GA−Reinforced Deep Neural Network for Net Electric Load Forecasting in Microgrids with Renewable Energy Resources for Scheduling Battery Energy Storage Systems
The large−scale integration of wind power and PV cells into electric grids alleviates the problem of an energy crisis. However, this is also responsible for technical and management problems in the power grid, such as power fluctuation, scheduling difficulties, and reliability reduction. The microgr...
Saved in:
Published in | Algorithms Vol. 15; no. 10; p. 338 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1999-4893 1999-4893 |
DOI | 10.3390/a15100338 |
Cover
Abstract | The large−scale integration of wind power and PV cells into electric grids alleviates the problem of an energy crisis. However, this is also responsible for technical and management problems in the power grid, such as power fluctuation, scheduling difficulties, and reliability reduction. The microgrid concept has been proposed to locally control and manage a cluster of local distributed energy resources (DERs) and loads. If the net load power can be accurately predicted, it is possible to schedule/optimize the operation of battery energy storage systems (BESSs) through economic dispatch to cover intermittent renewables. However, the load curve of the microgrid is highly affected by various external factors, resulting in large fluctuations, which makes the prediction problematic. This paper predicts the net electric load of the microgrid using a deep neural network to realize a reliable power supply as well as reduce the cost of power generation. Considering that the backpropagation (BP) neural network has a good approximation effect as well as a strong adaptation ability, the load prediction model of the BP deep neural network is established. However, there are some defects in the BP neural network, such as the prediction effect, which is not precise enough and easily falls into a locally optimal solution. Hence, a genetic algorithm (GA)−reinforced deep neural network is introduced. By optimizing the weight and threshold of the BP network, the deficiency of the BP neural network algorithm is improved so that the prediction effect is realized and optimized. The results reveal that the error reduction in the mean square error (MSE) of the GA–BP neural network prediction is 2.0221, which is significantly smaller than the 30.3493 of the BP neural network prediction. Additionally, the error reduction is 93.3%. The error reductions of the root mean square error (RMSE) and mean absolute error (MAE) are 74.18% and 51.2%, respectively. |
---|---|
AbstractList | The large−scale integration of wind power and PV cells into electric grids alleviates the problem of an energy crisis. However, this is also responsible for technical and management problems in the power grid, such as power fluctuation, scheduling difficulties, and reliability reduction. The microgrid concept has been proposed to locally control and manage a cluster of local distributed energy resources (DERs) and loads. If the net load power can be accurately predicted, it is possible to schedule/optimize the operation of battery energy storage systems (BESSs) through economic