Under-canopy UAV laser scanning for accurate forest field measurements
[Display omitted] Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying activities. From a forest monitoring perspective, there are several technological and operational aspects to address concernin...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 164; pp. 41 - 60 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 1872-8235 |
DOI | 10.1016/j.isprsjprs.2020.03.021 |
Cover
Abstract | [Display omitted]
Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying activities. From a forest monitoring perspective, there are several technological and operational aspects to address concerning under-canopy flying unmanned airborne vehicles (UAV). To demonstrate this emerging technology, we investigated tree detection and stem curve estimation using laser scanning data obtained with an under-canopy flying UAV. To this end, we mounted a Kaarta Stencil-1 laser scanner with an integrated simultaneous localization and mapping (SLAM) system on board an UAV that was manually piloted with the help of video goggles receiving a live video feed from the onboard camera of the UAV. Using the under-canopy flying UAV, we collected SLAM-corrected point cloud data in a boreal forest on two 32 m × 32 m test sites that were characterized as sparse (n = 42 trees) and obstructed (n = 43 trees), respectively. Novel data processing algorithms were applied for the point clouds in order to detect the stems of individual trees and to extract their stem curves and diameters at breast height (DBH). The estimated tree attributes were compared against highly accurate field reference data that was acquired semi-manually with a multi-scan terrestrial laser scanner (TLS). The proposed method succeeded in detecting 93% of the stems in the sparse plot and 84% of the stems in the obstructed plot. In the sparse plot, the DBH and stem curve estimates had a root-mean-squared error (RMSE) of 0.60 cm (2.2%) and 1.2 cm (5.0%), respectively, whereas the corresponding values for the obstructed plot were 0.92 cm (3.1%) and 1.4 cm (5.2%). By combining the stem curves extracted from the under-canopy UAV laser scanning data with tree heights derived from above-canopy UAV laser scanning data, we computed stem volumes for the detected trees with a relative RMSE of 10.1% in both plots. Thus, the combination of under-canopy and above-canopy UAV laser scanning allowed us to extract the stem volumes with an accuracy comparable to the past best studies based on TLS in boreal forest conditions. Since the stems of several spruces located on the test sites suffered from severe occlusion and could not be detected with the stem-based method, we developed a separate work flow capable of detecting trees with occluded stems. The proposed work flow enabled us to detect 98% of trees in the sparse plot and 93% of the trees in the obstructed plot with a 100% correction level in both plots. A key benefit provided by the under-canopy UAV laser scanner is the short period of time required for data collection, currently demonstrated to be much faster than the time required for field measurements and TLS. The quality of the measurements acquired with the under-canopy flying UAV combined with the demonstrated efficiency indicates operational potential for supporting fast and accurate forest resource inventories. |
---|---|
AbstractList | Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying activities. From a forest monitoring perspective, there are several technological and operational aspects to address concerning under-canopy flying unmanned airborne vehicles (UAV). To demonstrate this emerging technology, we investigated tree detection and stem curve estimation using laser scanning data obtained with an under-canopy flying UAV. To this end, we mounted a Kaarta Stencil-1 laser scanner with an integrated simultaneous localization and mapping (SLAM) system on board an UAV that was manually piloted with the help of video goggles receiving a live video feed from the onboard camera of the UAV. Using the under-canopy flying UAV, we collected SLAM-corrected point cloud data in a boreal forest on two 32 m × 32 m test sites that were characterized as sparse (n = 42 trees) and obstructed (n = 43 trees), respectively. Novel data processing algorithms were applied for the point clouds in order to detect the stems of individual trees and to extract their stem curves and diameters at breast height (DBH). The estimated tree attributes were compared against highly accurate field reference data that was acquired semi-manually with a multi-scan terrestrial laser scanner (TLS). The proposed method succeeded in detecting 93% of the stems in the sparse plot and 84% of the stems in the obstructed plot. In the sparse plot, the DBH and stem curve estimates had a root-mean-squared error (RMSE) of 0.60 cm (2.2%) and 1.2 cm (5.0%), respectively, whereas the corresponding values for the obstructed plot were 0.92 cm (3.1%) and 1.4 cm (5.2%). By combining the stem curves extracted from the under-canopy UAV laser scanning data with tree heights derived from above-canopy UAV laser scanning data, we computed stem volumes for the detected trees with a relative RMSE of 10.1% in both plots. Thus, the combination of under-canopy and above-canopy UAV laser scanning allowed us to extract the stem volumes with an accuracy comparable to the past best studies based on TLS in boreal forest conditions. Since the stems of several spruces located on the test sites suffered from severe occlusion and could not be detected with the stem-based method, we developed a separate work flow capable of detecting trees with occluded stems. The proposed work flow enabled us to detect 98% of trees in the sparse plot and 93% of the trees in the obstructed plot with a 100% correction level in both plots. A key benefit provided by the under-canopy UAV laser scanner is the short period of time required for data collection, currently demonstrated to be much faster than the time required for field measurements and TLS. The quality of the measurements acquired with the under-canopy flying UAV combined with the demonstrated efficiency indicates operational potential for supporting fast and accurate forest resource inventories. [Display omitted] Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying activities. From a forest monitoring perspective, there are several technological and operational aspects to address concerning under-canopy flying unmanned airborne vehicles (UAV). To demonstrate this emerging technology, we investigated tree detection and stem curve estimation using laser scanning data obtained with an under-canopy flying UAV. To this end, we mounted a Kaarta Stencil-1 laser scanner with an integrated simultaneous localization and mapping (SLAM) system on board an UAV that was manually piloted with the help of video goggles receiving a live video feed from the onboard camera of the UAV. Using the under-canopy flying UAV, we collected SLAM-corrected point cloud data in a boreal forest on two 32 m × 32 m test sites that were characterized as sparse (n = 42 trees) and obstructed (n = 43 trees), respectively. Novel data processing algorithms were applied for the point clouds in order to detect the stems of individual trees and to extract their stem curves and diameters at breast height (DBH). The estimated tree attributes were compared against highly accurate field reference data that was acquired semi-manually with a multi-scan terrestrial laser scanner (TLS). The proposed method succeeded in detecting 93% of the stems in the sparse plot and 84% of the stems in the obstructed plot. In the sparse plot, the DBH and stem curve estimates had a root-mean-squared error (RMSE) of 0.60 cm (2.2%) and 1.2 cm (5.0%), respectively, whereas the corresponding values for the obstructed plot were 0.92 cm (3.1%) and 1.4 cm (5.2%). By combining the stem curves extracted from the under-canopy UAV laser scanning data with tree heights derived from above-canopy UAV laser scanning data, we computed stem volumes for the detected trees with a relative RMSE of 10.1% in both plots. Thus, the combination of under-canopy and above-canopy UAV laser scanning allowed us to extract the stem volumes with an accuracy comparable to the past best studies based on TLS in boreal forest conditions. Since the stems of several spruces located on the test sites suffered from severe occlusion and could not be detected with the stem-based method, we developed a separate work flow capable of detecting trees with occluded stems. The proposed work flow enabled us to detect 98% of trees in the sparse plot and 93% of the trees in the obstructed plot with a 100% correction level in both plots. A key benefit provided by the under-canopy UAV laser scanner is the short period of time required for data collection, currently demonstrated to be much faster than the time required for field measurements and TLS. The quality of the measurements acquired with the under-canopy flying UAV combined with the demonstrated efficiency indicates operational potential for supporting fast and accurate forest resource inventories. |
Author | Wulder, Michael A. Hakala, Teemu Kukko, Antero Liang, Xinlian Hyyppä, Eric Virtanen, Juho-Pekka Wang, Yunsheng Kaartinen, Harri Holopainen, Markus White, Joanne C. Pohjavirta, Onni Hyyppä, Juha Pyörälä, Jiri Yu, Xiaowei |
Author_xml | – sequence: 1 givenname: Eric surname: Hyyppä fullname: Hyyppä, Eric email: eric.hyyppa@gmail.com organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland – sequence: 2 givenname: Juha surname: Hyyppä fullname: Hyyppä, Juha email: juha.coelasr@gmail.com organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland – sequence: 3 givenname: Teemu surname: Hakala fullname: Hakala, Teemu email: teemu.hakala@nls.fi organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland – sequence: 4 givenname: Antero surname: Kukko fullname: Kukko, Antero email: antero.kukko@nls.fi organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland – sequence: 5 givenname: Michael A. surname: Wulder fullname: Wulder, Michael A. email: mike.wulder@canada.ca organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada – sequence: 6 givenname: Joanne C. surname: White fullname: White, Joanne C. email: joanne.white@canada.ca organization: Canadian Forest Service (Pacific Forestry Centre), Natural Resources Canada, 506 West Burnside Road, Victoria, British Columbia V8Z 1M5, Canada – sequence: 7 givenname: Jiri surname: Pyörälä fullname: Pyörälä, Jiri email: jiri.pyorala@helsinki.fi organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland – sequence: 8 givenname: Xiaowei surname: Yu fullname: Yu, Xiaowei email: xiaowei.yu@nls.fi organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland – sequence: 9 givenname: Yunsheng orcidid: 0000-0002-2552-8253 surname: Wang fullname: Wang, Yunsheng email: yunsheng.wang@nls.fi organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland – sequence: 10 givenname: Juho-Pekka orcidid: 0000-0003-4674-0373 surname: Virtanen fullname: Virtanen, Juho-Pekka email: juho-pekka.virtanen@aalto.fi organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland – sequence: 11 givenname: Onni surname: Pohjavirta fullname: Pohjavirta, Onni email: onni.pohjavirta@aalto.fi organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland – sequence: 12 givenname: Xinlian orcidid: 0000-0002-1585-2340 surname: Liang fullname: Liang, Xinlian email: xinlian.liang@nls.fi organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland – sequence: 13 givenname: Markus surname: Holopainen fullname: Holopainen, Markus email: markus.holopainen@helsinki.fi organization: Department of Forest Sciences, University of Helsinki, FI-00014 Helsinki, Finland – sequence: 14 givenname: Harri surname: Kaartinen fullname: Kaartinen, Harri email: harri.kaartinen@nls.fi organization: Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, 02431 Masala, Finland |
BookMark | eNqNkLFOwzAQhi1UJNrCM5CRJeFsJ3EyMFQVBaRKLC2r5Thn5Chxgp0i9e1JVcTAAsPpdKf_O52-BZm53iEhtxQSCjS_bxIbBh-aqRIGDBLgCTB6Qea0ECwuGM9mZA4lS2MmaH5FFiE0AECzvJiTzd7V6GOtXD8co_3qLWpVQB-FaeOse49M7yOl9cGrEU8DhjEyFts66lCFg8cO3RiuyaVRbcCb774ku83jbv0cb1-fXtarbax5KcaYV1VRoqE5ZVlZVqZUeckQMqEzKjTN06w21KQi5yBQUSFAgypFTU2Btan4ktydzw6-_zhMr8jOBo1tqxz2hyBZymmRgoBiij6co9r3IXg0UttRjbZ3o1e2lRTkSZ9s5I8-edIngctJ38SLX_zgbaf88R_k6kziJOLTopdBW3Qaa-tRj7Lu7Z83vgD_s5LJ |
CitedBy_id | crossref_primary_10_1109_TIM_2024_3413139 crossref_primary_10_1016_j_ecolind_2021_108156 crossref_primary_10_3390_rs14133205 crossref_primary_10_3390_f14081601 crossref_primary_10_1016_j_ecoinf_2024_102774 crossref_primary_10_1016_j_eswa_2024_125519 crossref_primary_10_1109_TGRS_2024_3401393 crossref_primary_10_1080_19475705_2021_1964617 crossref_primary_10_1016_j_isprsjprs_2021_01_008 crossref_primary_10_3390_fire7020059 crossref_primary_10_1002_ece3_70463 crossref_primary_10_33904_ejfe_1174123 crossref_primary_10_1016_j_ophoto_2021_100007 crossref_primary_10_1002_esp_5540 crossref_primary_10_1016_j_compag_2022_107069 crossref_primary_10_1139_cjfr_2020_0322 crossref_primary_10_3390_drones9010027 crossref_primary_10_1016_j_jag_2023_103474 crossref_primary_10_1016_j_fecs_2023_100088 crossref_primary_10_1016_j_jag_2022_103014 crossref_primary_10_1016_j_ecolind_2025_113293 crossref_primary_10_3390_f12040397 crossref_primary_10_1016_j_isprsjprs_2022_03_004 crossref_primary_10_3390_ijgi10110762 crossref_primary_10_1016_j_jag_2024_103928 crossref_primary_10_1016_j_isprsjprs_2022_07_021 crossref_primary_10_3390_rs16101734 crossref_primary_10_1016_j_jag_2023_103426 crossref_primary_10_1016_j_ophoto_2023_100039 crossref_primary_10_1080_07038992_2023_2295470 crossref_primary_10_1016_j_jag_2022_103104 crossref_primary_10_1016_j_isprsjprs_2021_12_006 crossref_primary_10_1016_j_ophoto_2025_100087 crossref_primary_10_1109_ACCESS_2021_3127566 crossref_primary_10_3390_f15060939 crossref_primary_10_3390_rs14071649 crossref_primary_10_1016_j_srs_2022_100050 crossref_primary_10_1109_TGRS_2024_3439438 crossref_primary_10_1016_j_ophoto_2023_100040 crossref_primary_10_1016_j_jag_2024_103798 crossref_primary_10_1016_j_fecs_2022_100080 crossref_primary_10_3390_rs16101721 crossref_primary_10_3390_rs12172739 crossref_primary_10_3390_rs16183536 crossref_primary_10_3390_f14081581 crossref_primary_10_3390_rs12172865 crossref_primary_10_1016_j_srs_2024_100121 crossref_primary_10_1109_MGRS_2022_3168135 crossref_primary_10_3390_rs13030352 crossref_primary_10_3390_rs14225861 crossref_primary_10_1016_j_jag_2024_103828 crossref_primary_10_3390_drones5040115 crossref_primary_10_1186_s40663_021_00290_3 crossref_primary_10_3390_f14122392 crossref_primary_10_1016_j_compag_2022_107209 crossref_primary_10_3390_drones9030194 crossref_primary_10_3390_drones6090256 crossref_primary_10_1016_j_isprsjprs_2024_04_025 crossref_primary_10_1016_j_rse_2021_112857 crossref_primary_10_1093_forestry_cpad024 crossref_primary_10_3390_rs12223829 crossref_primary_10_3390_f14061122 crossref_primary_10_3390_rs12172672 crossref_primary_10_3390_rs16071261 crossref_primary_10_3390_f13081163 crossref_primary_10_3390_rs16173292 crossref_primary_10_1029_2021WR031168 crossref_primary_10_1109_MGRS_2021_3122248 crossref_primary_10_1016_j_ifacol_2022_11_134 crossref_primary_10_3390_f15111882 crossref_primary_10_1016_j_jag_2022_103056 crossref_primary_10_1016_j_jag_2024_104304 crossref_primary_10_1007_s40725_022_00160_3 crossref_primary_10_3390_drones8100577 crossref_primary_10_3390_rs13132576 crossref_primary_10_2208_jscejer_77_6_II_99 crossref_primary_10_3390_f12070856 crossref_primary_10_1016_j_jrmge_2023_12_004 crossref_primary_10_3390_su15032212 crossref_primary_10_1007_s40725_024_00225_5 crossref_primary_10_1016_j_jenvman_2024_123656 crossref_primary_10_1093_aob_mcab111 crossref_primary_10_3390_rs15071942 crossref_primary_10_1016_j_jag_2022_103029 crossref_primary_10_3390_buildings11090386 crossref_primary_10_1016_j_paerosci_2024_101005 crossref_primary_10_3389_fpls_2022_1041791 crossref_primary_10_1016_j_foreco_2023_121530 crossref_primary_10_3390_f12030327 crossref_primary_10_1016_j_rse_2024_114414 crossref_primary_10_1088_1361_6501_abc867 crossref_primary_10_1186_s40663_020_00261_0 crossref_primary_10_3390_rs15071790 crossref_primary_10_1016_j_isprsjprs_2020_11_006 crossref_primary_10_3390_drones5020043 crossref_primary_10_3390_rs14081806 crossref_primary_10_1080_10095020_2024_2322765 crossref_primary_10_1016_j_jag_2021_102327 crossref_primary_10_3390_rs12203327 crossref_primary_10_1016_j_jag_2023_103299 crossref_primary_10_1109_JSTARS_2024_3522330 crossref_primary_10_1017_S0263574722001564 crossref_primary_10_1016_j_isprsjprs_2023_01_013 crossref_primary_10_1016_j_jenvman_2022_114862 crossref_primary_10_1016_j_compag_2025_110070 crossref_primary_10_1016_j_isprsjprs_2021_11_022 crossref_primary_10_3390_rs14153738 crossref_primary_10_3390_ijgi13120424 |
Cites_doi | 10.1016/j.envsoft.2016.04.025 10.1007/s40725-019-00094-3 10.1109/TGRS.2013.2253783 10.1016/j.isprsjprs.2010.08.002 10.1109/36.921414 10.3390/rs10040540 10.1016/j.compag.2017.12.034 10.1145/358669.358692 10.3390/f9010006 10.3390/rs11232781 10.3390/rs9080785 10.3390/rs10111845 10.3390/f9070395 10.1109/TGRS.2011.2161613 10.1002/rob.21852 10.3390/s17102371 10.1016/j.isprsjprs.2017.09.006 10.1016/j.compag.2017.07.015 10.1117/12.2279526 10.1109/ACCESS.2018.2868244 10.1016/j.rse.2019.111309 10.3390/rs11060615 10.1016/j.isprsjprs.2018.04.019 10.3390/f10030277 10.3390/rs9010003 10.3390/f7060127 10.1002/rob.20204 10.3390/s140101228 10.3390/s18093145 10.3390/f8020038 10.3390/rs4061519 10.1139/juvs-2013-0017 10.3390/f10050382 10.1007/s10846-015-0292-1 10.1016/j.isprsjprs.2018.11.008 10.3390/rs9111154 10.1186/s40663-019-0173-3 10.1109/LGRS.2013.2297418 10.1016/j.isprsjprs.2018.06.021 10.1016/j.isprsjprs.2017.11.013 10.3390/f6124390 10.1214/09-EJS419 10.3390/f7090206 10.1016/j.isprsjprs.2020.01.018 10.15607/RSS.2007.III.016 10.1109/TGRS.2014.2308208 |
ContentType | Journal Article |
Copyright | 2020 The Authors |
Copyright_xml | – notice: 2020 The Authors |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2020.03.021 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 60 |
ExternalDocumentID | 10_1016_j_isprsjprs_2020_03_021 S0924271620300915 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c397t-3bb89ef1612599bf9a692e057c517c1645df1f476307ea1770c0a97d1f8edfb3 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Sun Sep 28 09:00:45 EDT 2025 Wed Oct 01 04:25:32 EDT 2025 Thu Apr 24 23:09:47 EDT 2025 Fri Feb 23 02:47:53 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Under-canopy flight SLAM UAV Stem curve Airborne laser scanning Stem volume |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c397t-3bb89ef1612599bf9a692e057c517c1645df1f476307ea1770c0a97d1f8edfb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2552-8253 0000-0003-4674-0373 0000-0002-1585-2340 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0924271620300915 |
PQID | 2431840708 |
PQPubID | 24069 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2431840708 crossref_citationtrail_10_1016_j_isprsjprs_2020_03_021 crossref_primary_10_1016_j_isprsjprs_2020_03_021 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_03_021 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Vandapel, Kuffner, Amidi (b0265) 2005 Hyyppä, Virtanen, Jaakkola, Yu, Hyyppä, Liang (b0120) 2017; 9 Magnusson, Lilienthal, Duckett (b0215) 2007; 24 Hyyppä, Kelle, Lehikoinen, Inkinen (b0115) 2001; 39 Fan, Feng, Mannan, Khan, Shen, Saeed (b0070) 2018; 10 Harikumar, A., Bovolo, F., Bruzzone, L., 2017. An approach to conifer stem localization and modeling in high density airborne lidar data. In: Image and Signal Processing for Remote Sensing XXIII. Vol. 10427. International Society for Optics and Photonics, p. 104270Q. Cabo, Del Pozo, Rodríguez-Gonzálvez, Ordóñez, González-Aguilera (b0030) 2018; 10 Kukko, Kaijaluoto, Kaartinen, Lehtola, Jaakkola, Hyyppä (b0155) 2017; 132 Biber, Straßer (b0015) 2003; vol. 3 Qian, Liu, Tang, Chen, Kaartinen, Kukko, Zhu, Liang, Chen, Hyyppä (b0235) 2017; 9 Liang, Wang, Pyörälä, Lehtomäki, Yu, Kaartinen, Kukko, Honkavaara, Issaoui, Nevalainen (b0195) 2019; 6 Hong, Ko, Kim (b0105) 2010 Liang, Litkey, Hyyppa, Kaartinen, Vastaranta, Holopainen (b0190) 2012; 50 Lindström (b0200) 2007; 28 Cui, Lai, Dong, Chen (b0050) 2016; 84 Jež (b0145) 2008 Wang, Pyörälä, Liang, Lehtomäki, Kukko, Yu, Kaartinen, Hyyppä (b0290) 2019; 232 Brede, Lau, Bartholomeus, Kooistra (b0025) 2017; 17 Jaakkola, Hyyppä, Kukko, Yu, Kaartinen, Lehtomäki, Lin (b0130) 2010; 65 Javanmardi, Javanmardi, Gu, Kamijo (b0140) 2018; 6 Luoma, Saarinen, Kankare, Tanhuanpää, Kaartinen, Kukko, Holopainen, Hyyppä, Vastaranta (b0205) 2019; 10 De Boor, De Boor, Mathématicien, De Boor, De Boor (b0055) 1978; Vol. 27 Forsman, Holmgren, Olofsson (b0085) 2016; 7 Pierzchała, Giguère, Astrup (b0225) 2018; 145 Bienert, Georgi, Kunz, Maas, von Oheimb (b0020) 2018; 9 Wallace, Musk, Lucieer (b0280) 2014; 52 Tang, Chen, Kukko, Kaartinen, Jaakkola, Khoramshahi, Hakala, Hyyppä, Holopainen, Hyyppä (b0250) 2015; 6 Del Perugia, Giannetti, Chirici, Travaglini (b0060) 2019; 10 Wallace, Lucieer, Watson, Turner (b0275) 2012; 4 Chisholm, Cui, Lum, Chen (b0045) 2013; 1 Liang, Hyyppä, Kukko, Kaartinen, Jaakkola, Yu (b0170) 2014; 11 Levinson, J., Montemerlo, M., Thrun, S., 2007. Map-based precision vehicle localization in urban environments. In: Robotics: Science and Systems. Vol. 4. Citeseer, p. 1. Liang, Kukko, Hyyppä, Lehtomäki, Pyörälä, Yu, Kaartinen, Jaakkola, Wang (b0180) 2018; 143 Schultz, Gilabert, Bharadwaj, de Haag, Zhu (b0245) 2016 Jaakkola, Hyyppä, Yu, Kukko, Kaartinen, Liang, Hyyppä, Wang (b0135) 2017; 9 Higuti, Velasquez, Magalhaes, Becker, Chowdhary (b0095) 2019; 36 Wang, Lehtomäki, Liang, Pyörälä, Kukko, Jaakkola, Liu, Feng, Chen, Hyyppä (b0285) 2019; 147 Iglhaut, Cabo, Puliti, Piermattei, O’Connor, Rosette (b0125) 2019; 5 Al-Sharadqah, Chernov (b0005) 2009; 3 Tu, Takeuchi, Miyajima, Takeda (b0260) 2016 Holmgren, Tulldahl, Nordlöf, Willén, Olsson (b0100) 2019; 11 Jo, Kim, Sunwoo (b0150) 2018; 18 Censi (b0035) 2008 Bauwens, Bartholomeus, Calders, Lejeune (b0010) 2016; 7 Hyyppä, Kukko, Kaijaluoto, White, Wulder, Pyörälä, Liang, Yu, Wang, Kaartinen (b0110) 2020; 161 Vian, J.L., Przybylko, J., 2012. Tree metrology system. US Patent 9,198,363. Pollock, D., et al., 1993. Smoothing with cubic splines. Marselis, Yebra, Jovanovic, van Dijk (b0220) 2016; 82 Rusinkiewicz, S., Levoy, M., 2001. Efficient variants of the ICP algorithm. In: 3DIM. Vol. 1. pp. 145–152. Liang, Kukko, Kaartinen, Hyyppä, Yu, Jaakkola, Wang (b0185) 2014; 14 Liang, Hyyppä, Kaartinen, Lehtomäki, Pyörälä, Pfeifer, Holopainen, Brolly, Francesco, Hackenberg (b0165) 2018; 144 Wieser, Mandlburger, Hollaus, Otepka, Glira, Pfeifer (b0295) 2017; 9 Fischler, Bolles (b0075) 1981; 24 Liang, Kankare, Yu, Hyyppä, Holopainen (b0175) 2014; 52 Ester, Kriegel, Sander, Xu (b0065) 1996; 96 Tomaštík, Saloň, Tunák, Chudỳ, Kardoš (b0255) 2017; 141 Čerňava, Mokroš, Tuček, Antal, Slatkovská (b0040) 2019; 11 Forsman, Börlin, Olofsson, Reese, Holmgren (b0080) 2018; 135 Luoma, Saarinen, Wulder, White, Vastaranta, Holopainen, Hyyppä (b0210) 2017; 8 Al-Sharadqah (10.1016/j.isprsjprs.2020.03.021_b0005) 2009; 3 Luoma (10.1016/j.isprsjprs.2020.03.021_b0205) 2019; 10 Fischler (10.1016/j.isprsjprs.2020.03.021_b0075) 1981; 24 Schultz (10.1016/j.isprsjprs.2020.03.021_b0245) 2016 Wang (10.1016/j.isprsjprs.2020.03.021_b0285) 2019; 147 Liang (10.1016/j.isprsjprs.2020.03.021_b0170) 2014; 11 Liang (10.1016/j.isprsjprs.2020.03.021_b0190) 2012; 50 10.1016/j.isprsjprs.2020.03.021_b0240 10.1016/j.isprsjprs.2020.03.021_b0160 Qian (10.1016/j.isprsjprs.2020.03.021_b0235) 2017; 9 Liang (10.1016/j.isprsjprs.2020.03.021_b0180) 2018; 143 Vandapel (10.1016/j.isprsjprs.2020.03.021_b0265) 2005 Liang (10.1016/j.isprsjprs.2020.03.021_b0185) 2014; 14 Liang (10.1016/j.isprsjprs.2020.03.021_b0195) 2019; 6 Jaakkola (10.1016/j.isprsjprs.2020.03.021_b0130) 2010; 65 Censi (10.1016/j.isprsjprs.2020.03.021_b0035) 2008 Magnusson (10.1016/j.isprsjprs.2020.03.021_b0215) 2007; 24 Del Perugia (10.1016/j.isprsjprs.2020.03.021_b0060) 2019; 10 Tu (10.1016/j.isprsjprs.2020.03.021_b0260) 2016 Tang (10.1016/j.isprsjprs.2020.03.021_b0250) 2015; 6 Liang (10.1016/j.isprsjprs.2020.03.021_b0175) 2014; 52 Bauwens (10.1016/j.isprsjprs.2020.03.021_b0010) 2016; 7 10.1016/j.isprsjprs.2020.03.021_b0090 Javanmardi (10.1016/j.isprsjprs.2020.03.021_b0140) 2018; 6 Čerňava (10.1016/j.isprsjprs.2020.03.021_b0040) 2019; 11 Forsman (10.1016/j.isprsjprs.2020.03.021_b0080) 2018; 135 Forsman (10.1016/j.isprsjprs.2020.03.021_b0085) 2016; 7 De Boor (10.1016/j.isprsjprs.2020.03.021_b0055) 1978; Vol. 27 Higuti (10.1016/j.isprsjprs.2020.03.021_b0095) 2019; 36 Jaakkola (10.1016/j.isprsjprs.2020.03.021_b0135) 2017; 9 Brede (10.1016/j.isprsjprs.2020.03.021_b0025) 2017; 17 Cui (10.1016/j.isprsjprs.2020.03.021_b0050) 2016; 84 Fan (10.1016/j.isprsjprs.2020.03.021_b0070) 2018; 10 Holmgren (10.1016/j.isprsjprs.2020.03.021_b0100) 2019; 11 Liang (10.1016/j.isprsjprs.2020.03.021_b0165) 2018; 144 Jo (10.1016/j.isprsjprs.2020.03.021_b0150) 2018; 18 Lindström (10.1016/j.isprsjprs.2020.03.021_b0200) 2007; 28 Wallace (10.1016/j.isprsjprs.2020.03.021_b0280) 2014; 52 Wang (10.1016/j.isprsjprs.2020.03.021_b0290) 2019; 232 Jež (10.1016/j.isprsjprs.2020.03.021_b0145) 2008 Ester (10.1016/j.isprsjprs.2020.03.021_b0065) 1996; 96 Wallace (10.1016/j.isprsjprs.2020.03.021_b0275) 2012; 4 Hong (10.1016/j.isprsjprs.2020.03.021_b0105) 2010 Marselis (10.1016/j.isprsjprs.2020.03.021_b0220) 2016; 82 Kukko (10.1016/j.isprsjprs.2020.03.021_b0155) 2017; 132 Biber (10.1016/j.isprsjprs.2020.03.021_b0015) 2003; vol. 3 Chisholm (10.1016/j.isprsjprs.2020.03.021_b0045) 2013; 1 Pierzchała (10.1016/j.isprsjprs.2020.03.021_b0225) 2018; 145 Bienert (10.1016/j.isprsjprs.2020.03.021_b0020) 2018; 9 Tomaštík (10.1016/j.isprsjprs.2020.03.021_b0255) 2017; 141 Hyyppä (10.1016/j.isprsjprs.2020.03.021_b0115) 2001; 39 10.1016/j.isprsjprs.2020.03.021_b0270 Hyyppä (10.1016/j.isprsjprs.2020.03.021_b0120) 2017; 9 Cabo (10.1016/j.isprsjprs.2020.03.021_b0030) 2018; 10 Iglhaut (10.1016/j.isprsjprs.2020.03.021_b0125) 2019; 5 Wieser (10.1016/j.isprsjprs.2020.03.021_b0295) 2017; 9 Hyyppä (10.1016/j.isprsjprs.2020.03.021_b0110) 2020; 161 Luoma (10.1016/j.isprsjprs.2020.03.021_b0210) 2017; 8 10.1016/j.isprsjprs.2020.03.021_b0230 |
References_xml | – volume: 9 start-page: 395 year: 2018 ident: b0020 article-title: Comparison and combination of mobile and terrestrial laser scanning for natural forest inventories publication-title: Forests – volume: 52 start-page: 1739 year: 2014 end-page: 1748 ident: b0175 article-title: Automated stem curve measurement using terrestrial laser scanning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 10 start-page: 540 year: 2018 ident: b0030 article-title: Comparing terrestrial laser scanning (TLS) and wearable laser scanning (WLS) for individual tree modeling at plot level publication-title: Remote Sens. – volume: 84 start-page: 259 year: 2016 end-page: 276 ident: b0050 article-title: Autonomous navigation of UAV in foliage environment publication-title: J. Intell. Robot. Syst. – start-page: 343 year: 2008 end-page: 353 ident: b0145 article-title: 3D mapping and localization using leveled map accelerated ICP publication-title: European Robotics Symposium 2008 – volume: 9 start-page: 1154 year: 2017 ident: b0295 article-title: A case study of UAS-borne laser scanning for measurement of tree stem diameter publication-title: Remote Sens. – volume: 36 start-page: 547 year: 2019 end-page: 567 ident: b0095 article-title: Under canopy light detection and ranging-based autonomous navigation publication-title: J. Field Robot. – start-page: 1893 year: 2010 end-page: 1898 ident: b0105 article-title: VICP: Velocity updating iterative closest point algorithm publication-title: 2010 IEEE International Conference on Robotics and Automation – volume: 9 start-page: 785 year: 2017 ident: b0135 article-title: Autonomous collection of forest field reference the outlook and a first step with UAV laser scanning publication-title: Remote Sens. – volume: 9 start-page: 3 year: 2017 ident: b0235 article-title: An integrated GNSS/INS/LiDAR-SLAM positioning method for highly accurate forest stem mapping publication-title: Remote Sens. – volume: 50 start-page: 661 year: 2012 end-page: 670 ident: b0190 article-title: Automatic stem mapping using single-scan terrestrial laser scanning publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Pollock, D., et al., 1993. Smoothing with cubic splines. – volume: 6 start-page: 20 year: 2019 ident: b0195 article-title: Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements publication-title: Forest Ecosyst. – volume: vol. 3 start-page: 2743 year: 2003 end-page: 2748 ident: b0015 article-title: The normal distributions transform: a new approach to laser scan matching publication-title: Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453) – volume: 144 start-page: 137 year: 2018 end-page: 179 ident: b0165 article-title: International benchmarking of terrestrial laser scanning approaches for forest inventories publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 143 start-page: 97 year: 2018 end-page: 107 ident: b0180 article-title: In-situ measurements from mobile platforms: an emerging approach to address the old challenges associated with forest inventories publication-title: ISPRS J. Photogramm. Remote Sens. – volume: Vol. 27 year: 1978 ident: b0055 publication-title: A practical guide to splines – volume: 135 start-page: 84 year: 2018 end-page: 92 ident: b0080 article-title: Bias of cylinder diameter estimation from ground-based laser scanners with different beam widths: a simulation study publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 96 start-page: 226 year: 1996 end-page: 231 ident: b0065 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise. In publication-title: Kdd – start-page: 4624 year: 2005 end-page: 4629 ident: b0265 article-title: Planning 3-D path networks in unstructured environments publication-title: Proceedings of the 2005 IEEE International Conference on Robotics and Automation – volume: 9 start-page: 6 year: 2017 ident: b0120 article-title: Feasibility of Google Tango and Kinect for crowdsourcing forestry information publication-title: Forests – start-page: 739 year: 2016 end-page: 746 ident: b0245 publication-title: A navigation and mapping method for UAS during under-the-canopy forest operations – reference: Vian, J.L., Przybylko, J., 2012. Tree metrology system. US Patent 9,198,363. – volume: 5 start-page: 155 year: 2019 end-page: 168 ident: b0125 article-title: Structure from motion photogrammetry in forestry: a review publication-title: Curr. Forest. Rep. – volume: 7 start-page: 206 year: 2016 ident: b0085 article-title: Tree stem diameter estimation from mobile laser scanning using line-wise intensity-based clustering publication-title: Forests – volume: 24 start-page: 803 year: 2007 end-page: 827 ident: b0215 article-title: Scan registration for autonomous mining vehicles using 3D-NDT publication-title: J. Field Robot. – volume: 132 start-page: 199 year: 2017 end-page: 209 ident: b0155 article-title: Graph SLAM correction for single scanner MLS forest data under boreal forest canopy publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 10 start-page: 382 year: 2019 ident: b0205 article-title: Examining changes in stem taper and volume growth with two-date 3d point clouds publication-title: Forests – volume: 4 start-page: 1519 year: 2012 end-page: 1543 ident: b0275 article-title: Development of a UAV-lidar system with application to forest inventory publication-title: Remote Sens. – volume: 24 start-page: 381 year: 1981 end-page: 395 ident: b0075 article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography publication-title: Commun. ACM – volume: 39 start-page: 969 year: 2001 end-page: 975 ident: b0115 article-title: A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 10 start-page: 1845 year: 2018 ident: b0070 article-title: Estimating tree position, diameter at breast height, and tree height in real-time using a mobile phone with RGB-D slam publication-title: Remote Sens. – volume: 1 start-page: 61 year: 2013 end-page: 68 ident: b0045 article-title: UAV lidar for below-canopy forest surveys publication-title: J. Unmanned Veh. Syst. – reference: Harikumar, A., Bovolo, F., Bruzzone, L., 2017. An approach to conifer stem localization and modeling in high density airborne lidar data. In: Image and Signal Processing for Remote Sensing XXIII. Vol. 10427. International Society for Optics and Photonics, p. 104270Q. – volume: 147 start-page: 132 year: 2019 end-page: 145 ident: b0285 article-title: Is field-measured tree height as reliable as believed–a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 52 start-page: 7160 year: 2014 end-page: 7169 ident: b0280 article-title: An assessment of the repeatability of automatic forest inventory metrics derived from UAV-borne laser scanning data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 3 start-page: 886 year: 2009 end-page: 911 ident: b0005 article-title: Error analysis for circle fitting algorithms publication-title: Electron. J. Stat. – volume: 11 start-page: 615 year: 2019 ident: b0040 article-title: Processing chain for estimation of tree diameter from GNSS-IMU-based mobile laser scanning data publication-title: Remote Sens. – reference: Rusinkiewicz, S., Levoy, M., 2001. Efficient variants of the ICP algorithm. In: 3DIM. Vol. 1. pp. 145–152. – volume: 6 start-page: 4588 year: 2015 end-page: 4606 ident: b0250 article-title: SLAM-aided stem mapping for forest inventory with small-footprint mobile lidar publication-title: Forests – start-page: 1712 year: 2016 end-page: 1719 ident: b0260 article-title: Compressing continuous point cloud data using image compression methods publication-title: 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC) – volume: 10 start-page: 277 year: 2019 ident: b0060 article-title: Influence of scan density on the estimation of single-tree attributes by hand-held mobile laser scanning publication-title: Forests – volume: 232 start-page: 111309 year: 2019 ident: b0290 article-title: In situ biomass estimation at tree and plot levels: What did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest publication-title: Remote Sens. Environ. – volume: 161 start-page: 246 year: 2020 end-page: 262 ident: b0110 article-title: Accurate derivation of stem curve and volume using backpack mobile laser scanning publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 11 start-page: 2781 year: 2019 ident: b0100 article-title: Mobile laser scanning for estimating tree stem diameter using segmentation and tree spine calibration publication-title: Remote Sens. – volume: 11 start-page: 1504 year: 2014 end-page: 1508 ident: b0170 article-title: The use of a mobile laser scanning system for mapping large forest plots publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 6 start-page: 49850 year: 2018 end-page: 49867 ident: b0140 article-title: Factors to evaluate capability of map for vehicle localization publication-title: IEEE Access – volume: 82 start-page: 142 year: 2016 end-page: 151 ident: b0220 article-title: Deriving comprehensive forest structure information from mobile laser scanning observations using automated point cloud classification publication-title: Environ. Modell. Softw. – volume: 141 start-page: 109 year: 2017 end-page: 117 ident: b0255 article-title: Tango in forests – an initial experience of the use of the new Google technology in connection with forest inventory tasks publication-title: Comput. Electron. Agric. – reference: Levinson, J., Montemerlo, M., Thrun, S., 2007. Map-based precision vehicle localization in urban environments. In: Robotics: Science and Systems. Vol. 4. Citeseer, p. 1. – volume: 14 start-page: 1228 year: 2014 end-page: 1248 ident: b0185 article-title: Possibilities of a personal laser scanning system for forest mapping and ecosystem services publication-title: Sensors – start-page: 19 year: 2008 end-page: 25 ident: b0035 article-title: An ICP variant using a point-to-line metric publication-title: 2008 IEEE International Conference on Robotics and Automation – volume: 8 start-page: 38 year: 2017 ident: b0210 article-title: Assessing precision in conventional field measurements of individual tree attributes publication-title: Forests – volume: 145 start-page: 217 year: 2018 end-page: 225 ident: b0225 article-title: Mapping forests using an unmanned ground vehicle with 3D lidar and graph-SLAM publication-title: Comput. Electron. Agric. – volume: 17 start-page: 2371 year: 2017 ident: b0025 article-title: Comparing Riegl RiCOPTER UAV LiDAR derived canopy height and DBH with terrestrial lidar publication-title: Sensors – volume: 18 start-page: 3145 year: 2018 ident: b0150 article-title: Simultaneous localization and map change update for the high definition map-based autonomous driving car publication-title: Sensors – volume: 65 start-page: 514 year: 2010 end-page: 522 ident: b0130 article-title: A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 28 start-page: 240 year: 2007 end-page: 251 ident: b0200 article-title: Basic density of norway spruce. Part II. Predicted by stem taper, mean growth ring width, and factors related to crown development publication-title: Wood Fiber Sci. – volume: 7 start-page: 127 year: 2016 ident: b0010 article-title: Forest inventory with terrestrial lidar: a comparison of static and hand-held mobile laser scanning publication-title: Forests – volume: 82 start-page: 142 year: 2016 ident: 10.1016/j.isprsjprs.2020.03.021_b0220 article-title: Deriving comprehensive forest structure information from mobile laser scanning observations using automated point cloud classification publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2016.04.025 – volume: 5 start-page: 155 issue: 3 year: 2019 ident: 10.1016/j.isprsjprs.2020.03.021_b0125 article-title: Structure from motion photogrammetry in forestry: a review publication-title: Curr. Forest. Rep. doi: 10.1007/s40725-019-00094-3 – volume: 52 start-page: 1739 issue: 3 year: 2014 ident: 10.1016/j.isprsjprs.2020.03.021_b0175 article-title: Automated stem curve measurement using terrestrial laser scanning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2253783 – volume: 65 start-page: 514 issue: 6 year: 2010 ident: 10.1016/j.isprsjprs.2020.03.021_b0130 article-title: A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2010.08.002 – volume: 39 start-page: 969 issue: 5 year: 2001 ident: 10.1016/j.isprsjprs.2020.03.021_b0115 article-title: A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.921414 – volume: 10 start-page: 540 issue: 4 year: 2018 ident: 10.1016/j.isprsjprs.2020.03.021_b0030 article-title: Comparing terrestrial laser scanning (TLS) and wearable laser scanning (WLS) for individual tree modeling at plot level publication-title: Remote Sens. doi: 10.3390/rs10040540 – volume: 145 start-page: 217 year: 2018 ident: 10.1016/j.isprsjprs.2020.03.021_b0225 article-title: Mapping forests using an unmanned ground vehicle with 3D lidar and graph-SLAM publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.12.034 – volume: 24 start-page: 381 issue: 6 year: 1981 ident: 10.1016/j.isprsjprs.2020.03.021_b0075 article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography publication-title: Commun. ACM doi: 10.1145/358669.358692 – volume: vol. 3 start-page: 2743 year: 2003 ident: 10.1016/j.isprsjprs.2020.03.021_b0015 article-title: The normal distributions transform: a new approach to laser scan matching – volume: 9 start-page: 6 issue: 1 year: 2017 ident: 10.1016/j.isprsjprs.2020.03.021_b0120 article-title: Feasibility of Google Tango and Kinect for crowdsourcing forestry information publication-title: Forests doi: 10.3390/f9010006 – volume: 96 start-page: 226 year: 1996 ident: 10.1016/j.isprsjprs.2020.03.021_b0065 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise. In publication-title: Kdd – volume: 11 start-page: 2781 issue: 23 year: 2019 ident: 10.1016/j.isprsjprs.2020.03.021_b0100 article-title: Mobile laser scanning for estimating tree stem diameter using segmentation and tree spine calibration publication-title: Remote Sens. doi: 10.3390/rs11232781 – volume: 9 start-page: 785 issue: 8 year: 2017 ident: 10.1016/j.isprsjprs.2020.03.021_b0135 article-title: Autonomous collection of forest field reference the outlook and a first step with UAV laser scanning publication-title: Remote Sens. doi: 10.3390/rs9080785 – start-page: 343 year: 2008 ident: 10.1016/j.isprsjprs.2020.03.021_b0145 article-title: 3D mapping and localization using leveled map accelerated ICP – volume: 10 start-page: 1845 issue: 11 year: 2018 ident: 10.1016/j.isprsjprs.2020.03.021_b0070 article-title: Estimating tree position, diameter at breast height, and tree height in real-time using a mobile phone with RGB-D slam publication-title: Remote Sens. doi: 10.3390/rs10111845 – volume: 9 start-page: 395 issue: 7 year: 2018 ident: 10.1016/j.isprsjprs.2020.03.021_b0020 article-title: Comparison and combination of mobile and terrestrial laser scanning for natural forest inventories publication-title: Forests doi: 10.3390/f9070395 – volume: 50 start-page: 661 issue: 2 year: 2012 ident: 10.1016/j.isprsjprs.2020.03.021_b0190 article-title: Automatic stem mapping using single-scan terrestrial laser scanning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2011.2161613 – volume: 28 start-page: 240 issue: 2 year: 2007 ident: 10.1016/j.isprsjprs.2020.03.021_b0200 article-title: Basic density of norway spruce. Part II. Predicted by stem taper, mean growth ring width, and factors related to crown development publication-title: Wood Fiber Sci. – volume: 36 start-page: 547 issue: 3 year: 2019 ident: 10.1016/j.isprsjprs.2020.03.021_b0095 article-title: Under canopy light detection and ranging-based autonomous navigation publication-title: J. Field Robot. doi: 10.1002/rob.21852 – volume: 17 start-page: 2371 issue: 10 year: 2017 ident: 10.1016/j.isprsjprs.2020.03.021_b0025 article-title: Comparing Riegl RiCOPTER UAV LiDAR derived canopy height and DBH with terrestrial lidar publication-title: Sensors doi: 10.3390/s17102371 – volume: 132 start-page: 199 year: 2017 ident: 10.1016/j.isprsjprs.2020.03.021_b0155 article-title: Graph SLAM correction for single scanner MLS forest data under boreal forest canopy publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.09.006 – volume: 141 start-page: 109 year: 2017 ident: 10.1016/j.isprsjprs.2020.03.021_b0255 article-title: Tango in forests – an initial experience of the use of the new Google technology in connection with forest inventory tasks publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2017.07.015 – ident: 10.1016/j.isprsjprs.2020.03.021_b0090 doi: 10.1117/12.2279526 – volume: 6 start-page: 49850 year: 2018 ident: 10.1016/j.isprsjprs.2020.03.021_b0140 article-title: Factors to evaluate capability of map for vehicle localization publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2868244 – volume: 232 start-page: 111309 year: 2019 ident: 10.1016/j.isprsjprs.2020.03.021_b0290 article-title: In situ biomass estimation at tree and plot levels: What did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111309 – start-page: 4624 year: 2005 ident: 10.1016/j.isprsjprs.2020.03.021_b0265 article-title: Planning 3-D path networks in unstructured environments – volume: 11 start-page: 615 issue: 6 year: 2019 ident: 10.1016/j.isprsjprs.2020.03.021_b0040 article-title: Processing chain for estimation of tree diameter from GNSS-IMU-based mobile laser scanning data publication-title: Remote Sens. doi: 10.3390/rs11060615 – volume: 143 start-page: 97 year: 2018 ident: 10.1016/j.isprsjprs.2020.03.021_b0180 article-title: In-situ measurements from mobile platforms: an emerging approach to address the old challenges associated with forest inventories publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.04.019 – volume: 10 start-page: 277 issue: 3 year: 2019 ident: 10.1016/j.isprsjprs.2020.03.021_b0060 article-title: Influence of scan density on the estimation of single-tree attributes by hand-held mobile laser scanning publication-title: Forests doi: 10.3390/f10030277 – volume: 9 start-page: 3 issue: 1 year: 2017 ident: 10.1016/j.isprsjprs.2020.03.021_b0235 article-title: An integrated GNSS/INS/LiDAR-SLAM positioning method for highly accurate forest stem mapping publication-title: Remote Sens. doi: 10.3390/rs9010003 – volume: 7 start-page: 127 issue: 6 year: 2016 ident: 10.1016/j.isprsjprs.2020.03.021_b0010 article-title: Forest inventory with terrestrial lidar: a comparison of static and hand-held mobile laser scanning publication-title: Forests doi: 10.3390/f7060127 – volume: 24 start-page: 803 issue: 10 year: 2007 ident: 10.1016/j.isprsjprs.2020.03.021_b0215 article-title: Scan registration for autonomous mining vehicles using 3D-NDT publication-title: J. Field Robot. doi: 10.1002/rob.20204 – volume: 14 start-page: 1228 issue: 1 year: 2014 ident: 10.1016/j.isprsjprs.2020.03.021_b0185 article-title: Possibilities of a personal laser scanning system for forest mapping and ecosystem services publication-title: Sensors doi: 10.3390/s140101228 – volume: 18 start-page: 3145 issue: 9 year: 2018 ident: 10.1016/j.isprsjprs.2020.03.021_b0150 article-title: Simultaneous localization and map change update for the high definition map-based autonomous driving car publication-title: Sensors doi: 10.3390/s18093145 – start-page: 1712 year: 2016 ident: 10.1016/j.isprsjprs.2020.03.021_b0260 article-title: Compressing continuous point cloud data using image compression methods – ident: 10.1016/j.isprsjprs.2020.03.021_b0270 – volume: 8 start-page: 38 issue: 2 year: 2017 ident: 10.1016/j.isprsjprs.2020.03.021_b0210 article-title: Assessing precision in conventional field measurements of individual tree attributes publication-title: Forests doi: 10.3390/f8020038 – ident: 10.1016/j.isprsjprs.2020.03.021_b0240 – volume: 4 start-page: 1519 issue: 6 year: 2012 ident: 10.1016/j.isprsjprs.2020.03.021_b0275 article-title: Development of a UAV-lidar system with application to forest inventory publication-title: Remote Sens. doi: 10.3390/rs4061519 – volume: 1 start-page: 61 issue: 1 year: 2013 ident: 10.1016/j.isprsjprs.2020.03.021_b0045 article-title: UAV lidar for below-canopy forest surveys publication-title: J. Unmanned Veh. Syst. doi: 10.1139/juvs-2013-0017 – start-page: 739 year: 2016 ident: 10.1016/j.isprsjprs.2020.03.021_b0245 – volume: 10 start-page: 382 issue: 5 year: 2019 ident: 10.1016/j.isprsjprs.2020.03.021_b0205 article-title: Examining changes in stem taper and volume growth with two-date 3d point clouds publication-title: Forests doi: 10.3390/f10050382 – volume: 84 start-page: 259 issue: 1–4 year: 2016 ident: 10.1016/j.isprsjprs.2020.03.021_b0050 article-title: Autonomous navigation of UAV in foliage environment publication-title: J. Intell. Robot. Syst. doi: 10.1007/s10846-015-0292-1 – ident: 10.1016/j.isprsjprs.2020.03.021_b0230 – volume: 147 start-page: 132 year: 2019 ident: 10.1016/j.isprsjprs.2020.03.021_b0285 article-title: Is field-measured tree height as reliable as believed–a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.11.008 – volume: 9 start-page: 1154 issue: 11 year: 2017 ident: 10.1016/j.isprsjprs.2020.03.021_b0295 article-title: A case study of UAS-borne laser scanning for measurement of tree stem diameter publication-title: Remote Sens. doi: 10.3390/rs9111154 – volume: 6 start-page: 20 issue: 1 year: 2019 ident: 10.1016/j.isprsjprs.2020.03.021_b0195 article-title: Forest in situ observations using unmanned aerial vehicle as an alternative of terrestrial measurements publication-title: Forest Ecosyst. doi: 10.1186/s40663-019-0173-3 – volume: 11 start-page: 1504 issue: 9 year: 2014 ident: 10.1016/j.isprsjprs.2020.03.021_b0170 article-title: The use of a mobile laser scanning system for mapping large forest plots publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2297418 – volume: Vol. 27 year: 1978 ident: 10.1016/j.isprsjprs.2020.03.021_b0055 – volume: 144 start-page: 137 year: 2018 ident: 10.1016/j.isprsjprs.2020.03.021_b0165 article-title: International benchmarking of terrestrial laser scanning approaches for forest inventories publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.06.021 – start-page: 1893 year: 2010 ident: 10.1016/j.isprsjprs.2020.03.021_b0105 article-title: VICP: Velocity updating iterative closest point algorithm – start-page: 19 year: 2008 ident: 10.1016/j.isprsjprs.2020.03.021_b0035 article-title: An ICP variant using a point-to-line metric – volume: 135 start-page: 84 year: 2018 ident: 10.1016/j.isprsjprs.2020.03.021_b0080 article-title: Bias of cylinder diameter estimation from ground-based laser scanners with different beam widths: a simulation study publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.013 – volume: 6 start-page: 4588 issue: 12 year: 2015 ident: 10.1016/j.isprsjprs.2020.03.021_b0250 article-title: SLAM-aided stem mapping for forest inventory with small-footprint mobile lidar publication-title: Forests doi: 10.3390/f6124390 – volume: 3 start-page: 886 year: 2009 ident: 10.1016/j.isprsjprs.2020.03.021_b0005 article-title: Error analysis for circle fitting algorithms publication-title: Electron. J. Stat. doi: 10.1214/09-EJS419 – volume: 7 start-page: 206 issue: 9 year: 2016 ident: 10.1016/j.isprsjprs.2020.03.021_b0085 article-title: Tree stem diameter estimation from mobile laser scanning using line-wise intensity-based clustering publication-title: Forests doi: 10.3390/f7090206 – volume: 161 start-page: 246 year: 2020 ident: 10.1016/j.isprsjprs.2020.03.021_b0110 article-title: Accurate derivation of stem curve and volume using backpack mobile laser scanning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.01.018 – ident: 10.1016/j.isprsjprs.2020.03.021_b0160 doi: 10.15607/RSS.2007.III.016 – volume: 52 start-page: 7160 issue: 11 year: 2014 ident: 10.1016/j.isprsjprs.2020.03.021_b0280 article-title: An assessment of the repeatability of automatic forest inventory metrics derived from UAV-borne laser scanning data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2308208 |
SSID | ssj0001568 |
Score | 2.6008687 |
Snippet | [Display omitted]
Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour... Surveying and robotic technologies are converging, offering great potential for robotic-assisted data collection and support for labour intensive surveying... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 41 |
SubjectTerms | Airborne laser scanning algorithms boreal forests cameras data collection flight information processing inventories lasers monitoring robots scanners SLAM Stem curve Stem volume stems surveys trees UAV Under-canopy flight unmanned aerial vehicles |
Title | Under-canopy UAV laser scanning for accurate forest field measurements |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2020.03.021 https://www.proquest.com/docview/2431840708 |
Volume | 164 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8235 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001568 issn: 0924-2716 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqMgADggKiPCojsZraeTlhqyqqAqILLepmOY4tWkEb9TF04bdzzqOlSIiBIYOjOzk6X-6-S-6B0A14dJdLNyBB5GniKcVIFHo-SSiVgQS1pswWJz_3gu7Aexz6wwpql7UwNq2ysP25Tc-sdXGnWUizmY5GzRcKoYNjGyCBnoLXs4XmtvsX6PTt5ybNg-XlcJaYWOqtHK_RPJ3Nx3BBoOjQrNupw37zUD9sdeaAOofooECOuJU_3BGq6EkN7X_rJ1hDu8VI87fVMepkE40ISG6arvCg9YoBJ-sZnqt8ShEGtIqlUkvbK8IuYEuc5bPhj813w_kJ6nfu--0uKYYmEAXQYkHcOA4jbZhFLlEUm0gGkaMBlSmfcQXBkZ8YZjwwK5RryTinisqIJ8yEOjGxe4qqk-lEnyHsGT-k3NGB4Rroaah1SJVUgQF2KXkdBaWchCoaitu5Fu-izBwbi7WAhRWwoK4AAdcRXTOmeU-Nv1nuyoMQW-ohwPL_zXxdHp2Al8f-EZETPV0CEcAniHA5Dc__s8EF2rOrPIPsElUXs6W-AqyyiBuZMjbQTuvhqdv7Aj6s6kA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BOxQGxFO8MRKrVTsvJ2wVomopdKFF3SzHtUURtFUfA_-ecx7lISEGhgxJfHJ0vnz3XXK-A7hCj-4L5Uc0SgJDA605TeIgpEPGVKTQrBl3m5MfulGrH9wNwsEa3JR7YVxaZYH9OaZnaF1cqRfarE9Ho_ojw9DBcwWQ0E7R64XrUA1CxOQKVBvtTqu7AmSe74hz46kT-JbmNZpPZ_MXPDBW9FhW8NTjvzmpH3Cd-aDmNmwV5JE08ufbgTUz3oXNLyUFd6FWdDV_ft-DZtbUiKLyJtN30m88EaTKZkbmOm9URJCwEqX10pWLcCc4JclS2sjb56fD-T70mre9mxYt-iZQjexiQf00jRNjuSMvSZLaREWJZ5CY6ZALjfFROLTcBogsTBjFhWCaqUQMuY3N0Kb-AVTGk7E5BBLYMGbCM5EVBsez2JiYaaUji-JKiSOISj1JXdQUd60tXmWZPPYiVwqWTsGS-RIVfARsJTjNy2r8LXJdLoT8ZiESwf9v4cty6SS-P-6niBqbyRIHIYPCIFew-Pg_E1xArdV7uJf37W7nBDbcnTyh7BQqi9nSnCF1WaTnhWl-ADUd7Os |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Under-canopy+UAV+laser+scanning+for+accurate+forest+field+measurements&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Hyypp%C3%A4%2C+Eric&rft.au=Hyypp%C3%A4%2C+Juha&rft.au=Hakala%2C+Teemu&rft.au=Kukko%2C+Antero&rft.date=2020-06-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=164&rft.spage=41&rft.epage=60&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.03.021&rft.externalDocID=S0924271620300915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |