Research on Health Monitoring of Flying‐Swallow‐Typed Tied Arch Bridge Based on PSO‐GRNN Algorithm

In the health monitoring work of long‐span concrete‐filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the practical stress state, and providing accurate data in real time and efficiently has been confirmed as the weakness of the finite element model....

Full description

Saved in:
Bibliographic Details
Published inModelling and Simulation in Engineering Vol. 2024; no. 1
Main Authors Zhang, Tianpeng, Liu, Long, Ji, Pengfei
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 2024
Wiley
Subjects
Online AccessGet full text
ISSN1687-5591
1687-5605
1687-5605
DOI10.1155/2024/7664816

Cover

Abstract In the health monitoring work of long‐span concrete‐filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the practical stress state, and providing accurate data in real time and efficiently has been confirmed as the weakness of the finite element model. The prediction model is built in accordance with the general regression neural network (GRNN), and the parameters of the GRNN model are optimized using particle swarm optimization (PSO) to build the PSO‐GRNN prediction model, with the aim of modifying the finite element model. A finite element analysis model is built using the Qiuhuli flying‐swallow‐typed tied arch bridge to verify the effect of the PSO‐GRNN prediction model. The model test data are acquired using the horizontal thrust of arch foot, the bulk weight of main beam, and the tension of tied rod as the input variables and using the stress of main arch rib steel pipe, the stress of main arch concrete, and the displacement of mid span as the output variables. As revealed by the results, the average prediction accuracy of the PSO‐GRNN model constructed in this article is 96.706%, 98.531%, and 99.634%, respectively, which are 1.980%, 1.706%, and 0.40% higher than the back propagation (BP) neural network model and 2.262%, 1.632%, and 0.387% higher than the GRNN model. The mean absolute percent error (MAPE), root mean square error (RMSE), coefficient of determination ( R 2 ), and Nash‐Sutcliffe efficiency (NSE) coefficient were used to evaluate the prediction performance of the model. The PSO‐GRNN model has the highest fitting accuracy, indicating that the established PSO‐GRNN prediction model can more effectively predict the relevant parameters of concrete‐filled steel tube tied arch bridges and has high accuracy.
AbstractList In the health monitoring work of long-span concrete-filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the practical stress state, and providing accurate data in real time and efficiently has been confirmed as the weakness of the finite element model. The prediction model is built in accordance with the general regression neural network (GRNN), and the parameters of the GRNN model are optimized using particle swarm optimization (PSO) to build the PSO-GRNN prediction model, with the aim of modifying the finite element model. A finite element analysis model is built using the Qiuhuli flying-swallow-typed tied arch bridge to verify the effect of the PSO-GRNN prediction model. The model test data are acquired using the horizontal thrust of arch foot, the bulk weight of main beam, and the tension of tied rod as the input variables and using the stress of main arch rib steel pipe, the stress of main arch concrete, and the displacement of mid span as the output variables. As revealed by the results, the average prediction accuracy of the PSO-GRNN model constructed in this article is 96.706%, 98.531%, and 99.634%, respectively, which are 1.980%, 1.706%, and 0.40% higher than the back propagation (BP) neural network model and 2.262%, 1.632%, and 0.387% higher than the GRNN model. The mean absolute percent error (MAPE), root mean square error (RMSE), coefficient of determination (R[sup.2]), and Nash-Sutcliffe efficiency (NSE) coefficient were used to evaluate the prediction performance of the model. The PSO-GRNN model has the highest fitting accuracy, indicating that the established PSO-GRNN prediction model can more effectively predict the relevant parameters of concrete-filled steel tube tied arch bridges and has high accuracy.
In the health monitoring work of long‐span concrete‐filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the practical stress state, and providing accurate data in real time and efficiently has been confirmed as the weakness of the finite element model. The prediction model is built in accordance with the general regression neural network (GRNN), and the parameters of the GRNN model are optimized using particle swarm optimization (PSO) to build the PSO‐GRNN prediction model, with the aim of modifying the finite element model. A finite element analysis model is built using the Qiuhuli flying‐swallow‐typed tied arch bridge to verify the effect of the PSO‐GRNN prediction model. The model test data are acquired using the horizontal thrust of arch foot, the bulk weight of main beam, and the tension of tied rod as the input variables and using the stress of main arch rib steel pipe, the stress of main arch concrete, and the displacement of mid span as the output variables. As revealed by the results, the average prediction accuracy of the PSO‐GRNN model constructed in this article is 96.706%, 98.531%, and 99.634%, respectively, which are 1.980%, 1.706%, and 0.40% higher than the back propagation (BP) neural network model and 2.262%, 1.632%, and 0.387% higher than the GRNN model. The mean absolute percent error (MAPE), root mean square error (RMSE), coefficient of determination ( R 2 ), and Nash‐Sutcliffe efficiency (NSE) coefficient were used to evaluate the prediction performance of the model. The PSO‐GRNN model has the highest fitting accuracy, indicating that the established PSO‐GRNN prediction model can more effectively predict the relevant parameters of concrete‐filled steel tube tied arch bridges and has high accuracy.
In the health monitoring work of long-span concrete-filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the practical stress state, and providing accurate data in real time and efficiently has been confirmed as the weakness of the finite element model. The prediction model is built in accordance with the general regression neural network (GRNN), and the parameters of the GRNN model are optimized using particle swarm optimization (PSO) to build the PSO-GRNN prediction model, with the aim of modifying the finite element model. A finite element analysis model is built using the Qiuhuli flying-swallow-typed tied arch bridge to verify the effect of the PSO-GRNN prediction model. The model test data are acquired using the horizontal thrust of arch foot, the bulk weight of main beam, and the tension of tied rod as the input variables and using the stress of main arch rib steel pipe, the stress of main arch concrete, and the displacement of mid span as the output variables. As revealed by the results, the average prediction accuracy of the PSO-GRNN model constructed in this article is 96.706%, 98.531%, and 99.634%, respectively, which are 1.980%, 1.706%, and 0.40% higher than the back propagation (BP) neural network model and 2.262%, 1.632%, and 0.387% higher than the GRNN model. The mean absolute percent error (MAPE), root mean square error (RMSE), coefficient of determination (R2), and Nash-Sutcliffe efficiency (NSE) coefficient were used to evaluate the prediction performance of the model. The PSO-GRNN model has the highest fitting accuracy, indicating that the established PSO-GRNN prediction model can more effectively predict the relevant parameters of concrete-filled steel tube tied arch bridges and has high accuracy.
Audience Academic
Author Liu, Long
Zhang, Tianpeng
Ji, Pengfei
Author_xml – sequence: 1
  givenname: Tianpeng
  orcidid: 0000-0003-4984-2594
  surname: Zhang
  fullname: Zhang, Tianpeng
– sequence: 2
  givenname: Long
  orcidid: 0000-0003-3337-508X
  surname: Liu
  fullname: Liu, Long
– sequence: 3
  givenname: Pengfei
  surname: Ji
  fullname: Ji, Pengfei
BookMark eNp9kctu1DAUhiNUJErpjgeIxAqJtLZjx85yWvUyUmnRzLC2TnzJuMrEg-1RmR2PwDPyJHhIQeoGWbJ_HX3nPxe_LY5GP5qieI_RGcaMnRNE6DlvGipw86o4xo3gFWsQO_qrWYvfFKcxug5RylldN-i4WC9MNBDUuvRjeWtgSOvysx9d8sGNfelteT3ss_r14-fyCYbBP2W12m-NLlcuX7ND6kVwujflBcQcyT5flg-Zulnc35ezoc9Oab15V7y2MERz-vyeFF-vr1aXt9Xdw838cnZXqbrlqSLEatIqosBqLBB0BCsLgIALTjSjTCuhMVeYWs47y3ArqNW0U0QTajpanxTzyVd7eJTb4DYQ9tKDk38CPvQSQnJqMJIRg3MtBlwb2jEkOkEYoULXIAx0OntVk9du3ML-MP4_Q4zkYevysHX5vPXMf5j4bfDfdiYm-eh3Yczjyho1oiGcNThTZxPVQ27CjdanACofbTZO5U-1LsdnvOWtaClBOeHji4TMJPM99bCLUc6Xi5fsp4lVwccYjP1_x78BqNuwMg
Cites_doi 10.1007/s13369-022-07445-6
10.1016/j.ijthermalsci.2023.108141
10.1007/s10661-022-10662-z
10.1007/978-981-16-6616-2_33
10.1177/02537176211046525
10.1016/j.jmaa.2023.127862
10.1007/s11600-022-00939-9
10.1016/j.est.2023.108638
10.3390/s22145172
10.3390/app13031935
10.1007/s13369-022-07001-2
10.1007/s12205-021-2223-y
10.3233/JCM-226588
10.1016/j.neucom.2020.04.087
10.1061/PPSCFX.SCENG-1259
ContentType Journal Article
Copyright COPYRIGHT 2024 John Wiley & Sons, Inc.
Copyright © 2024 Tianpeng Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: COPYRIGHT 2024 John Wiley & Sons, Inc.
– notice: Copyright © 2024 Tianpeng Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID AAYXX
CITATION
ISR
7SC
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOA
DOI 10.1155/2024/7664816
DatabaseName CrossRef
Gale In Context: Science
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database (Proquest)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ DIrectory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-5605
Editor Giulia Pascoletti
Editor_xml – fullname: Giulia Pascoletti
ExternalDocumentID oai_doaj_org_article_52e129c5a7de4b508b825248d3a8eabd
10.1155/2024/7664816
A797989420
10_1155_2024_7664816
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 0R~
123
188
24P
29M
2UF
2WC
4.4
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAMMB
AAYXX
ABDBF
ABJCF
ABUWG
ACCMX
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AEFGJ
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
C1A
CCPQU
CITATION
CS3
CWDGH
E3Z
EBS
EJD
ESX
GROUPED_DOAJ
H13
HCIFZ
I-F
IAO
IL9
ISR
ITC
K6V
K7-
KQ8
L6V
M7S
MK~
OK1
OVT
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
Q2X
RHU
RNS
TR2
TUS
UGNYK
UNMZH
~8M
M~E
7SC
7TB
8FD
AAJEY
AINHJ
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
ADTOC
UNPAY
ID FETCH-LOGICAL-c397t-22fd29c2cafd180ab21cfaa0a7872d545dc8d17c14f77bf51984fd4bc2d24eb43
IEDL.DBID DOA
ISSN 1687-5591
1687-5605
IngestDate Tue Oct 14 19:02:58 EDT 2025
Sun Sep 07 11:15:29 EDT 2025
Fri Jul 25 12:18:48 EDT 2025
Tue Oct 15 04:49:21 EDT 2024
Sat Oct 12 03:45:43 EDT 2024
Wed Oct 01 02:09:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-22fd29c2cafd180ab21cfaa0a7872d545dc8d17c14f77bf51984fd4bc2d24eb43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4984-2594
0000-0003-3337-508X
OpenAccessLink https://doaj.org/article/52e129c5a7de4b508b825248d3a8eabd
PQID 3068627561
PQPubID 237773
ParticipantIDs doaj_primary_oai_doaj_org_article_52e129c5a7de4b508b825248d3a8eabd
unpaywall_primary_10_1155_2024_7664816
proquest_journals_3068627561
gale_infotracacademiconefile_A797989420
gale_incontextgauss_ISR_A797989420
crossref_primary_10_1155_2024_7664816
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Modelling and Simulation in Engineering
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References Tang Z. (e_1_2_9_23_2) 2023; 37
Samantaray S. (e_1_2_9_15_2) 2022
Li Z. (e_1_2_9_1_2) 2022; 52
e_1_2_9_12_2
Weng Z. (e_1_2_9_22_2) 2023; 52
e_1_2_9_14_2
Ning Y. (e_1_2_9_11_2) 2023; 51
e_1_2_9_13_2
Li Q. (e_1_2_9_16_2) 2019; 35
e_1_2_9_19_2
e_1_2_9_21_2
e_1_2_9_20_2
e_1_2_9_7_2
e_1_2_9_6_2
e_1_2_9_5_2
Liu L. (e_1_2_9_17_2) 2016; 5
Bao L. (e_1_2_9_24_2) 2022; 38
Tian S. (e_1_2_9_3_2) 2022; 7
Fu L. (e_1_2_9_2_2) 2021; 16
Gu J. (e_1_2_9_4_2) 2022; 47
e_1_2_9_9_2
e_1_2_9_8_2
e_1_2_9_25_2
Li H. (e_1_2_9_18_2) 2023; 41
e_1_2_9_27_2
Zhao F. (e_1_2_9_10_2) 2016; 9
e_1_2_9_26_2
e_1_2_9_28_2
References_xml – ident: e_1_2_9_26_2
  doi: 10.1007/s13369-022-07445-6
– volume: 16
  start-page: 875
  year: 2021
  ident: e_1_2_9_2_2
  article-title: Modification of bridge structure finite element model based on RSM-WOA
  publication-title: China Sciencepaper
– volume: 35
  start-page: 92
  year: 2019
  ident: e_1_2_9_16_2
  article-title: Study on factors affecting fatigue performance of suspender of flying swallow steel box tied arch bridge
  publication-title: Technology of Highway and Transport
– ident: e_1_2_9_12_2
  doi: 10.1016/j.ijthermalsci.2023.108141
– volume-title: Lecture Notes in Networks and Systems, vol 446
  year: 2022
  ident: e_1_2_9_15_2
– volume: 52
  start-page: 105
  year: 2023
  ident: e_1_2_9_22_2
  article-title: Study on correction method of tunnel kiln simulation model based on PSO-BP algorithm
  publication-title: Machine Building & Automation
– ident: e_1_2_9_25_2
  doi: 10.1007/s10661-022-10662-z
– ident: e_1_2_9_14_2
  doi: 10.1007/978-981-16-6616-2_33
– ident: e_1_2_9_19_2
  doi: 10.1177/02537176211046525
– ident: e_1_2_9_20_2
  doi: 10.1016/j.jmaa.2023.127862
– volume: 47
  start-page: 1147
  year: 2022
  ident: e_1_2_9_4_2
  article-title: Ridge structure model updating method based on deep learning and IHPO
  publication-title: Journal of Guangxi University (Natural Science Edition)
– volume: 7
  start-page: 190
  year: 2022
  ident: e_1_2_9_3_2
  article-title: Review of the research on correction methods of bridge finite element model
  publication-title: Engineering and Technological Research
– ident: e_1_2_9_27_2
  doi: 10.1007/s11600-022-00939-9
– ident: e_1_2_9_28_2
  doi: 10.1016/j.est.2023.108638
– ident: e_1_2_9_7_2
  doi: 10.3390/s22145172
– ident: e_1_2_9_5_2
  doi: 10.3390/app13031935
– volume: 51
  start-page: 65
  year: 2023
  ident: e_1_2_9_11_2
  article-title: Deformation prediction of open-pit mine slope based on ABC-GRNN combined model
  publication-title: Coal Geology & Exploration
– volume: 37
  start-page: 115
  year: 2023
  ident: e_1_2_9_23_2
  article-title: PSO optimizing bridge deformation prediction for LSTM time series
  publication-title: Beijing Surveying and Mapping
– ident: e_1_2_9_9_2
  doi: 10.1007/s13369-022-07001-2
– ident: e_1_2_9_13_2
  doi: 10.1007/s12205-021-2223-y
– volume: 41
  start-page: 67
  year: 2023
  ident: e_1_2_9_18_2
  article-title: Inversion of permeability coefficient for concrete face rockfill dam based on PSO-GRNN and its application
  publication-title: Water Resources and Power
– volume: 5
  start-page: 25
  year: 2016
  ident: e_1_2_9_17_2
  article-title: Calculation and analysis for large span flying swallow type of tied arch bridge
  publication-title: Highways & Transportation in Inner Mongolia
– ident: e_1_2_9_8_2
  doi: 10.3233/JCM-226588
– ident: e_1_2_9_21_2
  doi: 10.1016/j.neucom.2020.04.087
– volume: 38
  start-page: 1072
  year: 2022
  ident: e_1_2_9_24_2
  article-title: Research on optimal layout of continuous beam bridge health monitoring sensor based on improved PSO algorithm
  publication-title: Journal of Shenyang Jianzhu University Natural Science
– volume: 52
  start-page: 84
  year: 2022
  ident: e_1_2_9_1_2
  article-title: Performance evaluation of prestressed concrete containment sturctuce based on finite element model updating
  publication-title: Industrial Construction
– ident: e_1_2_9_6_2
  doi: 10.1061/PPSCFX.SCENG-1259
– volume: 9
  start-page: 888
  year: 2016
  ident: e_1_2_9_10_2
  article-title: BP-GRNN model for deformation prediction of diaphragm wall based on multi-source data
  publication-title: International Journal of Earth Sciences and Engineering
SSID ssib044753360
ssj0063810
Score 2.27113
Snippet In the health monitoring work of long‐span concrete‐filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the...
In the health monitoring work of long-span concrete-filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
SubjectTerms Accuracy
Algorithms
Analysis
Approximation
Arch bridges
Back propagation networks
Bridges
Concrete
Data acquisition
Finite element method
Flight
General regression neural networks
Mathematical models
Mathematical optimization
Neural networks
Neurons
Optimization
Parameters
Particle swarm optimization
Prediction models
Root-mean-square errors
Standard scores
Steel columns
Steel pipes
Steel tubes
Velocity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6V9AA9IJ5ioSAL8TitmvXau5sDQglqKEiEKmml3iw_wyHshmSjin_PzD5KEFKvuyNbtmfsb-yZbwDeBJHpUQjoqdokjYWj912HXqvWiSdCdPTI6L7j2yw7uxRfr-TVAcz6XBgKq-z3xGajdpWlO_KTtMllyPG4_7j-FVPVKHpd7Uto6K60gvvQUIzdgUNOzFgDOJyczs7nvYYRu13aZC20e3VG_FbkkmVoaoitkz40Xkq6FRAneZaJgmqh7x1aDbf__zv4EdzdlWv9-1qvVntH1PQB3O-wJRu3yvAQDnz5CI72GAcfg-kj7VhVsjYFibVmTf9ZFdh0RYlP8YI6qK5j8lMdu0Cgyoiklk2aBC82wcPPURvni-_x5_lsxsarJbZR__j5BC6npxefzuKuzEJsEYzUMefB8ZHlVgeXFENteGKD1kONtswdIixnC5fkNhEhz01AyFeI4ISx3HHhjUifwqCsSv8MWKadd45oxIaFSL3RMsgUpRBFSGMMj-BtP49q3bJpqMYLkVLRfKtuviOY0CTfyBAHdvOh2ixVZ1JKco9gxUqdOy8MAk2D3i725VJdeG1cBK9piRSxXJQURrPUu-1WfVnM1Tgf5cQ8z4cRvO-EQlVvtNVdVgKOh4ix_pE87pdadXa-VX-1MoJ3N8t_69ie397OC7hH0u0tzzEM6s3Ov0TcU5tXnTL_AZzM-8A
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB6V9AH6UG7h0qIV4nhKG6_XRx6TQihIhKpppPK02rOVCHbVOKrgiZ_Q39hfwoyPKKVSxZuP8dp7jOeb3ZlvAd54kai-9-ipmjDqCkvruxa9VqVCR4To6JHRfMfXcXIwFV9O4pM1aDe8W12-R0tHrrnYS5NEZGFyD9aTGAF3B9an48PBd3KlElQRxMTh8hjReRve_s_jNwxPxc9_-y-8AfcX-bn6dalmsxUzM3oIH9pknTq65MfuotS75vdt7sa7avAINhuYyQb1uHgMay5_Ahsr5INP4awNumNFzupsJFZrON1nhWejGeVAXf-5mtCXFpd4RG6rZceIWxlx1rJhle_FhmgLLZVzOPmGUp-OxmM2mJ1iSeXZz2cwHX083j_oNvsudA2ik7LLube8b7hR3oZZT2keGq9UT6Fyc4uQy5rMhqkJhU9T7REDZsJboQ23XDgtoufQyYvcvQCWKOusJV6xXiYip1Xs4wilEFbEWmsewNu2U-R5Ta8hK7ckjiW1nGxaLoAh9dhShkixqwvY1LLRMRlzh-jFxCq1TmhEnhrdX3yXjVTmlLYBvKb-lkR7kVNczalazOfy8-RIDtJ-SlT0vBfA-0bIF-WFMqpJU8D6EFPWDcntdtzIRvHnMqpSblJEpQG8W46lO-u29b-CL-EBndYTQNvQKS8WbgchUalfNSrxF8DLAtk
  priority: 102
  providerName: Unpaywall
Title Research on Health Monitoring of Flying‐Swallow‐Typed Tied Arch Bridge Based on PSO‐GRNN Algorithm
URI https://www.proquest.com/docview/3068627561
http://doi.org/10.1155/2024/7664816
https://doaj.org/article/52e129c5a7de4b508b825248d3a8eabd
UnpaywallVersion publishedVersion
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5605
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063810
  issn: 1687-5605
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5605
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063810
  issn: 1687-5605
  databaseCode: KQ8
  dateStart: 20070319
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ DIrectory of Open Access Journals
  customDbUrl:
  eissn: 1687-5605
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063810
  issn: 1687-5605
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5605
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063810
  issn: 1687-5605
  databaseCode: ABDBF
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1687-5605
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063810
  issn: 1687-5605
  databaseCode: ADMLS
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1687-5605
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib044753360
  issn: 1687-5591
  databaseCode: M~E
  dateStart: 20060101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5605
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0063810
  issn: 1687-5605
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5605
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063810
  issn: 1687-5605
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5605
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063810
  issn: 1687-5605
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5605
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063810
  issn: 1687-5605
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHKAHxFMNlJWFeJyiJo6dZI-7ZR8gNax2u6KcLD_LYUmqblYVF347M3lUi5DgwiWRkpETz8Seb5yZz4S88TxVQ-8hUjVxEnKL_3ctRK1KxQ4J0SEiw_WOsyKdr_mnC3Gxt9UX5oS19MCt4k4Ec-CSjFCZdVwDnNAQ0zCe20TlTmmLs2-UD_tgqp2DU-St6tPchcAIn59kacpz3Nd8zwE1PP1_zsaH5P6uvFI_btRms-dupo_Iww4n0lH7fo_JHVc-IYd77IFPie6z5mhV0raciLZDFO_TytPpBouYwhU-oLoJMea09BxAJ0XCWTpuirXoGByZxTYWq8_hbFkUdLS5hDbqb9-fkfV0cn46D7stE0IDwKIOGfMWtMWM8jbOI6VZbLxSkYJxySygJWtyG2cm5j7LtAf4lnNvuTbMMu40T56Tg7Iq3RGhqbLOWqQEi3KeOK2EFwlIASIQWmsWkLe9HuVVy4whm4hCCIn6lp2-AzJGJd_KIJ91cwGsLDsry39ZOSCv0UQSGStKTIm5VLvtVn5cLeUoG2bIIs-igLzvhHxVXyujugoD6A-SXP0medybWnZjdiuTplomA0AZkHe35v9r3178j769JA-wzXZd55gc1Nc79wqQTq0H5G4-nQ3IvfGkWCzhfPrlw2w-aD51OJ79nMC1dbEYff0F48n_pQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKeig98EYsFLAQLadts17vIwcOSUua0DagJlV7M36sg0TYDclGUflR_BX-EjP7KAGk3nrgmjiO7P0884135htCXlseypa1EKlqz3e5wfe7BqJWKb0EBdEhIsP7jpNB2Dvj7y-CizXyo66FwbTK2iYWhtpkGu_I9_yiliECd19lUB4ll0uIz-Zv-wfwMLcZ674b7ffcqoWAq8HR5i5j1rCWZlpa48VNqZinrZRNCThlBtiD0bHxIu1xG0XKAp2JuTVcaWYYTxT3Yd6d6TcXu1Th29yqZcctsg4491iDrO-fHxz2agSjep5fVEWUviBE_SwM-UI4ysDdvTr1Pgjw1oHvRWHIY-y1vuIUi94B_3qITbKxSKfyciknkxUX2L1LftabV2a-fNld5GpXf_9LV_L_2d175E7Fxmm7PD73yVqSPiCbKxqND4mqcxNpltKyaIuWhhC_p5ml3QmWirlD3LJs6WJkb-gIqD1FWV_aKUriaAfogsE5Pg4_uIengwFtT8YwR_756yNydiPrfkwaaZYmTwgNpUmMQeG1Zsz9RMnABj6MAt4VKKWYQ7ZrZIhpqT8iirgtCAQiSFQIckgHYXM1BlXDiw-y2VhURkgELAF6pwMZmYQroOYqZgH8l_FlnEhlHPIKQSdQFyTFxKOxXMznoj88Fe2oFaFWP2s65E01yGb5TGpZ1XHAelBK7I-RWzXYRGUZ5-I30hyycwXoa9f29Pp5XpKN3ujkWBz3B0fPyG38ZXlHtkUa-WyRPAfWmKsX1VGl5NNNQ_oXFLZ4zA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKKwE98EYECliIwmmbrNfe3RwQShrShkKomlb0ZvxYB4mwG5KNovLT-Cv8GWb2UQJIvfXANXEc2ft55hvvzDeEPHc8VG3nIFI1fuBxi-93LUStSvkJCqJDRIb3He-H4f4Jf3sqTtfIj7oWBtMqa5tYGGqbGbwjbwZFLUME7r7pqrSIw17_9fSbhx2k8E1r3U6jhMhBcraE8G3-atCDZ73NWP_N8e6-V3UY8Az44dxjzFnWNswoZ_24pTTzjVOqpQDGzAK5sCa2fmR87qJIO2A7MXeWa8Ms44nmAcx7hWzEYRSCUdjY_djb26_RjEp6QVEhUfqFELW0MPwL4VgDj_frNHwh8AaCN6Mw5DH2XV9xkEUfgX-9xSa5tkin6mypJpMVd9i_SX7WG1lmwXzZWeR6x3z_S2Py_9zpW-RGxdJppzxWt8lakt4hmyvajXeJrnMWaZbSspiLlgYSv6eZo_0JlpB5I9y-bOlhxG_pMVB-inK_tFuUytEu0AiLcxyOPnh7R8Mh7UzGMEf--es9cnIpi7xP1tMsTR4QGiqbWIuCbK2YB4lWwokARgEfE1pr1iDbNUrktNQlkUU8J4RENMkKTQ3SRQidj0E18eKDbDaWlXGSgiVA-4xQkU24BsquYybgv2yg4kRp2yDPEIAS9UJSxMNYLeZzORgdyU7UjlDDn7Ua5GU1yGX5TBlV1XfAelBi7I-RWzXwZGUx5_I36hrkxTm4L1zbw4vneUquAm7lu8Hw4BG5jj8sr862yHo-WySPgUzm-kl1ain5dNnw_QXwWoGU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB6V9AH6UG7h0qIV4nhKG6_XRx6TQihIhKpppPK02rOVCHbVOKrgiZ_Q39hfwoyPKKVSxZuP8dp7jOeb3ZlvAd54kai-9-ipmjDqCkvruxa9VqVCR4To6JHRfMfXcXIwFV9O4pM1aDe8W12-R0tHrrnYS5NEZGFyD9aTGAF3B9an48PBd3KlElQRxMTh8hjReRve_s_jNwxPxc9_-y-8AfcX-bn6dalmsxUzM3oIH9pknTq65MfuotS75vdt7sa7avAINhuYyQb1uHgMay5_Ahsr5INP4awNumNFzupsJFZrON1nhWejGeVAXf-5mtCXFpd4RG6rZceIWxlx1rJhle_FhmgLLZVzOPmGUp-OxmM2mJ1iSeXZz2cwHX083j_oNvsudA2ik7LLube8b7hR3oZZT2keGq9UT6Fyc4uQy5rMhqkJhU9T7REDZsJboQ23XDgtoufQyYvcvQCWKOusJV6xXiYip1Xs4wilEFbEWmsewNu2U-R5Ta8hK7ckjiW1nGxaLoAh9dhShkixqwvY1LLRMRlzh-jFxCq1TmhEnhrdX3yXjVTmlLYBvKb-lkR7kVNczalazOfy8-RIDtJ-SlT0vBfA-0bIF-WFMqpJU8D6EFPWDcntdtzIRvHnMqpSblJEpQG8W46lO-u29b-CL-EBndYTQNvQKS8WbgchUalfNSrxF8DLAtk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Health+Monitoring+of+Flying%E2%80%90Swallow%E2%80%90Typed+Tied+Arch+Bridge+Based+on+PSO%E2%80%90GRNN+Algorithm&rft.jtitle=Modelling+and+simulation+in+engineering&rft.au=Zhang%2C+Tianpeng&rft.au=Liu%2C+Long&rft.au=Ji%2C+Pengfei&rft.date=2024&rft.issn=1687-5591&rft.eissn=1687-5605&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1155%2F2024%2F7664816&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2024_7664816
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5591&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5591&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5591&client=summon