dispatch to cover intermittent renewables. However, the load curve of the microgrid is highly affected by various external factors, resulting in large fluctuations, which makes the prediction problematic. This paper predicts the net electric load of the microgrid using a deep neural network to realize a reliable power supply as well as reduce the cost of power generation. Considering that the backpropagation (BP) neural network has a good approximation effect as well as a strong adaptation ability, the load prediction model of the BP deep neural network is established. However, there are some defects in the BP neural network, such as the prediction effect, which is not precise enough and easily falls into a locally optimal solution. Hence, a genetic algorithm (GA)−reinforced deep neural network is introduced. By optimizing the weight and threshold of the BP network, the deficiency of the BP neural network algorithm is improved so that the prediction effect is realized and optimized. The results reveal that the error reduction in the mean square error (MSE) of the GA–BP neural network prediction is 2.0221, which is significantly smaller than the 30.3493 of the BP neural network prediction. Additionally, the error reduction is 93.3%. The error reductions of the root mean square error (RMSE) and mean absolute error (MAE) are 74.18% and 51.2%, respectively. |
Audience | Academic |
Author | Zheng, Chaoran Eskandari, Mohsen Li, Ming Sun, Zeyue |
Author_xml | – sequence: 1 givenname: Chaoran surname: Zheng fullname: Zheng, Chaoran – sequence: 2 givenname: Mohsen orcidid: 0000-0003-1185-9585 surname: Eskandari fullname: Eskandari, Mohsen – sequence: 3 givenname: Ming surname: Li fullname: Li, Ming – sequence: 4 givenname: Zeyue surname: Sun fullname: Sun, Zeyue |
BookMark | eNp1UstuEzEUHaEi0RYW_IElViCl9WseXoaSPqQAUgPr0R37ztRhMg62R1H-gDV_wK_1S3A6UCEE8uJeHZ9zfO3jk-xocANm2UtGz4RQ9BxYzigVonqSHTOl1ExWShz90T_LTkJYU1rkqmDH2Y-r-f2377doh9Z5jYa8Q9ySDzh66FOJO-e_kLR16MmiRx291WTpwJBL51FDiHboiB3Ie6u967w1gexsvCO3OOAOmh7JYkDf7RMQ3JjOCA9-K32HZuwP4rcQI_r9b94qOg8dktU-RNyE59nTFvqAL37V0-zz5eLTxfVs-fHq5mK-nGmhyjiTeYNt0ciy1JyKKqcGBG8alKqROuclKGVMi7woypYahlUpCt5UkFdoKslRnGY3k69xsK633m7A72sHtn4AnO9q8NHqHmuBhlKgpjGlkqItVN5UWiDDgqmSC5a83kxe47CF_Q76_tGQ0foQVP0YVCK_mshb776OGGK9Tu80pLvWvOSVZJRzmVhnE6uDNMEhruhBp2VwY3X6BK1N-LyUOZOC8iIJzidBiiUEj22tbYRo3ZCEtv_nIK__Uvx_6J9H58LL |
CitedBy_id | crossref_primary_10_3390_fi16120433 crossref_primary_10_3390_electronics12071685 crossref_primary_10_3390_a16120539 crossref_primary_10_3390_technologies12060088 crossref_primary_10_3390_en16186611 crossref_primary_10_1016_j_est_2024_112912 crossref_primary_10_3390_en15228580 crossref_primary_10_3390_en17030550 crossref_primary_10_1080_15325008_2024_2332391 crossref_primary_10_1049_elp2_70001 crossref_primary_10_1080_15325008_2024_2316251 crossref_primary_10_3390_en16010090 crossref_primary_10_1109_ACCESS_2023_3315841 crossref_primary_10_3390_en16052502 crossref_primary_10_3390_batteries10090335 crossref_primary_10_1007_s00202_024_02453_1 crossref_primary_10_3390_a16080387 crossref_primary_10_3390_biomimetics8020150 crossref_primary_10_3390_electronics12224652 |
