Theoretical Analysis of Git Bisect

In this paper, we consider the problem of finding a regression in a version control system (VCS), such as git. The set of versions is modelled by a directed acyclic graph (DAG) where vertices represent versions of the software, and arcs are the changes between different versions. We assume that some...

Full description

Saved in:
Bibliographic Details
Published inAlgorithmica Vol. 86; no. 5; pp. 1365 - 1399
Main Authors Courtiel, Julien, Dorbec, Paul, Lecoq, Romain
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2024
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN0178-4617
1611-3349
0302-9743
1432-0541
DOI10.1007/s00453-023-01194-0

Cover

Abstract In this paper, we consider the problem of finding a regression in a version control system (VCS), such as git. The set of versions is modelled by a directed acyclic graph (DAG) where vertices represent versions of the software, and arcs are the changes between different versions. We assume that somewhere in the DAG, a bug was introduced, which persists in all of its subsequent versions. It is possible to query a vertex to check whether the corresponding version carries the bug. Given a DAG and a bugged vertex, the Regression Search Problem consists in finding the first vertex containing the bug in a minimum number of queries in the worst-case scenario. This problem is known to be NP-complete. We study the algorithm used in git to address this problem, known as git bisect. We prove that in a general setting, git bisect can use an exponentially larger number of queries than an optimal algorithm. We also consider the restriction where all vertices have indegree at most 2 (i.e. where merges are made between at most two branches at a time in the VCS), and prove that in this case, git bisect is a 1 log 2 ( 3 / 2 ) -approximation algorithm, and that this bound is tight. We also provide a better approximation algorithm for this case. Finally, we give an alternative proof of the NP-completeness of the Regression Search Problem, via a variation with bounded indegree.
AbstractList In this paper, we consider the problem of finding a regression in a version control system (VCS), such as git. The set of versions is modelled by a directed acyclic graph (DAG) where vertices represent versions of the software, and arcs are the changes between different versions. We assume that somewhere in the DAG, a bug was introduced, which persists in all of its subsequent versions. It is possible to query a vertex to check whether the corresponding version carries the bug. Given a DAG and a bugged vertex, the Regression Search Problem consists in finding the first vertex containing the bug in a minimum number of queries in the worst-case scenario. This problem is known to be NP-complete. We study the algorithm used in git to address this problem, known as git bisect. We prove that in a general setting, git bisect can use an exponentially larger number of queries than an optimal algorithm. We also consider the restriction where all vertices have indegree at most 2 (i.e. where merges are made between at most two branches at a time in the VCS), and prove that in this case, git bisect is a 1 log 2 ( 3 / 2 ) -approximation algorithm, and that this bound is tight. We also provide a better approximation algorithm for this case. Finally, we give an alternative proof of the NP-completeness of the Regression Search Problem, via a variation with bounded indegree.
In this paper, we consider the problem of finding a regression in a version control system (VCS), such as git. The set of versions is modelled by a directed acyclic graph (DAG) where vertices represent versions of the software, and arcs are the changes between different versions. We assume that somewhere in the DAG, a bug was introduced, which persists in all of its subsequent versions. It is possible to query a vertex to check whether the corresponding version carries the bug. Given a DAG and a bugged vertex, the Regression Search Problem consists in finding the first vertex containing the bug in a minimum number of queries in the worst-case scenario. This problem is known to be NP-complete. We study the algorithm used in git to address this problem, known as git bisect. We prove that in a general setting, git bisect can use an exponentially larger number of queries than an optimal algorithm. We also consider the restriction where all vertices have indegree at most 2 (i.e. where merges are made between at most two branches at a time in the VCS), and prove that in this case, git bisect is a 1log2(3/2)-approximation algorithm, and that this bound is tight. We also provide a better approximation algorithm for this case. Finally, we give an alternative proof of the NP-completeness of the Regression Search Problem, via a variation with bounded indegree.
In this paper, we consider the problem of finding a regression in a version control system (VCS), such as git. The set of versions is modelled by a Directed Acyclic Graph (DAG) where vertices represent versions of the software, and arcs are the changes between different versions. We assume that somewhere in the DAG, a bug was introduced, which persists in all of its subsequent versions. It is possible to query a vertex to check whether the corresponding version carries the bug. Given a DAG and a bugged vertex, the Regression Search Problem consists in finding the first vertex containing the bug in a minimum number of queries in the worst-case scenario. This problem is known to be NP-complete. We study the algorithm used in git to address this problem, known as git bisect. We prove that in a general setting, git bisect can use an exponentially larger number of queries than an optimal algorithm. We also consider the restriction where all vertices have indegree at most 2 (i.e. where merges are made between at most two branches at a time in the VCS), and prove that in this case, git bisect is a $\frac{1}{\log_2(3/2)}$-approximation algorithm, and that this bound is tight. We also provide a better approximation algorithm for this case. Finally, we give an alternative proof of the NP-completeness of the Regression Search Problem, via a variation with bounded indegree.
Author Lecoq, Romain
Dorbec, Paul
Courtiel, Julien
Author_xml – sequence: 1
  givenname: Julien
  surname: Courtiel
  fullname: Courtiel, Julien
  email: julien.courtiel@unicaen.fr
  organization: Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC
– sequence: 2
  givenname: Paul
  surname: Dorbec
  fullname: Dorbec, Paul
  organization: Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC
– sequence: 3
  givenname: Romain
  surname: Lecoq
  fullname: Lecoq, Romain
  organization: Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC
BackLink https://hal.science/hal-04354327$$DView record in HAL
BookMark eNqNkE1Lw0AQhhepYFv9A56KnjxEZ7-yybEWbYWCl3pepsnGbonZupsq_fduTaHgoXgYBobnHeaZAek1rjGEXFO4pwDqIQAIyRNgsSjNRQJnpE8FZwlIQXukD1RliUipuiCDENYAlKk87ZObxco4b1pbYD0aN1jvgg0jV42mth092mCK9pKcV1gHc3XoQ_L2_LSYzJL56_RlMp4nBc9VmzBaCVyWOUgGUmapKJVEkEUuqeJCMlpijowtRZmjkZymLOWmEJxSnmFZKT4kvNu7bTa4-8a61htvP9DvNAW919Sdpo6a-ldTQ0zddakVHnmHVs_Gc72fgeAyPkJ9scjeduzGu8-tCa1eu62P0kFzEEzwNIM0UllHFd6F4E2lC9tia13TerT16WPYn-i_DA7eIcLNu_HHq06kfgB-T480
CitedBy_id crossref_primary_10_4204_EPTCS_403_18
Cites_doi 10.1016/j.tcs.2011.08.042
10.1007/s00453-011-9510-9
10.1109/FOCS.2006.32
10.1016/j.dam.2004.06.002
10.1016/0020-0190(76)90095-8
10.1142/S0218195998000175
10.1016/j.tcs.2003.06.001
10.1016/0166-218X(84)90081-7
10.1145/2897518.2897656
10.1137/S009753979731858X
10.5220/0006864401860197
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Attribution
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Attribution
DBID AAYXX
CITATION
JQ2
1XC
VOOES
ADTOC
UNPAY
DOI 10.1007/s00453-023-01194-0
DatabaseName CrossRef
ProQuest Computer Science Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1399
ExternalDocumentID 10.1007/s00453-023-01194-0
oai:HAL:hal-04354327v2
10_1007_s00453_023_01194_0
GrantInformation_xml – fundername: Région Normandie
  grantid: RIN Doctorant 100% AAAA
  funderid: http://dx.doi.org/10.13039/501100018696
– fundername: European Science Foundation
  grantid: DYNNET; DYNNET; DYNNET
  funderid: http://dx.doi.org/10.13039/501100000782
– fundername: European Regional Development Fund
  grantid: DYNNET; DYNNET; DYNNET
  funderid: http://dx.doi.org/10.13039/501100008530
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
JQ2
1XC
VOOES
-DT
-GH
29L
2HA
2HV
875
AASHB
ADCXD
ADTOC
F5P
LDH
P2P
RSU
SVGTG
UNPAY
VI1
~02
ID FETCH-LOGICAL-c397t-21f4abd9052055864d75a05c951734521da9a22b4d9ae5316263ec431138adf73
IEDL.DBID U2A
ISSN 0178-4617
1611-3349
0302-9743
IngestDate Thu Aug 28 11:19:40 EDT 2025
Tue Oct 14 20:17:14 EDT 2025
Thu Oct 02 14:06:14 EDT 2025
Wed Oct 01 01:52:09 EDT 2025
Thu Apr 24 22:54:57 EDT 2025
Fri Feb 21 02:40:36 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Worst-case complexity
Approximation algorithm
Version control system
Regression search
Graph algorithm
Language English
License Attribution: http://creativecommons.org/licenses/by
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-21f4abd9052055864d75a05c951734521da9a22b4d9ae5316263ec431138adf73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-1179-6082
0000-0002-3441-2818
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.researchsquare.com/article/rs-2621606/latest.pdf
PQID 3042436806
PQPubID 2043795
PageCount 35
ParticipantIDs unpaywall_primary_10_1007_s00453_023_01194_0
hal_primary_oai_HAL_hal_04354327v2
proquest_journals_3042436806
crossref_citationtrail_10_1007_s00453_023_01194_0
crossref_primary_10_1007_s00453_023_01194_0
springer_journals_10_1007_s00453_023_01194_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Boissinot, B.: Hg Bisect Mercurial Manpage. https://www.mercurial-scm.org/wiki/BisectExtension
Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees (1999). https://doi.org/10.1137/S009753979731858X
ToveyCAA simplified np-complete satisfiability problemDiscret. Appl. Math.198481858973960110.1016/0166-218X(84)90081-7
Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NP$$\end{document}-complete. Inf. Process. Lett. 5(1), 15–17 (1976/77). https://doi.org/10.1016/0020-0190(76)90095-8
Mozes, S., Onak, K., Weimann, O.: Finding an optimal tree searching strategy in linear time, pp. 1096–1105 (2008)
CicaleseFJacobsTLaberESMolinaroMOn the complexity of searching in trees and partially ordered structuresTheor. Comput. Sci.201141268796896289435910.1016/j.tcs.2011.08.042
Onak, K., Parys, P.: Generalization of binary search: searching in trees and forest-like partial orders, pp. 379–388 (2006). https://doi.org/10.1109/FOCS.2006.32
Dereniowski, D., Kosowski, A., Uznański, P.A., Zou, M.: Approximation strategies for generalized binary search in weighted trees 80, 84–14 (2017)
CarmoRDonadelliJKohayakawaYLaberESearching in random partially ordered setsTheoret. Comput. Sci.200432114157206740010.1016/j.tcs.2003.06.001
LaberESNogueiraLTOn the hardness of the minimum height decision tree problemDiscret. Appl. Math.20041441–2209212209539410.1016/j.dam.2004.06.002
Couder, C.: Fighting regressions with git bisect (2009). https://git-scm.com/docs/git-bisect-lk2009
ArkinEMMeijerHMitchellJSBRappaportDSkienaSSDecision trees for geometric modelsInt. J. Comput. Geom. Appl.199883343363162548010.1142/S0218195998000175
Bendík, J., Benes, N., Cerna, I.: Finding regressions in projects under version control systems. CoRR (2017) arXiv:1708.06623
AdlerMHeeringaBApproximating optimal binary decision treesAlgorithmica2012623–411121121287114010.1007/s00453-011-9510-9
Emamjomeh-Zadeh, E., Kempe, D., Singhal, V.: Deterministic and probabilistic binary search in graphs, pp. 519–532 (2016). https://doi.org/10.1145/2897518.2897656
CA Tovey (1194_CR15) 1984; 8
1194_CR1
M Adler (1194_CR13) 2012; 62
F Cicalese (1194_CR11) 2011; 412
ES Laber (1194_CR7) 2004; 144
EM Arkin (1194_CR14) 1998; 8
R Carmo (1194_CR2) 2004; 321
1194_CR3
1194_CR12
1194_CR4
1194_CR5
1194_CR6
1194_CR8
1194_CR9
1194_CR10
References_xml – reference: AdlerMHeeringaBApproximating optimal binary decision treesAlgorithmica2012623–411121121287114010.1007/s00453-011-9510-9
– reference: Boissinot, B.: Hg Bisect Mercurial Manpage. https://www.mercurial-scm.org/wiki/BisectExtension
– reference: CarmoRDonadelliJKohayakawaYLaberESearching in random partially ordered setsTheoret. Comput. Sci.200432114157206740010.1016/j.tcs.2003.06.001
– reference: CicaleseFJacobsTLaberESMolinaroMOn the complexity of searching in trees and partially ordered structuresTheor. Comput. Sci.201141268796896289435910.1016/j.tcs.2011.08.042
– reference: Emamjomeh-Zadeh, E., Kempe, D., Singhal, V.: Deterministic and probabilistic binary search in graphs, pp. 519–532 (2016). https://doi.org/10.1145/2897518.2897656
– reference: Mozes, S., Onak, K., Weimann, O.: Finding an optimal tree searching strategy in linear time, pp. 1096–1105 (2008)
– reference: Bendík, J., Benes, N., Cerna, I.: Finding regressions in projects under version control systems. CoRR (2017) arXiv:1708.06623
– reference: Ben-Asher, Y., Farchi, E., Newman, I.: Optimal search in trees (1999). https://doi.org/10.1137/S009753979731858X
– reference: Onak, K., Parys, P.: Generalization of binary search: searching in trees and forest-like partial orders, pp. 379–388 (2006). https://doi.org/10.1109/FOCS.2006.32
– reference: ArkinEMMeijerHMitchellJSBRappaportDSkienaSSDecision trees for geometric modelsInt. J. Comput. Geom. Appl.199883343363162548010.1142/S0218195998000175
– reference: LaberESNogueiraLTOn the hardness of the minimum height decision tree problemDiscret. Appl. Math.20041441–2209212209539410.1016/j.dam.2004.06.002
– reference: Couder, C.: Fighting regressions with git bisect (2009). https://git-scm.com/docs/git-bisect-lk2009
– reference: Hyafil, L., Rivest, R.L.: Constructing optimal binary decision trees is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$NP$$\end{document}-complete. Inf. Process. Lett. 5(1), 15–17 (1976/77). https://doi.org/10.1016/0020-0190(76)90095-8
– reference: ToveyCAA simplified np-complete satisfiability problemDiscret. Appl. Math.198481858973960110.1016/0166-218X(84)90081-7
– reference: Dereniowski, D., Kosowski, A., Uznański, P.A., Zou, M.: Approximation strategies for generalized binary search in weighted trees 80, 84–14 (2017)
– volume: 412
  start-page: 6879
  year: 2011
  ident: 1194_CR11
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2011.08.042
– volume: 62
  start-page: 1112
  issue: 3–4
  year: 2012
  ident: 1194_CR13
  publication-title: Algorithmica
  doi: 10.1007/s00453-011-9510-9
– ident: 1194_CR4
  doi: 10.1109/FOCS.2006.32
– volume: 144
  start-page: 209
  issue: 1–2
  year: 2004
  ident: 1194_CR7
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2004.06.002
– ident: 1194_CR6
  doi: 10.1016/0020-0190(76)90095-8
– volume: 8
  start-page: 343
  issue: 3
  year: 1998
  ident: 1194_CR14
  publication-title: Int. J. Comput. Geom. Appl.
  doi: 10.1142/S0218195998000175
– ident: 1194_CR5
– volume: 321
  start-page: 41
  issue: 1
  year: 2004
  ident: 1194_CR2
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/j.tcs.2003.06.001
– ident: 1194_CR8
– ident: 1194_CR12
– volume: 8
  start-page: 85
  issue: 1
  year: 1984
  ident: 1194_CR15
  publication-title: Discret. Appl. Math.
  doi: 10.1016/0166-218X(84)90081-7
– ident: 1194_CR1
– ident: 1194_CR9
  doi: 10.1145/2897518.2897656
– ident: 1194_CR3
  doi: 10.1137/S009753979731858X
– ident: 1194_CR10
  doi: 10.5220/0006864401860197
SSID ssj0012796
Score 2.4630451
Snippet In this paper, we consider the problem of finding a regression in a version control system (VCS), such as git. The set of versions is modelled by a directed...
In this paper, we consider the problem of finding a regression in a version control system (VCS), such as git. The set of versions is modelled by a Directed...
SourceID unpaywall
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1365
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Apexes
Approximation
Computer Science
Computer Systems Organization and Communication Networks
Data Structures and Algorithms
Data Structures and Information Theory
Discrete Mathematics
Graph theory
Mathematical analysis
Mathematics of Computing
Queries
Regression
Theory of Computation
Version control
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_odlAPfovziyLetNqmSbuAlynqEB0eHOhBSpqkKI6pW6foX-_LmnbTg6jX9oUk7-XjR_J7vwDspH6KK56nXB5J7lKtmCtowl2mtCRacSaGwvOXrbDZpuc37GYCDotcGEOrtDI39_0X9FJ-pGTdeNDruyQkPqLug47BYthqlU5CNWSIxCtQbbeuGrf5xQHB6nN-fWiU-gLKbc7MMHPOQBlzgWnIRL5Rx_2yL03eG1bkGOQsb0lnYGrQfRbvb6LTGduITufgruhCzj953B9kyb78-Kbu-N8-zsOsRahOI7dbgAndXYS54vUHxy4GS7B9PcqBdAptE-cpdc4eMufooY8r6TK0T0-uj5uufXHBlYhLMpf4KRWJ4oYcw1g9pCpiwmMSYVgUUNzpleCCkIQqLjTOXiNloyViED-oC5VGwQpUuk9dvQqOlipBsOHRRCSU-FpoGUqVqpBwEaVc18Av_B1LK0duXsXoxKWQ8jBGMcYoHsYo9mqwW5Z5zsU4frTexjCWhkZHu9m4iM03D0EiDUj0SmqwUUQ5trO3H5sjHqPM74U12CsiP_r9U5V75ej4RQvX_ma-DtMEIVVOt9yAStYb6E2ERFmyZUf-J5aqAkQ
  priority: 102
  providerName: Unpaywall
Title Theoretical Analysis of Git Bisect
URI https://link.springer.com/article/10.1007/s00453-023-01194-0
https://www.proquest.com/docview/3042436806
https://hal.science/hal-04354327
https://www.researchsquare.com/article/rs-2621606/latest.pdf
UnpaywallVersion acceptedVersion
Volume 86
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AFBBN
  dateStart: 19861101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1432-0541
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012796
  issn: 0178-4617
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da8IwED-mPmx72PdYNydF9jYLbUxa81iHH-xD9mBBn0qapEyQKlM39t8vqW11MGR7Km3TtNzlcj96d78DuIudWO14trCox6mFpSAWwxG1iJAcSUEJS4nnXwZuP8CPIzLKisIWebZ7HpJMd-qi2E2jDx1z1Pk_jia0LUGFaDovtYoD5BexA-SlXbl033kLKwedlcr8PscPd1R608mQW0izCI4ewv4qmbOvTzadbvmf7gkcZcDR9NeaPoU9mZzBcd6Uwcxs9Bzqw01poplTjpiz2OxNlmZ7slAb3AUE3c7woW9ljRAsruDC0kJOjFkkqM5ZIaTlYuERZhOu0JHXxMoBC0YZQhEWlEllVJphRnIFDZxmi4nYa15COZkl8gpMyUWkMICNIxZh5EgmuctFLFxEmRdTaYCTyyPkGUu4blYxDQt-41SGoZJhmMowtA24L56Zrzkydo6uKzEXAzW9dd9_DvU1W2E33ETeBzKgmmshzIxqEeo_L5ow33YNaOSa2dze9cpGob0_fOH1_2a_gQOkkM46C7IK5eX7St4qpLKMalDxu-32QB9746dOLV2o6iwYvPrjbw203XM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbYOAAHxlMMBlQTNyhq07RdjgOxFfY4bRKcojRJxcS0TawDwa8n6YuH0ATXNk1TO4m_1PZngLPIjtSOZwmT-JyYWArXZDgkpiskR1IQlyXE872-Fwzx3b17nyWFzfNo99wlmezURbKbRh_a56jjf2xNaFuCVawOKKgMq832Q-em8B4gP6nLpSvPm1iZ6CxZ5vdevhmk0qMOh_yCNQv36AasLSYz9vbKxuMvFqhVgWE-9jTw5OlyEYeX_P0HreN_P24LNjNIajTTObQNK3KyA5W83IORrf5dqA8-kx6NnMzEmEZGexQbV6O52jr3YNi6GVwHZlZiweQKiMQmsiPMQkF0NIzrNjwsfJdZLle4y3ewMu2CEYZQiAVhUi1XzV0juQIdttNgIvKdfShPphN5AIbkIlTowsIhCzGyJZPc4yISHiLMj4isgp3LmfKMf1yXwRjTgjk5EQJVQqCJEKhVhfPimVnKvrG0dV2pr2ioibODZpfqa5ZChdhB_guqQi3XLs2W65zqfzqait_yqnCRK-jz9rJXXhSz4g8jPPxf76ewFgx6Xdq97XeOYB0pPJXGWtagHD8v5LHCQ3F4kk3_D_hr-Ic
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8IJn48-G2coi7EN1nYSrfRR_xAVCQ-QMJb07VdJCGDyND439vuC0wM0deta5e7Xu-X3t3vAK5CJ1Qnni0s4nNiYSlci-GAWK6QHElBXJYQz7_0vM4APw3d4VIVf5Ltnock05oGzdIUxfWpCOtF4ZtGIjr-qHOBHE1uW4J1rIkS1I4eoFYRR0B-0qFL96C3sHLWWdnM73P8cE2lN50YuYQ6i0DpNmzOoyn7-mTj8ZIvau_BTgYizVaq9X1Yk9EB7OYNGszMXg-h2l-UKZo5_Yg5Cc2HUWzejGbqsDuCQfu-f9uxsqYIFlfQIbaQE2IWCKLzV1y36WHhu8x2uUJKfgMrZywYYQgFWBAmlYFpthnJFUxwGk0mQr9xDOVoEskTMCUXgcIDNg5YgJEjmeQeF6HwEGF-SKQBTi4PyjPGcN24YkwLruNEhlTJkCYypLYB18U305QvY-XoqhJzMVBTXXdaXaqf2QrH4QbyP5ABlVwLNDOwGdW3MJo83_YMqOWaWbxetWSt0N4f_vD0f7NfwsbrXZt2H3vPZ7CFFABKkyMrUI7f5_JcAZg4uEj26Df_69_b
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_odlAPfovziyLetNqmSbuAlynqEB0eHOhBSpqkKI6pW6foX-_LmnbTg6jX9oUk7-XjR_J7vwDspH6KK56nXB5J7lKtmCtowl2mtCRacSaGwvOXrbDZpuc37GYCDotcGEOrtDI39_0X9FJ-pGTdeNDruyQkPqLug47BYthqlU5CNWSIxCtQbbeuGrf5xQHB6nN-fWiU-gLKbc7MMHPOQBlzgWnIRL5Rx_2yL03eG1bkGOQsb0lnYGrQfRbvb6LTGduITufgruhCzj953B9kyb78-Kbu-N8-zsOsRahOI7dbgAndXYS54vUHxy4GS7B9PcqBdAptE-cpdc4eMufooY8r6TK0T0-uj5uufXHBlYhLMpf4KRWJ4oYcw1g9pCpiwmMSYVgUUNzpleCCkIQqLjTOXiNloyViED-oC5VGwQpUuk9dvQqOlipBsOHRRCSU-FpoGUqVqpBwEaVc18Av_B1LK0duXsXoxKWQ8jBGMcYoHsYo9mqwW5Z5zsU4frTexjCWhkZHu9m4iM03D0EiDUj0SmqwUUQ5trO3H5sjHqPM74U12CsiP_r9U5V75ej4RQvX_ma-DtMEIVVOt9yAStYb6E2ERFmyZUf-J5aqAkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+Analysis+of+Git+Bisect&rft.jtitle=Algorithmica&rft.au=Courtiel%2C+Julien&rft.au=Dorbec%2C+Paul&rft.au=Lecoq%2C+Romain&rft.date=2024-05-01&rft.pub=Springer+US&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=86&rft.issue=5&rft.spage=1365&rft.epage=1399&rft_id=info:doi/10.1007%2Fs00453-023-01194-0&rft.externalDocID=10_1007_s00453_023_01194_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon