Research on Health Monitoring of Flying‐Swallow‐Typed Tied Arch Bridge Based on PSO‐GRNN Algorithm
In the health monitoring work of long‐span concrete‐filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the practical stress state, and providing accurate data in real time and efficiently has been confirmed as the weakness of the finite element model....
        Saved in:
      
    
          | Published in | Modelling and Simulation in Engineering Vol. 2024; no. 1 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          John Wiley & Sons, Inc
    
        2024
     Wiley  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1687-5591 1687-5605 1687-5605  | 
| DOI | 10.1155/2024/7664816 | 
Cover
| Abstract | In the health monitoring work of long‐span concrete‐filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the practical stress state, and providing accurate data in real time and efficiently has been confirmed as the weakness of the finite element model. The prediction model is built in accordance with the general regression neural network (GRNN), and the parameters of the GRNN model are optimized using particle swarm optimization (PSO) to build the PSO‐GRNN prediction model, with the aim of modifying the finite element model. A finite element analysis model is built using the Qiuhuli flying‐swallow‐typed tied arch bridge to verify the effect of the PSO‐GRNN prediction model. The model test data are acquired using the horizontal thrust of arch foot, the bulk weight of main beam, and the tension of tied rod as the input variables and using the stress of main arch rib steel pipe, the stress of main arch concrete, and the displacement of mid span as the output variables. As revealed by the results, the average prediction accuracy of the PSO‐GRNN model constructed in this article is 96.706%, 98.531%, and 99.634%, respectively, which are 1.980%, 1.706%, and 0.40% higher than the back propagation (BP) neural network model and 2.262%, 1.632%, and 0.387% higher than the GRNN model. The mean absolute percent error (MAPE), root mean square error (RMSE), coefficient of determination (
R
2
), and Nash‐Sutcliffe efficiency (NSE) coefficient were used to evaluate the prediction performance of the model. The PSO‐GRNN model has the highest fitting accuracy, indicating that the established PSO‐GRNN prediction model can more effectively predict the relevant parameters of concrete‐filled steel tube tied arch bridges and has high accuracy. | 
    
|---|---|
| AbstractList | In the health monitoring work of long-span concrete-filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the practical stress state, and providing accurate data in real time and efficiently has been confirmed as the weakness of the finite element model. The prediction model is built in accordance with the general regression neural network (GRNN), and the parameters of the GRNN model are optimized using particle swarm optimization (PSO) to build the PSO-GRNN prediction model, with the aim of modifying the finite element model. A finite element analysis model is built using the Qiuhuli flying-swallow-typed tied arch bridge to verify the effect of the PSO-GRNN prediction model. The model test data are acquired using the horizontal thrust of arch foot, the bulk weight of main beam, and the tension of tied rod as the input variables and using the stress of main arch rib steel pipe, the stress of main arch concrete, and the displacement of mid span as the output variables. As revealed by the results, the average prediction accuracy of the PSO-GRNN model constructed in this article is 96.706%, 98.531%, and 99.634%, respectively, which are 1.980%, 1.706%, and 0.40% higher than the back propagation (BP) neural network model and 2.262%, 1.632%, and 0.387% higher than the GRNN model. The mean absolute percent error (MAPE), root mean square error (RMSE), coefficient of determination (R[sup.2]), and Nash-Sutcliffe efficiency (NSE) coefficient were used to evaluate the prediction performance of the model. The PSO-GRNN model has the highest fitting accuracy, indicating that the established PSO-GRNN prediction model can more effectively predict the relevant parameters of concrete-filled steel tube tied arch bridges and has high accuracy. In the health monitoring work of long‐span concrete‐filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the practical stress state, and providing accurate data in real time and efficiently has been confirmed as the weakness of the finite element model. The prediction model is built in accordance with the general regression neural network (GRNN), and the parameters of the GRNN model are optimized using particle swarm optimization (PSO) to build the PSO‐GRNN prediction model, with the aim of modifying the finite element model. A finite element analysis model is built using the Qiuhuli flying‐swallow‐typed tied arch bridge to verify the effect of the PSO‐GRNN prediction model. The model test data are acquired using the horizontal thrust of arch foot, the bulk weight of main beam, and the tension of tied rod as the input variables and using the stress of main arch rib steel pipe, the stress of main arch concrete, and the displacement of mid span as the output variables. As revealed by the results, the average prediction accuracy of the PSO‐GRNN model constructed in this article is 96.706%, 98.531%, and 99.634%, respectively, which are 1.980%, 1.706%, and 0.40% higher than the back propagation (BP) neural network model and 2.262%, 1.632%, and 0.387% higher than the GRNN model. The mean absolute percent error (MAPE), root mean square error (RMSE), coefficient of determination ( R 2 ), and Nash‐Sutcliffe efficiency (NSE) coefficient were used to evaluate the prediction performance of the model. The PSO‐GRNN model has the highest fitting accuracy, indicating that the established PSO‐GRNN prediction model can more effectively predict the relevant parameters of concrete‐filled steel tube tied arch bridges and has high accuracy. In the health monitoring work of long-span concrete-filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the practical stress state, and providing accurate data in real time and efficiently has been confirmed as the weakness of the finite element model. The prediction model is built in accordance with the general regression neural network (GRNN), and the parameters of the GRNN model are optimized using particle swarm optimization (PSO) to build the PSO-GRNN prediction model, with the aim of modifying the finite element model. A finite element analysis model is built using the Qiuhuli flying-swallow-typed tied arch bridge to verify the effect of the PSO-GRNN prediction model. The model test data are acquired using the horizontal thrust of arch foot, the bulk weight of main beam, and the tension of tied rod as the input variables and using the stress of main arch rib steel pipe, the stress of main arch concrete, and the displacement of mid span as the output variables. As revealed by the results, the average prediction accuracy of the PSO-GRNN model constructed in this article is 96.706%, 98.531%, and 99.634%, respectively, which are 1.980%, 1.706%, and 0.40% higher than the back propagation (BP) neural network model and 2.262%, 1.632%, and 0.387% higher than the GRNN model. The mean absolute percent error (MAPE), root mean square error (RMSE), coefficient of determination (R2), and Nash-Sutcliffe efficiency (NSE) coefficient were used to evaluate the prediction performance of the model. The PSO-GRNN model has the highest fitting accuracy, indicating that the established PSO-GRNN prediction model can more effectively predict the relevant parameters of concrete-filled steel tube tied arch bridges and has high accuracy.  | 
    
