-4365/aaa019 – reference: Mann, M., & Thiel, B. (2013). Kekulé Structures Enumeration Yields Unique SMILES. In Proceedings of Workshop on Constraint Based Methods for Bioinformatics. – reference: BeserUKastlerMMaghsoumiAWagnerMCastiglioniCTommasiniMNaritaAFengXMüllenKA C216-Nanographene molecule with defined cavity as extended coronoidJournal of the American Chemical Society2016138134322432510.1021/jacs.6b01181 – reference: ClarESchoentalRPolycyclic Hydrocarbons Volume, Vol. 11964BerlinSpringer10.1007/978-3-662-01665-7 – reference: DraineBTAstronomical Models of PAHs and DustEAS Publications Series201146294210.1051/eas/1146003 – reference: LinCFanGAlgorithms for the count of linearly independent and minimal conjugated circuits in benzenoid hydrocarbonsJ. Chem. Inf. Comput. Sci19993978278710.1021/ci990016c – reference: RiccaABauschlicherCWBoersmaCTielensAGGMAllamandolaLJThe Infrared spectroscopy of compact polycyclic aromatic hydrocarbons containing up to 384 carbonsThe Astrophysical Journal201275417510.1088/0004-637X/754/1/75 – reference: HückelEQuantentheoretische beiträge zum BenzolproblemZeitschrift fü,r Physik19317020428610.1007/BF01339530 – reference: MishraSBeyerDEimreKLiuJBergerRGröningOPignedoliCAMüllenKFaselRFengXRuffieuxPSynthesis and Characterization of π-extended TrianguleneJournal of the American Chemical Society201914127106211062510.1021/jacs.9b05319 – reference: RandićMGuoXKleinDJAnalytical Expressions for the Count of LM-conjugated Circuits of Benzenoid HydrocarbonsInternational Journal of Quantum Chemistry19966094395810.1002/(SICI)1097-461X(1996)60:8<1851::AID-QUA13>3.0.CO;2-2 – reference: KancherlaSJørgensenKBSynthesis of Phenacene-Helicene Hybrids by Directed Remote MetalationJ. Org. Chem.20208517111401115310.1021/acs.joc.0c01097 – reference: Brinkmann, G., Caporossi, G., & Hansen, P. (2002). A constructive enumeration of fusenes and benzenoids journal of algorithms 45(2). – reference: DiasJRValence-bond determination of diradical character of polycyclic aromatic hydrocarbons: From acenes to rectangular benzenoidsThe Journal of Physical Chemistry. A20131174716472510.1021/jp403380t – reference: Randić, M., & Guo, X. (1994). Recursive method for enumeration of linearly independent and minimal conjugated circuits of benzenoid hydrocarbons. Journal of Chemical Information and Modeling 34(2). – reference: RandićMConjugated circuits and resonance energies of benzenoid hydrocarbonsChemical Physics Letters197638687041697410.1016/0009-2614(76)80257-6 – reference: AllamandolaLJHudginsDMSandfordSAModeling the unidentified infrared emission with combinations of polycyclic aromatic hydrocarbonsThe Astrophysical Journal19995112L115L11910.1086/311843 – reference: Carissan, Y., Dim, C. A., Hagebaum-Reignier, D., Prcovic, N., Terrioux, C., & Varet, A. (2020). Computing the local aromaticity of benzenoids thanks to constraint programming. In CP, pp. 673–689. – reference: Fages, J. G., Lorca, X., & Prud’homme, C. Choco solver user guide documentation. https://choco-solver.readthedocs.io/en/latest/. – reference: Konishi, A., Horii, K., Shiomi, D., Sato, K., Takui, T., & Yasuda, M. (2019). Open-Shell And antiaromatic character induced by the highly symmetric geometry of the planar heptalene structure: Synthesis and characterization of a nonalternant isomer of bisanthene journal of the american chemical society. https://doi.org/10.1021/jacs.9b04080. – reference: FujiseKTsurumakiEWakamatsuKToyotaSConstruction of helical structures with multiple fused anthracenes: Structures and properties of long expanded helicenesChemistry - A European Journal202127144548455210.1002/chem.202004720 – reference: Qiu, Z., Narita, A., & Müllen, K. (2020). Carbon nanostructures by macromolecular design from branched polyphenylenes to nanographenes and graphene nanoribbons. Faraday Discussions. https://doi.org/10.1039/D0FD00023J. Publisher: The Royal Society of Chemistry. – reference: XiaZPunSHChenHMiaoQSynthesis of zigzag carbon nanobelts through scholl reactionsAngew. Chem. Int. Ed.20216018103111031810.1002/anie.202100343 – reference: BouwmanJLinnartzHTielensAGMid-infrared spectroscopic signatures of dibenzopyrene cations – the effect of symmetry on pah ir spectroscopyJournal of Molecular Spectroscopy202137811145810.1016/j.jms.2021.111458 – reference: RispoliFJCounting perfect matchings in hexagonal systems associated with benzenoidsMathematics Magazine200114194200210491310.1080/0025570X.2001.11953063 – reference: CocchiCPrezziDRuiniACaldasMJMolinariEAnisotropy and size effects on the optical spectra of polycyclic aromatic hydrocarbonsThe Journal of Physical Chemistry A2014118336507651310.1021/jp503054j – reference: IsmailIStuttaford-FowlerHBVAOchan AshokCRobertsonCHabershonSAutomatic proposal of multistep reaction mechanisms using a graph-driven searchThe Journal of Physical Chemistry A2019123153407341710.1021/acs.jpca.9b01014 – reference: Ruiz-MoralesYThe agreement between clar structures and Nucleus-Independent chemical shift values in pericondensed benzenoid polycyclic aromatic hydrocarbons: an application of the Y-RuleThe Journal of Physical Chemistry. A2004108108731089610.1021/jp040179q – reference: SilvaPVGirãoECElectronic and transport properties of graphene nanoribbons based on Super-Heptazethrene molecular blocksThe Journal of Physical Chemistry C202112520112351124810.1021/acs.jpcc.1c02514 – reference: CyvinJBrunvollJCyvinBNSearch for Concealed non-kekuléan Benzenoids and CoronoidsJournal of Chemical Information and Computer Sciences19892942370703.92026 – reference: EatonPEColeTWCubaneJournal of the American Chemical Society196486153157315810.1021/ja01069a041 – reference: CaporossiGHansenPEnumeration of polyhex hydrocarbons to h = 21Journal of Chemical Information and Computer Sciences199838461061910.1021/ci970116n – reference: KimYKimJWKimZKimWYEfficient prediction of reaction paths through molecular graph and reaction network analysisChemical Science20189482583510.1039/C7SC03628K – reference: Taylor, P. R. (1992). Molecular symmetry and quantum chemistry. In B. O. Roos (Ed.) Lecture Notes in Quantum Chemistry: European Summer School in Quantum Chemistry, Lecture Notes in Chemistry. – reference: BauschlicherCWJrPeetersEAllamandolaLJThe infrared spectra of very large, compact, highly symmetric, polycyclic aromatic hydrocarbons (PAHs)The Astrophysical Journal2008678131632710.1086/533424 – reference: KekuléAUntersuchungen über aromatische verbindungen ueber die constitution der aromatischen verbindungenJustus Liebigs Annalen der Chemie1866137212919610.1002/jlac.18661370202 – reference: Devriendt, J., Bogaerts, B., Bruynooghe, M., & Denecker, M. (2016). Improved static symmetry breaking for sat. In N. Creignou D. Le Berre (Eds.) Theory and Applications of Satisfiability Testing – SAT 2016 (pp. 104–122). – reference: DiasJRStructure and electronic characteristics of coronoid polycyclic aromatic hydrocarbons as potential models of graphite layers with hole defectsThe Journal of Physical Chemistry A200811247122811229210.1021/jp806987f – reference: Sánchez-GrandeAUrgelJIVeisLEdalatmaneshSSantosJLauwaetKMutomboPGallegoJMBrabecJBeranPNachtigallováDMirandaRMartínNJelínekPÉcijaDUnravelling the Open-Shell character of peripentacene on au(111)The Journal of Physical Chemistry Letters202112133033610.1021/acs.jpclett.0c02518 – reference: BrunvollJCyvinRNCyvinSJEnumeration and classification of double coronoid hydrocarbons – appendix: Triple coronoidsCroatica Chemica Acta1990634585601 – reference: ChenZWannereCSCorminboeufCPuchtaRvon Ragué SchleyerPNucleus-Independent Chemical shifts (NICS) as an aromaticity criterionChemical Reviews20051053842388810.1021/cr030088+ – reference: CheungKYWatanabeKSegawaYItamiKSynthesis of a zigzag carbon nanobeltNature Chemistry202113325525910.1038/s41557-020-00627-5 – reference: Kasteleyn, P. W. (1967). Graph theory and crystal physics, p. 43–110 Academic Press. – reference: ChenYLinCLuoZYinZShiHZhuYWangJDouble π-extended Undecabenzo[7]heliceneAngew. Chem. Int. Ed.202160147796780110.1002/anie.202014621 – reference: MannMNaharFSchnorrNBackofenRStadlerPFFlammCAtom mapping with constraint programmingAlgorithms for Molecular Biology2014912310.1186/s13015-014-0023-3 – reference: MishraSBeyerDEimreKKezilebiekeSBergerRGröningOPignedoliCAMüllenKLiljerothPRuffieuxPFengXFaselRTopological frustration induces unconventional magnetism in a nanographeneNature Nanotechnology2020151222810.1038/s41565-019-0577-9 – reference: Bérczi-KovácsEBernáthAThe complexity of the Clar number problem and an exact algorithmJournal of Mathematical Chemistry201856597605374581710.1007/s10910-017-0799-81385.92058 – reference: MishraSLohrTGPignedoliCALiuJBergerRUrgelJIMüllenKFengXRuffieuxPFaselRTailoring bond topologies in Open-Shell graphene nanostructuresACS Nano20181212119171192710.1021/acsnano.8b07225 – reference: Fages, J. (2014). Exploitation de structures de graphe en programmation par contraintes. Ph.D. thesis, École des mines de Nantes, France. – reference: RandićMBenzenoid rings resonance energies and local aromaticity of benzenoid hydrocarbonsJournal of Computational Chemistry201940575376210.1002/jcc.25760 – reference: RiccaARoserJEPeetersEBoersmaCPolycyclic aromatic hydrocarbons with armchair edges: Potential emitters in class b sourcesThe Astrophysical Journal201988215610.3847/1538-4357/ab3124 – reference: TernanskyRJBaloghDWPaquetteLADodecahedraneJournal of the American Chemical Society1982104164503450410.1021/ja00380a040 – reference: Randić, M., & Balaban, A. T. (2018). Local aromaticity and aromatic sextet theory beyond clar. Int. J. Quantum Chem 108(17). – volume: 44 start-page: 6616 issue: 18 year: 2015 ident: 9328_CR51 publication-title: Chemical Society Reviews doi: 10.1039/C5CS00183H – volume: 976 start-page: 105 year: 2011 ident: 9328_CR59 publication-title: Comput. Theor. Chem. doi: 10.1016/j.comptc.2011.08.010 – ident: 9328_CR47 – volume: 112 start-page: 12281 issue: 47 year: 2008 ident: 9328_CR25 publication-title: The Journal of Physical Chemistry A doi: 10.1021/jp806987f – volume: 882 start-page: 56 issue: 1 year: 2019 ident: 9328_CR62 publication-title: The Astrophysical Journal doi: 10.3847/1538-4357/ab3124 – ident: 9328_CR10 doi: 10.1016/S0196-6774(02)00215-8 – volume: 9 start-page: 23 issue: 1 year: 2014 ident: 9328_CR46 publication-title: Algorithms for Molecular Biology doi: 10.1186/s13015-014-0023-3 – volume-title: Polycyclic Hydrocarbons Volume, Vol. 1 year: 1964 ident: 9328_CR20 doi: 10.1007/978-3-662-01665-7 – volume: 40 start-page: 778 year: 2000 ident: 9328_CR41 publication-title: Journal of Chemical Information and Computer Sciences doi: 10.1021/ci990136k – volume: 123 start-page: 3407 issue: 15 year: 2019 ident: 9328_CR33 publication-title: The Journal of Physical Chemistry A doi: 10.1021/acs.jpca.9b01014 – volume: 15 start-page: 22 issue: 1 year: 2020 ident: 9328_CR48 publication-title: Nature Nanotechnology doi: 10.1038/s41565-019-0577-9 – ident: 9328_CR30 – ident: 9328_CR15 – volume: 13 start-page: 255 issue: 3 year: 2021 ident: 9328_CR18 publication-title: Nature Chemistry doi: 10.1038/s41557-020-00627-5 – ident: 9328_CR19 – volume: 754 start-page: 75 issue: 1 year: 2012 ident: 9328_CR61 publication-title: The Astrophysical Journal doi: 10.1088/0004-637X/754/1/75 – volume: 60 start-page: 7796 issue: 14 year: 2021 ident: 9328_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202014621 – volume: 142 start-page: 12046 issue: 28 year: 2020 ident: 9328_CR24 publication-title: Journal of the American Chemical Society doi: 10.1021/jacs.0c05268 – volume: 40 start-page: 753 issue: 5 year: 2019 ident: 9328_CR55 publication-title: Journal of Computational Chemistry doi: 10.1002/jcc.25760 – volume: 56 start-page: 597 year: 2018 ident: 9328_CR9 publication-title: Journal of Mathematical Chemistry doi: 10.1007/s10910-017-0799-8 – ident: 9328_CR65 – volume: 6 start-page: 445 issue: 5 year: 1963 ident: 9328_CR44 publication-title: Molecular Physics doi: 10.1080/00268976300100501 – volume: 141 start-page: 10621 issue: 27 year: 2019 ident: 9328_CR49 publication-title: Journal of the American Chemical Society doi: 10.1021/jacs.9b05319 – volume: 12 start-page: 11917 issue: 12 year: 2018 ident: 9328_CR50 publication-title: ACS Nano doi: 10.1021/acsnano.8b07225 – volume: 103 start-page: 3449 issue: 9 year: 2003 ident: 9328_CR54 publication-title: Chemical Reviews doi: 10.1021/cr9903656 – volume: 59 start-page: 3264 issue: 8 year: 2020 ident: 9328_CR66 publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201913200 – ident: 9328_CR57 doi: 10.1021/ci00018a019 – volume: 39 start-page: 782 year: 1999 ident: 9328_CR42 publication-title: J. Chem. Inf. Comput. Sci doi: 10.1021/ci990016c – volume: 117 start-page: 4716 year: 2013 ident: 9328_CR26 publication-title: The Journal of Physical Chemistry. A doi: 10.1021/jp403380t – volume: 118 start-page: 6507 issue: 33 year: 2014 ident: 9328_CR21 publication-title: The Journal of Physical Chemistry A doi: 10.1021/jp503054j – ident: 9328_CR39 doi: 10.1021/jacs.9b04080 – volume: 128 start-page: 9526 issue: 29 year: 2006 ident: 9328_CR36 publication-title: Journal of the American Chemical Society doi: 10.1021/ja062026h – volume: 137 start-page: 129 issue: 2 year: 1866 ident: 9328_CR37 publication-title: Justus Liebigs Annalen der Chemie doi: 10.1002/jlac.18661370202 – volume: 12 start-page: 330 issue: 1 year: 2021 ident: 9328_CR68 publication-title: The Journal of Physical Chemistry Letters doi: 10.1021/acs.jpclett.0c02518 – volume: 60 start-page: 943 year: 1996 ident: 9328_CR58 publication-title: International Journal of Quantum Chemistry doi: 10.1002/(SICI)1097-461X(1996)60:8<1851::AID-QUA13>3.0.CO;2-2 – ident: 9328_CR40 doi: 10.1002/9780470611821 – volume: 108 start-page: 10873 year: 2004 ident: 9328_CR67 publication-title: The Journal of Physical Chemistry. A doi: 10.1021/jp040179q – volume: 70 start-page: 204 year: 1931 ident: 9328_CR32 publication-title: Zeitschrift fü,r Physik doi: 10.1007/BF01339530 – ident: 9328_CR60 – volume: 29 start-page: 237 issue: 4 year: 1989 ident: 9328_CR22 publication-title: Journal of Chemical Information and Computer Sciences doi: 10.1021/ci00064a002 – volume: 38 start-page: 610 issue: 4 year: 1998 ident: 9328_CR12 publication-title: Journal of Chemical Information and Computer Sciences doi: 10.1021/ci970116n – ident: 9328_CR56 doi: 10.1002/qua.25657 – ident: 9328_CR23 doi: 10.1007/978-3-319-40970-2_8 – volume: 511 start-page: L115 issue: 2 year: 1999 ident: 9328_CR2 publication-title: The Astrophysical Journal doi: 10.1086/311843 – ident: 9328_CR52 doi: 10.1039/D0FD00023J – volume: 122 start-page: 1088 issue: 4 year: 2018 ident: 9328_CR73 publication-title: The Journal of Physical Chemistry A doi: 10.1021/acs.jpca.7b11095 – volume: 104 start-page: 4503 issue: 16 year: 1982 ident: 9328_CR72 publication-title: Journal of the American Chemical Society doi: 10.1021/ja00380a040 – volume: 85 start-page: 11140 issue: 17 year: 2020 ident: 9328_CR34 publication-title: J. Org. Chem. doi: 10.1021/acs.joc.0c01097 – volume: 234 start-page: 32 issue: 2 year: 2018 ident: 9328_CR4 publication-title: The Astrophysical Journal Supplement Series doi: 10.3847/1538-4365/aaa019 – volume: 105 start-page: 3842 year: 2005 ident: 9328_CR17 publication-title: Chemical Reviews doi: 10.1021/cr030088+ – ident: 9328_CR14 doi: 10.1007/978-3-030-58475-7_40 – ident: 9328_CR13 doi: 10.1007/978-3-030-58475-7_39 – volume: 60 start-page: 10311 issue: 18 year: 2021 ident: 9328_CR77 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202100343 – volume: 27 start-page: 4548 issue: 14 year: 2021 ident: 9328_CR31 publication-title: Chemistry - A European Journal doi: 10.1002/chem.202004720 – volume: 38 start-page: 68 year: 1976 ident: 9328_CR53 publication-title: Chemical Physics Letters doi: 10.1016/0009-2614(76)80257-6 – ident: 9328_CR1 doi: 10.1002/anie.202102757 – volume: 9 start-page: 825 issue: 4 year: 2018 ident: 9328_CR38 publication-title: Chemical Science doi: 10.1039/C7SC03628K – ident: 9328_CR71 doi: 10.1007/978-3-642-58150-2_3 – volume: 378 start-page: 111458 year: 2021 ident: 9328_CR7 publication-title: Journal of Molecular Spectroscopy doi: 10.1016/j.jms.2021.111458 – ident: 9328_CR29 – ident: 9328_CR75 doi: 10.1007/978-3-540-30201-8_87 – volume: 46 start-page: 29 year: 2011 ident: 9328_CR27 publication-title: EAS Publications Series doi: 10.1051/eas/1146003 – volume: 59 start-page: 2 year: 2020 ident: 9328_CR43 publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.202008838 – volume: 621 start-page: A80 year: 2019 ident: 9328_CR8 publication-title: A&A doi: 10.1051/0004-6361/201834130 – volume: 125 start-page: 11235 issue: 20 year: 2021 ident: 9328_CR69 publication-title: The Journal of Physical Chemistry C doi: 10.1021/acs.jpcc.1c02514 – volume-title: The carcinogenic effects of polycyclic aromatic hydrocarbons year: 2005 ident: 9328_CR45 doi: 10.1142/p306 – volume: 132 start-page: 6613 issue: 16 year: 2020 ident: 9328_CR74 publication-title: Angewandte Chemie doi: 10.1002/ange.202001211 – volume: 19 start-page: 1142 issue: 6 year: 2019 ident: 9328_CR3 publication-title: The Chemical Record doi: 10.1002/tcr.201900016 – volume: 11 start-page: 5980 issue: 12 year: 2015 ident: 9328_CR70 publication-title: Journal of Chemical Theory and Computation doi: 10.1021/acs.jctc.5b00594 – volume: 678 start-page: 316 issue: 1 year: 2008 ident: 9328_CR5 publication-title: The Astrophysical Journal doi: 10.1086/533424 – volume: 14 start-page: 194 year: 2001 ident: 9328_CR64 publication-title: Mathematics Magazine doi: 10.1080/0025570X.2001.11953063 – volume: 138 start-page: 4322 issue: 13 year: 2016 ident: 9328_CR6 publication-title: Journal of the American Chemical Society doi: 10.1021/jacs.6b01181 – volume: 63 start-page: 585 issue: 4 year: 1990 ident: 9328_CR11 publication-title: Croatica Chemica Acta – volume: 23 start-page: 315 issue: 4 year: 2010 ident: 9328_CR63 publication-title: Journal of Physical Organic Chemistry doi: 10.1002/poc.1644 – volume: 86 start-page: 3157 issue: 15 year: 1964 ident: 9328_CR28 publication-title: Journal of the American Chemical Society doi: 10.1021/ja01069a041 – volume: 107 start-page: 718 issue: 3 year: 2007 ident: 9328_CR76 publication-title: Chemical Reviews doi: 10.1021/cr068010r – ident: 9328_CR35 |
SSID | ssj0009734 |
Score | 2.2914057 |
Snippet | Benzenoids are a subfamily of hydrocarbons (molecules that are only made of hydrogen and carbon atoms) whose carbon atoms form hexagons. These molecules are... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 192 |
SubjectTerms | Aromaticity Artificial Intelligence Benzenoids Carbon Chemical properties Chemical Sciences Chemistry Chemists Computer Science Enumeration Hexagons Operations Research/Decision Theory Optimization or physical chemistry Quantum chemistry Search engines Theoretical and |
Title | How constraint programming can help chemists to generate Benzenoid structures and assess the local Aromaticity of Benzenoids |
URI | https://link.springer.com/article/10.1007/s10601-022-09328-x https://www.proquest.com/docview/2699982725 https://amu.hal.science/hal-03684890 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9sKFlpdYKKsR4gapEsdZu8fdqsuqhZ5YqZwiPyYUUZJKmwKq-PGME6dbKkDqNfErtsf-vsz4M8BrbyeTile-xIucEpk5mxjGAQkJLxR5Z10Vfg18OJkslvLotDiNh8JWQ7T74JLsVuobh90mgfoyeWIWLnTCyHGrYILC5rg1fffp-HAttqt6bzKzrySQsHhY5u-l_LEhbZyFcMgbWPOWe7TbdebbsBza2webfN27bO2eu7ol5XjXD9qBBxGG4rSfNw_hHtWPYHu44gGjxT-GX4vmB7qAIcNVEi3GcK5vXA_yoOAZnV-g6y-NW2Hb4OdOxrolnFF9RXXzxWMvUXvJvB5N7dF0bmZk4IndRsqNaDrdWOYD2FTrjKsnsJwffjxYJPHChsQxrGmZhhZSpiScrmzwj1ZKVMbKyhAFh6DKC2Lzt5zAMlLJ9r1TsrK5dqlTOtc-fwqbdVPTM0CTpk54IidTL0krzQUqozMKR28NmRFkw6iVLqqZh544L9c6zKF7S-7esuve8ucI3lznuei1PP6b-hVPhuuEQYZ7MX1fhme862up99Pv2Qh2h7lSRuNfldxCJrFCiWIEb4ehX7_-d5XP75b8BdwX3ewJwcO7sMmjSS8ZIrV2zBYxn81OxtEyxrCxFNPfnRMLiQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbocqCXtrzEtrSMEDeIlDjetfe4rYpSWDixEjfLjwkgQYK06UNVf3zHTsJCRSv1mowdy2N7vi_zMGMH3o7HJZ18iec5JiJzNjGEAxLknkv0zroy_Bo4Ox8Xc3FyObrsksIWfbR775KMJ_WjZLdxoL5EnoiFc5UQclwNbsZAueZ8uiy1K1tfMnGvJFCwLlXm-T6emKMX1yEY8hHS_MM5Gm3O8Rv2qgOLMG21u85WsNpgr_uLGKDbl5vsV1F_BxeQXrjwoYEu6OqOOgWaOrjG23tw7dVuC2hquIrFphuEj1j9xKq-8dAWkv1K7BtM5cFEZzAQPIRo7mgQdazuSqgd6nLZcLHF5sefLz4VSXetQuIIfDREFkdCpMidKm3wYpaSl8aK0iAGt53MR0ib1JKAJTyRTbyTorS5cqmTKlc-32aDqq5wh4FJU8c9ohOpF6ikog6lURmGBFmDZsiyfna162qOh5m41ctqyUEjmjSio0b0jyE7fGhz31bc-Kf0PintQTAUyy6mMx2ekW1WQk3Sb9mQ7fY61d0WXWgaIVFNLvloyI56PS9f__2Tb_9PfI-tFRdnMz37cn76jr3kcfGFcN9dNiDN4nsCNY39ENfwb_al7ss |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJc-uAhFlpqIW6QNnG8a_e4tF0WWioOVCony48xRbTJSptCVfXHM86ju1SAhLgmTuLYE_v7MjPfALz0djgMtPIlnueYiMzZxBAOSJB7LtE760L8NfDhaDg5Fu9PBicLWfx1tHvnkmxyGqJKU1FtT33YXkh8G0YaTESKGDlXCaHIJRFrSPRgafT288H-XHhXNp5lYmJJJGRt4szv7_LL5nT3NIZGLuDOW67Segcar4Dp-t4Ennzbuqjslru6Jev4Py-3CsstPGWjxp7W4A4WD2ClK_3A2pXgIVxPyh_MRWwZS0xUrA3zOqdnMposdopnU-aaYnIzVpXsSy1vXSF7g8UVFuVXzxrp2gvi-8wUnpna_cwIkLJ6g6VOlLWeLPEEVob5hbNHcDze_7Q7SdpCDokjuFMRPR0IkSJ3KtjoNw2SB2NFMIjRUSjzAdKyYKmBJQST7XgnRbC5cqmTKlc-fwy9oizwCTCTpo57RCdSL1BJRTeURmUYU3INmj5k3Qxq16qcx5E403N95ji8moZX18OrL_vw6uaaaaPx8dfWL8gwbhpGee7J6FDHY4QGlFA76fesD-ud3eh2UZhp6iGRWy75oA-vOzOYn_7zI5_-W_NNuPdxb6wP3x0dPIP7vDakGF-8Dj2aWNwgFFXZ5-2H8hM0DRTw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+constraint+programming+can+help+chemists+to+generate+Benzenoid+structures+and+assess+the+local+Aromaticity+of+Benzenoids&rft.jtitle=Constraints+%3A+an+international+journal&rft.au=Carissan+Yannick&rft.au=Hagebaum-Reignier+Denis&rft.au=Prcovic+Nicolas&rft.au=Terrioux+Cyril&rft.date=2022-07-01&rft.pub=Springer+Nature+B.V&rft.issn=1383-7133&rft.eissn=1572-9354&rft.volume=27&rft.issue=3&rft.spage=192&rft.epage=248&rft_id=info:doi/10.1007%2Fs10601-022-09328-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1383-7133&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1383-7133&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1383-7133&client=summon |