Binuclear Copper(I) Complexes for Near‐Infrared Light‐Emitting Electrochemical Cells
Two binuclear heteroleptic Cu I complexes, namely Cu−NIR1 and Cu−NIR2, bearing rigid chelating diphosphines and π‐conjugated 2,5‐di(pyridin‐2‐yl)thiazolo[5,4‐ d ]thiazole as the bis ‐bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emiss...
Saved in:
Published in | Angewandte Chemie International Edition Vol. 62; no. 38; p. e202305569 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
18.09.2023
Wiley-VCH Verlag |
Edition | International ed. in English |
Subjects | |
Online Access | Get full text |
ISSN | 1433-7851 1521-3773 1521-3773 |
DOI | 10.1002/anie.202305569 |
Cover
Abstract | Two binuclear heteroleptic Cu
I
complexes, namely Cu−NIR1 and Cu−NIR2, bearing rigid chelating diphosphines and π‐conjugated 2,5‐di(pyridin‐2‐yl)thiazolo[5,4‐
d
]thiazole as the
bis
‐bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1–M2) and enables shifting luminescence into the near‐infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal‐to‐ligand charge transfer (
3
MLCT) character as demonstrated by in‐depth photophysical and computational investigation. Noteworthy, X‐ray analysis of the binuclear complexes unravels two interligand π–π‐stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the Cu
I
centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1–M2. These findings prompt the successful use of Cu−NIR1 and Cu−NIR2 in NIR light‐emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white‐emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth‐abundant Cu
I
emitters. |
---|---|
AbstractList | Two binuclear heteroleptic CuI complexes, namely Cu-NIR1 and Cu-NIR2, bearing rigid chelating diphosphines and π-conjugated 2,5-di(pyridin-2-yl)thiazolo[5,4-d]thiazole as the bis-bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1-M2) and enables shifting luminescence into the near-infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal-to-ligand charge transfer (3 MLCT) character as demonstrated by in-depth photophysical and computational investigation. Noteworthy, X-ray analysis of the binuclear complexes unravels two interligand π-π-stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the CuI centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1-M2. These findings prompt the successful use of Cu-NIR1 and Cu-NIR2 in NIR light-emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white-emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth-abundant CuI emitters.Two binuclear heteroleptic CuI complexes, namely Cu-NIR1 and Cu-NIR2, bearing rigid chelating diphosphines and π-conjugated 2,5-di(pyridin-2-yl)thiazolo[5,4-d]thiazole as the bis-bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1-M2) and enables shifting luminescence into the near-infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal-to-ligand charge transfer (3 MLCT) character as demonstrated by in-depth photophysical and computational investigation. Noteworthy, X-ray analysis of the binuclear complexes unravels two interligand π-π-stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the CuI centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1-M2. These findings prompt the successful use of Cu-NIR1 and Cu-NIR2 in NIR light-emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white-emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth-abundant CuI emitters. Two binuclear heteroleptic Cu complexes, namely Cu-NIR1 and Cu-NIR2, bearing rigid chelating diphosphines and π-conjugated 2,5-di(pyridin-2-yl)thiazolo[5,4-d]thiazole as the bis-bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1-M2) and enables shifting luminescence into the near-infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal-to-ligand charge transfer ( MLCT) character as demonstrated by in-depth photophysical and computational investigation. Noteworthy, X-ray analysis of the binuclear complexes unravels two interligand π-π-stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the Cu centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1-M2. These findings prompt the successful use of Cu-NIR1 and Cu-NIR2 in NIR light-emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white-emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth-abundant Cu emitters. Two binuclear heteroleptic CuI complexes, namely Cu−NIR1 and Cu−NIR2, bearing rigid chelating diphosphines and π‐conjugated 2,5‐di(pyridin‐2‐yl)thiazolo[5,4‐d]thiazole as the bis‐bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1–M2) and enables shifting luminescence into the near‐infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal‐to‐ligand charge transfer (3MLCT) character as demonstrated by in‐depth photophysical and computational investigation. Noteworthy, X‐ray analysis of the binuclear complexes unravels two interligand π–π‐stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the CuI centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1–M2. These findings prompt the successful use of Cu−NIR1 and Cu−NIR2 in NIR light‐emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white‐emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth‐abundant CuI emitters. Two binuclear heteroleptic Cu I complexes, namely Cu−NIR1 and Cu−NIR2, bearing rigid chelating diphosphines and π‐conjugated 2,5‐di(pyridin‐2‐yl)thiazolo[5,4‐ d ]thiazole as the bis ‐bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1–M2) and enables shifting luminescence into the near‐infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal‐to‐ligand charge transfer ( 3 MLCT) character as demonstrated by in‐depth photophysical and computational investigation. Noteworthy, X‐ray analysis of the binuclear complexes unravels two interligand π–π‐stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the Cu I centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1–M2. These findings prompt the successful use of Cu−NIR1 and Cu−NIR2 in NIR light‐emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white‐emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth‐abundant Cu I emitters. Two binuclear heteroleptic Cu I complexes, namely Cu−NIR1 and Cu−NIR2, bearing rigid chelating diphosphines and π‐conjugated 2,5‐di(pyridin‐2‐yl)thiazolo[5,4‐ d ]thiazole as the bis ‐bidentate ligand are presented. The proposed dinuclearization strategy yields a large bathochromic shift of the emission when compared to the mononuclear counterparts (M1–M2) and enables shifting luminescence into the near‐infrared (NIR) region in both solution and solid state, showing emission maximum at ca. 750 and 712 nm, respectively. The radiative process is assigned to an excited state with triplet metal‐to‐ligand charge transfer ( 3 MLCT) character as demonstrated by in‐depth photophysical and computational investigation. Noteworthy, X‐ray analysis of the binuclear complexes unravels two interligand π–π‐stacking interactions yielding a doubly locked structure that disfavours flattening of the tetrahedral coordination around the Cu I