Cites_doi | 10.1016/j.rser.2020.110313 10.1109/TPWRS.2006.873018 10.1016/j.eswa.2021.114952 10.1109/TPWRS.2019.2923797 10.1109/ACCESS.2022.3190710 10.1109/ICSGEA.2017.152 10.3390/electronics8080902 10.1201/9781003107521-8 10.1109/ICMTMA.2010.492 10.1109/59.76685 10.3390/mi13040586 10.1007/s11042-020-10139-6 10.1016/j.ijepes.2015.12.002 10.3390/en6031385 10.1016/j.energy.2020.117898 10.1016/j.jclepro.2019.05.005 10.3390/en12214091 10.1007/s11042-022-13462-2 10.1016/j.renene.2020.05.131 10.1109/IranianCEE.2016.7585832 10.1109/ACCESS.2018.2873504 10.1155/2022/7952860 10.1109/TSG.2014.2349795 10.3390/smartcities4030063 10.1049/iet-rpg.2018.5303 10.1002/er.6064 10.1016/j.renene.2014.03.001 10.1109/TSG.2014.2325912 10.1016/j.est.2022.105627 10.3390/s22010130 10.1016/j.segan.2022.100670 10.3390/en14217067 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
DOI | 10.3390/a15100338 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1999-4893 |
ExternalDocumentID | oai_doaj_org_article_3ed00a0dbd7943f695b8c3e1e6197231 10.3390/a15100338 A745143026 10_3390_a15100338 |
GroupedDBID | 23M 2WC 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABUWG ACUHS ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO E3Z ESX GNUQQ GROUPED_DOAJ HCIFZ IAO ICD ITC J9A K6V K7- KQ8 L6V M7S MODMG M~E OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO TR2 TUS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC C1A IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c397t-45bef6b477c203850da32bbe49b4c527a99ddfe2667f0d1e87362b8a58ed842e3 |
IEDL.DBID | DOA |
ISSN | 1999-4893 |
IngestDate | Wed Aug 27 01:29:30 EDT 2025 Wed Oct 01 15:21:15 EDT 2025 Fri Jul 25 11:43:30 EDT 2025 Tue Jul 15 03:26:26 EDT 2025 Wed Oct 01 04:04:11 EDT 2025 Thu Apr 24 22:50:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-45bef6b477c203850da32bbe49b4c527a99ddfe2667f0d1e87362b8a58ed842e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1185-9585 |
OpenAccessLink | https://doaj.org/article/3ed00a0dbd7943f695b8c3e1e6197231 |
PQID | 2728410224 |
PQPubID | 2032439 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3ed00a0dbd7943f695b8c3e1e6197231 unpaywall_primary_10_3390_a15100338 proquest_journals_2728410224 gale_infotracacademiconefile_A745143026 crossref_citationtrail_10_3390_a15100338 crossref_primary_10_3390_a15100338 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-01 |
PublicationDateYYYYMMDD | 2022-10-01 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Algorithms |
PublicationYear | 2022 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Park (ref_18) 1991; 6 Eskandari (ref_23) 2019; 13 Moradi (ref_10) 2016; 6 Moradi (ref_7) 2015; 6 ref_11 Wang (ref_13) 2020; 134 ref_31 ref_30 He (ref_9) 2019; 41 Katoch (ref_32) 2021; 80 Chandak (ref_1) 2021; 45 Karami (ref_8) 2014; 5 Hernandez (ref_17) 2013; 6 Mansouri (ref_28) 2022; 10 Eskandari (ref_12) 2022; 55 Cheng (ref_25) 2022; 30 Guo (ref_15) 2018; 6 Nagapurkar (ref_33) 2019; 229 Pearre (ref_16) 2020; 203 Moreira (ref_14) 2006; 21 Bartolini (ref_26) 2020; 159 ref_24 ref_21 ref_20 Bai (ref_19) 2021; 177 ref_3 Zand (ref_2) 2021; 4 Tian (ref_22) 2022; 2022 ref_29 ref_27 Moradi (ref_5) 2014; 68 Eskandari (ref_4) 2019; 34 ref_6 |
References_xml | – volume: 134 start-page: 110313 year: 2020 ident: ref_13 article-title: On microgrids and resilience: A comprehensive review on modeling and operational strategies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2020.110313 – volume: 21 start-page: 916 year: 2006 ident: ref_14 article-title: Defining control strategies for microgrids islanded operation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2006.873018 – volume: 177 start-page: 114952 year: 2021 ident: ref_19 article-title: Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114952 – volume: 34 start-page: 4706 year: 2019 ident: ref_4 article-title: Active power sharing and frequency restoration in an autonomous networked microgrid publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2019.2923797 – volume: 10 start-page: 74655 year: 2022 ident: ref_28 article-title: Pre-Perturbation Operational Strategy Scheduling in Microgrids by Two-Stage Adjustable Robust Optimization publication-title: IEEE Access doi: 10.1109/ACCESS.2022.3190710 – ident: ref_3 doi: 10.1109/ICSGEA.2017.152 – ident: ref_11 doi: 10.3390/electronics8080902 – ident: ref_20 doi: 10.1201/9781003107521-8 – ident: ref_29 doi: 10.1109/ICMTMA.2010.492 – volume: 6 start-page: 442 year: 1991 ident: ref_18 article-title: Electric load forecasting using an artificial neural network publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.76685 – ident: ref_31 doi: 10.3390/mi13040586 – volume: 80 start-page: 8091 year: 2021 ident: ref_32 article-title: A review on genetic algorithm: Past, present, and future publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-10139-6 – volume: 6 start-page: 390 year: 2016 ident: ref_10 article-title: Cooperative control strategy of energy storage systems and micro sources for stabilizing microgrids in different operation modes publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.12.002 – volume: 6 start-page: 1385 year: 2013 ident: ref_17 article-title: Short-term load forecasting for microgrids based on artificial neural networks publication-title: Energies doi: 10.3390/en6031385 – volume: 203 start-page: 117898 year: 2020 ident: ref_16 article-title: Combining wind, solar, and in-stream tidal electricity generation with energy storage using a load-perturbation control strategy publication-title: Energy doi: 10.1016/j.energy.2020.117898 – volume: 229 start-page: 552 year: 2019 ident: ref_33 article-title: Techno-economic optimization and social costs assessment of microgrid-conventional grid integration using genetic algorithm and Artificial Neural Networks: A case study for two US cities publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.005 – ident: ref_6 doi: 10.3390/en12214091 – volume: 41 start-page: 1535 year: 2019 ident: ref_9 article-title: The development and utilization of microgrid technologies in China publication-title: Energy Sources Part A Recovery Util. Environ. Eff. – ident: ref_21 doi: 10.1007/s11042-022-13462-2 – volume: 159 start-page: 595 year: 2020 ident: ref_26 article-title: Energy storage and multi energy systems in local energy communities with high renewable energy penetration publication-title: Renew. Energy doi: 10.1016/j.renene.2020.05.131 – ident: ref_24 doi: 10.1109/IranianCEE.2016.7585832 – volume: 6 start-page: 62944 year: 2018 ident: ref_15 article-title: Transformerless common-mode current-source inverter grid-connected for PV applications publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2873504 – volume: 2022 start-page: 7952860 year: 2022 ident: ref_22 article-title: Wind Power Forecasting by the BP Neural Network with the Support of Machine Learning publication-title: Math. Probl. Eng. doi: 10.1155/2022/7952860 – volume: 6 start-page: 1087 year: 2015 ident: ref_7 article-title: Operational strategy optimization in an optimal sized smart microgrid publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2014.2349795 – volume: 4 start-page: 1173 year: 2021 ident: ref_2 article-title: Optimal planning of electrical appliance of residential units in a smart home network using cloud services publication-title: Smart Cities doi: 10.3390/smartcities4030063 – volume: 13 start-page: 296 year: 2019 ident: ref_23 article-title: Microgrid operation improvement by adaptive virtual impedance publication-title: IET Renew. Power Gener. doi: 10.1049/iet-rpg.2018.5303 – volume: 45 start-page: 3523 year: 2021 ident: ref_1 article-title: The implementation framework of a microgrid: A review publication-title: Int. J. Energy Res. doi: 10.1002/er.6064 – volume: 68 start-page: 697 year: 2014 ident: ref_5 article-title: A hybrid method for Simultaneous optimization of DG capacity and operational strategy in microgrids considering uncertainty in electricity price forecasting publication-title: Renew. Energy doi: 10.1016/j.renene.2014.03.001 – volume: 5 start-page: 2360 year: 2014 ident: ref_8 article-title: An optimal dispatch algorithm for managing residential distributed energy resources publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2014.2325912 – volume: 55 start-page: 105627 year: 2022 ident: ref_12 article-title: Battery energy storage systems (BESSs) and the economy-dynamics of microgrids: Review, analysis, and classification for standardization of BESSs applications publication-title: J. Energy Storage doi: 10.1016/j.est.2022.105627 – ident: ref_30 doi: 10.3390/s22010130 – volume: 30 start-page: 100670 year: 2022 ident: ref_25 article-title: Multi-time-scale energy management for microgrid using expected-scenario-oriented stochastic optimization publication-title: Sustain. Energy Grids Netw. doi: 10.1016/j.segan.2022.100670 – ident: ref_27 doi: 10.3390/en14217067 |
SSID | ssj0065961 |
Score | 2.386688 |
Snippet | The large−scale integration of wind power and PV cells into electric grids alleviates the problem of an energy crisis. However, this is also responsible for... |
SourceID | doaj unpaywall proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 338 |
SubjectTerms | Accuracy Algorithms Alternative energy sources Artificial neural networks Back propagation Back propagation networks backpropagation (BP) Batteries Distributed generation Efficiency electric load prediction Electric power grids Electrical loads Electricity Electricity distribution Energy management systems Energy resources Energy sources Energy storage Error reduction Forecasting Forecasts and trends genetic algorithm (GA) Genetic algorithms Green technology Methods microgrids neural network Neural networks Optimization Optimization algorithms Photovoltaic cells Power dispatch Prediction models renewable energy resources (RESs) Renewable resources Resource scheduling Root-mean-square errors Storage systems Wind power |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAceCMMBa0ACS5W_d71AaEUUipEI5RSqTdrn1GkyAlJqqr_gDP_gL_GL2FmvQ4gHjfLXq9szew8dme-D-A5RzfmXGJidA5JXJROxFKYKpZVwXUpXS08i8LxuDo6Ld6flWc7MO57YaissreJ3lCbhaY98v2MoyH1-Gevl59jYo2i09WeQkMGagXzykOMXYHdjFiVB7B7MBp_nPS2uSrrKu3whXJM9vcl-jtiMxO_eSUP3v-nib4OV8_bpby8kPP5Lz7o8BbcCMEjG3bSvg07tr0DN3tiBhbW6V349m74_cvXifWoqNoa9tbaJSMcDnx73BV-M3xE12zkiXBmmn1YSMOIqlPLNRVDs1nLjqleb7qamTWjHVs2QdN4Qd1WbOSbBlm__b_2852gChiqbZ-yDrjzsh93grk9mi4WENLvwenh6NObozhwMcQaI5YNSlFZV6mCc53RYWJiZJ4pZYtaFbrMuKxrY5xFd89R8qkVHD2jErIU1ogis_l9GLSL1j4AljvC7EffXOQYDmVCOFk5TDRLniuV5iaCl70sGh2AyokvY95gwkJia7Zii-DpduiyQ-f426ADEuh2AAFq-xuL1bQJ67PJrUkSmRhlCDHPVXWphM5taivPy5ZG8ILUoSHB4cdoGboX8JcIQKsZ8oJCT8xoI9jrNaYJ9mDd_NTeCJ5ttejf3_zw_5M8gmsZtWH4osI9GGxW5_YxBkcb9SRo_A9xzhBe priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF1B-gA8tFyFS0ErQIIXN76s7fUTCpBSIRqhlkjlyd1rFBE5UZxQlS_gmT_g1_gSZtbriKuExJtlj621fHZnxjtzDiGPC3Bj1kY6BOcQhSyzPBRc56HIWaEyYUvuVBSORvnhmL0-zU69zmnjyyohFZ-6Rdq1yCM7Sj_OYHr3IZ3qL7R99tH_SorBXfKk5Ly8TLbAlWasR7bGo7eD924v2d_c8gmlkNz3Bfg3VC_jP3khR9b_-5J8jVxZ1wtxcS5msx98zsEOOetG25aafNhfr-S--vQLkeN_vM51su3jUTpoAXSDXDL1TbLTaT1QP_Vvka-vBt8-fzk2jmhVGU1fGrOgSO0Bd4_aWnIKl_CYDp22zlTRN3OhKap_KtFgfTWd1vQISwAny6luKP4Epsew2p5jAxcduj5E2u0oNO55J4AqjeXyE9pygV50dicrgO_EUE-6fpuMD4bvXhyGXt4hVBAErQAY0thcsqJQCe5PRlqkiZSGlZKpLClEWWptDUQQBYApNrwAZyu5yLjRnCUmvUN69bw2dwlNLcoAgLtnKURYCedW5BZy16xIpYxTHZCn3eeulOc-RwmOWQU5ECKj2iAjIA83pouW8ONPRs8RMxsD5Oh2J-bLSeWnfJUaHUUi0lIjCZ_Ny0xylZrY5E7qLQ7IE0RchR8OBqOEb4iAV0JOrmpQMIxmIUkOyF4HysovMU2VFBBZOELAgDzaAPXvY979J6t75GqCDR6uXHGP9FbLtbkPYddKPvBT6zsEqyfm priority: 102 providerName: Unpaywall |
Title | GA−Reinforced Deep Neural Network for Net Electric Load Forecasting in Microgrids with Renewable Energy Resources for Scheduling Battery Energy Storage Systems |
URI | https://www.proquest.com/docview/2728410224 https://www.mdpi.com/1999-4893/15/10/338/pdf?version=1663829889 https://doaj.org/article/3ed00a0dbd7943f695b8c3e1e6197231 |
UnpaywallVersion | publishedVersion |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate - TFS customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1999-4893 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0065961 issn: 1999-4893 databaseCode: 8FG dateStart: 20080301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BOQCH8i9MS7QCJLhYdby2d31M26QVolGVEqmcrP2tIkVu1KSq-gY98wa8Wp-EmbUdFQHiws0_a2vtmd1vxp79PoAPAmHM-8TGCA5JnOVexkraIlZFJkyufCmDisLRuDicZp9P89M7Ul9UE9bQAzcvboc7myQqsdoSlZkvylxLw13fFUEwKyQ-SZl0yVQzBxd5WfQbHiGOSf2OQlwj1TL5C_oEkv7fp-LH8PCyXqjrKzWf38Ga0VPYbINENmg69wzuufo5POkEGFg7Hl_Aj4PB7c33iQvsp8ZZtu_cghHfBl49bgq8GZ6ibTYMgjczw76cK8tIktOoJRU9s1nNjqgu7-xiZpeMvsyyCU6BV7Sqig3D4kDWfeZfhvudoKkt1bCfsYag87prd4I5PE5RrGVCfwnT0fDr3mHcai7EBiOTFVpLO1_oTAiT0k_DxCqeau2yUmcmT4UqS2u9Q1gXaOG-kwIRUEuVS2dlljr-Cjbq89q9BsY9cfMjBmccw55USq8KjwllLrjWfW4j-NTZojItITnpYswrTEzIbNXabBG8WzddNCwcf2q0SwZdNyDi7HAA3alq3an6lztF8JHcoSLDYWeMalcp4CMRUVY1EBmFmJi5RrDdeUzVjvtllQqE-8DSF8H7tRf9vc9v_keft-BRSosyQonhNmysLi7dWwyVVroH9-XooAcPdofj40kvjBHcm46PB99-AoxFFkE |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhNBEC0F5xByYEc4BGixCC6jzD49hwg5xMEhtoWcRMpt0ttYlizb2I4s_wFn_oAf4WP4EqraPQbEcsvNstutHlVNveruqvcAXmYIY2Xpaw_BwffipOSe4Dr1RBpnKhFlzq2KQqebts7jDxfJxQZ8q3phqKyyiok2UOuxojPyvTDDQGr5z95OPnmkGkW3q5WEhnDSCnrfUoy5xo4Ts1zgFm62f3yI9n4VhkfNs3ctz6kMeAqxeI7rk6ZMZZxlKqRrMl-LKJTSxLmMVRJmIs-1Lg0CWYbPFBieYcyXXCTcaB6HJsJ5b8BmTAcoNdg8aHY_9iosSJM8DVZ8RlGU-3sC8ZXU0_hvKGjFAv6EhG3YuhpNxHIhhsNfMO_oDtxyySprrLzrLmyY0T24XQlBMBcX7sPX943vn7_0jGVhVUazQ2MmjHg_8N_dVaE5w5_oM2ta4Z2BYu2x0IykQZWYUfE1G4xYh-oD-9OBnjE6IWY9DMUL6u5iTdukyKrrhpmd7xRdTlMtfZ-tiEKX1bjTOfp23zDHyP4Azq_FKg-hNhqPzCNgUUkaAZgLxBGmXyHnpUhL3NgmWSRlEOk6vKlsUShHjE76HMMCN0hktmJttjo8Xw-drNhA_jbogAy6HkAE3vaL8bRfuHhQREb7vvC11MTQV6Z5IrmKTGBSqwMX1OE1uUNBhsPFKOG6JfCRiLCraGQxpbq4g67DbuUxhYs_s-Ln21KHF2sv-vead_4_yTPYap112kX7uHvyGG6G1AJiCxp3oTafXpknmJjN5VPn_Qwur_uF-wG3AU2T |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VIgF94I5qKLDiInix4nht7_oBoUCStrSNUEulvpm9RpGiJMSpovwBz_wBv8Hn8CXMrO0A4vLWtyjZrNaa2Tmz3plzCHnGAcaci0wI4BCFSepEKIXJQpklXKfS5cKrKBwNsr3T5N1ZerZBvjW9MFhW2cREH6jNVOM78lbMIZB6_rOWq8si3nf7r2efQlSQwpvWRk6jcpEDu1rC8a18td8FWz-P437vw9u9sFYYCDXg8ALWpqzLVMK5jvGKLDKSxUrZJFeJTmMu89wYZwHEODxP2woO8V4JmQprRBJbBvNeIpc5SznuKNHfbVAgS_OsXTEZMZZHLQnIirpp4jf88zIBf4LBFrl6PpnJ1VKOx7-gXf8muV6nqbRT-dUtsmEnt8mNRgKC1hHhDvm62_n--cux9fyr2hratXZGkfED_j2oSswp_ISfac9L7ow0PZxKQ1EUVMsSy67paEKPsDJwOB-ZkuK7YXoMQXiJfV2059sTaXPRUPr5TsDZDFbRD2lFEbpqxp0swKuHltZc7HfJ6YXY5B7ZnEwndptQ5lAdALKAhEHiFQvhZObgSJtyplSbmYC8bGxR6JoSHZU5xgUcjdBsxdpsAXmyHjqreED-NugNGnQ9AKm7_RfT-bCoI0HBrIkiGRllkJvPZXmqhGa2bTOvANcOyAt0hwINB4vRsu6TgEdCqq6iwxNMcuHsHJCdxmOKOvKUxc99EpCnay_695rv_3-Sx-QKbLPicH9w8IBci7H3w1cy7pDNxfzcPoSMbKEeeden5ONF77Uf0OFLOg |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF1B-gA8tFyFS0ErQIIXN76s7fUTCpBSIRqhlkjlyd1rFBE5UZxQlS_gmT_g1_gSZtbriKuExJtlj621fHZnxjtzDiGPC3Bj1kY6BOcQhSyzPBRc56HIWaEyYUvuVBSORvnhmL0-zU69zmnjyyohFZ-6Rdq1yCM7Sj_OYHr3IZ3qL7R99tH_SorBXfKk5Ly8TLbAlWasR7bGo7eD924v2d_c8gmlkNz3Bfg3VC_jP3khR9b_-5J8jVxZ1wtxcS5msx98zsEOOetG25aafNhfr-S--vQLkeN_vM51su3jUTpoAXSDXDL1TbLTaT1QP_Vvka-vBt8-fzk2jmhVGU1fGrOgSO0Bd4_aWnIKl_CYDp22zlTRN3OhKap_KtFgfTWd1vQISwAny6luKP4Epsew2p5jAxcduj5E2u0oNO55J4AqjeXyE9pygV50dicrgO_EUE-6fpuMD4bvXhyGXt4hVBAErQAY0thcsqJQCe5PRlqkiZSGlZKpLClEWWptDUQQBYApNrwAZyu5yLjRnCUmvUN69bw2dwlNLcoAgLtnKURYCedW5BZy16xIpYxTHZCn3eeulOc-RwmOWQU5ECKj2iAjIA83pouW8ONPRs8RMxsD5Oh2J-bLSeWnfJUaHUUi0lIjCZ_Ny0xylZrY5E7qLQ7IE0RchR8OBqOEb4iAV0JOrmpQMIxmIUkOyF4HysovMU2VFBBZOELAgDzaAPXvY979J6t75GqCDR6uXHGP9FbLtbkPYddKPvBT6zsEqyfm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GA%E2%88%92Reinforced+Deep+Neural+Network+for+Net+Electric+Load+Forecasting+in+Microgrids+with+Renewable+Energy+Resources+for+Scheduling+Battery+Energy+Storage+Systems&rft.jtitle=Algorithms&rft.au=Chaoran+Zheng&rft.au=Mohsen+Eskandari&rft.au=Ming+Li&rft.au=Zeyue+Sun&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=15&rft.issue=10&rft.spage=338&rft_id=info:doi/10.3390%2Fa15100338&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3ed00a0dbd7943f695b8c3e1e6197231 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon |