Face attribute analysis from structured light: an end-to-end approach

In this work we explore the use of structured-light imaging for face analysis. Towards this and due to lack of a publicly available structured-light face dataset, we (a) firstly generate a synthetic structured-light face dataset constructed based on the RGB-dataset London Face and the RGB-D dataset...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 82; no. 7; pp. 10471 - 10490
Main Authors Thamizharasan, Vikas, Das, Abhijit, Battaglino, Daniele, Bremond, Francois, Dantcheva, Antitza
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2023
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN1380-7501
1573-7721
1573-7721
DOI10.1007/s11042-022-13224-0

Cover

Abstract In this work we explore the use of structured-light imaging for face analysis. Towards this and due to lack of a publicly available structured-light face dataset, we (a) firstly generate a synthetic structured-light face dataset constructed based on the RGB-dataset London Face and the RGB-D dataset Bosphorus 3D Face. We then (b) propose a conditional adversarial network for depth map estimation from generated synthetic data. Associated quantitative and qualitative results suggest the efficiency of the proposed depth estimation technique. Further, we (c) study the estimation of gender and age directly from (i) structured-light, (ii) binarized structured-light, as well as (iii) estimated depth maps from structured-light. In this context we (d) study the impact of different subject-to-camera distances, as well as pose-variations. Finally, we (e) validate the proposed gender and age models that we train on synthetic data on a small set of real data, which we acquire. While these are early results, our findings clearly indicate the suitability of structured-light based approaches in facial analysis.
AbstractList In this work we explore the use of structured-light imaging for face analysis. Towards this and due to lack of a publicly available structured-light face dataset, we (a) firstly generate a synthetic structured-light face dataset constructed based on the RGB-dataset London Face and the RGB-D dataset Bosphorus 3D Face. We then (b) propose a conditional adversarial network for depth map estimation from generated synthetic data. Associated quantitative and qualitative results suggest the efficiency of the proposed depth estimation technique. Further, we (c) study the estimation of gender and age directly from (i) structured-light, (ii) binarized structuredlight, as well as (iii) estimated depth maps from structured-light. In this context we (d) study the impact of different subject-to-camera distances, as well as pose-variations. Finally, we (e) validate the proposed gender and age models that we train on synthetic data on a small set of real data, which we acquire. While these are early results, our findings clearly indicate the suitability of structured-light based approaches in facial analysis.
In this work we explore the use of structured-light imaging for face analysis. Towards this and due to lack of a publicly available structured-light face dataset, we (a) firstly generate a synthetic structured-light face dataset constructed based on the RGB-dataset London Face and the RGB-D dataset Bosphorus 3D Face. We then (b) propose a conditional adversarial network for depth map estimation from generated synthetic data. Associated quantitative and qualitative results suggest the efficiency of the proposed depth estimation technique. Further, we (c) study the estimation of gender and age directly from (i) structured-light, (ii) binarized structured-light, as well as (iii) estimated depth maps from structured-light. In this context we (d) study the impact of different subject-to-camera distances, as well as pose-variations. Finally, we (e) validate the proposed gender and age models that we train on synthetic data on a small set of real data, which we acquire. While these are early results, our findings clearly indicate the suitability of structured-light based approaches in facial analysis.
Author Das, Abhijit
Bremond, Francois
Thamizharasan, Vikas
Dantcheva, Antitza
Battaglino, Daniele
Author_xml – sequence: 1
  givenname: Vikas
  surname: Thamizharasan
  fullname: Thamizharasan, Vikas
  organization: Inria Sophia Antipolis - Méediterranée
– sequence: 2
  givenname: Abhijit
  orcidid: 0000-0002-6793-0582
  surname: Das
  fullname: Das, Abhijit
  email: abhijit.das@inria.fr
  organization: Inria Sophia Antipolis - Méediterranée, BITS
– sequence: 3
  givenname: Daniele
  surname: Battaglino
  fullname: Battaglino, Daniele
  organization: Blu Manta, Sophia Antipolis
– sequence: 4
  givenname: Francois
  surname: Bremond
  fullname: Bremond, Francois
  organization: Inria Sophia Antipolis - Méediterranée
– sequence: 5
  givenname: Antitza
  surname: Dantcheva
  fullname: Dantcheva, Antitza
  organization: Inria Sophia Antipolis - Méediterranée
BackLink https://hal.science/hal-04391848$$DView record in HAL
BookMark eNqNkE1LxDAQhoOs4K76BzwVPHmI5qtJ601k_YAFL3oOaTJ1K922Jqmy_96sFQQPi6cZZt5nPt4FmnV9BwidUXJJCVFXgVIiGCaMYcoZE5gcoDnNFcdKMTpLOS8IVjmhR2gRwhshVOZMzNHyzljITIy-qcaYss6029CErPb9JgvRjzaOHlzWNq_reJ36GXQOxx6nkJlh8L2x6xN0WJs2wOlPPEYvd8vn2we8erp_vL1ZYctLFTEF48CqHJyQlQQooMxl5aQoFeNWMCukzF3ScCEK6yitoZQOpKuquubA-DHi09yxG8z207StHnyzMX6rKdE7J_TkhE5O6G8nNEnUxUStza--N41-uFnpXY0IXtJCFB80ac8nbXrsfYQQ9Vs_-mRK0EwVVBCes91ENqms70PwUP_vjOIPZJtoYtN30Zum3Y_-_B3Snu4V_O9Ve6gvOHKe2Q
CitedBy_id crossref_primary_10_1007_s11042_023_15182_7
crossref_primary_10_1109_ACCESS_2024_3470128
Cites_doi 10.1109/3DV.2016.56
10.5772/34976
10.1109/TIFS.2015.2480381
10.1109/ICCV.2017.365
10.1145/3341161.3343525
10.1016/j.neucom.2019.07.047
10.1109/TIFS.2016.2632070
10.1109/CVPRW.2015.7301352
10.1109/ICB2018.2018.00031
10.1109/CVPR.2016.614
10.1007/978-3-540-89991-4_6
10.1109/ICCV.2019.00948
10.1007/978-3-319-46484-8_45
10.1109/CVPR.2015.7298965
10.1109/TVCG.2013.249
10.1109/TPAMI.2013.48
10.1016/j.patrec.2017.10.024
10.1109/CVPR.2017.699
10.1007/978-3-030-11009-3_35
10.1109/ICCV.2017.244
10.1007/978-3-030-58548-8_44
10.1007/978-3-030-01237-3_48
10.1109/BTAS.2016.7791199
10.6084/m9.figshare.5047666.v3
10.1109/TPAMI.2017.2753232
10.1155/2019/3547416
10.1109/ICCV.1999.790383
10.1109/ICB2018.2018.00029
10.1109/CVPR.2014.81
10.1109/CVPR.2015.7299152
10.1007/978-1-4471-4658-2
10.1007/978-981-13-8406-6_75
10.1109/3DV.2018.00073
10.1109/CVPR.2012.6248074
10.1007/978-3-319-54181-5_14
10.1109/ACCESS.2019.2962010
10.1007/978-3-319-46454-1_2
10.1109/TIFS.2019.2902823
10.1109/CVPR.2018.00412
10.1109/CVPR.2017.757
10.1109/CVPR.2015.7299105
10.1109/CVPR.2009.5206848
10.1109/CVPR.2016.587
10.1109/ICCV.2015.425
10.1109/CVPR.2016.278
10.1109/CVPR.2017.632
10.1007/978-1-4471-5520-1_6
10.1007/978-3-319-46454-1_36
10.1109/ICCV.2017.175
10.1109/ICCV.2003.1238384
10.1007/978-3-642-33715-4_54
10.1109/CVPR.2018.00013
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
1XC
VOOES
ADTOC
UNPAY
DOI 10.1007/s11042-022-13224-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 10490
ExternalDocumentID oai:HAL:hal-04391848v1
10_1007_s11042_022_13224_0
GrantInformation_xml – fundername: Inria Blu Manta
  grantid: NA
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c397t-1eadec75ed46b6ee8e956bd649723c42c4665dade3448cd11fe96de6dbbff3e23
IEDL.DBID BENPR
ISSN 1380-7501
1573-7721
IngestDate Sun Oct 26 03:41:35 EDT 2025
Tue Oct 14 20:33:29 EDT 2025
Fri Jul 25 23:02:03 EDT 2025
Wed Oct 01 04:51:23 EDT 2025
Thu Apr 24 22:59:47 EDT 2025
Fri Feb 21 02:44:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Soft biometrics
Age estimation
Depth imagery
IRDP
Gender estimation
Structured light
C-GAN
gender estimation
age estimation
depth imagery
structured light
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c397t-1eadec75ed46b6ee8e956bd649723c42c4665dade3448cd11fe96de6dbbff3e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6793-0582
0000-0003-2988-2142
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-04391848
PQID 2781403520
PQPubID 54626
PageCount 20
ParticipantIDs unpaywall_primary_10_1007_s11042_022_13224_0
hal_primary_oai_HAL_hal_04391848v1
proquest_journals_2781403520
crossref_primary_10_1007_s11042_022_13224_0
crossref_citationtrail_10_1007_s11042_022_13224_0
springer_journals_10_1007_s11042_022_13224_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
2023-03
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2023
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References DantchevaAEliaPRossAWhat else does your biometric data reveal? a survey on soft biometricsIEEE Trans Inf Forensics Secur201611344146710.1109/TIFS.2015.2480381
Rudd EM, Gunther M, Boult TE (2016) Moon: a mixed objective optimization network for the recognition of facial attributes. In: Proceedings of the european conference on computer vision
Eigen D, Puhrsch C, Fergus R (2014) Depth map prediction from a single image using a multi-scale deep network. In: NIPS
Garg R, Kumar BV, Carneiro G, Reid I (2016) Unsupervised cnn for single view depth estimation: geometry to the rescue. In: European conference on computer vision. Springer, pp 740–756
Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: Proceedings of the IEEE international conference on computer vision, pp 3730–3738
Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
Socher R, Huval B, Bhat B, Manning CD, Ng AY (2012) Convolutional-recursive deep learning for 3d object classification NIPS
Tornow M, Grasshoff M, Nguyen N, Al-Hamadi A, Michaelis B (2012) Fast computation of dense and reliable depth maps from stereo images. In: Solari F, Chessa M, Sabatini SP (eds) Machine Vision, chap. 3. IntechOpen, Rijeka. https://doi.org/10.5772/34976
Abate AF, Barra P, Barra S, Molinari C, Nappi M, Narducci F (2019) Clustering facial attributes: narrowing the path from soft to hard biometrics. IEEE Access
He Y, Chiu W, Keuper M, Fritz M (2017) RGB-D semantic segmentation using spatio-temporal data-driven pooling. CVPR
Mueller F, Bernard F, Sotnychenko O, Mehta D, Sridhar S, Casas D, Theobalt C (2018) Ganerated hands for real-time 3d hand tracking from monocular RGB. In: Proceedings of computer vision and pattern recognition (CVPR), https://handtracker.mpi-inf.mpg.de/projects/GANeratedHands
Pilzer A, Xu D, Puscas MM, Ricci E, Sebe N (2018) Unsupervised adversarial depth estimation using cycled generative networks. In: International conference on 3D vision (3DV) pp 587–595
Ren W, Yang J, Deng S, Wipf D, Cao X, Tong X (2019) Face video deblurring using 3d facial priors. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9388–9397
Ryan Fanello S, Rhemann C, Tankovich V, Kowdle A, Orts Escolano S, Kim D, Izadi S (2016) Hyperdepth: learning depth from structured light without matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5441–5450
Cui J, Zhang H, Han H, Shan S, Chen X (2018) Improving 2d face recognition via discriminative face depth estimation. International Conference on Biometrics (ICB) pp 140–147
Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: CVPR09
Liu F, Shen C, Lin G (2015) Deep convolutional neural fields for depth estimation from a single image. In: IEEE conference on computer vision and pattern recognition (CVPR) pp 5162–5170
Levi G, Hassner T (2015) Age and gender classification using convolutional neural networks. In: IEEE conf. on computer vision and pattern recognition (CVPR) workshops
Freedman B, Shpunt A, Machline M, Arieli Y (2012) Depth mapping using projected patterns. US Patent 8,150,142
Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv:1411.1784
CaiYLeiYYangMYouZShanSA fast and robust 3d face recognition approach based on deeply learned face representationNeurocomputing201936337539710.1016/j.neucom.2019.07.047
Boutellaa E (2017) Contribution to face analysis from RGB images and depth maps
Chowdhury A, Ghosh S, Singh R, Vatsa M (2016) RGB-D face recognition via learning-based reconstruction. IEEE 8th international conference on biometrics theory, applications and systems (BTAS), pp 1–7
Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
Vondrick C, Pirsiavash H, Torralba A (2016) Generating videos with scene dynamics. In: Advances in neural information processing systems, pp 613–621
Xu D, Wang W, Tang H, Liu HW, Sebe N, Ricci E (2018) Structured attention guided convolutional neural fields for monocular depth estimation
Mathieu M, Couprie C, LeCun Y (2015) Deep multi-scale video prediction beyond mean square error. arXiv:1511.05440
Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the kitti vision benchmark suite
Hu X, Ren W, LaMaster J, Cao X, Li X, Li Z, Menze B, Liu W (2020) Face super-resolution guided by 3d facial priors. In: European conference on computer vision. Springer, pp 763–780
Savran A, Alyüz N, Dibeklioglu H, Çeliktutan O, Gökberk B, Sankur B, Akarun L (2008) Bosphorus database for 3d face analysis. In: BIOID
Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA (2016) Context encoders: feature learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2536–2544
Liu MY, Tuzel O (2016) Coupled generative adversarial networks. In: Advances in neural information processing systems, pp 469–477
DantchevaABrémondFGender estimation based on smile-dynamicsIEEE Trans Inf Forensics Secur201712371972910.1109/TIFS.2016.2632070
DeBruine L, Jones B (2017) Face research lab london set. https://doi.org/10.6084/m9.figshare.5047666.v3, https://figshare.com/articles/Face_Research_Lab_London_Set/5047666
DriraHAmorBBSrivastavaADaoudiMSlamaR3D face recognition under expressions, occlusions, and pose variationsIEEE Trans Pattern Anal Mach Intell2013352270228310.1109/TPAMI.2013.48
Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks
Godard C, Mac Aodha O, Brostow GJ (2017) Unsupervised monocular depth estimation with left-right consistency. In: CVPR
Hazirbas C, Ma L, Domokos C, Cremers D (2016) Fusenet: incorporating depth into semantic segmentation via fusion-based cnn architecture. ACCV
Efros AA, Leung TK (1999) Texture synthesis by non-parametric sampling. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol 2, pp 1033–1038. IEEE
Bleyer M, Breiteneder C (2013) Stereo matching - state-of-the-art and research challenges . In: Advanced Topics in Computer Vision. Springer, pp 143–179
Rosales R, Achan K, Frey BJ (2003) Unsupervised image translation. In: Iccv, pp 472–478
RozsaAGüntherMRuddEMBoultTEFacial attributes: accuracy and adversarial robustnessPattern Recogn Lett201912410010810.1016/j.patrec.2017.10.024
Silberman N, Hoiem D, Kohli P, Fergus R (2012) Indoor segmentation and support inference from RGBD images. In: ECCV
Zhang Y, Khamis S, Rhemann C, Valentin J, Kowdle A, Tankovich V, Schoenberg M, Izadi S, Funkhouser T, Fanello S (2018) Activestereonet: end-to-end self-supervised learning for active stereo systems. In: Proceedings of the european conference on computer vision (ECCV), pp 784–801
BarnesCShechtmanEFinkelsteinAGoldmanDBPatchmatch: a randomized correspondence algorithm for structural image editingACM Trans Grap20092824:124:11
Gupta S, Girshick R, Arbeláez P, Malik J (2015) Aligning 3D models to RGB-d images of cluttered scenes. CVPR
Zhu JY, Krähenbühl P, Shechtman E, Efros AA (2016) Generative visual manipulation on the natural image manifold. In: European conference on computer vision. Springer, pp 597–613
Gupta S, Girshick R, Arbeláez P, Malik J (2014) Learning rich features from RGB-d images for object detection and segmentation. ECCV
Taigman Y, Polyak A, Wolf L (2016) Unsupervised cross-domain image generation. arXiv:1611.02200
Choi Y, Choi M, Kim M, Ha JW, Kim S, Choo J (2017)
Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks
Kortylewski A, Schneider A, Gerig T, Egger B, Morel-Forster A, Vetter T (2018) Training deep face recognition systems with synthetic data. CoRR abs/1802.05891
Hansard M, Lee S, Horaud RP, Choi O (2012) Time-of-flight cameras: principles, methods and applications. Springer Science & Business Media
Luo W, Schwing AG, Urtasun R (2016) Efficient deep learning for stereo matching. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 5695–5703
Rose J, Bourlai T (2019) Deep learning based estimation of facial attributes on challenging mobile phone face datasets. In: Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining, pp 1120–1127
Kittler J, Koppen P, Kopp P, Huber P, Rätsch M (2018) Conformal mapping of a 3d face representation onto a 2d image for cnn based face recognition. In: International Conference on Biometrics (ICB), pp 124–131
Das A, Dantcheva A, Bremond F (2018) Mitigating bias in gender, age and ethnicity classification: a multi-task convolution neural network approach. In: ECCVW 2018-European conference of computer vision workshops
Sela M, Richardson E, Kimmel R (2017) Unrestricted facial geometry reconstruction using image-to-image translation
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680
Richardson E, Sela M, Kimmel R (2016) 3d face reconstruction by learning from synthetic data. Fourth international conference on 3D vision (3DV), pp 460–469
XieJCPunCMChronological age estimation under the guidance of age-related facial attributesIEEE Trans Inf Forensics Secur20191492500251110.1109/TIFS.2019.2902823
Li J, Klein R, Yao A (2017) A two-streamed network for estimating fine-scaled depth maps from single RGB images. In: IEEE International Conference on Computer Vision (ICCV) pp 3392–3400
Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434
Shekhawat HS, Rathor HS (2020) Impacts of change in facial features on age estimation and face identification: a review. In: Somani AK, Shekhawat RS, Mundra A, Srivastava S, Verma VK (eds) Smart systems and iot: innovations in comput
13224_CR41
13224_CR40
13224_CR43
C Cao (13224_CR7) 2014; 20
13224_CR42
13224_CR45
13224_CR44
A Dantcheva (13224_CR12) 2016; 11
13224_CR47
13224_CR46
JC Xie (13224_CR63) 2019; 14
Y Cai (13224_CR6) 2019; 363
13224_CR38
13224_CR37
13224_CR39
13224_CR30
13224_CR32
13224_CR31
13224_CR34
13224_CR33
13224_CR36
13224_CR35
H Drira (13224_CR16) 2013; 35
13224_CR4
13224_CR5
13224_CR8
13224_CR9
13224_CR27
13224_CR26
A Dantcheva (13224_CR11) 2017; 12
13224_CR29
13224_CR28
13224_CR1
13224_CR2
13224_CR62
13224_CR21
13224_CR65
13224_CR20
13224_CR64
13224_CR23
13224_CR67
13224_CR22
13224_CR66
13224_CR25
13224_CR24
13224_CR68
C Barnes (13224_CR3) 2009; 28
13224_CR61
13224_CR60
13224_CR15
13224_CR59
13224_CR18
13224_CR17
13224_CR19
13224_CR51
13224_CR10
13224_CR54
13224_CR53
13224_CR56
A Rozsa (13224_CR52) 2019; 124
13224_CR55
13224_CR14
13224_CR58
13224_CR13
13224_CR57
13224_CR50
13224_CR49
13224_CR48
References_xml – reference: Li J, Klein R, Yao A (2017) A two-streamed network for estimating fine-scaled depth maps from single RGB images. In: IEEE International Conference on Computer Vision (ICCV) pp 3392–3400
– reference: CaiYLeiYYangMYouZShanSA fast and robust 3d face recognition approach based on deeply learned face representationNeurocomputing201936337539710.1016/j.neucom.2019.07.047
– reference: Savran A, Alyüz N, Dibeklioglu H, Çeliktutan O, Gökberk B, Sankur B, Akarun L (2008) Bosphorus database for 3d face analysis. In: BIOID
– reference: Luo W, Schwing AG, Urtasun R (2016) Efficient deep learning for stereo matching. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 5695–5703
– reference: Zhang Y, Khamis S, Rhemann C, Valentin J, Kowdle A, Tankovich V, Schoenberg M, Izadi S, Funkhouser T, Fanello S (2018) Activestereonet: end-to-end self-supervised learning for active stereo systems. In: Proceedings of the european conference on computer vision (ECCV), pp 784–801
– reference: Hansard M, Lee S, Horaud RP, Choi O (2012) Time-of-flight cameras: principles, methods and applications. Springer Science & Business Media
– reference: Silberman N, Hoiem D, Kohli P, Fergus R (2012) Indoor segmentation and support inference from RGBD images. In: ECCV
– reference: BarnesCShechtmanEFinkelsteinAGoldmanDBPatchmatch: a randomized correspondence algorithm for structural image editingACM Trans Grap20092824:124:11
– reference: Ryan Fanello S, Rhemann C, Tankovich V, Kowdle A, Orts Escolano S, Kim D, Izadi S (2016) Hyperdepth: learning depth from structured light without matching. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 5441–5450
– reference: Deng J, Dong W, Socher R, Li LJ, Li K, Fei-Fei L (2009) Imagenet: a large-scale hierarchical image database. In: CVPR09
– reference: Geiger A, Lenz P, Urtasun R (2012) Are we ready for autonomous driving? the kitti vision benchmark suite
– reference: Efros AA, Leung TK (1999) Texture synthesis by non-parametric sampling. In: Computer vision, 1999. The proceedings of the seventh IEEE international conference on, vol 2, pp 1033–1038. IEEE
– reference: Ratyal N, Taj IA, Sajid M, Mahmood A, Razzaq S, Dar SH, Ali N, Usman M, Baig MJA, Mussadiq U (2019) Deeply learned pose invariant image analysis with applications in 3d face recognition. Math Probl Eng 2019
– reference: Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434
– reference: Freedman B, Shpunt A, Machline M, Arieli Y (2012) Depth mapping using projected patterns. US Patent 8,150,142
– reference: Abate AF, Barra P, Barra S, Molinari C, Nappi M, Narducci F (2019) Clustering facial attributes: narrowing the path from soft to hard biometrics. IEEE Access
– reference: Gupta S, Girshick R, Arbeláez P, Malik J (2015) Aligning 3D models to RGB-d images of cluttered scenes. CVPR
– reference: RozsaAGüntherMRuddEMBoultTEFacial attributes: accuracy and adversarial robustnessPattern Recogn Lett201912410010810.1016/j.patrec.2017.10.024
– reference: CaoCWengYZhouSTongYZhouKFacewarehouse: a 3d facial expression database for visual computingIEEE Trans Vis Comput Graph20142041342510.1109/TVCG.2013.249
– reference: DantchevaAEliaPRossAWhat else does your biometric data reveal? a survey on soft biometricsIEEE Trans Inf Forensics Secur201611344146710.1109/TIFS.2015.2480381
– reference: Das A, Dantcheva A, Bremond F (2018) Mitigating bias in gender, age and ethnicity classification: a multi-task convolution neural network approach. In: ECCVW 2018-European conference of computer vision workshops
– reference: Choi Y, Choi M, Kim M, Ha JW, Kim S, Choo J (2017)
– reference: Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv:1412.6980
– reference: Mathieu M, Couprie C, LeCun Y (2015) Deep multi-scale video prediction beyond mean square error. arXiv:1511.05440
– reference: Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face attributes in the wild. In: Proceedings of the IEEE international conference on computer vision, pp 3730–3738
– reference: Liu MY, Tuzel O (2016) Coupled generative adversarial networks. In: Advances in neural information processing systems, pp 469–477
– reference: Rudd EM, Gunther M, Boult TE (2016) Moon: a mixed objective optimization network for the recognition of facial attributes. In: Proceedings of the european conference on computer vision
– reference: Boutellaa E (2017) Contribution to face analysis from RGB images and depth maps
– reference: DantchevaABrémondFGender estimation based on smile-dynamicsIEEE Trans Inf Forensics Secur201712371972910.1109/TIFS.2016.2632070
– reference: Hu X, Ren W, LaMaster J, Cao X, Li X, Li Z, Menze B, Liu W (2020) Face super-resolution guided by 3d facial priors. In: European conference on computer vision. Springer, pp 763–780
– reference: Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv:1411.1784
– reference: Rosales R, Achan K, Frey BJ (2003) Unsupervised image translation. In: Iccv, pp 472–478
– reference: Gupta S, Girshick R, Arbeláez P, Malik J (2014) Learning rich features from RGB-d images for object detection and segmentation. ECCV
– reference: DeBruine L, Jones B (2017) Face research lab london set. https://doi.org/10.6084/m9.figshare.5047666.v3, https://figshare.com/articles/Face_Research_Lab_London_Set/5047666
– reference: Socher R, Huval B, Bhat B, Manning CD, Ng AY (2012) Convolutional-recursive deep learning for 3d object classification NIPS
– reference: Godard C, Mac Aodha O, Brostow GJ (2017) Unsupervised monocular depth estimation with left-right consistency. In: CVPR
– reference: Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, pp 2672–2680
– reference: Aytar Y, Castrejon L, Vondrick C, Pirsiavash H (2017) Torralba, A, Cross-modal scene networks. IEEE transactions on pattern analysis and machine intelligence
– reference: Sela M, Richardson E, Kimmel R (2017) Unrestricted facial geometry reconstruction using image-to-image translation
– reference: Pilzer A, Xu D, Puscas MM, Ricci E, Sebe N (2018) Unsupervised adversarial depth estimation using cycled generative networks. In: International conference on 3D vision (3DV) pp 587–595
– reference: Richardson E, Sela M, Kimmel R (2016) 3d face reconstruction by learning from synthetic data. Fourth international conference on 3D vision (3DV), pp 460–469
– reference: Mueller F, Bernard F, Sotnychenko O, Mehta D, Sridhar S, Casas D, Theobalt C (2018) Ganerated hands for real-time 3d hand tracking from monocular RGB. In: Proceedings of computer vision and pattern recognition (CVPR), https://handtracker.mpi-inf.mpg.de/projects/GANeratedHands/
– reference: Kittler J, Koppen P, Kopp P, Huber P, Rätsch M (2018) Conformal mapping of a 3d face representation onto a 2d image for cnn based face recognition. In: International Conference on Biometrics (ICB), pp 124–131
– reference: Liu F, Shen C, Lin G (2015) Deep convolutional neural fields for depth estimation from a single image. In: IEEE conference on computer vision and pattern recognition (CVPR) pp 5162–5170
– reference: Rose J, Bourlai T (2019) Deep learning based estimation of facial attributes on challenging mobile phone face datasets. In: Proceedings of the 2019 IEEE/ACM international conference on advances in social networks analysis and mining, pp 1120–1127
– reference: Cui J, Zhang H, Han H, Shan S, Chen X (2018) Improving 2d face recognition via discriminative face depth estimation. International Conference on Biometrics (ICB) pp 140–147
– reference: Eigen D, Puhrsch C, Fergus R (2014) Depth map prediction from a single image using a multi-scale deep network. In: NIPS
– reference: Hazirbas C, Ma L, Domokos C, Cremers D (2016) Fusenet: incorporating depth into semantic segmentation via fusion-based cnn architecture. ACCV
– reference: He Y, Chiu W, Keuper M, Fritz M (2017) RGB-D semantic segmentation using spatio-temporal data-driven pooling. CVPR
– reference: Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA (2016) Context encoders: feature learning by inpainting. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2536–2544
– reference: Zhao J, Mathieu M, LeCun Y (2016)
– reference: DriraHAmorBBSrivastavaADaoudiMSlamaR3D face recognition under expressions, occlusions, and pose variationsIEEE Trans Pattern Anal Mach Intell2013352270228310.1109/TPAMI.2013.48
– reference: Levi G, Hassner T (2015) Age and gender classification using convolutional neural networks. In: IEEE conf. on computer vision and pattern recognition (CVPR) workshops
– reference: Xu D, Wang W, Tang H, Liu HW, Sebe N, Ricci E (2018) Structured attention guided convolutional neural fields for monocular depth estimation
– reference: Zhu JY, Krähenbühl P, Shechtman E, Efros AA (2016) Generative visual manipulation on the natural image manifold. In: European conference on computer vision. Springer, pp 597–613
– reference: Isola P, Zhu JY, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks
– reference: Kortylewski A, Schneider A, Gerig T, Egger B, Morel-Forster A, Vetter T (2018) Training deep face recognition systems with synthetic data. CoRR abs/1802.05891
– reference: Garg R, Kumar BV, Carneiro G, Reid I (2016) Unsupervised cnn for single view depth estimation: geometry to the rescue. In: European conference on computer vision. Springer, pp 740–756
– reference: Bleyer M, Breiteneder C (2013) Stereo matching - state-of-the-art and research challenges . In: Advanced Topics in Computer Vision. Springer, pp 143–179
– reference: Ren W, Yang J, Deng S, Wipf D, Cao X, Tong X (2019) Face video deblurring using 3d facial priors. In: Proceedings of the IEEE/CVF international conference on computer vision, pp 9388–9397
– reference: Vondrick C, Pirsiavash H, Torralba A (2016) Generating videos with scene dynamics. In: Advances in neural information processing systems, pp 613–621
– reference: Shekhawat HS, Rathor HS (2020) Impacts of change in facial features on age estimation and face identification: a review. In: Somani AK, Shekhawat RS, Mundra A, Srivastava S, Verma VK (eds) Smart systems and iot: innovations in computing, pp 801–812. Springer, Singapore
– reference: Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 3431–3440
– reference: Tornow M, Grasshoff M, Nguyen N, Al-Hamadi A, Michaelis B (2012) Fast computation of dense and reliable depth maps from stereo images. In: Solari F, Chessa M, Sabatini SP (eds) Machine Vision, chap. 3. IntechOpen, Rijeka. https://doi.org/10.5772/34976
– reference: XieJCPunCMChronological age estimation under the guidance of age-related facial attributesIEEE Trans Inf Forensics Secur20191492500251110.1109/TIFS.2019.2902823
– reference: Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks
– reference: Taigman Y, Polyak A, Wolf L (2016) Unsupervised cross-domain image generation. arXiv:1611.02200
– reference: Chowdhury A, Ghosh S, Singh R, Vatsa M (2016) RGB-D face recognition via learning-based reconstruction. IEEE 8th international conference on biometrics theory, applications and systems (BTAS), pp 1–7
– ident: 13224_CR42
– ident: 13224_CR49
  doi: 10.1109/3DV.2016.56
– ident: 13224_CR61
  doi: 10.5772/34976
– ident: 13224_CR23
– volume: 11
  start-page: 441
  issue: 3
  year: 2016
  ident: 13224_CR12
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2015.2480381
– ident: 13224_CR35
  doi: 10.1109/ICCV.2017.365
– ident: 13224_CR51
  doi: 10.1145/3341161.3343525
– ident: 13224_CR59
– volume: 363
  start-page: 375
  year: 2019
  ident: 13224_CR6
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.07.047
– ident: 13224_CR8
– volume: 12
  start-page: 719
  issue: 3
  year: 2017
  ident: 13224_CR11
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2016.2632070
– ident: 13224_CR34
  doi: 10.1109/CVPRW.2015.7301352
– ident: 13224_CR10
  doi: 10.1109/ICB2018.2018.00031
– ident: 13224_CR40
  doi: 10.1109/CVPR.2016.614
– ident: 13224_CR55
  doi: 10.1007/978-3-540-89991-4_6
– ident: 13224_CR46
– ident: 13224_CR48
  doi: 10.1109/ICCV.2019.00948
– ident: 13224_CR20
  doi: 10.1007/978-3-319-46484-8_45
– ident: 13224_CR39
  doi: 10.1109/CVPR.2015.7298965
– volume: 20
  start-page: 413
  year: 2014
  ident: 13224_CR7
  publication-title: IEEE Trans Vis Comput Graph
  doi: 10.1109/TVCG.2013.249
– volume: 35
  start-page: 2270
  year: 2013
  ident: 13224_CR16
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2013.48
– volume: 124
  start-page: 100
  year: 2019
  ident: 13224_CR52
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2017.10.024
– ident: 13224_CR22
  doi: 10.1109/CVPR.2017.699
– ident: 13224_CR37
– ident: 13224_CR13
  doi: 10.1007/978-3-030-11009-3_35
– ident: 13224_CR68
  doi: 10.1109/ICCV.2017.244
– ident: 13224_CR5
– ident: 13224_CR29
  doi: 10.1007/978-3-030-58548-8_44
– ident: 13224_CR33
– ident: 13224_CR65
  doi: 10.1007/978-3-030-01237-3_48
– ident: 13224_CR9
  doi: 10.1109/BTAS.2016.7791199
– ident: 13224_CR14
  doi: 10.6084/m9.figshare.5047666.v3
– ident: 13224_CR2
  doi: 10.1109/TPAMI.2017.2753232
– ident: 13224_CR60
– ident: 13224_CR47
  doi: 10.1155/2019/3547416
– ident: 13224_CR17
  doi: 10.1109/ICCV.1999.790383
– ident: 13224_CR32
  doi: 10.1109/ICB2018.2018.00029
– ident: 13224_CR19
– ident: 13224_CR24
  doi: 10.1109/CVPR.2014.81
– ident: 13224_CR36
  doi: 10.1109/CVPR.2015.7299152
– ident: 13224_CR26
  doi: 10.1007/978-1-4471-4658-2
– ident: 13224_CR57
  doi: 10.1007/978-981-13-8406-6_75
– volume: 28
  start-page: 24:1
  year: 2009
  ident: 13224_CR3
  publication-title: ACM Trans Grap
– ident: 13224_CR45
  doi: 10.1109/3DV.2018.00073
– ident: 13224_CR21
  doi: 10.1109/CVPR.2012.6248074
– ident: 13224_CR27
  doi: 10.1007/978-3-319-54181-5_14
– ident: 13224_CR1
  doi: 10.1109/ACCESS.2019.2962010
– ident: 13224_CR53
  doi: 10.1007/978-3-319-46454-1_2
– volume: 14
  start-page: 2500
  issue: 9
  year: 2019
  ident: 13224_CR63
  publication-title: IEEE Trans Inf Forensics Secur
  doi: 10.1109/TIFS.2019.2902823
– ident: 13224_CR64
  doi: 10.1109/CVPR.2018.00412
– ident: 13224_CR28
  doi: 10.1109/CVPR.2017.757
– ident: 13224_CR18
– ident: 13224_CR66
– ident: 13224_CR25
  doi: 10.1109/CVPR.2015.7299105
– ident: 13224_CR41
– ident: 13224_CR15
  doi: 10.1109/CVPR.2009.5206848
– ident: 13224_CR54
  doi: 10.1109/CVPR.2016.587
– ident: 13224_CR38
  doi: 10.1109/ICCV.2015.425
– ident: 13224_CR44
  doi: 10.1109/CVPR.2016.278
– ident: 13224_CR30
  doi: 10.1109/CVPR.2017.632
– ident: 13224_CR4
  doi: 10.1007/978-1-4471-5520-1_6
– ident: 13224_CR31
– ident: 13224_CR67
  doi: 10.1007/978-3-319-46454-1_36
– ident: 13224_CR56
  doi: 10.1109/ICCV.2017.175
– ident: 13224_CR50
  doi: 10.1109/ICCV.2003.1238384
– ident: 13224_CR62
– ident: 13224_CR58
  doi: 10.1007/978-3-642-33715-4_54
– ident: 13224_CR43
  doi: 10.1109/CVPR.2018.00013
SSID ssj0016524
Score 2.324553
Snippet In this work we explore the use of structured-light imaging for face analysis. Towards this and due to lack of a publicly available structured-light face...
SourceID unpaywall
hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10471
SubjectTerms Computer Communication Networks
Computer Science
Data Structures and Information Theory
Datasets
Light
Multimedia Information Systems
Qualitative analysis
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLINK - Czech Republic Consortium
  dbid: AGYKE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED90e1AfnJ84vwjim0aWNU2rb0M2h4pPDvSpNF8Ijk60U_Sv97Km3RQRfWpp0iTN5Zr7kbvfARzK00ibGBXQaBYgQOGapsJKqmyLWdkKIix23hY3oj_gl3fhnQ8Keym93csjycmfehrsxlwoifM-dwiKUwTq9QnfVg3qnYv7q251eiBCn8w2blHcEZkPlvm5lS8b0vyDc4ecsTWr49ElWBhnT-n7WzoczuxAvQYMyrEXjiePJ-NcnqiPb7SO__24FVj2JinpFGtoFeZMtgaNMt0D8dq_Bksz3IXr0O2lypA0LzJm4Z1nNyEuYIUUtLTjZ6PJ0MH_MywnJtM0H1G8kJLKfAMGve7teZ_6nAxUoeWSU-YcrFUUGs2FFMbEBgGW1IK77GWKtxUXItRYJ0DcpzRj1pwKbYSW0trAtINNqGWjzGwB0bGSsbHcImLiDmcyYQMVhsJGHI22qAmsFEyiPGG5y5sxTKZUy27WEpy1ZDJrSasJR9U7TwVdx6-1D1DeVUXHtN3vXCfumYsYRvAbv7Im7JbLIfH6_ZK0J0xhaLxiG8elRKfFv3V5XC2jP4xw-3-t78BiG42wwkduF2ooa7OHRlMu972OfAIUHQha
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HsSDb7Gisog3Xck2m030VsRSRMSDBT2F7AvBEkVTRX-9M82mVg9FT1myk-fsZr-PzHwDcKhPU-synIDOihgJirS8UF5z4yPhdRSn2E3RFteqP5CXd8ndHLAmF-YBEWf49lObU-YmkpBsHhZUgmi7BQuD65vu_ZhHZRHHBa-WRE1jAooi5MXU2XGCck8oXJ0ol-TRj7Vn_oEiH6dg5eRP6BIsjsrn4uO9GA6nFpveSh30-DrWKKQYk8eTUaVPzOcvBcdZz7EKywFpsm49NNZgzpXrsNJUcWBhUq_D0pQk4QZc9ArjWFHVhbCwFURLGOWhsFptdvTiLBsSqz_DfuZKy6snjhvWKJRvwqB3cXve56HUAjcISCouKG7apImzUmnlXOaQN2mrJBUlM7JjpFKJRZsY6ZyxQnh3qqxTVmvvY9eJt6BVPpVuG5jNjM6clx6JkCT6KJSPTZIon0rEYmkbROOE3AQdciqHMcy_FZTJcTk6Lh87Lo_acDQ55rlW4ZhpfYCvfGJIAtr97lVO-xo3vIk27Dauz8O0fc07YwEwxKR4juNmOHx3z7rk8WTI_OEOd_5nvgstdK_bQ_hT6f0wA74ATaX8JA
  priority: 102
  providerName: Unpaywall
Title Face attribute analysis from structured light: an end-to-end approach
URI https://link.springer.com/article/10.1007/s11042-022-13224-0
https://www.proquest.com/docview/2781403520
https://hal.science/hal-04391848
UnpaywallVersion submittedVersion
Volume 82
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7721
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016524
  issn: 1380-7501
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB41yQF64FFABEpkIW50hdder10khBwUNwJkVYhI7cnyvsQhckKbgvj3zMRrJ1wiTmt711prZh8z3pnvA3ijzlNjM5yA1vAYHRRhWC2dYtqF3KkwTrGaoi1KOV-Iz1fJ1RGUXS4MhVV2a-J2oTYrTf_I30VbbCY0F8KP65-MWKPodLWj0Kg9tYL5sIUYG8AoImSsIYyms_LyW3-uIBNPc5uFDPdK7tNo2mQ6TqkqFN1OHppg4T9b1eAHBUruWaH9wekx3Ltr1vWf3_Vyubc3FY_ggTcqg7wdBY_hyDYn8LAjbAj8_D2B4z30wScwK2ptg3rTcl7hlccnCSjlJGiBZe9urAmW5MC_x_rANoZtVgyLoAMjfwqLYvb905x5VgWm0fbYME4h0jpNrBFSSWsziy6SMlIQ_5gWkRZSJgbbxOi5acO5s-fSWGmUci62UfwMhs2qsc8hMJlWmXXCoc8jyFPk0sU6SaRLBZpd6Rh4J8BKe8hxYr5YVjuwZBJ6hUKvtkKvwjG87d9Zt4AbB1u_Rr30DQkre55_regZ5fyi-5r94mM47dRW-Rl6W-3G0xjOOlXuqg91edar-z--8MXhzl_CfSKwb6PaTmGIurWv0MzZqAkMsuJiAqO8mE5LKi-uv8wmfkRj7SLK8W5RXubXfwGBaPuf
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V7aH0wKOA2FLAQnCiFnHiOClShQrsakuXFUKt1JtJ_BCHVXZpt1T9c_w2ZhInu1xWXHpKFDtKNGN7ZuyZ7wN4XR5k1uU4AZ0VCQYo0vJC-ZIbHwlfRkmGzZRtMVGjM_nlPD3fgD9tLQylVbZrYr1Q25mhPfJ3cY3NhO5C9GH-ixNrFJ2uthQaRaBWsIc1xFgo7DhxN9cYwl0eHn9Gfb-J4-Hg9NOIB5YBbtAWL7iglGGTpc5KVSrncochQ2mVJD4uI2MjlUot9kkwkjFWCO8OlHXKlqX3iSPgAzQBmzLBF3qw-XEw-fa9O8dQaaDVzSOOtlmEsp2meE9QaQxl01NEKHn0j2m885MSM1e83u6gdhu2rqp5cXNdTKcrtnD4AO4FJ5YdNaPuIWy4agfutwQRLKwXO7C9gnb4CAbDwjhWLBqOLbwLeCiMSlxYA2R7deEsm9KGwXtsZ66yfDHjeGEt-PljOLsV-T6BXjWr3FNgNjdl7rz0GGNJikyF8olJU-UziW5e1gfRClCbAHFOTBtTvQRnJqFrFLquha6jPrzt3pk3AB9re79CvXQdCZt7dDTW9IxqjDFczn-LPuy1atNhRbjUy_Hbh_1WlcvmdZ_c79T9H3-4u_7jL2FrdPp1rMfHk5NncDcmNuN6T2kPeqhn9xxdrEX5IoxjBj9ue-r8Bf2BNL4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9RAEJ8gJioPqKjxFHVj9Ek2dNvttpAQQoR6CCE-SMLb0v2KD5feKYeEf82_zpnrtne-XHzhqU13mzYzs_OxO_MbgA9mp3C-xAXoncgwQJGO1yoYbkMigkmyAocp2-JMDc_l14v8YgX-dLUwlFbZ6cSZonZjS3vk2-kMmwndhWQ7xLSIb4fV_uQnpw5SdNLatdNoReTE395g-Ha1d3yIvP6YptXR989DHjsMcIt2eMoFpQvbIvdOKqO8Lz2GC8YpSb24rEytVCp3OCfDKMY6IYLfUc4rZ0wImSfQA1T_9wtCcacq9epLf4Kh8thQt0w4WmURC3basj1BRTGUR0-xoOTJP0bx3g9KyVzwd_sj2jV4eN1M6tubejRasILVE1iP7is7aOXtKaz4ZgMed60hWNQUG7C2gHP4DI6q2npWT9vuWngXkVAYFbewFsL2-pd3bERbBbs4znzj-HTM8cI62PPncH4n1H0Bq8248S-BudKa0gcZMLqSFJMKFTKb5yoUEh28YgCiI6C2EdycemyM9ByWmYiukeh6RnSdDOBT_86khfZYOvs98qWfSKjcw4NTTc-ouhgD5fK3GMBmxzYddcGVnkvuALY6Vs6Hl31yq2f3f_zhq-UffwcPcMHo0-Ozk9fwKEVfrU2l24RVZLN_g77V1LydCTGDy7teNX8Bd1cyUw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60HsSDb7Gisog3Xck2m030VsRSRMSDBT2F7AvBEkVTRX-9M82mVg9FT1myk-fsZr-PzHwDcKhPU-synIDOihgJirS8UF5z4yPhdRSn2E3RFteqP5CXd8ndHLAmF-YBEWf49lObU-YmkpBsHhZUgmi7BQuD65vu_ZhHZRHHBa-WRE1jAooi5MXU2XGCck8oXJ0ol-TRj7Vn_oEiH6dg5eRP6BIsjsrn4uO9GA6nFpveSh30-DrWKKQYk8eTUaVPzOcvBcdZz7EKywFpsm49NNZgzpXrsNJUcWBhUq_D0pQk4QZc9ArjWFHVhbCwFURLGOWhsFptdvTiLBsSqz_DfuZKy6snjhvWKJRvwqB3cXve56HUAjcISCouKG7apImzUmnlXOaQN2mrJBUlM7JjpFKJRZsY6ZyxQnh3qqxTVmvvY9eJt6BVPpVuG5jNjM6clx6JkCT6KJSPTZIon0rEYmkbROOE3AQdciqHMcy_FZTJcTk6Lh87Lo_acDQ55rlW4ZhpfYCvfGJIAtr97lVO-xo3vIk27Dauz8O0fc07YwEwxKR4juNmOHx3z7rk8WTI_OEOd_5nvgstdK_bQ_hT6f0wA74ATaX8JA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Face+attribute+analysis+from+structured+light%3A+an+end-to-end+approach&rft.jtitle=Multimedia+tools+and+applications&rft.au=Thamizharasan%2C+Vikas&rft.au=Das%2C+Abhijit&rft.au=Battaglino%2C+Daniele&rft.au=Bremond%2C+Francois&rft.date=2023-03-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=82&rft.issue=7&rft.spage=10471&rft.epage=10490&rft_id=info:doi/10.1007%2Fs11042-022-13224-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_022_13224_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon