Under-canopy UAV laser scanning for accurate forest field measurements

[Display omitted] Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying activities. From a forest monitoring perspective, there are several technological and operational aspects to address concernin...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 164; pp. 41 - 60
Main Authors Hyyppä, Eric, Hyyppä, Juha, Hakala, Teemu, Kukko, Antero, Wulder, Michael A., White, Joanne C., Pyörälä, Jiri, Yu, Xiaowei, Wang, Yunsheng, Virtanen, Juho-Pekka, Pohjavirta, Onni, Liang, Xinlian, Holopainen, Markus, Kaartinen, Harri
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2020
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2020.03.021

Cover

Abstract [Display omitted] Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying activities. From a forest monitoring perspective, there are several technological and operational aspects to address concerning under-canopy flying unmanned airborne vehicles (UAV). To demonstrate this emerging technology, we investigated tree detection and stem curve estimation using laser scanning data obtained with an under-canopy flying UAV. To this end, we mounted a Kaarta Stencil-1 laser scanner with an integrated simultaneous localization and mapping (SLAM) system on board an UAV that was manually piloted with the help of video goggles receiving a live video feed from the onboard camera of the UAV. Using the under-canopy flying UAV, we collected SLAM-corrected point cloud data in a boreal forest on two 32 m × 32 m test sites that were characterized as sparse (n = 42 trees) and obstructed (n = 43 trees), respectively. Novel data processing algorithms were applied for the point clouds in order to detect the stems of individual trees and to extract their stem curves and diameters at breast height (DBH). The estimated tree attributes were compared against highly accurate field reference data that was acquired semi-manually with a multi-scan terrestrial laser scanner (TLS). The proposed method succeeded in detecting 93% of the stems in the sparse plot and 84% of the stems in the obstructed plot. In the sparse plot, the DBH and stem curve estimates had a root-mean-squared error (RMSE) of 0.60 cm (2.2%) and 1.2 cm (5.0%), respectively, whereas the corresponding values for the obstructed plot were 0.92 cm (3.1%) and 1.4 cm (5.2%). By combining the stem curves extracted from the under-canopy UAV laser scanning data with tree heights derived from above-canopy UAV laser scanning data, we computed stem volumes for the detected trees with a relative RMSE of 10.1% in both plots. Thus, the combination of under-canopy and above-canopy UAV laser scanning allowed us to extract the stem volumes with an accuracy comparable to the past best studies based on TLS in boreal forest conditions. Since the stems of several spruces located on the test sites suffered from severe occlusion and could not be detected with the stem-based method, we developed a separate work flow capable of detecting trees with occluded stems. The proposed work flow enabled us to detect 98% of trees in the sparse plot and 93% of the trees in the obstructed plot with a 100% correction level in both plots. A key benefit provided by the under-canopy UAV laser scanner is the short period of time required for data collection, currently demonstrated to be much faster than the time required for field measurements and TLS. The quality of the measurements acquired with the under-canopy flying UAV combined with the demonstrated efficiency indicates operational potential for supporting fast and accurate forest resource inventories.
AbstractList Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying activities. From a forest monitoring perspective, there are several technological and operational aspects to address concerning under-canopy flying unmanned airborne vehicles (UAV). To demonstrate this emerging technology, we investigated tree detection and stem curve estimation using laser scanning data obtained with an under-canopy flying UAV. To this end, we mounted a Kaarta Stencil-1 laser scanner with an integrated simultaneous localization and mapping (SLAM) system on board an UAV that was manually piloted with the help of video goggles receiving a live video feed from the onboard camera of the UAV. Using the under-canopy flying UAV, we collected SLAM-corrected point cloud data in a boreal forest on two 32 m × 32 m test sites that were characterized as sparse (n = 42 trees) and obstructed (n = 43 trees), respectively. Novel data processing algorithms were applied for the point clouds in order to detect the stems of individual trees and to extract their stem curves and diameters at breast height (DBH). The estimated tree attributes were compared against highly accurate field reference data that was acquired semi-manually with a multi-scan terrestrial laser scanner (TLS). The proposed method succeeded in detecting 93% of the stems in the sparse plot and 84% of the stems in the obstructed plot. In the sparse plot, the DBH and stem curve estimates had a root-mean-squared error (RMSE) of 0.60 cm (2.2%) and 1.2 cm (5.0%), respectively, whereas the corresponding values for the obstructed plot were 0.92 cm (3.1%) and 1.4 cm (5.2%). By combining the stem curves extracted from the under-canopy UAV laser scanning data with tree heights derived from above-canopy UAV laser scanning data, we computed stem volumes for the detected trees with a relative RMSE of 10.1% in both plots. Thus, the combination of under-canopy and above-canopy UAV laser scanning allowed us to extract the stem volumes with an accuracy comparable to the past best studies based on TLS in boreal forest conditions. Since the stems of several spruces located on the test sites suffered from severe occlusion and could not be detected with the stem-based method, we developed a separate work flow capable of detecting trees with occluded stems. The proposed work flow enabled us to detect 98% of trees in the sparse plot and 93% of the trees in the obstructed plot with a 100% correction level in both plots. A key benefit provided by the under-canopy UAV laser scanner is the short period of time required for data collection, currently demonstrated to be much faster than the time required for field measurements and TLS. The quality of the measurements acquired with the under-canopy flying UAV combined with the demonstrated efficiency indicates operational potential for supporting fast and accurate forest resource inventories.
[Display omitted] Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying activities. From a forest monitoring perspective, there are several technological and operational aspects to address concerning under-canopy flying unmanned airborne vehicles (UAV). To demonstrate this emerging technology, we investigated tree detection and stem curve estimation using laser scanning data obtained with an under-canopy flying UAV. To this end, we mounted a Kaarta Stencil-1 laser scanner with an integrated simultaneous localization and mapping (SLAM) system on board an UAV that was manually piloted with the help of video goggles receiving a live video feed from the onboard camera of the UAV. Using the under-canopy flying UAV, we collected SLAM-corrected point cloud data in a boreal forest on two 32 m × 32 m test sites that were characterized as sparse (n = 42 trees) and obstructed (n = 43 trees), respectively. Novel data processing algorithms were applied for the point clouds in order to detect the stems of individual trees and to extract their stem curves and diameters at breast height (DBH). The estimated tree attributes were compared against highly accurate field reference data that was acquired semi-manually with a multi-scan terrestrial laser scanner (TLS). The proposed method succeeded in detecting 93% of the stems in the sparse plot and 84% of the stems in the obstructed plot. In the sparse plot, the DBH and stem curve estimates had a root-mean-squared error (RMSE) of 0.60 cm (2.2%) and 1.2 cm (5.0%), respectively, whereas the corresponding values for the obstructed plot were 0.92 cm (3.1%) and 1.4 cm (5.2%). By combining the stem curves extracted from the under-canopy UAV laser scanning data with tree heights derived from above-canopy UAV laser scanning data, we computed stem volumes for the detected trees with a relative RMSE of 10.1% in both plots. Thus, the combination of under-canopy and above-canopy UAV laser scanning allowed us to extract the stem volumes with an accuracy comparable to the past best studies based on TLS in boreal forest conditions. Since the stems of several spruces located on the test sites suffered from severe occlusion and could not be detected with the stem-based method, we developed a separate work flow capable of detecting trees with occluded stems. The proposed work flow enabled us to detect 98% of trees in the sparse plot and 93% of the trees in the obstructed plot with a 100% correction level in both plots. A key benefit provided by the under-canopy UAV laser scanner is the short period of time required for data collection, currently demonstrated to be much faster than the time required for field measurements and TLS. The quality of the measurements acquired with the under-canopy flying UAV combined with the demonstrated efficiency indicates operational potential for supporting fast and accurate forest resource inventories.