centre in the excited state and maintain enhanced NIR luminescence. No such interaction is present in M1–M2. These findings prompt the successful use of Cu−NIR1 and Cu−NIR2 in NIR light‐emitting electrochemical cells (LECs), which display electroluminescence maximum up to 756 nm and peak external quantum efficiency (EQE) of 0.43 %. Their suitability for the fabrication of white‐emitting LECs is also demonstrated. To the best of our knowledge, these are the first examples of NIR electroluminescent devices based on earth‐abundant Cu I emitters. |
Author | Haacke, Stefan Polo, Federico Gourlaouen, Christophe Ballerini, Lavinia Lu, Chin‐Wei Huang, Yu‐Ting Viel, Ronan Kyritsakas, Nathalie Mauro, Matteo Su, Hai‐Ching Shen, Hsiang‐Ling Jouaiti, Abdelaziz |
Author_xml | – sequence: 1 givenname: Abdelaziz surname: Jouaiti fullname: Jouaiti, Abdelaziz organization: Laboratoire de Synthèse et Fonctions des Architectures Moléculaires UMR7140 Chimie de la Matiere Complexe Université de Strasbourg & CNRS 4 rue Blaise, Pascal 67000 Strasbourg France – sequence: 2 givenname: Lavinia surname: Ballerini fullname: Ballerini, Lavinia organization: Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504 Université de Strasbourg & CNRS 23 rue du Loess 67083 Strasbourg France – sequence: 3 givenname: Hsiang‐Ling surname: Shen fullname: Shen, Hsiang‐Ling organization: Institute of Lighting and Energy Photonics National Yang Ming Chiao Tung University Tainan 71150 Taiwan – sequence: 4 givenname: Ronan surname: Viel fullname: Viel, Ronan organization: Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504 Université de Strasbourg & CNRS 23 rue du Loess 67083 Strasbourg France – sequence: 5 givenname: Federico surname: Polo fullname: Polo, Federico organization: Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice Via Torino 155 30172 Venezia Italy – sequence: 6 givenname: Nathalie surname: Kyritsakas fullname: Kyritsakas, Nathalie organization: Service de Radiocristallographie Fédération de chimie Le Bel – FR2010 Université de Strasbourg & CNRS 1, rue Blaise Pascal 67008 Strasbourg France – sequence: 7 givenname: Stefan surname: Haacke fullname: Haacke, Stefan organization: Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504 Université de Strasbourg & CNRS 23 rue du Loess 67083 Strasbourg France – sequence: 8 givenname: Yu‐Ting surname: Huang fullname: Huang, Yu‐Ting organization: Department of Applied Chemistry Providence University Taichung 43301 Taiwan – sequence: 9 givenname: Chin‐Wei surname: Lu fullname: Lu, Chin‐Wei organization: Department of Applied Chemistry Providence University Taichung 43301 Taiwan – sequence: 10 givenname: Christophe surname: Gourlaouen fullname: Gourlaouen, Christophe organization: Laboratoire de Chimie Quantique Institut de Chimie de Strasbourg UMR7177 Université de Strasbourg & CNRS 4 Rue Blaise Pascal 67008 Strasbourg France – sequence: 11 givenname: Hai‐Ching surname: Su fullname: Su, Hai‐Ching organization: Institute of Lighting and Energy Photonics National Yang Ming Chiao Tung University Tainan 71150 Taiwan – sequence: 12 givenname: Matteo orcidid: 0000-0001-6393-8053 surname: Mauro fullname: Mauro, Matteo organization: Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR7504 Université de Strasbourg & CNRS 23 rue du Loess 67083 Strasbourg France |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37345993$$D View this record in MEDLINE/PubMed https://hal.science/hal-04237725$$DView record in HAL |
BookMark | eNp10Utv1DAQAGALFdEHXDmiSFzaQxY_4_jYrha60gouIHGLvM6k68qxg-0guPET-hv7S_Bqyx4qcfJo_I0fM-foxAcPCL0leEEwph-0t7CgmDIsRKNeoDMiKKmZlOykxJyxWraCnKLzlO6Lb1vcvEKnTDIulGJn6PuN9bNxoGO1DNME8XJ9VaJxcvALUjWEWH0um49_HtZ-iDpCX23s3S6XxGq0OVt_V60cmByD2cFojXbVEpxLr9HLQbsEb57WC_Tt4-rr8rbefPm0Xl5vasOUzDUTCnOiicSaNmrgW8PBQGN602pDeKv7npmWMTpQ6CUwuhVEGkV61oNsALMLdHU4d6ddN0U76vi7C9p2t9ebbp_DnJZ2UPGTFnt5sFMMP2ZIuRttMuW12kOYU0db2kqhKJWFvn9G78McfflJUQ3njVINKerdk5q3I_TH-__1t4DFAZgYUoowHAnB3X6A3X6A3XGApYA_KzA262yDz1Fb97-yv1Adnx0 |
CitedBy_id | crossref_primary_10_1002_anie_202425094 crossref_primary_10_1021_jacs_4c03543 crossref_primary_10_1039_D4DT01958J crossref_primary_10_1039_D4DT03210A crossref_primary_10_1039_D4DT03137G crossref_primary_10_1039_D4TC02040E crossref_primary_10_3389_fchem_2023_1301496 crossref_primary_10_1002_adma_202416100 crossref_primary_10_1002_ange_202419290 crossref_primary_10_1002_ange_202425094 crossref_primary_10_1002_anie_202419290 crossref_primary_10_1002_adom_202402666 crossref_primary_10_1002_adom_202303053 crossref_primary_10_1039_D4CP02801E |
Cites_doi | 10.1007/s41061-016-0019-1 10.1021/jacs.7b01005 10.1007/s11172-015-1103-3 10.1021/ja00728a006 10.1016/j.ccr.2010.04.006 10.1063/1.3382344 10.1039/C4GC02195A 10.1039/D1CC01077H 10.1002/elan.200503419 10.1016/j.mattod.2014.04.029 10.1016/j.orgel.2019.105515 10.1002/adfm.201906788 10.1039/C5CP02034D 10.1021/acs.inorgchem.9b00042 10.1002/adom.201900830 10.1007/978-0-387-46312-4 10.1002/adfm.201403945 10.1107/S2053273314026370 10.1021/acsami.9b23300 10.1063/1.5143076 10.1039/D1TC02562G 10.1039/c1jm10507h 10.1126/science.aav2865 10.1002/chem.201402060 10.1002/adma.200502365 10.1021/j100096a001 10.1021/ar500353h 10.1021/cr960109i 10.1039/c3tc30518j 10.1039/D2TC01727J 10.1021/jacs.8b08822 10.1016/j.ccr.2015.03.022 10.1039/C4DT02709D 10.1002/chem.201902887 10.1063/1.478813 10.1039/C8CP03008A 10.1007/s002140050457 10.1016/S0009-2614(99)01149-5 10.1021/acs.inorgchem.1c03901 10.1002/anie.202214638 10.1039/C5CP07065A 10.1515/pac-2014-0706 10.1002/jsid.882 10.1021/acs.inorgchem.8b02879 10.1021/acs.inorgchem.7b00958 10.1002/anie.200904156 10.1021/jacs.0c02234 10.1021/ct100641a 10.1002/adfm.202211853 10.1002/chem.202001209 10.1002/jcc.10255 10.1021/ja2026568 10.1039/C9CS00573K 10.1021/acsami.6b04647 10.1039/D1TC04028F 10.1021/acs.inorgchem.2c02376 10.1002/jcc.1056 10.1016/S1010-6030(01)00520-2 10.1039/D2TC03539A 10.1038/nprot.2013.087 10.1016/S0010-4655(99)00187-3 10.1246/bcsj.79.437 10.1002/adom.202000260 10.1002/adfm.201707423 10.1021/ic4020042 10.1063/1.2061187 10.1016/j.dyepig.2022.110780 10.1021/ja971416o |
ContentType | Journal Article |
Copyright | 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. – notice: 2023. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7TM K9. 7X8 1XC VOOES |
DOI | 10.1002/anie.202305569 |
DatabaseName | CrossRef PubMed Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) Nucleic Acids Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1521-3773 |
Edition | International ed. in English |
ExternalDocumentID | oai_HAL_hal_04237725v2 37345993 10_1002_anie_202305569 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Agence Nationale de la Recherche grantid: ANR-22-CE07-0049-02 – fundername: National Yang Ming Chiao Tung University – fundername: Agence Nationale de la Recherche grantid: ANR-21-CE29-0015 – fundername: Ministry of Education |
GroupedDBID | --- -DZ -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ABLJU ABPPZ ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFS ACIWK ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGYGG AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BTSUX BY8 CITATION CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M53 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ TN5 UB1 UPT UQL V2E W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XSW XV2 YZZ ZZTAW ~IA ~KM ~WT AEUQT AFPWT NPM RWI VQA WRC YIN 7TM K9. 7X8 1XC VOOES |
ID | FETCH-LOGICAL-c397t-359041a170a269f4bc4ece6cdc8ac148add3c8332f2ed7e32b517c91d3de76e03 |
ISSN | 1433-7851 1521-3773 |
IngestDate | Fri Sep 12 12:47:50 EDT 2025 Fri Jul 11 06:33:30 EDT 2025 Fri Jul 25 11:57:57 EDT 2025 Wed Feb 19 02:23:41 EST 2025 Tue Jul 01 01:47:15 EDT 2025 Thu Apr 24 23:07:52 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 38 |
Keywords | Phosphorescence Light-Emitting Electrochemical Cells Near-Infrared Emitters Binuclear Complexes Copper Complexes |
Language | English |
License | 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c397t-359041a170a269f4bc4ece6cdc8ac148add3c8332f2ed7e32b517c91d3de76e03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6393-8053 0000-0002-2409-2849 0000-0002-6969-4667 0000-0002-8932-9966 0000-0003-4986-2931 |
OpenAccessLink | https://hal.science/hal-04237725 |
PMID | 37345993 |
PQID | 2864469961 |
PQPubID | 946352 |
ParticipantIDs | hal_primary_oai_HAL_hal_04237725v2 proquest_miscellaneous_2828759227 proquest_journals_2864469961 pubmed_primary_37345993 crossref_primary_10_1002_anie_202305569 crossref_citationtrail_10_1002_anie_202305569 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-18 |
PublicationDateYYYYMMDD | 2023-09-18 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Angewandte Chemie International Edition |
PublicationTitleAlternate | Angew Chem Int Ed Engl |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc Wiley-VCH Verlag |
Publisher_xml | – name: Wiley Subscription Services, Inc – name: Wiley-VCH Verlag |
References | e_1_2_8_28_1 e_1_2_8_49_2 e_1_2_8_47_1 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_26_1 e_1_2_8_68_1 e_1_2_8_9_2 e_1_2_8_3_1 e_1_2_8_81_1 e_1_2_8_3_2 e_1_2_8_5_2 e_1_2_8_7_2 e_1_2_8_20_1 e_1_2_8_66_1 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_62_2 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_2 e_1_2_8_17_1 e_1_2_8_19_2 e_1_2_8_59_1 e_1_2_8_13_2 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_15_2 e_1_2_8_36_2 e_1_2_8_70_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_30_2 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_11_2 e_1_2_8_32_2 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_72_1 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_48_2 e_1_2_8_27_1 e_1_2_8_69_1 e_1_2_8_80_1 e_1_2_8_4_1 e_1_2_8_6_2 Henwood A. F. (e_1_2_8_2_1) 2016; 36 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_44_2 e_1_2_8_65_1 e_1_2_8_61_2 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_16_2 Bard A. J. (e_1_2_8_39_1) 2001 e_1_2_8_18_2 e_1_2_8_12_2 e_1_2_8_35_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_58_1 e_1_2_8_79_1 Lakowicz J. R. (e_1_2_8_64_1) 2006 e_1_2_8_31_2 e_1_2_8_56_1 e_1_2_8_77_1 e_1_2_8_10_2 e_1_2_8_52_2 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_75_1 e_1_2_8_52_1 e_1_2_8_73_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – ident: e_1_2_8_46_1 doi: 10.1007/s41061-016-0019-1 – ident: e_1_2_8_45_2 doi: 10.1021/jacs.7b01005 – ident: e_1_2_8_55_1 doi: 10.1007/s11172-015-1103-3 – ident: e_1_2_8_60_2 doi: 10.1021/ja00728a006 – ident: e_1_2_8_63_1 doi: 10.1016/j.ccr.2010.04.006 – ident: e_1_2_8_69_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_7_2 doi: 10.1039/C4GC02195A – ident: e_1_2_8_29_2 doi: 10.1039/D1CC01077H – ident: e_1_2_8_78_1 doi: 10.1002/elan.200503419 – ident: e_1_2_8_1_1 doi: 10.1016/j.mattod.2014.04.029 – ident: e_1_2_8_79_1 doi: 10.1016/j.orgel.2019.105515 – ident: e_1_2_8_49_2 doi: 10.1002/adfm.201906788 – ident: e_1_2_8_52_1 doi: 10.1039/C5CP02034D – ident: e_1_2_8_12_2 doi: 10.1021/acs.inorgchem.9b00042 – ident: e_1_2_8_27_1 doi: 10.1002/adom.201900830 – start-page: 141 volume-title: Principles of Fluorescence Spectroscopy year: 2006 ident: e_1_2_8_64_1 doi: 10.1007/978-0-387-46312-4 – ident: e_1_2_8_59_1 – ident: e_1_2_8_50_1 doi: 10.1002/adfm.201403945 – ident: e_1_2_8_57_1 doi: 10.1107/S2053273314026370 – ident: e_1_2_8_51_1 doi: 10.1021/acsami.9b23300 – ident: e_1_2_8_28_1 – ident: e_1_2_8_74_1 doi: 10.1063/1.5143076 – ident: e_1_2_8_30_2 doi: 10.1039/D1TC02562G – ident: e_1_2_8_80_1 doi: 10.1039/c1jm10507h – ident: e_1_2_8_25_1 doi: 10.1126/science.aav2865 – ident: e_1_2_8_4_1 – ident: e_1_2_8_18_2 doi: 10.1002/chem.201402060 – ident: e_1_2_8_14_2 doi: 10.1002/adma.200502365 – ident: e_1_2_8_66_1 doi: 10.1021/j100096a001 – ident: e_1_2_8_41_1 doi: 10.1021/ar500353h – ident: e_1_2_8_20_1 doi: 10.1021/cr960109i – ident: e_1_2_8_52_2 doi: 10.1039/c3tc30518j – ident: e_1_2_8_81_1 doi: 10.1039/D2TC01727J – ident: e_1_2_8_3_1 doi: 10.1021/jacs.8b08822 – ident: e_1_2_8_19_2 doi: 10.1016/j.ccr.2015.03.022 – volume-title: Electrochemical Methods, Fundamentals and Applications year: 2001 ident: e_1_2_8_39_1 – ident: e_1_2_8_11_2 doi: 10.1039/C4DT02709D – ident: e_1_2_8_53_1 doi: 10.1002/chem.201902887 – ident: e_1_2_8_68_1 doi: 10.1063/1.478813 – ident: e_1_2_8_75_1 – ident: e_1_2_8_54_1 doi: 10.1039/C8CP03008A – ident: e_1_2_8_70_1 doi: 10.1007/s002140050457 – ident: e_1_2_8_73_1 doi: 10.1016/S0009-2614(99)01149-5 – ident: e_1_2_8_13_2 doi: 10.1021/acs.inorgchem.1c03901 – ident: e_1_2_8_16_2 doi: 10.1002/anie.202214638 – ident: e_1_2_8_48_2 doi: 10.1039/C5CP07065A – ident: e_1_2_8_61_2 doi: 10.1515/pac-2014-0706 – ident: e_1_2_8_42_1 – ident: e_1_2_8_26_1 doi: 10.1002/jsid.882 – ident: e_1_2_8_34_1 – ident: e_1_2_8_38_1 doi: 10.1021/acs.inorgchem.8b02879 – ident: e_1_2_8_22_2 doi: 10.1021/acs.inorgchem.7b00958 – ident: e_1_2_8_40_1 doi: 10.1002/anie.200904156 – ident: e_1_2_8_56_1 – ident: e_1_2_8_17_1 – ident: e_1_2_8_23_2 doi: 10.1021/jacs.0c02234 – ident: e_1_2_8_33_1 – ident: e_1_2_8_76_1 doi: 10.1021/ct100641a – ident: e_1_2_8_32_2 doi: 10.1002/adfm.202211853 – ident: e_1_2_8_15_2 doi: 10.1002/chem.202001209 – ident: e_1_2_8_67_1 doi: 10.1002/jcc.10255 – ident: e_1_2_8_47_1 – ident: e_1_2_8_21_1 – ident: e_1_2_8_37_2 doi: 10.1021/ja2026568 – ident: e_1_2_8_3_2 doi: 10.1039/C9CS00573K – ident: e_1_2_8_10_2 doi: 10.1021/acsami.6b04647 – ident: e_1_2_8_6_2 doi: 10.1039/D1TC04028F – ident: e_1_2_8_24_2 doi: 10.1021/acs.inorgchem.2c02376 – ident: e_1_2_8_65_1 doi: 10.1002/jcc.1056 – ident: e_1_2_8_44_2 doi: 10.1016/S1010-6030(01)00520-2 – ident: e_1_2_8_31_2 doi: 10.1039/D2TC03539A – ident: e_1_2_8_62_2 doi: 10.1038/nprot.2013.087 – ident: e_1_2_8_71_1 doi: 10.1016/S0010-4655(99)00187-3 – ident: e_1_2_8_35_2 doi: 10.1246/bcsj.79.437 – ident: e_1_2_8_8_1 – volume: 36 start-page: 374 year: 2016 ident: e_1_2_8_2_1 publication-title: Top. Curr. Chem. – ident: e_1_2_8_5_2 doi: 10.1002/adom.202000260 – ident: e_1_2_8_9_2 doi: 10.1002/adfm.201707423 – ident: e_1_2_8_36_2 doi: 10.1021/ic4020042 – ident: e_1_2_8_72_1 doi: 10.1063/1.2061187 – ident: e_1_2_8_43_2 doi: 10.1016/j.dyepig.2022.110780 – ident: e_1_2_8_58_1 doi: 10.1107/S2053273314026370 – ident: e_1_2_8_77_1 doi: 10.1021/ja971416o |
SSID | ssj0028806 |
Score | 2.5268846 |
Snippet | Two binuclear heteroleptic Cu
I
complexes, namely Cu−NIR1 and Cu−NIR2, bearing rigid chelating diphosphines and π‐conjugated 2,5‐di(pyridin‐2‐yl)thiazolo[5,4‐... Two binuclear heteroleptic Cu complexes, namely Cu-NIR1 and Cu-NIR2, bearing rigid chelating diphosphines and π-conjugated... Two binuclear heteroleptic CuI complexes, namely Cu−NIR1 and Cu−NIR2, bearing rigid chelating diphosphines and π‐conjugated... Two binuclear heteroleptic CuI complexes, namely Cu-NIR1 and Cu-NIR2, bearing rigid chelating diphosphines and π-conjugated... Two binuclear heteroleptic Cu I complexes, namely Cu−NIR1 and Cu−NIR2, bearing rigid chelating diphosphines and π‐conjugated 2,5‐di(pyridin‐2‐yl)thiazolo[5,4‐... |
SourceID | hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | e202305569 |
SubjectTerms | Antifungal agents Charge transfer Chelation Chemical Sciences Copper Electrochemical cells Electrochemistry Electroluminescence Emission Emissions Emitters Excitation Fabrication Ligands Luminescence Near infrared radiation Quantum efficiency |
Title | Binuclear Copper(I) Complexes for Near‐Infrared Light‐Emitting Electrochemical Cells |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37345993 https://www.proquest.com/docview/2864469961 https://www.proquest.com/docview/2828759227 https://hal.science/hal-04237725 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1521-3773 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0028806 issn: 1433-7851 databaseCode: ABDBF dateStart: 20120604 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1433-7851 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1521-3773 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0028806 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe68QAviG8KAwWE-BBKSezETh5L6dSiMqTRSn2LbMcdkUpWunag_gP829zFSdZMnTR4iSLXjSPfz5c7--53hLxSnm80D8FNlUy5gRG-G4Xac6WnuIoDnXKFjuKXIz6YBJ-n4bTV-rMVtbReqY7e7Mwr-R-pQhvIFbNk_0Gy9UOhAe5BvnAFCcP1WjL-mOVIRyyXsKwXC5z8aIhuPi7yufltCq4F0GNy6Q7z2bKINR8VzCH9H5kNeO7bMji64g3omfn8bNti7eYn5pfEoP_3BbmAubSJ2E-z7bN8MHBlZkMEugoZKDfZ5mK3FPMOs7xMyD6Hu_qj8K3MEhlgUueJO6q-qFgLLLORBMcwXr69S0EZhlQ0FSv1QZnZsiUds6Ot1MacbqHOEr-UutXgc5H7J96p-i2VLObldxodmxzbR1-Tw8lolIz70_HrxU8Xy4_hMX1Zi2WP3KCCcyyF8em45iGjoOSKNLXqhSv2T49-aA7YsG72vmNs7VWOS2HAjO-Q26Xn4XQtjO6SlsnvkZu9quDffTKu4eRYOL0dvnNqKDkAJacBJacJJecSlJwCSg_I5LA_7g3csuiGq8E0XbksjL3Al77wJOXxLFA6MNpwnepIavCd4XvIdMQYnVGTCsOoCn2hYz9lqRHceOwh2c9Pc_OYOMxTkS-ETwVNAxHOZKA8MysYJQ243X6buNVkJbpkpMfCKPPEcmnTBCc3qSe3Td7U_ReWi-XKni9h7utOSKE-6I4SbCviwAQNz2mbHFSiScpFfZbQCBwEHscc3u5F_TMIAs_RZG5O19iHgpcfUyra5JEVaT0UEywIweZ_co1_PyW3LpbKAdlfLdfmGZi4K_W8gN9fncel-w |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Binuclear+Copper%28I%29+Complexes+for+Near-Infrared+Light-Emitting+Electrochemical+Cells&rft.jtitle=Angewandte+Chemie+International+Edition&rft.au=Jouaiti%2C+Abdelaziz&rft.au=Ballerini%2C+Lavinia&rft.au=Shen%2C+Hsiang-Ling&rft.au=Viel%2C+Ronan&rft.date=2023-09-18&rft.issn=1521-3773&rft.eissn=1521-3773&rft.volume=62&rft.issue=38&rft.spage=e202305569&rft_id=info:doi/10.1002%2Fanie.202305569&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7851&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7851&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7851&client=summon |