GA−Reinforced Deep Neural Network for Net Electric Load Forecasting in Microgrids with Renewable Energy Resources for Scheduling Battery Energy Storage Systems

The large−scale integration of wind power and PV cells into electric grids alleviates the problem of an energy crisis. However, this is also responsible for technical and management problems in the power grid, such as power fluctuation, scheduling difficulties, and reliability reduction. The microgr...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms Vol. 15; no. 10; p. 338
Main Authors Zheng, Chaoran, Eskandari, Mohsen, Li, Ming, Sun, Zeyue
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text
ISSN1999-4893
1999-4893
DOI10.3390/a15100338

Cover

Abstract The large−scale integration of wind power and PV cells into electric grids alleviates the problem of an energy crisis. However, this is also responsible for technical and management problems in the power grid, such as power fluctuation, scheduling difficulties, and reliability reduction. The microgrid concept has been proposed to locally control and manage a cluster of local distributed energy resources (DERs) and loads. If the net load power can be accurately predicted, it is possible to schedule/optimize the operation of battery energy storage systems (BESSs) through economic dispatch to cover intermittent renewables. However, the load curve of the microgrid is highly affected by various external factors, resulting in large fluctuations, which makes the prediction problematic. This paper predicts the net electric load of the microgrid using a deep neural network to realize a reliable power supply as well as reduce the cost of power generation. Considering that the backpropagation (BP) neural network has a good approximation effect as well as a strong adaptation ability, the load prediction model of the BP deep neural network is established. However, there are some defects in the BP neural network, such as the prediction effect, which is not precise enough and easily falls into a locally optimal solution. Hence, a genetic algorithm (GA)−reinforced deep neural network is introduced. By optimizing the weight and threshold of the BP network, the deficiency of the BP neural network algorithm is improved so that the prediction effect is realized and optimized. The results reveal that the error reduction in the mean square error (MSE) of the GA–BP neural network prediction is 2.0221, which is significantly smaller than the 30.3493 of the BP neural network prediction. Additionally, the error reduction is 93.3%. The error reductions of the root mean square error (RMSE) and mean absolute error (MAE) are 74.18% and 51.2%, respectively.
AbstractList The large−scale integration of wind power and PV cells into electric grids alleviates the problem of an energy crisis. However, this is also responsible for technical and management problems in the power grid, such as power fluctuation, scheduling difficulties, and reliability reduction. The microgrid concept has been proposed to locally control and manage a cluster of local distributed energy resources (DERs) and loads. If the net load power can be accurately predicted, it is possible to schedule/optimize the operation of battery energy storage systems (BESSs) through economic dispatch to cover intermittent renewables. However, the load curve of the microgrid is highly affected by various external factors, resulting in large fluctuations, which makes the prediction problematic. This paper predicts the net electric load of the microgrid using a deep neural network to realize a reliable power supply as well as reduce the cost of power generation. Considering that the backpropagation (BP) neural network has a good approximation effect as well as a strong adaptation ability, the load prediction model of the BP deep neural network is established. However, there are some defects in the BP neural network, such as the prediction effect, which is not precise enough and easily falls into a locally optimal solution. Hence, a genetic algorithm (GA)−reinforced deep neural network is introduced. By optimizing the weight and threshold of the BP network, the deficiency of the BP neural network algorithm is improved so that the prediction effect is realized and optimized. The results reveal that the error reduction in the mean square error (MSE) of the GA–BP neural network prediction is 2.0221, which is significantly smaller than the 30.3493 of the BP neural network prediction. Additionally, the error reduction is 93.3%. The error reductions of the root mean square error (RMSE) and mean absolute error (MAE) are 74.18% and 51.2%, respectively.
Audience Academic
Author Zheng, Chaoran
Eskandari, Mohsen
Li, Ming
Sun, Zeyue
Author_xml – sequence: 1
  givenname: Chaoran
  surname: Zheng
  fullname: Zheng, Chaoran
– sequence: 2
  givenname: Mohsen
  orcidid: 0000-0003-1185-9585
  surname: Eskandari
  fullname: Eskandari, Mohsen
– sequence: 3
  givenname: Ming
  surname: Li
  fullname: Li, Ming
– sequence: 4
  givenname: Zeyue
  surname: Sun
  fullname: Sun, Zeyue
BookMark eNp1UstuEzEUHaEi0RYW_IElViCl9WseXoaSPqQAUgPr0R37ztRhMg62R1H-gDV_wK_1S3A6UCEE8uJeHZ9zfO3jk-xocANm2UtGz4RQ9BxYzigVonqSHTOl1ExWShz90T_LTkJYU1rkqmDH2Y-r-f2377doh9Z5jYa8Q9ySDzh66FOJO-e_kLR16MmiRx291WTpwJBL51FDiHboiB3Ie6u967w1gexsvCO3OOAOmh7JYkDf7RMQ3JjOCA9-K32HZuwP4rcQI_r9b94qOg8dktU-RNyE59nTFvqAL37V0-zz5eLTxfVs-fHq5mK-nGmhyjiTeYNt0ciy1JyKKqcGBG8alKqROuclKGVMi7woypYahlUpCt5UkFdoKslRnGY3k69xsK633m7A72sHtn4AnO9q8NHqHmuBhlKgpjGlkqItVN5UWiDDgqmSC5a83kxe47CF_Q76_tGQ0foQVP0YVCK_mshb776OGGK9Tu80pLvWvOSVZJRzmVhnE6uDNMEhruhBp2VwY3X6BK1N-LyUOZOC8iIJzidBiiUEj22tbYRo3ZCEtv_nIK__Uvx_6J9H58LL
CitedBy_id crossref_primary_10_3390_fi16120433
crossref_primary_10_3390_electronics12071685
crossref_primary_10_3390_a16120539
crossref_primary_10_3390_technologies12060088
crossref_primary_10_3390_en16186611
crossref_primary_10_1016_j_est_2024_112912
crossref_primary_10_3390_en15228580
crossref_primary_10_3390_en17030550
crossref_primary_10_1080_15325008_2024_2332391
crossref_primary_10_1049_elp2_70001
crossref_primary_10_1080_15325008_2024_2316251
crossref_primary_10_3390_en16010090
crossref_primary_10_1109_ACCESS_2023_3315841
crossref_primary_10_3390_en16052502
crossref_primary_10_3390_batteries10090335
crossref_primary_10_1007_s00202_024_02453_1
crossref_primary_10_3390_a16080387
crossref_primary_10_3390_biomimetics8020150
crossref_primary_10_3390_electronics12224652
Cites_doi 10.1016/j.rser.2020.110313
10.1109/TPWRS.2006.873018
10.1016/j.eswa.2021.114952
10.1109/TPWRS.2019.2923797
10.1109/ACCESS.2022.3190710
10.1109/ICSGEA.2017.152
10.3390/electronics8080902
10.1201/9781003107521-8
10.1109/ICMTMA.2010.492
10.1109/59.76685
10.3390/mi13040586
10.1007/s11042-020-10139-6
10.1016/j.ijepes.2015.12.002
10.3390/en6031385
10.1016/j.energy.2020.117898
10.1016/j.jclepro.2019.05.005
10.3390/en12214091
10.1007/s11042-022-13462-2
10.1016/j.renene.2020.05.131
10.1109/IranianCEE.2016.7585832
10.1109/ACCESS.2018.2873504
10.1155/2022/7952860
10.1109/TSG.2014.2349795
10.3390/smartcities4030063
10.1049/iet-rpg.2018.5303
10.1002/er.6064
10.1016/j.renene.2014.03.001
10.1109/TSG.2014.2325912
10.1016/j.est.2022.105627
10.3390/s22010130
10.1016/j.segan.2022.100670
10.3390/en14217067
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/a15100338
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1999-4893
ExternalDocumentID oai_doaj_org_article_3ed00a0dbd7943f695b8c3e1e6197231
10.3390/a15100338
A745143026
10_3390_a15100338
GroupedDBID 23M
2WC
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABUWG
ACUHS
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
E3Z
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
ITC
J9A
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
TR2
TUS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c397t-45bef6b477c203850da32bbe49b4c527a99ddfe2667f0d1e87362b8a58ed842e3
IEDL.DBID DOA
ISSN 1999-4893
IngestDate Wed Aug 27 01:29:30 EDT 2025
Wed Oct 01 15:21:15 EDT 2025
Fri Jul 25 11:43:30 EDT 2025
Tue Jul 15 03:26:26 EDT 2025
Wed Oct 01 04:04:11 EDT 2025
Thu Apr 24 22:50:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-45bef6b477c203850da32bbe49b4c527a99ddfe2667f0d1e87362b8a58ed842e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1185-9585
OpenAccessLink https://doaj.org/article/3ed00a0dbd7943f695b8c3e1e6197231
PQID 2728410224
PQPubID 2032439
ParticipantIDs doaj_primary_oai_doaj_org_article_3ed00a0dbd7943f695b8c3e1e6197231
unpaywall_primary_10_3390_a15100338
proquest_journals_2728410224
gale_infotracacademiconefile_A745143026
crossref_citationtrail_10_3390_a15100338
crossref_primary_10_3390_a15100338
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Algorithms
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Park (ref_18) 1991; 6
Eskandari (ref_23) 2019; 13
Moradi (ref_10) 2016; 6
Moradi (ref_7) 2015; 6
ref_11
Wang (ref_13) 2020; 134
ref_31
ref_30
He (ref_9) 2019; 41
Katoch (ref_32) 2021; 80
Chandak (ref_1) 2021; 45
Karami (ref_8) 2014; 5
Hernandez (ref_17) 2013; 6
Mansouri (ref_28) 2022; 10
Eskandari (ref_12) 2022; 55
Cheng (ref_25) 2022; 30
Guo (ref_15) 2018; 6
Nagapurkar (ref_33) 2019; 229
Pearre (ref_16) 2020; 203
Moreira (ref_14) 2006; 21
Bartolini (ref_26) 2020; 159
ref_24
ref_21
ref_20
Bai (ref_19) 2021; 177
ref_3
Zand (ref_2) 2021; 4
Tian (ref_22) 2022; 2022
ref_29
ref_27
Moradi (ref_5) 2014; 68
Eskandari (ref_4) 2019; 34
ref_6
References_xml – volume: 134
  start-page: 110313
  year: 2020
  ident: ref_13
  article-title: On microgrids and resilience: A comprehensive review on modeling and operational strategies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2020.110313
– volume: 21
  start-page: 916
  year: 2006
  ident: ref_14
  article-title: Defining control strategies for microgrids islanded operation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2006.873018
– volume: 177
  start-page: 114952
  year: 2021
  ident: ref_19
  article-title: Reliability prediction-based improved dynamic weight particle swarm optimization and back propagation neural network in engineering systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114952
– volume: 34
  start-page: 4706
  year: 2019
  ident: ref_4
  article-title: Active power sharing and frequency restoration in an autonomous networked microgrid
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2019.2923797
– volume: 10
  start-page: 74655
  year: 2022
  ident: ref_28
  article-title: Pre-Perturbation Operational Strategy Scheduling in Microgrids by Two-Stage Adjustable Robust Optimization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3190710
– ident: ref_3
  doi: 10.1109/ICSGEA.2017.152
– ident: ref_11
  doi: 10.3390/electronics8080902
– ident: ref_20
  doi: 10.1201/9781003107521-8
– ident: ref_29
  doi: 10.1109/ICMTMA.2010.492
– volume: 6
  start-page: 442
  year: 1991
  ident: ref_18
  article-title: Electric load forecasting using an artificial neural network
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.76685
– ident: ref_31
  doi: 10.3390/mi13040586
– volume: 80
  start-page: 8091
  year: 2021
  ident: ref_32
  article-title: A review on genetic algorithm: Past, present, and future
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-10139-6
– volume: 6
  start-page: 390
  year: 2016
  ident: ref_10
  article-title: Cooperative control strategy of energy storage systems and micro sources for stabilizing microgrids in different operation modes
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.12.002
– volume: 6
  start-page: 1385
  year: 2013
  ident: ref_17
  article-title: Short-term load forecasting for microgrids based on artificial neural networks
  publication-title: Energies
  doi: 10.3390/en6031385
– volume: 203
  start-page: 117898
  year: 2020
  ident: ref_16
  article-title: Combining wind, solar, and in-stream tidal electricity generation with energy storage using a load-perturbation control strategy
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117898
– volume: 229
  start-page: 552
  year: 2019
  ident: ref_33
  article-title: Techno-economic optimization and social costs assessment of microgrid-conventional grid integration using genetic algorithm and Artificial Neural Networks: A case study for two US cities
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.05.005
– ident: ref_6
  doi: 10.3390/en12214091
– volume: 41
  start-page: 1535
  year: 2019
  ident: ref_9
  article-title: The development and utilization of microgrid technologies in China
  publication-title: Energy Sources Part A Recovery Util. Environ. Eff.
– ident: ref_21
  doi: 10.1007/s11042-022-13462-2
– volume: 159
  start-page: 595
  year: 2020
  ident: ref_26
  article-title: Energy storage and multi energy systems in local energy communities with high renewable energy penetration
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.05.131
– ident: ref_24
  doi: 10.1109/IranianCEE.2016.7585832
– volume: 6
  start-page: 62944
  year: 2018
  ident: ref_15
  article-title: Transformerless common-mode current-source inverter grid-connected for PV applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873504
– volume: 2022
  start-page: 7952860
  year: 2022
  ident: ref_22
  article-title: Wind Power Forecasting by the BP Neural Network with the Support of Machine Learning
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2022/7952860
– volume: 6
  start-page: 1087
  year: 2015
  ident: ref_7
  article-title: Operational strategy optimization in an optimal sized smart microgrid
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2349795
– volume: 4
  start-page: 1173
  year: 2021
  ident: ref_2
  article-title: Optimal planning of electrical appliance of residential units in a smart home network using cloud services
  publication-title: Smart Cities
  doi: 10.3390/smartcities4030063
– volume: 13
  start-page: 296
  year: 2019
  ident: ref_23
  article-title: Microgrid operation improvement by adaptive virtual impedance
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/iet-rpg.2018.5303
– volume: 45
  start-page: 3523
  year: 2021
  ident: ref_1
  article-title: The implementation framework of a microgrid: A review
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.6064
– volume: 68
  start-page: 697
  year: 2014
  ident: ref_5
  article-title: A hybrid method for Simultaneous optimization of DG capacity and operational strategy in microgrids considering uncertainty in electricity price forecasting
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2014.03.001
– volume: 5
  start-page: 2360
  year: 2014
  ident: ref_8
  article-title: An optimal dispatch algorithm for managing residential distributed energy resources
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2014.2325912
– volume: 55
  start-page: 105627
  year: 2022
  ident: ref_12
  article-title: Battery energy storage systems (BESSs) and the economy-dynamics of microgrids: Review, analysis, and classification for standardization of BESSs applications
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.105627
– ident: ref_30
  doi: 10.3390/s22010130
– volume: 30
  start-page: 100670
  year: 2022
  ident: ref_25
  article-title: Multi-time-scale energy management for microgrid using expected-scenario-oriented stochastic optimization
  publication-title: Sustain. Energy Grids Netw.
  doi: 10.1016/j.segan.2022.100670
– ident: ref_27
  doi: 10.3390/en14217067
SSID ssj0065961
Score 2.386688
Snippet The large−scale integration of wind power and PV cells into electric grids alleviates the problem of an energy crisis. However, this is also responsible for...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 338
SubjectTerms Accuracy
Algorithms
Alternative energy sources
Artificial neural networks
Back propagation
Back propagation networks
backpropagation (BP)
Batteries
Distributed generation
Efficiency
electric load prediction
Electric power grids
Electrical loads
Electricity
Electricity distribution
Energy management systems
Energy resources
Energy sources
Energy storage
Error reduction
Forecasting
Forecasts and trends
genetic algorithm (GA)
Genetic algorithms
Green technology
Methods
microgrids
neural network
Neural networks
Optimization
Optimization algorithms
Photovoltaic cells
Power dispatch
Prediction models
renewable energy resources (RESs)
Renewable resources
Resource scheduling
Root-mean-square errors
Storage systems
Wind power
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AAceCMMBa0ACS5W_d71AaEUUipEI5RSqTdrn1GkyAlJqqr_gDP_gL_GL2FmvQ4gHjfLXq9szew8dme-D-A5RzfmXGJidA5JXJROxFKYKpZVwXUpXS08i8LxuDo6Ld6flWc7MO57YaissreJ3lCbhaY98v2MoyH1-Gevl59jYo2i09WeQkMGagXzykOMXYHdjFiVB7B7MBp_nPS2uSrrKu3whXJM9vcl-jtiMxO_eSUP3v-nib4OV8_bpby8kPP5Lz7o8BbcCMEjG3bSvg07tr0DN3tiBhbW6V349m74_cvXifWoqNoa9tbaJSMcDnx73BV-M3xE12zkiXBmmn1YSMOIqlPLNRVDs1nLjqleb7qamTWjHVs2QdN4Qd1WbOSbBlm__b_2852gChiqbZ-yDrjzsh93grk9mi4WENLvwenh6NObozhwMcQaI5YNSlFZV6mCc53RYWJiZJ4pZYtaFbrMuKxrY5xFd89R8qkVHD2jErIU1ogis_l9GLSL1j4AljvC7EffXOQYDmVCOFk5TDRLniuV5iaCl70sGh2AyokvY95gwkJia7Zii-DpduiyQ-f426ADEuh2AAFq-xuL1bQJ67PJrUkSmRhlCDHPVXWphM5taivPy5ZG8ILUoSHB4cdoGboX8JcIQKsZ8oJCT8xoI9jrNaYJ9mDd_NTeCJ5ttejf3_zw_5M8gmsZtWH4osI9GGxW5_YxBkcb9SRo_A9xzhBe
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF1B-gA8tFyFS0ErQIIXN76s7fUTCpBSIRqhlkjlyd1rFBE5UZxQlS_gmT_g1_gSZtbriKuExJtlj621fHZnxjtzDiGPC3Bj1kY6BOcQhSyzPBRc56HIWaEyYUvuVBSORvnhmL0-zU69zmnjyyohFZ-6Rdq1yCM7Sj_OYHr3IZ3qL7R99tH_SorBXfKk5Ly8TLbAlWasR7bGo7eD924v2d_c8gmlkNz3Bfg3VC_jP3khR9b_-5J8jVxZ1wtxcS5msx98zsEOOetG25aafNhfr-S--vQLkeN_vM51su3jUTpoAXSDXDL1TbLTaT1QP_Vvka-vBt8-fzk2jmhVGU1fGrOgSO0Bd4_aWnIKl_CYDp22zlTRN3OhKap_KtFgfTWd1vQISwAny6luKP4Epsew2p5jAxcduj5E2u0oNO55J4AqjeXyE9pygV50dicrgO_EUE-6fpuMD4bvXhyGXt4hVBAErQAY0thcsqJQCe5PRlqkiZSGlZKpLClEWWptDUQQBYApNrwAZyu5yLjRnCUmvUN69bw2dwlNLcoAgLtnKURYCedW5BZy16xIpYxTHZCn3eeulOc-RwmOWQU5ECKj2iAjIA83pouW8ONPRs8RMxsD5Oh2J-bLSeWnfJUaHUUi0lIjCZ_Ny0xylZrY5E7qLQ7IE0RchR8OBqOEb4iAV0JOrmpQMIxmIUkOyF4HysovMU2VFBBZOELAgDzaAPXvY979J6t75GqCDR6uXHGP9FbLtbkPYddKPvBT6zsEqyfm
  priority: 102
  providerName: Unpaywall
Title GA−Reinforced Deep Neural Network for Net Electric Load Forecasting in Microgrids with Renewable Energy Resources for Scheduling Battery Energy Storage Systems
URI https://www.proquest.com/docview/2728410224
https://www.mdpi.com/1999-4893/15/10/338/pdf?version=1663829889
https://doaj.org/article/3ed00a0dbd7943f695b8c3e1e6197231
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate - TFS
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1999-4893
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0065961
  issn: 1999-4893
  databaseCode: 8FG
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtNAEB5BOQCH8i9MS7QCJLhYdby2d31M26QVolGVEqmcrP2tIkVu1KSq-gY98wa8Wp-EmbUdFQHiws0_a2vtmd1vxp79PoAPAmHM-8TGCA5JnOVexkraIlZFJkyufCmDisLRuDicZp9P89M7Ul9UE9bQAzcvboc7myQqsdoSlZkvylxLw13fFUEwKyQ-SZl0yVQzBxd5WfQbHiGOSf2OQlwj1TL5C_oEkv7fp-LH8PCyXqjrKzWf38Ga0VPYbINENmg69wzuufo5POkEGFg7Hl_Aj4PB7c33iQvsp8ZZtu_cghHfBl49bgq8GZ6ibTYMgjczw76cK8tIktOoJRU9s1nNjqgu7-xiZpeMvsyyCU6BV7Sqig3D4kDWfeZfhvudoKkt1bCfsYag87prd4I5PE5RrGVCfwnT0fDr3mHcai7EBiOTFVpLO1_oTAiT0k_DxCqeau2yUmcmT4UqS2u9Q1gXaOG-kwIRUEuVS2dlljr-Cjbq89q9BsY9cfMjBmccw55USq8KjwllLrjWfW4j-NTZojItITnpYswrTEzIbNXabBG8WzddNCwcf2q0SwZdNyDi7HAA3alq3an6lztF8JHcoSLDYWeMalcp4CMRUVY1EBmFmJi5RrDdeUzVjvtllQqE-8DSF8H7tRf9vc9v_keft-BRSosyQonhNmysLi7dWwyVVroH9-XooAcPdofj40kvjBHcm46PB99-AoxFFkE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhNBEC0F5xByYEc4BGixCC6jzD49hwg5xMEhtoWcRMpt0ttYlizb2I4s_wFn_oAf4WP4EqraPQbEcsvNstutHlVNveruqvcAXmYIY2Xpaw_BwffipOSe4Dr1RBpnKhFlzq2KQqebts7jDxfJxQZ8q3phqKyyiok2UOuxojPyvTDDQGr5z95OPnmkGkW3q5WEhnDSCnrfUoy5xo4Ts1zgFm62f3yI9n4VhkfNs3ctz6kMeAqxeI7rk6ZMZZxlKqRrMl-LKJTSxLmMVRJmIs-1Lg0CWYbPFBieYcyXXCTcaB6HJsJ5b8BmTAcoNdg8aHY_9iosSJM8DVZ8RlGU-3sC8ZXU0_hvKGjFAv6EhG3YuhpNxHIhhsNfMO_oDtxyySprrLzrLmyY0T24XQlBMBcX7sPX943vn7_0jGVhVUazQ2MmjHg_8N_dVaE5w5_oM2ta4Z2BYu2x0IykQZWYUfE1G4xYh-oD-9OBnjE6IWY9DMUL6u5iTdukyKrrhpmd7xRdTlMtfZ-tiEKX1bjTOfp23zDHyP4Azq_FKg-hNhqPzCNgUUkaAZgLxBGmXyHnpUhL3NgmWSRlEOk6vKlsUShHjE76HMMCN0hktmJttjo8Xw-drNhA_jbogAy6HkAE3vaL8bRfuHhQREb7vvC11MTQV6Z5IrmKTGBSqwMX1OE1uUNBhsPFKOG6JfCRiLCraGQxpbq4g67DbuUxhYs_s-Ln21KHF2sv-vead_4_yTPYap112kX7uHvyGG6G1AJiCxp3oTafXpknmJjN5VPn_Qwur_uF-wG3AU2T
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtNAEF2VIgF94I5qKLDiInix4nht7_oBoUCStrSNUEulvpm9RpGiJMSpovwBz_wBv8Hn8CXMrO0A4vLWtyjZrNaa2Tmz3plzCHnGAcaci0wI4BCFSepEKIXJQpklXKfS5cKrKBwNsr3T5N1ZerZBvjW9MFhW2cREH6jNVOM78lbMIZB6_rOWq8si3nf7r2efQlSQwpvWRk6jcpEDu1rC8a18td8FWz-P437vw9u9sFYYCDXg8ALWpqzLVMK5jvGKLDKSxUrZJFeJTmMu89wYZwHEODxP2woO8V4JmQprRBJbBvNeIpc5SznuKNHfbVAgS_OsXTEZMZZHLQnIirpp4jf88zIBf4LBFrl6PpnJ1VKOx7-gXf8muV6nqbRT-dUtsmEnt8mNRgKC1hHhDvm62_n--cux9fyr2hratXZGkfED_j2oSswp_ISfac9L7ow0PZxKQ1EUVMsSy67paEKPsDJwOB-ZkuK7YXoMQXiJfV2059sTaXPRUPr5TsDZDFbRD2lFEbpqxp0swKuHltZc7HfJ6YXY5B7ZnEwndptQ5lAdALKAhEHiFQvhZObgSJtyplSbmYC8bGxR6JoSHZU5xgUcjdBsxdpsAXmyHjqreED-NugNGnQ9AKm7_RfT-bCoI0HBrIkiGRllkJvPZXmqhGa2bTOvANcOyAt0hwINB4vRsu6TgEdCqq6iwxNMcuHsHJCdxmOKOvKUxc99EpCnay_695rv_3-Sx-QKbLPicH9w8IBci7H3w1cy7pDNxfzcPoSMbKEeeden5ONF77Uf0OFLOg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF1B-gA8tFyFS0ErQIIXN76s7fUTCpBSIRqhlkjlyd1rFBE5UZxQlS_gmT_g1_gSZtbriKuExJtlj621fHZnxjtzDiGPC3Bj1kY6BOcQhSyzPBRc56HIWaEyYUvuVBSORvnhmL0-zU69zmnjyyohFZ-6Rdq1yCM7Sj_OYHr3IZ3qL7R99tH_SorBXfKk5Ly8TLbAlWasR7bGo7eD924v2d_c8gmlkNz3Bfg3VC_jP3khR9b_-5J8jVxZ1wtxcS5msx98zsEOOetG25aafNhfr-S--vQLkeN_vM51su3jUTpoAXSDXDL1TbLTaT1QP_Vvka-vBt8-fzk2jmhVGU1fGrOgSO0Bd4_aWnIKl_CYDp22zlTRN3OhKap_KtFgfTWd1vQISwAny6luKP4Epsew2p5jAxcduj5E2u0oNO55J4AqjeXyE9pygV50dicrgO_EUE-6fpuMD4bvXhyGXt4hVBAErQAY0thcsqJQCe5PRlqkiZSGlZKpLClEWWptDUQQBYApNrwAZyu5yLjRnCUmvUN69bw2dwlNLcoAgLtnKURYCedW5BZy16xIpYxTHZCn3eeulOc-RwmOWQU5ECKj2iAjIA83pouW8ONPRs8RMxsD5Oh2J-bLSeWnfJUaHUUi0lIjCZ_Ny0xylZrY5E7qLQ7IE0RchR8OBqOEb4iAV0JOrmpQMIxmIUkOyF4HysovMU2VFBBZOELAgDzaAPXvY979J6t75GqCDR6uXHGP9FbLtbkPYddKPvBT6zsEqyfm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GA%E2%88%92Reinforced+Deep+Neural+Network+for+Net+Electric+Load+Forecasting+in+Microgrids+with+Renewable+Energy+Resources+for+Scheduling+Battery+Energy+Storage+Systems&rft.jtitle=Algorithms&rft.au=Chaoran+Zheng&rft.au=Mohsen+Eskandari&rft.au=Ming+Li&rft.au=Zeyue+Sun&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=1999-4893&rft.volume=15&rft.issue=10&rft.spage=338&rft_id=info:doi/10.3390%2Fa15100338&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3ed00a0dbd7943f695b8c3e1e6197231
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4893&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4893&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4893&client=summon