Author Wulder, Michael A.
Hakala, Teemu
Kukko, Antero
Liang, Xinlian
Hyyppä, Eric
Virtanen, Juho-Pekka
Wang, Yunsheng
Kaartinen, Harri
Holopainen, Markus
White, Joanne C.
Pohjavirta, Onni
Hyyppä, Juha
Pyörälä, Jiri
Yu, Xiaowei
Author_xml – sequence: 1
  givenname: Eric
  surname: Hyyppä
  fullname: Hyyppä, Eric
  email: eric.hyyppa@gmail.com
  organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland
– sequence: 2
  givenname: Juha
  surname: Hyyppä
  fullname: Hyyppä, Juha
  email: juha.coelasr@gmail.com
  organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland
– sequence: 3
  givenname: Teemu
  surname: Hakala
  fullname: Hakala, Teemu
  email: teemu.hakala@nls.fi
  organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland
– sequence: 4
  givenname: Antero
  surname: Kukko
  fullname: Kukko, Antero
  email: antero.kukko@nls.fi
  organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland
– sequence: 5
  givenname: Michael A.
  surname: Wulder
  fullname: Wulder, Michael A.
  email: mike.wulder@canada.ca
  organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada
– sequence: 6
  givenname: Joanne C.
  surname: White
  fullname: White, Joanne C.
  email: joanne.white@canada.ca
  organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada
– sequence: 7
  givenname: Jiri
  surname: Pyörälä
  fullname: Pyörälä, Jiri
  email: jiri.pyorala@helsinki.fi
  organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland
– sequence: 8
  givenname: Xiaowei
  surname: Yu
  fullname: Yu, Xiaowei
  email: xiaowei.yu@nls.fi
  organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland
– sequence: 9
  givenname: Yunsheng
  orcidid: 0000-0002-2552-8253
  surname: Wang
  fullname: Wang, Yunsheng
  email: yunsheng.wang@nls.fi
  organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland
– sequence: 10
  givenname: Juho-Pekka
  orcidid: 0000-0003-4674-0373
  surname: Virtanen
  fullname: Virtanen, Juho-Pekka
  email: juho-pekka.virtanen@aalto.fi
  organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland
– sequence: 11
  givenname: Onni
  surname: Pohjavirta
  fullname: Pohjavirta, Onni
  email: onni.pohjavirta@aalto.fi
  organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland
– sequence: 12
  givenname: Xinlian
  orcidid: 0000-0002-1585-2340
  surname: Liang
  fullname: Liang, Xinlian
  email: xinlian.liang@nls.fi
  organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland
– sequence: 13
  givenname: Markus
  surname: Holopainen
  fullname: Holopainen, Markus
  email: markus.holopainen@helsinki.fi
  organization: Department of Forest Sciences, University of Helsinki, FI-00014 Helsinki, Finland
– sequence: 14
  givenname: Harri
  surname: Kaartinen
  fullname: Kaartinen, Harri
  email: harri.kaartinen@nls.fi
  organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland
BookMark eNqNkLFOwzAQhi1UJNrCM5CRJeFsJ3EyMFQVBaRKLC2r5Thn5Chxgp0i9e1JVcTAAsPpdKf_O52-BZm53iEhtxQSCjS_bxIbBh-aqRIGDBLgCTB6Qea0ECwuGM9mZA4lS2MmaH5FFiE0AECzvJiTzd7V6GOtXD8co_3qLWpVQB-FaeOse49M7yOl9cGrEU8DhjEyFts66lCFg8cO3RiuyaVRbcCb774ku83jbv0cb1-fXtarbax5KcaYV1VRoqE5ZVlZVqZUeckQMqEzKjTN06w21KQi5yBQUSFAgypFTU2Btan4ktydzw6-_zhMr8jOBo1tqxz2hyBZymmRgoBiij6co9r3IXg0UttRjbZ3o1e2lRTkSZ9s5I8-edIngctJ38SLX_zgbaf88R_k6kziJOLTopdBW3Qaa-tRj7Lu7Z83vgD_s5LJ
CitedBy_id crossref_primary_10_1109_TIM_2024_3413139
crossref_primary_10_1016_j_ecolind_2021_108156
crossref_primary_10_3390_rs14133205
crossref_primary_10_3390_f14081601
crossref_primary_10_1016_j_ecoinf_2024_102774
crossref_primary_10_1016_j_eswa_2024_125519
crossref_primary_10_1109_TGRS_2024_3401393
crossref_primary_10_1080_19475705_2021_1964617
crossref_primary_10_1016_j_isprsjprs_2021_01_008
crossref_primary_10_3390_fire7020059
crossref_primary_10_1002_ece3_70463
crossref_primary_10_33904_ejfe_1174123
crossref_primary_10_1016_j_ophoto_2021_100007
crossref_primary_10_1002_esp_5540
crossref_primary_10_1016_j_compag_2022_107069
crossref_primary_10_1139_cjfr_2020_0322
crossref_primary_10_3390_drones9010027
crossref_primary_10_1016_j_jag_2023_103474
crossref_primary_10_1016_j_fecs_2023_100088
crossref_primary_10_1016_j_jag_2022_103014
crossref_primary_10_1016_j_ecolind_2025_113293
crossref_primary_10_3390_f12040397
crossref_primary_10_1016_j_isprsjprs_2022_03_004
crossref_primary_10_3390_ijgi10110762
crossref_primary_10_1016_j_jag_2024_103928
crossref_primary_10_1016_j_isprsjprs_2022_07_021
crossref_primary_10_3390_rs16101734
crossref_primary_10_1016_j_jag_2023_103426
crossref_primary_10_1016_j_ophoto_2023_100039
crossref_primary_10_1080_07038992_2023_2295470
crossref_primary_10_1016_j_jag_2022_103104
crossref_primary_10_1016_j_isprsjprs_2021_12_006
crossref_primary_10_1016_j_ophoto_2025_100087
crossref_primary_10_1109_ACCESS_2021_3127566
crossref_primary_10_3390_f15060939
crossref_primary_10_3390_rs14071649
crossref_primary_10_1016_j_srs_2022_100050
crossref_primary_10_1109_TGRS_2024_3439438
crossref_primary_10_1016_j_ophoto_2023_100040
crossref_primary_10_1016_j_jag_2024_103798
crossref_primary_10_1016_j_fecs_2022_100080
crossref_primary_10_3390_rs16101721
crossref_primary_10_3390_rs12172739
crossref_primary_10_3390_rs16183536
crossref_primary_10_3390_f14081581
crossref_primary_10_3390_rs12172865
crossref_primary_10_1016_j_srs_2024_100121
crossref_primary_10_1109_MGRS_2022_3168135
crossref_primary_10_3390_rs13030352
crossref_primary_10_3390_rs14225861
crossref_primary_10_1016_j_jag_2024_103828
crossref_primary_10_3390_drones5040115
crossref_primary_10_1186_s40663_021_00290_3
crossref_primary_10_3390_f14122392
crossref_primary_10_1016_j_compag_2022_107209
crossref_primary_10_3390_drones9030194
crossref_primary_10_3390_drones6090256
crossref_primary_10_1016_j_isprsjprs_2024_04_025
crossref_primary_10_1016_j_rse_2021_112857
crossref_primary_10_1093_forestry_cpad024
crossref_primary_10_3390_rs12223829
crossref_primary_10_3390_f14061122
crossref_primary_10_3390_rs12172672
crossref_primary_10_3390_rs16071261
crossref_primary_10_3390_f13081163
crossref_primary_10_3390_rs16173292
crossref_primary_10_1029_2021WR031168
crossref_primary_10_1109_MGRS_2021_3122248
crossref_primary_10_1016_j_ifacol_2022_11_134
crossref_primary_10_3390_f15111882
crossref_primary_10_1016_j_jag_2022_103056
crossref_primary_10_1016_j_jag_2024_104304
crossref_primary_10_1007_s40725_022_00160_3
crossref_primary_10_3390_drones8100577
crossref_primary_10_3390_rs13132576
crossref_primary_10_2208_jscejer_77_6_II_99
crossref_primary_10_3390_f12070856
crossref_primary_10_1016_j_jrmge_2023_12_004
crossref_primary_10_3390_su15032212
crossref_primary_10_1007_s40725_024_00225_5
crossref_primary_10_1016_j_jenvman_2024_123656
crossref_primary_10_1093_aob_mcab111
crossref_primary_10_3390_rs15071942
crossref_primary_10_1016_j_jag_2022_103029
crossref_primary_10_3390_buildings11090386
crossref_primary_10_1016_j_paerosci_2024_101005
crossref_primary_10_3389_fpls_2022_1041791
crossref_primary_10_1016_j_foreco_2023_121530
crossref_primary_10_3390_f12030327
crossref_primary_10_1016_j_rse_2024_114414
crossref_primary_10_1088_1361_6501_abc867
crossref_primary_10_1186_s40663_020_00261_0
crossref_primary_10_3390_rs15071790
crossref_primary_10_1016_j_isprsjprs_2020_11_006
crossref_primary_10_3390_drones5020043
crossref_primary_10_3390_rs14081806
crossref_primary_10_1080_10095020_2024_2322765
crossref_primary_10_1016_j_jag_2021_102327
crossref_primary_10_3390_rs12203327
crossref_primary_10_1016_j_jag_2023_103299
crossref_primary_10_1109_JSTARS_2024_3522330
crossref_primary_10_1017_S0263574722001564
crossref_primary_10_1016_j_isprsjprs_2023_01_013
crossref_primary_10_1016_j_jenvman_2022_114862
crossref_primary_10_1016_j_compag_2025_110070
crossref_primary_10_1016_j_isprsjprs_2021_11_022
crossref_primary_10_3390_rs14153738
crossref_primary_10_3390_ijgi13120424
Cites_doi 10.1016/j.envsoft.2016.04.025
10.1007/s40725-019-00094-3
10.1109/TGRS.2013.2253783
10.1016/j.isprsjprs.2010.08.002
10.1109/36.921414
10.3390/rs10040540
10.1016/j.compag.2017.12.034
10.1145/358669.358692
10.3390/f9010006
10.3390/rs11232781
10.3390/rs9080785
10.3390/rs10111845
10.3390/f9070395
10.1109/TGRS.2011.2161613
10.1002/rob.21852
10.3390/s17102371
10.1016/j.isprsjprs.2017.09.006
10.1016/j.compag.2017.07.015
10.1117/12.2279526
10.1109/ACCESS.2018.2868244
10.1016/j.rse.2019.111309
10.3390/rs11060615
10.1016/j.isprsjprs.2018.04.019
10.3390/f10030277
10.3390/rs9010003
10.3390/f7060127
10.1002/rob.20204
10.3390/s140101228
10.3390/s18093145
10.3390/f8020038
10.3390/rs4061519
10.1139/juvs-2013-0017
10.3390/f10050382
10.1007/s10846-015-0292-1
10.1016/j.isprsjprs.2018.11.008
10.3390/rs9111154
10.1186/s40663-019-0173-3
10.1109/LGRS.2013.2297418
10.1016/j.isprsjprs.2018.06.021
10.1016/j.isprsjprs.2017.11.013
10.3390/f6124390
10.1214/09-EJS419
10.3390/f7090206
10.1016/j.isprsjprs.2020.01.018
10.15607/RSS.2007.III.016
10.1109/TGRS.2014.2308208
ContentType Journal Article
Copyright 2020 The Authors
Copyright_xml – notice: 2020 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2020.03.021
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 60
ExternalDocumentID 10_1016_j_isprsjprs_2020_03_021
S0924271620300915
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c397t-3bb89ef1612599bf9a692e057c517c1645df1f476307ea1770c0a97d1f8edfb3
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Sun Sep 28 09:00:45 EDT 2025
Wed Oct 01 04:25:32 EDT 2025
Thu Apr 24 23:09:47 EDT 2025
Fri Feb 23 02:47:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Under-canopy flight
SLAM
UAV
Stem curve
Airborne laser scanning
Stem volume
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-3bb89ef1612599bf9a692e057c517c1645df1f476307ea1770c0a97d1f8edfb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-2552-8253
0000-0003-4674-0373
0000-0002-1585-2340
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0924271620300915
PQID 2431840708
PQPubID 24069
PageCount 20
ParticipantIDs proquest_miscellaneous_2431840708
crossref_citationtrail_10_1016_j_isprsjprs_2020_03_021
crossref_primary_10_1016_j_isprsjprs_2020_03_021
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_03_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vandapel, Kuffner, Amidi (b0265) 2005
Hyyppä, Virtanen, Jaakkola, Yu, Hyyppä, Liang (b0120) 2017; 9
Magnusson, Lilienthal, Duckett (b0215) 2007; 24
Hyyppä, Kelle, Lehikoinen, Inkinen (b0115) 2001; 39
Fan, Feng, Mannan, Khan, Shen, Saeed (b0070) 2018; 10
Harikumar, A., Bovolo, F., Bruzzone, L., 2017. An approach to conifer stem localization and modeling in high density airborne lidar data. In: Image and Signal Processing for Remote Sensing XXIII. Vol. 10427. International Society for Optics and Photonics, p. 104270Q.