| Audience | Academic | 
    
| Author | Liu, Long Zhang, Tianpeng Ji, Pengfei  | 
    
| Author_xml | – sequence: 1 givenname: Tianpeng orcidid: 0000-0003-4984-2594 surname: Zhang fullname: Zhang, Tianpeng – sequence: 2 givenname: Long orcidid: 0000-0003-3337-508X surname: Liu fullname: Liu, Long – sequence: 3 givenname: Pengfei surname: Ji fullname: Ji, Pengfei  | 
    
| BookMark | eNp9kctu1DAUhiNUJErpjgeIxAqJtLZjx85yWvUyUmnRzLC2TnzJuMrEg-1RmR2PwDPyJHhIQeoGWbJ_HX3nPxe_LY5GP5qieI_RGcaMnRNE6DlvGipw86o4xo3gFWsQO_qrWYvfFKcxug5RylldN-i4WC9MNBDUuvRjeWtgSOvysx9d8sGNfelteT3ss_r14-fyCYbBP2W12m-NLlcuX7ND6kVwujflBcQcyT5flg-Zulnc35ezoc9Oab15V7y2MERz-vyeFF-vr1aXt9Xdw838cnZXqbrlqSLEatIqosBqLBB0BCsLgIALTjSjTCuhMVeYWs47y3ArqNW0U0QTajpanxTzyVd7eJTb4DYQ9tKDk38CPvQSQnJqMJIRg3MtBlwb2jEkOkEYoULXIAx0OntVk9du3ML-MP4_Q4zkYevysHX5vPXMf5j4bfDfdiYm-eh3Yczjyho1oiGcNThTZxPVQ27CjdanACofbTZO5U-1LsdnvOWtaClBOeHji4TMJPM99bCLUc6Xi5fsp4lVwccYjP1_x78BqNuwMg | 
    
| Cites_doi | 10.1007/s13369-022-07445-6 10.1016/j.ijthermalsci.2023.108141 10.1007/s10661-022-10662-z 10.1007/978-981-16-6616-2_33 10.1177/02537176211046525 10.1016/j.jmaa.2023.127862 10.1007/s11600-022-00939-9 10.1016/j.est.2023.108638 10.3390/s22145172 10.3390/app13031935 10.1007/s13369-022-07001-2 10.1007/s12205-021-2223-y 10.3233/JCM-226588 10.1016/j.neucom.2020.04.087 10.1061/PPSCFX.SCENG-1259  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2024 John Wiley & Sons, Inc. Copyright © 2024 Tianpeng Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0  | 
    
| Copyright_xml | – notice: COPYRIGHT 2024 John Wiley & Sons, Inc. – notice: Copyright © 2024 Tianpeng Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0  | 
    
| DBID | AAYXX CITATION ISR 7SC 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY DOA  | 
    
| DOI | 10.1155/2024/7664816 | 
    
| DatabaseName | CrossRef Gale In Context: Science Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Engineering Database (Proquest) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ DIrectory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1687-5605 | 
    
| Editor | Giulia Pascoletti | 
    
| Editor_xml | – fullname: Giulia Pascoletti | 
    
| ExternalDocumentID | oai_doaj_org_article_52e129c5a7de4b508b825248d3a8eabd 10.1155/2024/7664816 A797989420 10_1155_2024_7664816  | 
    
| GeographicLocations | China | 
    
| GeographicLocations_xml | – name: China | 
    
| GroupedDBID | 0R~ 123 188 24P 29M 2UF 2WC 4.4 5VS 8FE 8FG 8R4 8R5 AAFWJ AAMMB AAYXX ABDBF ABJCF ABUWG ACCMX ACGFO ACIWK ACUHS ADBBV ADMLS AEFGJ AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ C1A CCPQU CITATION CS3 CWDGH E3Z EBS EJD ESX GROUPED_DOAJ H13 HCIFZ I-F IAO IL9 ISR ITC K6V K7- KQ8 L6V M7S MK~ OK1 OVT P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO Q2X RHU RNS TR2 TUS UGNYK UNMZH ~8M M~E 7SC 7TB 8FD AAJEY AINHJ AZQEC DWQXO FR3 GNUQQ JQ2 KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c397t-22fd29c2cafd180ab21cfaa0a7872d545dc8d17c14f77bf51984fd4bc2d24eb43 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 1687-5591 1687-5605  | 
    
| IngestDate | Tue Oct 14 19:02:58 EDT 2025 Sun Sep 07 11:15:29 EDT 2025 Fri Jul 25 12:18:48 EDT 2025 Tue Oct 15 04:49:21 EDT 2024 Sat Oct 12 03:45:43 EDT 2024 Wed Oct 01 02:09:58 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c397t-22fd29c2cafd180ab21cfaa0a7872d545dc8d17c14f77bf51984fd4bc2d24eb43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4984-2594 0000-0003-3337-508X  | 
    
| OpenAccessLink | https://doaj.org/article/52e129c5a7de4b508b825248d3a8eabd | 
    
| PQID | 3068627561 | 
    
| PQPubID | 237773 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_52e129c5a7de4b508b825248d3a8eabd unpaywall_primary_10_1155_2024_7664816 proquest_journals_3068627561 gale_infotracacademiconefile_A797989420 gale_incontextgauss_ISR_A797989420 crossref_primary_10_1155_2024_7664816  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-00-00 | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – year: 2024 text: 2024-00-00  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Modelling and Simulation in Engineering | 
    
| PublicationYear | 2024 | 
    
| Publisher | John Wiley & Sons, Inc Wiley  | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley  | 
    
| References | Tang Z. (e_1_2_9_23_2) 2023; 37 Samantaray S. (e_1_2_9_15_2) 2022 Li Z. (e_1_2_9_1_2) 2022; 52 e_1_2_9_12_2 Weng Z. (e_1_2_9_22_2) 2023; 52 e_1_2_9_14_2 Ning Y. (e_1_2_9_11_2) 2023; 51 e_1_2_9_13_2 Li Q. (e_1_2_9_16_2) 2019; 35 e_1_2_9_19_2 e_1_2_9_21_2 e_1_2_9_20_2 e_1_2_9_7_2 e_1_2_9_6_2 e_1_2_9_5_2 Liu L. (e_1_2_9_17_2) 2016; 5 Bao L. (e_1_2_9_24_2) 2022; 38 Tian S. (e_1_2_9_3_2) 2022; 7 Fu L. (e_1_2_9_2_2) 2021; 16 Gu J. (e_1_2_9_4_2) 2022; 47 e_1_2_9_9_2 e_1_2_9_8_2 e_1_2_9_25_2 Li H. (e_1_2_9_18_2) 2023; 41 e_1_2_9_27_2 Zhao F. (e_1_2_9_10_2) 2016; 9 e_1_2_9_26_2 e_1_2_9_28_2  | 
    
| References_xml | – ident: e_1_2_9_26_2 doi: 10.1007/s13369-022-07445-6 – volume: 16 start-page: 875 year: 2021 ident: e_1_2_9_2_2 article-title: Modification of bridge structure finite element model based on RSM-WOA publication-title: China Sciencepaper – volume: 35 start-page: 92 year: 2019 ident: e_1_2_9_16_2 article-title: Study on factors affecting fatigue performance of suspender of flying swallow steel box tied arch bridge publication-title: Technology of Highway and Transport – ident: e_1_2_9_12_2 doi: 10.1016/j.ijthermalsci.2023.108141 – volume-title: Lecture Notes in Networks and Systems, vol 446 year: 2022 ident: e_1_2_9_15_2 – volume: 52 start-page: 105 year: 2023 ident: e_1_2_9_22_2 article-title: Study on correction method of tunnel kiln simulation model based on PSO-BP algorithm publication-title: Machine Building & Automation – ident: e_1_2_9_25_2 doi: 10.1007/s10661-022-10662-z – ident: e_1_2_9_14_2 doi: 10.1007/978-981-16-6616-2_33 – ident: e_1_2_9_19_2 doi: 10.1177/02537176211046525 – ident: e_1_2_9_20_2 doi: 10.1016/j.jmaa.2023.127862 – volume: 47 start-page: 1147 year: 2022 ident: e_1_2_9_4_2 article-title: Ridge structure model updating method based on deep learning and IHPO publication-title: Journal of Guangxi University (Natural Science Edition) – volume: 7 start-page: 190 year: 2022 ident: e_1_2_9_3_2 article-title: Review of the research on correction methods of bridge finite element model publication-title: Engineering and Technological Research – ident: e_1_2_9_27_2 doi: 10.1007/s11600-022-00939-9 – ident: e_1_2_9_28_2 doi: 10.1016/j.est.2023.108638 – ident: e_1_2_9_7_2 doi: 10.3390/s22145172 – ident: e_1_2_9_5_2 doi: 10.3390/app13031935 – volume: 51 start-page: 65 year: 2023 ident: e_1_2_9_11_2 article-title: Deformation prediction of open-pit mine slope based on ABC-GRNN combined model publication-title: Coal Geology & Exploration – volume: 37 start-page: 115 year: 2023 ident: e_1_2_9_23_2 article-title: PSO optimizing bridge deformation prediction for LSTM time series publication-title: Beijing Surveying and Mapping – ident: e_1_2_9_9_2 doi: 10.1007/s13369-022-07001-2 – ident: e_1_2_9_13_2 doi: 10.1007/s12205-021-2223-y – volume: 41 start-page: 67 year: 2023 ident: e_1_2_9_18_2 article-title: Inversion of permeability coefficient for concrete face rockfill dam based on PSO-GRNN and its application publication-title: Water Resources and Power – volume: 5 start-page: 25 year: 2016 ident: e_1_2_9_17_2 article-title: Calculation and analysis for large span flying swallow type of tied arch bridge publication-title: Highways & Transportation in Inner Mongolia – ident: e_1_2_9_8_2 doi: 10.3233/JCM-226588 – ident: e_1_2_9_21_2 doi: 10.1016/j.neucom.2020.04.087 – volume: 38 start-page: 1072 year: 2022 ident: e_1_2_9_24_2 article-title: Research on optimal layout of continuous beam bridge health monitoring sensor based on improved PSO algorithm publication-title: Journal of Shenyang Jianzhu University Natural Science – volume: 52 start-page: 84 year: 2022 ident: e_1_2_9_1_2 article-title: Performance evaluation of prestressed concrete containment sturctuce based on finite element model updating publication-title: Industrial Construction – ident: e_1_2_9_6_2 doi: 10.1061/PPSCFX.SCENG-1259 – volume: 9 start-page: 888 year: 2016 ident: e_1_2_9_10_2 article-title: BP-GRNN model for deformation prediction of diaphragm wall based on multi-source data publication-title: International Journal of Earth Sciences and Engineering  | 
    
| SSID | ssib044753360 ssj0063810  | 
    
| Score | 2.27113 | 
    
| Snippet | In the health monitoring work of long‐span concrete‐filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the... In the health monitoring work of long-span concrete-filled steel tube tied arch bridges, finite element models have been commonly employed to indicate the...  | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| SubjectTerms | Accuracy Algorithms Analysis Approximation Arch bridges Back propagation networks Bridges Concrete Data acquisition Finite element method Flight General regression neural networks Mathematical models Mathematical optimization Neural networks Neurons Optimization Parameters Particle swarm optimization Prediction models Root-mean-square errors Standard scores Steel columns Steel pipes Steel tubes Velocity  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxEB6V9AA9IJ5ioSAL8TitmvXau5sDQglqKEiEKmml3iw_wyHshmSjin_PzD5KEFKvuyNbtmfsb-yZbwDeBJHpUQjoqdokjYWj912HXqvWiSdCdPTI6L7j2yw7uxRfr-TVAcz6XBgKq-z3xGajdpWlO_KTtMllyPG4_7j-FVPVKHpd7Uto6K60gvvQUIzdgUNOzFgDOJyczs7nvYYRu13aZC20e3VG_FbkkmVoaoitkz40Xkq6FRAneZaJgmqh7x1aDbf__zv4EdzdlWv9-1qvVntH1PQB3O-wJRu3yvAQDnz5CI72GAcfg-kj7VhVsjYFibVmTf9ZFdh0RYlP8YI6qK5j8lMdu0Cgyoiklk2aBC82wcPPURvni-_x5_lsxsarJbZR__j5BC6npxefzuKuzEJsEYzUMefB8ZHlVgeXFENteGKD1kONtswdIixnC5fkNhEhz01AyFeI4ISx3HHhjUifwqCsSv8MWKadd45oxIaFSL3RMsgUpRBFSGMMj-BtP49q3bJpqMYLkVLRfKtuviOY0CTfyBAHdvOh2ixVZ1JKco9gxUqdOy8MAk2D3i725VJdeG1cBK9piRSxXJQURrPUu-1WfVnM1Tgf5cQ8z4cRvO-EQlVvtNVdVgKOh4ix_pE87pdadXa-VX-1MoJ3N8t_69ie397OC7hH0u0tzzEM6s3Ov0TcU5tXnTL_AZzM-8A priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB6V9AH6UG7h0qIV4nhKG6_XRx6TQihIhKpppPK02rOVCHbVOKrgiZ_Q39hfwoyPKKVSxZuP8dp7jOeb3ZlvAd54kai-9-ipmjDqCkvruxa9VqVCR4To6JHRfMfXcXIwFV9O4pM1aDe8W12-R0tHrrnYS5NEZGFyD9aTGAF3B9an48PBd3KlElQRxMTh8hjReRve_s_jNwxPxc9_-y-8AfcX-bn6dalmsxUzM3oIH9pknTq65MfuotS75vdt7sa7avAINhuYyQb1uHgMay5_Ahsr5INP4awNumNFzupsJFZrON1nhWejGeVAXf-5mtCXFpd4RG6rZceIWxlx1rJhle_FhmgLLZVzOPmGUp-OxmM2mJ1iSeXZz2cwHX083j_oNvsudA2ik7LLube8b7hR3oZZT2keGq9UT6Fyc4uQy5rMhqkJhU9T7REDZsJboQ23XDgtoufQyYvcvQCWKOusJV6xXiYip1Xs4wilEFbEWmsewNu2U-R5Ta8hK7ckjiW1nGxaLoAh9dhShkixqwvY1LLRMRlzh-jFxCq1TmhEnhrdX3yXjVTmlLYBvKb-lkR7kVNczalazOfy8-RIDtJ-SlT0vBfA-0bIF-WFMqpJU8D6EFPWDcntdtzIRvHnMqpSblJEpQG8W46lO-u29b-CL-EBndYTQNvQKS8WbgchUalfNSrxF8DLAtk priority: 102 providerName: Unpaywall  | 
    
| Title | Research on Health Monitoring of Flying‐Swallow‐Typed Tied Arch Bridge Based on PSO‐GRNN Algorithm | 
    
| URI | https://www.proquest.com/docview/3068627561 http://doi.org/10.1155/2024/7664816 https://doaj.org/article/52e129c5a7de4b508b825248d3a8eabd  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2024 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5605 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063810 issn: 1687-5605 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5605 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063810 issn: 1687-5605 databaseCode: KQ8 dateStart: 20070319 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ DIrectory of Open Access Journals customDbUrl: eissn: 1687-5605 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063810 issn: 1687-5605 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5605 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063810 issn: 1687-5605 databaseCode: ABDBF dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1687-5605 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063810 issn: 1687-5605 databaseCode: ADMLS dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1687-5605 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib044753360 issn: 1687-5591 databaseCode: M~E dateStart: 20060101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5605 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0063810 issn: 1687-5605 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: Proquest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5605 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063810 issn: 1687-5605 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5605 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063810 issn: 1687-5605 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5605 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063810 issn: 1687-5605 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHKAHxFMNlJWFeJyiJo6dZI-7ZR8gNax2u6KcLD_LYUmqblYVF347M3lUi5DgwiWRkpETz8Seb5yZz4S88TxVQ-8hUjVxEnKL_3ctRK1KxQ4J0SEiw_WOsyKdr_mnC3Gxt9UX5oS19MCt4k4Ec-CSjFCZdVwDnNAQ0zCe20TlTmmLs2-UD_tgqp2DU-St6tPchcAIn59kacpz3Nd8zwE1PP1_zsaH5P6uvFI_btRms-dupo_Iww4n0lH7fo_JHVc-IYd77IFPie6z5mhV0raciLZDFO_TytPpBouYwhU-oLoJMea09BxAJ0XCWTpuirXoGByZxTYWq8_hbFkUdLS5hDbqb9-fkfV0cn46D7stE0IDwKIOGfMWtMWM8jbOI6VZbLxSkYJxySygJWtyG2cm5j7LtAf4lnNvuTbMMu40T56Tg7Iq3RGhqbLOWqQEi3KeOK2EFwlIASIQWmsWkLe9HuVVy4whm4hCCIn6lp2-AzJGJd_KIJ91cwGsLDsry39ZOSCv0UQSGStKTIm5VLvtVn5cLeUoG2bIIs-igLzvhHxVXyujugoD6A-SXP0medybWnZjdiuTplomA0AZkHe35v9r3178j769JA-wzXZd55gc1Nc79wqQTq0H5G4-nQ3IvfGkWCzhfPrlw2w-aD51OJ79nMC1dbEYff0F48n_pQ | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKeig98EYsFLAQLadts17vIwcOSUua0DagJlV7M36sg0TYDclGUflR_BX-EjP7KAGk3nrgmjiO7P0884135htCXlseypa1EKlqz3e5wfe7BqJWKb0EBdEhIsP7jpNB2Dvj7y-CizXyo66FwbTK2iYWhtpkGu_I9_yiliECd19lUB4ll0uIz-Zv-wfwMLcZ674b7ffcqoWAq8HR5i5j1rCWZlpa48VNqZinrZRNCThlBtiD0bHxIu1xG0XKAp2JuTVcaWYYTxT3Yd6d6TcXu1Th29yqZcctsg4491iDrO-fHxz2agSjep5fVEWUviBE_SwM-UI4ysDdvTr1Pgjw1oHvRWHIY-y1vuIUi94B_3qITbKxSKfyciknkxUX2L1LftabV2a-fNld5GpXf_9LV_L_2d175E7Fxmm7PD73yVqSPiCbKxqND4mqcxNpltKyaIuWhhC_p5ml3QmWirlD3LJs6WJkb-gIqD1FWV_aKUriaAfogsE5Pg4_uIengwFtT8YwR_756yNydiPrfkwaaZYmTwgNpUmMQeG1Zsz9RMnABj6MAt4VKKWYQ7ZrZIhpqT8iirgtCAQiSFQIckgHYXM1BlXDiw-y2VhURkgELAF6pwMZmYQroOYqZgH8l_FlnEhlHPIKQSdQFyTFxKOxXMznoj88Fe2oFaFWP2s65E01yGb5TGpZ1XHAelBK7I-RWzXYRGUZ5-I30hyycwXoa9f29Pp5XpKN3ujkWBz3B0fPyG38ZXlHtkUa-WyRPAfWmKsX1VGl5NNNQ_oXFLZ4zA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxELZKKwE98EYECliIwmmbrNfe3RwQShrShkKomlb0ZvxYB4mwG5KNovLT-Cv8GWb2UQJIvfXANXEc2ft55hvvzDeEPHc8VG3nIFI1fuBxi-93LUStSvkJCqJDRIb3He-H4f4Jf3sqTtfIj7oWBtMqa5tYGGqbGbwjbwZFLUME7r7pqrSIw17_9fSbhx2k8E1r3U6jhMhBcraE8G3-atCDZ73NWP_N8e6-V3UY8Az44dxjzFnWNswoZ_24pTTzjVOqpQDGzAK5sCa2fmR87qJIO2A7MXeWa8Ms44nmAcx7hWzEYRSCUdjY_djb26_RjEp6QVEhUfqFELW0MPwL4VgDj_frNHwh8AaCN6Mw5DH2XV9xkEUfgX-9xSa5tkin6mypJpMVd9i_SX7WG1lmwXzZWeR6x3z_S2Py_9zpW-RGxdJppzxWt8lakt4hmyvajXeJrnMWaZbSspiLlgYSv6eZo_0JlpB5I9y-bOlhxG_pMVB-inK_tFuUytEu0AiLcxyOPnh7R8Mh7UzGMEf--es9cnIpi7xP1tMsTR4QGiqbWIuCbK2YB4lWwokARgEfE1pr1iDbNUrktNQlkUU8J4RENMkKTQ3SRQidj0E18eKDbDaWlXGSgiVA-4xQkU24BsquYybgv2yg4kRp2yDPEIAS9UJSxMNYLeZzORgdyU7UjlDDn7Ua5GU1yGX5TBlV1XfAelBi7I-RWzXwZGUx5_I36hrkxTm4L1zbw4vneUquAm7lu8Hw4BG5jj8sr862yHo-WySPgUzm-kl1ain5dNnw_QXwWoGU | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9NAEB6V9AH6UG7h0qIV4nhKG6_XRx6TQihIhKpppPK02rOVCHbVOKrgiZ_Q39hfwoyPKKVSxZuP8dp7jOeb3ZlvAd54kai-9-ipmjDqCkvruxa9VqVCR4To6JHRfMfXcXIwFV9O4pM1aDe8W12-R0tHrrnYS5NEZGFyD9aTGAF3B9an48PBd3KlElQRxMTh8hjReRve_s_jNwxPxc9_-y-8AfcX-bn6dalmsxUzM3oIH9pknTq65MfuotS75vdt7sa7avAINhuYyQb1uHgMay5_Ahsr5INP4awNumNFzupsJFZrON1nhWejGeVAXf-5mtCXFpd4RG6rZceIWxlx1rJhle_FhmgLLZVzOPmGUp-OxmM2mJ1iSeXZz2cwHX083j_oNvsudA2ik7LLube8b7hR3oZZT2keGq9UT6Fyc4uQy5rMhqkJhU9T7REDZsJboQ23XDgtoufQyYvcvQCWKOusJV6xXiYip1Xs4wilEFbEWmsewNu2U-R5Ta8hK7ckjiW1nGxaLoAh9dhShkixqwvY1LLRMRlzh-jFxCq1TmhEnhrdX3yXjVTmlLYBvKb-lkR7kVNczalazOfy8-RIDtJ-SlT0vBfA-0bIF-WFMqpJU8D6EFPWDcntdtzIRvHnMqpSblJEpQG8W46lO-u29b-CL-EBndYTQNvQKS8WbgchUalfNSrxF8DLAtk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Health+Monitoring+of+Flying%E2%80%90Swallow%E2%80%90Typed+Tied+Arch+Bridge+Based+on+PSO%E2%80%90GRNN+Algorithm&rft.jtitle=Modelling+and+simulation+in+engineering&rft.au=Zhang%2C+Tianpeng&rft.au=Liu%2C+Long&rft.au=Ji%2C+Pengfei&rft.date=2024&rft.issn=1687-5591&rft.eissn=1687-5605&rft.volume=2024&rft.issue=1&rft_id=info:doi/10.1155%2F2024%2F7664816&rft.externalDBID=n%2Fa&rft.externalDocID=10_1155_2024_7664816 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5591&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5591&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5591&client=summon |