Cabo, Del Pozo, Rodríguez-Gonzálvez, Ordóñez, González-Aguilera (b0030) 2018; 10
Kukko, Kaijaluoto, Kaartinen, Lehtola, Jaakkola, Hyyppä (b0155) 2017; 132
Biber, Straßer (b0015) 2003; vol. 3
Qian, Liu, Tang, Chen, Kaartinen, Kukko, Zhu, Liang, Chen, Hyyppä (b0235) 2017; 9
Liang, Wang, Pyörälä, Lehtomäki, Yu, Kaartinen, Kukko, Honkavaara, Issaoui, Nevalainen (b0195) 2019; 6
Hong, Ko, Kim (b0105) 2010
Liang, Litkey, Hyyppa, Kaartinen, Vastaranta, Holopainen (b0190) 2012; 50
Lindström (b0200) 2007; 28
Cui, Lai, Dong, Chen (b0050) 2016; 84
Jež (b0145) 2008
Wang, Pyörälä, Liang, Lehtomäki, Kukko, Yu, Kaartinen, Hyyppä (b0290) 2019; 232
Brede, Lau, Bartholomeus, Kooistra (b0025) 2017; 17
Jaakkola, Hyyppä, Kukko, Yu, Kaartinen, Lehtomäki, Lin (b0130) 2010; 65
Javanmardi, Javanmardi, Gu, Kamijo (b0140) 2018; 6
Luoma, Saarinen, Kankare, Tanhuanpää, Kaartinen, Kukko, Holopainen, Hyyppä, Vastaranta (b0205) 2019; 10
De Boor, De Boor, Mathématicien, De Boor, De Boor (b0055) 1978; Vol. 27
Forsman, Holmgren, Olofsson (b0085) 2016; 7
Pierzchała, Giguère, Astrup (b0225) 2018; 145
Bienert, Georgi, Kunz, Maas, von Oheimb (b0020) 2018; 9
Wallace, Musk, Lucieer (b0280) 2014; 52
Tang, Chen, Kukko, Kaartinen, Jaakkola, Khoramshahi, Hakala, Hyyppä, Holopainen, Hyyppä (b0250) 2015; 6
Del Perugia, Giannetti, Chirici, Travaglini (b0060) 2019; 10
Wallace, Lucieer, Watson, Turner (b0275) 2012; 4
Chisholm, Cui, Lum, Chen (b0045) 2013; 1
Liang, Hyyppä, Kukko, Kaartinen, Jaakkola, Yu (b0170) 2014; 11
Levinson, J., Montemerlo, M., Thrun, S., 2007. Map-based precision vehicle localization in urban environments. In: Robotics: Science and Systems. Vol. 4. Citeseer, p. 1.
Liang, Kukko, Hyyppä, Lehtomäki, Pyörälä, Yu, Kaartinen, Jaakkola, Wang (b0180) 2018; 143
Schultz, Gilabert, Bharadwaj, de Haag, Zhu (b0245) 2016
Jaakkola, Hyyppä, Yu, Kukko, Kaartinen, Liang, Hyyppä, Wang (b0135) 2017; 9
Higuti, Velasquez, Magalhaes, Becker, Chowdhary (b0095) 2019; 36
Wang, Lehtomäki, Liang, Pyörälä, Kukko, Jaakkola, Liu, Feng, Chen, Hyyppä (b0285) 2019; 147
Iglhaut, Cabo, Puliti, Piermattei, O’Connor, Rosette (b0125) 2019; 5
Al-Sharadqah, Chernov (b0005) 2009; 3
Tu, Takeuchi, Miyajima, Takeda (b0260) 2016
Holmgren, Tulldahl, Nordlöf, Willén, Olsson (b0100) 2019; 11
Jo, Kim, Sunwoo (b0150) 2018; 18
Censi (b0035) 2008
Bauwens, Bartholomeus, Calders, Lejeune (b0010) 2016; 7
Hyyppä, Kukko, Kaijaluoto, White, Wulder, Pyörälä, Liang, Yu, Wang, Kaartinen (b0110) 2020; 161
Vian, J.L., Przybylko, J., 2012. Tree metrology system. US Patent 9,198,363.
Pollock, D., et al., 1993. Smoothing with cubic splines.
Marselis, Yebra, Jovanovic, van Dijk (b0220) 2016; 82
Rusinkiewicz, S., Levoy, M., 2001. Efficient variants of the ICP algorithm. In: 3DIM. Vol. 1. pp. 145–152.
Liang, Kukko, Kaartinen, Hyyppä, Yu, Jaakkola, Wang (b0185) 2014; 14
Liang, Hyyppä, Kaartinen, Lehtomäki, Pyörälä, Pfeifer, Holopainen, Brolly, Francesco, Hackenberg (b0165) 2018; 144
Wieser, Mandlburger, Hollaus, Otepka, Glira, Pfeifer (b0295) 2017; 9
Fischler, Bolles (b0075) 1981; 24
Liang, Kankare, Yu, Hyyppä, Holopainen (b0175) 2014; 52
Ester, Kriegel, Sander, Xu (b0065) 1996; 96
Tomaštík, Saloň, Tunák, Chudỳ, Kardoš (b0255) 2017; 141
Čerňava, Mokroš, Tuček, Antal, Slatkovská (b0040) 2019; 11
Forsman, Börlin, Olofsson, Reese, Holmgren (b0080) 2018; 135
Luoma, Saarinen, Wulder, White, Vastaranta, Holopainen, Hyyppä (b0210) 2017; 8
Al-Sharadqah (10.1016/j.isprsjprs.2020.03.021_b0005) 2009; 3
Luoma (10.1016/j.isprsjprs.2020.03.021_b0205) 2019; 10
Fischler (10.1016/j.isprsjprs.2020.03.021_b0075) 1981; 24
Schultz (10.1016/j.isprsjprs.2020.03.021_b0245) 2016
Wang (10.1016/j.isprsjprs.2020.03.021_b0285) 2019; 147
Liang (10.1016/j.isprsjprs.2020.03.021_b0170) 2014; 11
Liang (10.1016/j.isprsjprs.2020.03.021_b0190) 2012; 50
10.1016/j.isprsjprs.2020.03.021_b0240
10.1016/j.isprsjprs.2020.03.021_b0160
Qian (10.1016/j.isprsjprs.2020.03.021_b0235) 2017; 9
Liang (10.1016/j.isprsjprs.2020.03.021_b0180) 2018; 143
Vandapel (10.1016/j.isprsjprs.2020.03.021_b0265) 2005
Liang (10.1016/j.isprsjprs.2020.03.021_b0185) 2014; 14
Liang (10.1016/j.isprsjprs.2020.03.021_b0195) 2019; 6
Jaakkola (10.1016/j.isprsjprs.2020.03.021_b0130) 2010; 65
Censi (10.1016/j.isprsjprs.2020.03.021_b0035) 2008
Magnusson (10.1016/j.isprsjprs.2020.03.021_b0215) 2007; 24
Del Perugia (10.1016/j.isprsjprs.2020.03.021_b0060) 2019; 10
Tu (10.1016/j.isprsjprs.2020.03.021_b0260) 2016
Tang (10.1016/j.isprsjprs.2020.03.021_b0250) 2015; 6
Liang (10.1016/j.isprsjprs.2020.03.021_b0175) 2014; 52
Bauwens (10.1016/j.isprsjprs.2020.03.021_b0010) 2016; 7
10.1016/j.isprsjprs.2020.03.021_b0090
Javanmardi (10.1016/j.isprsjprs.2020.03.021_b0140) 2018; 6
Čerňava (10.1016/j.isprsjprs.2020.03.021_b0040) 2019; 11
Forsman (10.1016/j.isprsjprs.2020.03.021_b0080) 2018; 135
Forsman (10.1016/j.isprsjprs.2020.03.021_b0085) 2016; 7
De Boor (10.1016/j.isprsjprs.2020.03.021_b0055) 1978; Vol. 27
Higuti (10.1016/j.isprsjprs.2020.03.021_b0095) 2019; 36
Jaakkola (10.1016/j.isprsjprs.2020.03.021_b0135) 2017; 9
Brede (10.1016/j.isprsjprs.2020.03.021_b0025) 2017; 17
Cui (10.1016/j.isprsjprs.2020.03.021_b0050) 2016; 84
Fan (10.1016/j.isprsjprs.2020.03.021_b0070) 2018; 10
Holmgren (10.1016/j.isprsjprs.2020.03.021_b0100) 2019; 11
Liang (10.1016/j.isprsjprs.2020.03.021_b0165) 2018; 144
Jo (10.1016/j.isprsjprs.2020.03.021_b0150) 2018; 18
Lindström (10.1016/j.isprsjprs.2020.03.021_b0200) 2007; 28
Wallace (10.1016/j.isprsjprs.2020.03.021_b0280) 2014; 52
Wang (10.1016/j.isprsjprs.2020.03.021_b0290) 2019; 232
Jež (10.1016/j.isprsjprs.2020.03.021_b0145) 2008
Ester (10.1016/j.isprsjprs.2020.03.021_b0065) 1996; 96
Wallace (10.1016/j.isprsjprs.2020.03.021_b0275) 2012; 4
Hong (10.1016/j.isprsjprs.2020.03.021_b0105) 2010
Marselis (10.1016/j.isprsjprs.2020.03.021_b0220) 2016; 82
Kukko (10.1016/j.isprsjprs.2020.03.021_b0155) 2017; 132
Biber (10.1016/j.isprsjprs.2020.03.021_b0015) 2003; vol. 3
Chisholm (10.1016/j.isprsjprs.2020.03.021_b0045) 2013; 1
Pierzchała (10.1016/j.isprsjprs.2020.03.021_b0225) 2018; 145
Bienert (10.1016/j.isprsjprs.2020.03.021_b0020) 2018; 9
Tomaštík (10.1016/j.isprsjprs.2020.03.021_b0255) 2017; 141
Hyyppä (10.1016/j.isprsjprs.2020.03.021_b0115) 2001; 39
10.1016/j.isprsjprs.2020.03.021_b0270
Hyyppä (10.1016/j.isprsjprs.2020.03.021_b0120) 2017; 9
Cabo (10.1016/j.isprsjprs.2020.03.021_b0030) 2018; 10
Iglhaut (10.1016/j.isprsjprs.2020.03.021_b0125) 2019; 5
Wieser (10.1016/j.isprsjprs.2020.03.021_b0295) 2017; 9
Hyyppä (10.1016/j.isprsjprs.2020.03.021_b0110) 2020; 161
Luoma (10.1016/j.isprsjprs.2020.03.021_b0210) 2017; 8
10.1016/j.isprsjprs.2020.03.021_b0230
References_xml – volume: 9
  start-page: 395
  year: 2018
  ident: b0020
  article-title: Comparison and combination of mobile and terrestrial laser scanning for natural forest inventories
  publication-title: Forests
– volume: 52
  start-page: 1739
  year: 2014
  end-page: 1748
  ident: b0175
  article-title: Automated stem curve measurement using terrestrial laser scanning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  start-page: 540
  year: 2018
  ident: b0030
  article-title: Comparing terrestrial laser scanning (TLS) and wearable laser scanning (WLS) for individual tree modeling at plot level
  publication-title: Remote Sens.
– volume: 84
  start-page: 259
  year: 2016
  end-page: 276
  ident: b0050
  article-title: Autonomous navigation of UAV in foliage environment
  publication-title: J. Intell. Robot. Syst.
– start-page: 343
  year: 2008
  end-page: 353
  ident: b0145
  article-title: 3D mapping and localization using leveled map accelerated ICP
  publication-title: European Robotics Symposium 2008
– volume: 9
  start-page: 1154
  year: 2017
  ident: b0295
  article-title: A case study of UAS-borne laser scanning for measurement of tree stem diameter
  publication-title: Remote Sens.
– volume: 36
  start-page: 547
  year: 2019
  end-page: 567
  ident: b0095
  article-title: Under canopy light detection and ranging-based autonomous navigation
  publication-title: J. Field Robot.
– start-page: 1893
  year: 2010
  end-page: 1898
  ident: b0105
  article-title: VICP: Velocity updating iterative closest point algorithm
  publication-title: 2010 IEEE International Conference on Robotics and Automation
– volume: 9
  start-page: 785
  year: 2017
  ident: b0135
  article-title: Autonomous collection of forest field reference the outlook and a first step with UAV laser scanning
  publication-title: Remote Sens.
– volume: 9
  start-page: 3
  year: 2017
  ident: b0235
  article-title: An integrated GNSS/INS/LiDAR-SLAM positioning method for highly accurate forest stem mapping
  publication-title: Remote Sens.
– volume: 50
  start-page: 661
  year: 2012
  end-page: 670
  ident: b0190
  article-title: Automatic stem mapping using single-scan terrestrial laser scanning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Pollock, D., et al., 1993. Smoothing with cubic splines.
– volume: 6
  start-page: 20
  year: 2019
  ident: b0195
  article-title: Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements
  publication-title: Forest Ecosyst.
– volume: vol. 3
  start-page: 2743
  year: 2003
  end-page: 2748
  ident: b0015
  article-title: The normal distributions transform: a new approach to laser scan matching
  publication-title: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453)
– volume: 144
  start-page: 137
  year: 2018
  end-page: 179
  ident: b0165
  article-title: International benchmarking of terrestrial laser scanning approaches for forest inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 143
  start-page: 97
  year: 2018
  end-page: 107
  ident: b0180
  article-title: In-situ measurements from mobile platforms: an emerging approach to address the old challenges associated with forest inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: Vol. 27
  year: 1978
  ident: b0055
  publication-title: A practical guide to splines
– volume: 135
  start-page: 84
  year: 2018
  end-page: 92
  ident: b0080
  article-title: Bias of cylinder diameter estimation from ground-based laser scanners with different beam widths: a simulation study
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: b0065
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise. In
  publication-title: Kdd
– start-page: 4624
  year: 2005
  end-page: 4629
  ident: b0265
  article-title: Planning 3-D path networks in unstructured environments
  publication-title: Proceedings of the 2005 IEEE International Conference on Robotics and Automation
– volume: 9
  start-page: 6
  year: 2017
  ident: b0120
  article-title: Feasibility of Google Tango and Kinect for crowdsourcing forestry information
  publication-title: Forests
– start-page: 739
  year: 2016
  end-page: 746
  ident: b0245
  publication-title: A navigation and mapping method for UAS during under-the-canopy forest operations
– reference: Vian, J.L., Przybylko, J., 2012. Tree metrology system. US Patent 9,198,363.
– volume: 5
  start-page: 155
  year: 2019
  end-page: 168
  ident: b0125
  article-title: Structure from motion photogrammetry in forestry: a review
  publication-title: Curr. Forest. Rep.
– volume: 7
  start-page: 206
  year: 2016
  ident: b0085
  article-title: Tree stem diameter estimation from mobile laser scanning using line-wise intensity-based clustering
  publication-title: Forests
– volume: 24
  start-page: 803
  year: 2007
  end-page: 827
  ident: b0215
  article-title: Scan registration for autonomous mining vehicles using 3D-NDT
  publication-title: J. Field Robot.
– volume: 132
  start-page: 199
  year: 2017
  end-page: 209
  ident: b0155
  article-title: Graph SLAM correction for single scanner MLS forest data under boreal forest canopy
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 10
  start-page: 382
  year: 2019
  ident: b0205
  article-title: Examining changes in stem taper and volume growth with two-date 3d point clouds
  publication-title: Forests
– volume: 4
  start-page: 1519
  year: 2012
  end-page: 1543
  ident: b0275
  article-title: Development of a UAV-lidar system with application to forest inventory
  publication-title: Remote Sens.
– volume: 24
  start-page: 381
  year: 1981
  end-page: 395
  ident: b0075
  article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun. ACM
– volume: 39
  start-page: 969
  year: 2001
  end-page: 975
  ident: b0115
  article-title: A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 10
  start-page: 1845
  year: 2018
  ident: b0070
  article-title: Estimating tree position, diameter at breast height, and tree height in real-time using a mobile phone with RGB-D slam
  publication-title: Remote Sens.
– volume: 1
  start-page: 61
  year: 2013
  end-page: 68
  ident: b0045
  article-title: UAV lidar for below-canopy forest surveys
  publication-title: J. Unmanned Veh. Syst.
– reference: Harikumar, A., Bovolo, F., Bruzzone, L., 2017. An approach to conifer stem localization and modeling in high density airborne lidar data. In: Image and Signal Processing for Remote Sensing XXIII. Vol. 10427. International Society for Optics and Photonics, p. 104270Q.
– volume: 147
  start-page: 132
  year: 2019
  end-page: 145
  ident: b0285
  article-title: Is field-measured tree height as reliable as believed–a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 52
  start-page: 7160
  year: 2014
  end-page: 7169
  ident: b0280
  article-title: An assessment of the repeatability of automatic forest inventory metrics derived from UAV-borne laser scanning data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 3
  start-page: 886
  year: 2009
  end-page: 911
  ident: b0005
  article-title: Error analysis for circle fitting algorithms
  publication-title: Electron. J. Stat.
– volume: 11
  start-page: 615
  year: 2019
  ident: b0040
  article-title: Processing chain for estimation of tree diameter from GNSS-IMU-based mobile laser scanning data
  publication-title: Remote Sens.
– reference: Rusinkiewicz, S., Levoy, M., 2001. Efficient variants of the ICP algorithm. In: 3DIM. Vol. 1. pp. 145–152.
– volume: 6
  start-page: 4588
  year: 2015
  end-page: 4606
  ident: b0250
  article-title: SLAM-aided stem mapping for forest inventory with small-footprint mobile lidar
  publication-title: Forests
– start-page: 1712
  year: 2016
  end-page: 1719
  ident: b0260
  article-title: Compressing continuous point cloud data using image compression methods
  publication-title: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC)
– volume: 10
  start-page: 277
  year: 2019
  ident: b0060
  article-title: Influence of scan density on the estimation of single-tree attributes by hand-held mobile laser scanning
  publication-title: Forests
– volume: 232
  start-page: 111309
  year: 2019
  ident: b0290
  article-title: In situ biomass estimation at tree and plot levels: What did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest
  publication-title: Remote Sens. Environ.
– volume: 161
  start-page: 246
  year: 2020
  end-page: 262
  ident: b0110
  article-title: Accurate derivation of stem curve and volume using backpack mobile laser scanning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 11
  start-page: 2781
  year: 2019
  ident: b0100
  article-title: Mobile laser scanning for estimating tree stem diameter using segmentation and tree spine calibration
  publication-title: Remote Sens.
– volume: 11
  start-page: 1504
  year: 2014
  end-page: 1508
  ident: b0170
  article-title: The use of a mobile laser scanning system for mapping large forest plots
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 6
  start-page: 49850
  year: 2018
  end-page: 49867
  ident: b0140
  article-title: Factors to evaluate capability of map for vehicle localization
  publication-title: IEEE Access
– volume: 82
  start-page: 142
  year: 2016
  end-page: 151
  ident: b0220
  article-title: Deriving comprehensive forest structure information from mobile laser scanning observations using automated point cloud classification
  publication-title: Environ. Modell. Softw.
– volume: 141
  start-page: 109
  year: 2017
  end-page: 117
  ident: b0255
  article-title: Tango in forests – an initial experience of the use of the new Google technology in connection with forest inventory tasks
  publication-title: Comput. Electron. Agric.
– reference: Levinson, J., Montemerlo, M., Thrun, S., 2007. Map-based precision vehicle localization in urban environments. In: Robotics: Science and Systems. Vol. 4. Citeseer, p. 1.
– volume: 14
  start-page: 1228
  year: 2014
  end-page: 1248
  ident: b0185
  article-title: Possibilities of a personal laser scanning system for forest mapping and ecosystem services
  publication-title: Sensors
– start-page: 19
  year: 2008
  end-page: 25
  ident: b0035
  article-title: An ICP variant using a point-to-line metric
  publication-title: 2008 IEEE International Conference on Robotics and Automation
– volume: 8
  start-page: 38
  year: 2017
  ident: b0210
  article-title: Assessing precision in conventional field measurements of individual tree attributes
  publication-title: Forests
– volume: 145
  start-page: 217
  year: 2018
  end-page: 225
  ident: b0225
  article-title: Mapping forests using an unmanned ground vehicle with 3D lidar and graph-SLAM
  publication-title: Comput. Electron. Agric.
– volume: 17
  start-page: 2371
  year: 2017
  ident: b0025
  article-title: Comparing Riegl RiCOPTER UAV LiDAR derived canopy height and DBH with terrestrial lidar
  publication-title: Sensors
– volume: 18
  start-page: 3145
  year: 2018
  ident: b0150
  article-title: Simultaneous localization and map change update for the high definition map-based autonomous driving car
  publication-title: Sensors
– volume: 65
  start-page: 514
  year: 2010
  end-page: 522
  ident: b0130
  article-title: A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 28
  start-page: 240
  year: 2007
  end-page: 251
  ident: b0200
  article-title: Basic density of norway spruce. Part II. Predicted by stem taper, mean growth ring width, and factors related to crown development
  publication-title: Wood Fiber Sci.
– volume: 7
  start-page: 127
  year: 2016
  ident: b0010
  article-title: Forest inventory with terrestrial lidar: a comparison of static and hand-held mobile laser scanning
  publication-title: Forests
– volume: 82
  start-page: 142
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.03.021_b0220
  article-title: Deriving comprehensive forest structure information from mobile laser scanning observations using automated point cloud classification
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2016.04.025
– volume: 5
  start-page: 155
  issue: 3
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.03.021_b0125
  article-title: Structure from motion photogrammetry in forestry: a review
  publication-title: Curr. Forest. Rep.
  doi: 10.1007/s40725-019-00094-3
– volume: 52
  start-page: 1739
  issue: 3
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.03.021_b0175
  article-title: Automated stem curve measurement using terrestrial laser scanning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2253783
– volume: 65
  start-page: 514
  issue: 6
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.03.021_b0130
  article-title: A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2010.08.002
– volume: 39
  start-page: 969
  issue: 5
  year: 2001
  ident: 10.1016/j.isprsjprs.2020.03.021_b0115
  article-title: A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.921414
– volume: 10
  start-page: 540
  issue: 4
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.03.021_b0030
  article-title: Comparing terrestrial laser scanning (TLS) and wearable laser scanning (WLS) for individual tree modeling at plot level
  publication-title: Remote Sens.
  doi: 10.3390/rs10040540
– volume: 145
  start-page: 217
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.03.021_b0225
  article-title: Mapping forests using an unmanned ground vehicle with 3D lidar and graph-SLAM
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.12.034
– volume: 24
  start-page: 381
  issue: 6
  year: 1981
  ident: 10.1016/j.isprsjprs.2020.03.021_b0075
  article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun. ACM
  doi: 10.1145/358669.358692
– volume: vol. 3
  start-page: 2743
  year: 2003
  ident: 10.1016/j.isprsjprs.2020.03.021_b0015
  article-title: The normal distributions transform: a new approach to laser scan matching
– volume: 9
  start-page: 6
  issue: 1
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.03.021_b0120
  article-title: Feasibility of Google Tango and Kinect for crowdsourcing forestry information
  publication-title: Forests
  doi: 10.3390/f9010006
– volume: 96
  start-page: 226
  year: 1996
  ident: 10.1016/j.isprsjprs.2020.03.021_b0065
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise. In
  publication-title: Kdd
– volume: 11
  start-page: 2781
  issue: 23
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.03.021_b0100
  article-title: Mobile laser scanning for estimating tree stem diameter using segmentation and tree spine calibration
  publication-title: Remote Sens.
  doi: 10.3390/rs11232781
– volume: 9
  start-page: 785
  issue: 8
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.03.021_b0135
  article-title: Autonomous collection of forest field reference the outlook and a first step with UAV laser scanning
  publication-title: Remote Sens.
  doi: 10.3390/rs9080785
– start-page: 343
  year: 2008
  ident: 10.1016/j.isprsjprs.2020.03.021_b0145
  article-title: 3D mapping and localization using leveled map accelerated ICP
– volume: 10
  start-page: 1845
  issue: 11
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.03.021_b0070
  article-title: Estimating tree position, diameter at breast height, and tree height in real-time using a mobile phone with RGB-D slam
  publication-title: Remote Sens.
  doi: 10.3390/rs10111845
– volume: 9
  start-page: 395
  issue: 7
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.03.021_b0020
  article-title: Comparison and combination of mobile and terrestrial laser scanning for natural forest inventories
  publication-title: Forests
  doi: 10.3390/f9070395
– volume: 50
  start-page: 661
  issue: 2
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.03.021_b0190
  article-title: Automatic stem mapping using single-scan terrestrial laser scanning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2161613
– volume: 28
  start-page: 240
  issue: 2
  year: 2007
  ident: 10.1016/j.isprsjprs.2020.03.021_b0200
  article-title: Basic density of norway spruce. Part II. Predicted by stem taper, mean growth ring width, and factors related to crown development
  publication-title: Wood Fiber Sci.
– volume: 36
  start-page: 547
  issue: 3
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.03.021_b0095
  article-title: Under canopy light detection and ranging-based autonomous navigation
  publication-title: J. Field Robot.
  doi: 10.1002/rob.21852
– volume: 17
  start-page: 2371
  issue: 10
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.03.021_b0025
  article-title: Comparing Riegl RiCOPTER UAV LiDAR derived canopy height and DBH with terrestrial lidar
  publication-title: Sensors
  doi: 10.3390/s17102371
– volume: 132
  start-page: 199
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.03.021_b0155
  article-title: Graph SLAM correction for single scanner MLS forest data under boreal forest canopy
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.09.006
– volume: 141
  start-page: 109
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.03.021_b0255
  article-title: Tango in forests – an initial experience of the use of the new Google technology in connection with forest inventory tasks
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2017.07.015
– ident: 10.1016/j.isprsjprs.2020.03.021_b0090
  doi: 10.1117/12.2279526
– volume: 6
  start-page: 49850
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.03.021_b0140
  article-title: Factors to evaluate capability of map for vehicle localization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2868244
– volume: 232
  start-page: 111309
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.03.021_b0290
  article-title: In situ biomass estimation at tree and plot levels: What did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111309
– start-page: 4624
  year: 2005
  ident: 10.1016/j.isprsjprs.2020.03.021_b0265
  article-title: Planning 3-D path networks in unstructured environments
– volume: 11
  start-page: 615
  issue: 6
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.03.021_b0040
  article-title: Processing chain for estimation of tree diameter from GNSS-IMU-based mobile laser scanning data
  publication-title: Remote Sens.
  doi: 10.3390/rs11060615
– volume: 143
  start-page: 97
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.03.021_b0180
  article-title: In-situ measurements from mobile platforms: an emerging approach to address the old challenges associated with forest inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.04.019
– volume: 10
  start-page: 277
  issue: 3
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.03.021_b0060
  article-title: Influence of scan density on the estimation of single-tree attributes by hand-held mobile laser scanning
  publication-title: Forests
  doi: 10.3390/f10030277
– volume: 9
  start-page: 3
  issue: 1
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.03.021_b0235
  article-title: An integrated GNSS/INS/LiDAR-SLAM positioning method for highly accurate forest stem mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs9010003
– volume: 7
  start-page: 127
  issue: 6
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.03.021_b0010
  article-title: Forest inventory with terrestrial lidar: a comparison of static and hand-held mobile laser scanning
  publication-title: Forests
  doi: 10.3390/f7060127
– volume: 24
  start-page: 803
  issue: 10
  year: 2007
  ident: 10.1016/j.isprsjprs.2020.03.021_b0215
  article-title: Scan registration for autonomous mining vehicles using 3D-NDT
  publication-title: J. Field Robot.
  doi: 10.1002/rob.20204
– volume: 14
  start-page: 1228
  issue: 1
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.03.021_b0185
  article-title: Possibilities of a personal laser scanning system for forest mapping and ecosystem services
  publication-title: Sensors
  doi: 10.3390/s140101228
– volume: 18
  start-page: 3145
  issue: 9
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.03.021_b0150
  article-title: Simultaneous localization and map change update for the high definition map-based autonomous driving car
  publication-title: Sensors
  doi: 10.3390/s18093145
– start-page: 1712
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.03.021_b0260
  article-title: Compressing continuous point cloud data using image compression methods
– ident: 10.1016/j.isprsjprs.2020.03.021_b0270
– volume: 8
  start-page: 38
  issue: 2
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.03.021_b0210
  article-title: Assessing precision in conventional field measurements of individual tree attributes
  publication-title: Forests
  doi: 10.3390/f8020038
– ident: 10.1016/j.isprsjprs.2020.03.021_b0240
– volume: 4
  start-page: 1519
  issue: 6
  year: 2012
  ident: 10.1016/j.isprsjprs.2020.03.021_b0275
  article-title: Development of a UAV-lidar system with application to forest inventory
  publication-title: Remote Sens.
  doi: 10.3390/rs4061519
– volume: 1
  start-page: 61
  issue: 1
  year: 2013
  ident: 10.1016/j.isprsjprs.2020.03.021_b0045
  article-title: UAV lidar for below-canopy forest surveys
  publication-title: J. Unmanned Veh. Syst.
  doi: 10.1139/juvs-2013-0017
– start-page: 739
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.03.021_b0245
– volume: 10
  start-page: 382
  issue: 5
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.03.021_b0205
  article-title: Examining changes in stem taper and volume growth with two-date 3d point clouds
  publication-title: Forests
  doi: 10.3390/f10050382
– volume: 84
  start-page: 259
  issue: 1–4
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.03.021_b0050
  article-title: Autonomous navigation of UAV in foliage environment
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1007/s10846-015-0292-1
– ident: 10.1016/j.isprsjprs.2020.03.021_b0230
– volume: 147
  start-page: 132
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.03.021_b0285
  article-title: Is field-measured tree height as reliable as believed–a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.11.008
– volume: 9
  start-page: 1154
  issue: 11
  year: 2017
  ident: 10.1016/j.isprsjprs.2020.03.021_b0295
  article-title: A case study of UAS-borne laser scanning for measurement of tree stem diameter
  publication-title: Remote Sens.
  doi: 10.3390/rs9111154
– volume: 6
  start-page: 20
  issue: 1
  year: 2019
  ident: 10.1016/j.isprsjprs.2020.03.021_b0195
  article-title: Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements
  publication-title: Forest Ecosyst.
  doi: 10.1186/s40663-019-0173-3
– volume: 11
  start-page: 1504
  issue: 9
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.03.021_b0170
  article-title: The use of a mobile laser scanning system for mapping large forest plots
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2297418
– volume: Vol. 27
  year: 1978
  ident: 10.1016/j.isprsjprs.2020.03.021_b0055
– volume: 144
  start-page: 137
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.03.021_b0165
  article-title: International benchmarking of terrestrial laser scanning approaches for forest inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.06.021
– start-page: 1893
  year: 2010
  ident: 10.1016/j.isprsjprs.2020.03.021_b0105
  article-title: VICP: Velocity updating iterative closest point algorithm
– start-page: 19
  year: 2008
  ident: 10.1016/j.isprsjprs.2020.03.021_b0035
  article-title: An ICP variant using a point-to-line metric
– volume: 135
  start-page: 84
  year: 2018
  ident: 10.1016/j.isprsjprs.2020.03.021_b0080
  article-title: Bias of cylinder diameter estimation from ground-based laser scanners with different beam widths: a simulation study
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.013
– volume: 6
  start-page: 4588
  issue: 12
  year: 2015
  ident: 10.1016/j.isprsjprs.2020.03.021_b0250
  article-title: SLAM-aided stem mapping for forest inventory with small-footprint mobile lidar
  publication-title: Forests
  doi: 10.3390/f6124390
– volume: 3
  start-page: 886
  year: 2009
  ident: 10.1016/j.isprsjprs.2020.03.021_b0005
  article-title: Error analysis for circle fitting algorithms
  publication-title: Electron. J. Stat.
  doi: 10.1214/09-EJS419
– volume: 7
  start-page: 206
  issue: 9
  year: 2016
  ident: 10.1016/j.isprsjprs.2020.03.021_b0085
  article-title: Tree stem diameter estimation from mobile laser scanning using line-wise intensity-based clustering
  publication-title: Forests
  doi: 10.3390/f7090206
– volume: 161
  start-page: 246
  year: 2020
  ident: 10.1016/j.isprsjprs.2020.03.021_b0110
  article-title: Accurate derivation of stem curve and volume using backpack mobile laser scanning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.01.018
– ident: 10.1016/j.isprsjprs.2020.03.021_b0160
  doi: 10.15607/RSS.2007.III.016
– volume: 52
  start-page: 7160
  issue: 11
  year: 2014
  ident: 10.1016/j.isprsjprs.2020.03.021_b0280
  article-title: An assessment of the repeatability of automatic forest inventory metrics derived from UAV-borne laser scanning data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2308208
SSID ssj0001568
Score 2.6008687
Snippet [Display omitted] Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour...
Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Airborne laser scanning
algorithms
boreal forests
cameras
data collection
flight
information processing
inventories
lasers
monitoring
robots
scanners
SLAM
Stem curve
Stem volume
stems
surveys
trees
UAV
Under-canopy flight
unmanned aerial vehicles
Title Under-canopy UAV laser scanning for accurate forest field measurements
URI https://dx.doi.org/10.1016/j.isprsjprs.2020.03.021
https://www.proquest.com/docview/2431840708
Volume 164
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8235
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001568
  issn: 0924-2716
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgADggKiPCojsZraeTlhqyqqAqILLepmOY4tWkEb9TF04bdzzqOlSIiBIYOjOzk6X-6-S-6B0A14dJdLNyBB5GniKcVIFHo-SSiVgQS1pswWJz_3gu7Aexz6wwpql7UwNq2ysP25Tc-sdXGnWUizmY5GzRcKoYNjGyCBnoLXs4XmtvsX6PTt5ybNg-XlcJaYWOqtHK_RPJ3Nx3BBoOjQrNupw37zUD9sdeaAOofooECOuJU_3BGq6EkN7X_rJ1hDu8VI87fVMepkE40ISG6arvCg9YoBJ-sZnqt8ShEGtIqlUkvbK8IuYEuc5bPhj813w_kJ6nfu--0uKYYmEAXQYkHcOA4jbZhFLlEUm0gGkaMBlSmfcQXBkZ8YZjwwK5RryTinisqIJ8yEOjGxe4qqk-lEnyHsGT-k3NGB4Rroaah1SJVUgQF2KXkdBaWchCoaitu5Fu-izBwbi7WAhRWwoK4AAdcRXTOmeU-Nv1nuyoMQW-ohwPL_zXxdHp2Al8f-EZETPV0CEcAniHA5Dc__s8EF2rOrPIPsElUXs6W-AqyyiBuZMjbQTuvhqdv7Aj6s6kA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BOxQGxFO8MRKrVTsvJ2wVomopdKFF3SzHtUURtFUfA_-ecx7lISEGhgxJfHJ0vnz3XXK-A7hCj-4L5Uc0SgJDA605TeIgpEPGVKTQrBl3m5MfulGrH9wNwsEa3JR7YVxaZYH9OaZnaF1cqRfarE9Ho_ojw9DBcwWQ0E7R64XrUA1CxOQKVBvtTqu7AmSe74hz46kT-JbmNZpPZ_MXPDBW9FhW8NTjvzmpH3Cd-aDmNmwV5JE08ufbgTUz3oXNLyUFd6FWdDV_ft-DZtbUiKLyJtN30m88EaTKZkbmOm9URJCwEqX10pWLcCc4JclS2sjb56fD-T70mre9mxYt-iZQjexiQf00jRNjuSMvSZLaREWJZ5CY6ZALjfFROLTcBogsTBjFhWCaqUQMuY3N0Kb-AVTGk7E5BBLYMGbCM5EVBsez2JiYaaUji-JKiSOISj1JXdQUd60tXmWZPPYiVwqWTsGS-RIVfARsJTjNy2r8LXJdLoT8ZiESwf9v4cty6SS-P-6niBqbyRIHIYPCIFew-Pg_E1xArdV7uJf37W7nBDbcnTyh7BQqi9nSnCF1WaTnhWl-ADUd7Os
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Under-canopy+UAV+laser+scanning+for+accurate+forest+field+measurements&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Hyypp%C3%A4%2C+Eric&rft.au=Hyypp%C3%A4%2C+Juha&rft.au=Hakala%2C+Teemu&rft.au=Kukko%2C+Antero&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=164&rft.spage=41&rft.epage=60&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.03.021&rft.externalDocID=S0924271620300915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon