Genetic algorithms in chemometrics

This review covers the application of Genetic Algorithms (GAs) in Chemometrics. The first applications of GAs in chemistry date back to the 1970s, and in the last decades, they have been more and more frequently used to solve different kinds of problems, for example, when the objective functions do...

Full description

Saved in:
Bibliographic Details
Published inJournal of chemometrics Vol. 26; no. 6; pp. 345 - 351
Main Authors Niazi, Ali, Leardi, Riccardo
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.06.2012
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0886-9383
1099-128X
DOI10.1002/cem.2426

Cover

Abstract This review covers the application of Genetic Algorithms (GAs) in Chemometrics. The first applications of GAs in chemistry date back to the 1970s, and in the last decades, they have been more and more frequently used to solve different kinds of problems, for example, when the objective functions do not possess properties such as continuity, differentiability, and so on. These algorithms maintain and manipulate a family, or population, of solutions and implement a “survival of the fittest” strategy in their search for better solutions. GAs are very useful in the optimization and variable selection in modeling and calibration because of the strong effect of the relationship between presence/absence of variables in a calibration model and the prediction ability of the model itself. This review is not a complete summary of the applications of GAs to chemometric problems; its goal is rather to show the researchers the main fields of application of GAs, together with providing a list of references on the subject. Copyright © 2012 John Wiley & Sons, Ltd. The first applications of Genetic Algorithms (GAs) in chemistry date back to the 1970s, and in the last decades, they have been more and more frequently used to solve different kinds of problems, for example, when the objective functions do not possess properties such as continuity, differentiability, and so on. GAs are very useful in the optimization and variable selection in modeling and calibration because of the strong effect of the relationship between presence/absence of variables in a calibration model and the prediction ability of the model itself.
AbstractList This review covers the application of Genetic Algorithms (GAs) in Chemometrics. The first applications of GAs in chemistry date back to the 1970s, and in the last decades, they have been more and more frequently used to solve different kinds of problems, for example, when the objective functions do not possess properties such as continuity, differentiability, and so on. These algorithms maintain and manipulate a family, or population, of solutions and implement a “survival of the fittest” strategy in their search for better solutions. GAs are very useful in the optimization and variable selection in modeling and calibration because of the strong effect of the relationship between presence/absence of variables in a calibration model and the prediction ability of the model itself. This review is not a complete summary of the applications of GAs to chemometric problems; its goal is rather to show the researchers the main fields of application of GAs, together with providing a list of references on the subject. Copyright © 2012 John Wiley & Sons, Ltd. The first applications of Genetic Algorithms (GAs) in chemistry date back to the 1970s, and in the last decades, they have been more and more frequently used to solve different kinds of problems, for example, when the objective functions do not possess properties such as continuity, differentiability, and so on. GAs are very useful in the optimization and variable selection in modeling and calibration because of the strong effect of the relationship between presence/absence of variables in a calibration model and the prediction ability of the model itself.
This review covers the application of Genetic Algorithms (GAs) in Chemometrics. The first applications of GAs in chemistry date back to the 1970s, and in the last decades, they have been more and more frequently used to solve different kinds of problems, for example, when the objective functions do not possess properties such as continuity, differentiability, and so on. These algorithms maintain and manipulate a family, or population, of solutions and implement a "survival of the fittest" strategy in their search for better solutions. GAs are very useful in the optimization and variable selection in modeling and calibration because of the strong effect of the relationship between presence/absence of variables in a calibration model and the prediction ability of the model itself. This review is not a complete summary of the applications of GAs to chemometric problems; its goal is rather to show the researchers the main fields of application of GAs, together with providing a list of references on the subject. [PUBLICATION ABSTRACT]
Author Niazi, Ali
Leardi, Riccardo
Author_xml – sequence: 1
  givenname: Ali
  surname: Niazi
  fullname: Niazi, Ali
  organization: Department of Chemistry, Islamic Azad University, Arak Branch, Arak, Iran
– sequence: 2
  givenname: Riccardo
  surname: Leardi
  fullname: Leardi, Riccardo
  email: riclea@dictfa.unige.it, R. Leardi, Department of Pharmaceutical and Food Chemistry and Technology, Genova University, Via Brigata Salerno (Ponte), I-16147 Genova, Italy., riclea@dictfa.unige.it
  organization: Department of Pharmaceutical and Food Chemistry and Technology, Genova University, Via Brigata Salerno (Ponte), I-16147, Genova, Italy
BookMark eNp10E1LAzEQBuAgFWyr4E8oevGya5Jps5ujLO0q1I-DongJ2WxiU_ejJinaf--WiqDoaQ7zvDPwDlCvaRuN0DHBMcGYnitdx3RM2R7qE8x5RGj61EN9nKYs4pDCARp4v8S428G4j05y3ehg1UhWL62zYVH7kW1GaqHrttbBWeUP0b6RlddHX3OIHmbT--wymt_mV9nFPFLAExYBKQ0pCVcUK0zNWBLQCkzJCyiVIRImtAROCqkYFIVhhSGpojIFzRVLSwxDdLq7u3Lt21r7IJbt2jXdS0EwpSQBmPBOne2Ucq33ThuxcraWbtMhsW1AdA2IbQMdjX9RZYMMtm2Ck7b6KxDtAu-20pt_D4tsev3TWx_0x7eX7lWwBJKJeLzJBUkydjd7ZiKHTyQ8fCQ
CitedBy_id crossref_primary_10_1002_jrs_5527
crossref_primary_10_1016_j_engappai_2019_01_016
crossref_primary_10_1021_acs_analchem_2c03118
crossref_primary_10_1021_acs_analchem_6b02986
crossref_primary_10_1002_cem_2535
crossref_primary_10_1038_s41598_020_73406_4
crossref_primary_10_2174_1570178620666221205095036
crossref_primary_10_1016_j_chemolab_2014_01_007
crossref_primary_10_1038_s41598_022_07168_6
crossref_primary_10_1016_j_foodres_2024_114799
crossref_primary_10_1016_j_trac_2021_116207
crossref_primary_10_1016_j_saa_2020_119188
crossref_primary_10_1016_j_tifs_2021_05_031
crossref_primary_10_1016_j_saa_2019_117376
crossref_primary_10_1016_j_cej_2017_03_089
crossref_primary_10_1517_17460441_2016_1146250
crossref_primary_10_1016_j_aca_2014_12_048
crossref_primary_10_3390_pr11030651
crossref_primary_10_1016_j_forc_2019_100176
crossref_primary_10_1134_S1061934822030030
crossref_primary_10_1002_cem_2524
crossref_primary_10_1007_s12161_020_01816_1
crossref_primary_10_1002_cem_2893
crossref_primary_10_1007_s12161_018_1162_9
crossref_primary_10_1016_j_aca_2017_11_028
crossref_primary_10_1002_cem_2531
crossref_primary_10_1021_acs_energyfuels_5b02377
crossref_primary_10_1080_10426914_2012_746707
crossref_primary_10_3390_polym15112540
crossref_primary_10_1021_ac303193j
crossref_primary_10_3390_s21103541
crossref_primary_10_1080_02664763_2014_929640
crossref_primary_10_1021_acsomega_0c01914
crossref_primary_10_1016_j_aca_2019_01_022
crossref_primary_10_1016_j_foodchem_2020_127828
crossref_primary_10_1002_qua_27057
crossref_primary_10_1039_D3EW00410D
crossref_primary_10_3390_app9163256
crossref_primary_10_1002_slct_202301022
crossref_primary_10_1016_j_chemosphere_2016_12_095
crossref_primary_10_1016_j_saa_2018_07_046
crossref_primary_10_1016_j_biosystemseng_2019_11_011
crossref_primary_10_1016_j_foodchem_2021_129129
crossref_primary_10_1016_j_chemolab_2013_09_007
crossref_primary_10_1002_ps_6073
crossref_primary_10_1016_j_snb_2015_03_101
crossref_primary_10_2478_pjct_2018_0004
crossref_primary_10_1016_j_actatropica_2022_106779
crossref_primary_10_1007_s11356_017_9568_2
crossref_primary_10_29220_CSAM_2022_29_6_629
crossref_primary_10_3390_ijms20092120
crossref_primary_10_1016_j_saa_2023_122316
crossref_primary_10_1177_0003702816652322
crossref_primary_10_1063_5_0031892
crossref_primary_10_1007_s11095_018_2549_4
crossref_primary_10_1016_j_fbp_2014_12_004
crossref_primary_10_1016_j_addma_2021_101950
crossref_primary_10_1021_acs_analchem_9b01058
crossref_primary_10_3390_molecules27196730
crossref_primary_10_1016_j_foodchem_2018_04_136
crossref_primary_10_7855_IJHE_2024_26_4_069
crossref_primary_10_1002_cem_2583
crossref_primary_10_1016_j_chroma_2020_461435
crossref_primary_10_1021_ac502203d
crossref_primary_10_1016_j_forc_2024_100549
crossref_primary_10_1016_j_chemolab_2013_04_007
crossref_primary_10_1016_j_jfoodeng_2014_06_025
crossref_primary_10_1021_acs_energyfuels_5b02463
crossref_primary_10_1016_j_fuel_2015_02_082
crossref_primary_10_1016_j_saa_2013_02_047
crossref_primary_10_1016_j_chemolab_2015_06_016
crossref_primary_10_1002_cem_2848
crossref_primary_10_1007_s10967_022_08756_6
crossref_primary_10_1002_jccs_201900514
crossref_primary_10_1038_srep10930
crossref_primary_10_3390_foods13193062
crossref_primary_10_1016_j_fuel_2015_04_024
crossref_primary_10_1007_s10910_015_0472_z
crossref_primary_10_1080_10406638_2015_1129978
crossref_primary_10_1016_j_jfoodeng_2013_09_028
crossref_primary_10_1002_cem_3409
crossref_primary_10_1016_j_saa_2020_118945
crossref_primary_10_1002_cem_2718
crossref_primary_10_1002_cem_3009
crossref_primary_10_1007_s11356_016_7944_y
crossref_primary_10_32604_cmc_2022_022414
crossref_primary_10_1039_D3GC02354K
crossref_primary_10_4161_bioe_23041
crossref_primary_10_1016_j_saa_2022_121631
crossref_primary_10_1016_j_fochx_2023_100794
crossref_primary_10_1007_s13738_014_0433_7
crossref_primary_10_1016_j_chemolab_2014_09_004
crossref_primary_10_1080_10412905_2023_2265376
crossref_primary_10_1039_C7SM01569K
crossref_primary_10_4103_japtr_JAPTR_96_20
crossref_primary_10_4995_ia_2022_18073
crossref_primary_10_1016_j_future_2013_09_005
crossref_primary_10_1016_j_aca_2023_341560
crossref_primary_10_1002_cem_2826
crossref_primary_10_1021_acs_analchem_6b01173
crossref_primary_10_1088_1752_7163_abebd4
crossref_primary_10_3390_rs10030479
crossref_primary_10_1186_s12859_015_0714_x
Cites_doi 10.1016/j.chemolab.2004.07.004
10.1016/j.ejmech.2006.12.020
10.1021/jp026114
10.1016/S0922-3487(03)23010-0
10.1016/S0169-7439(02)00068-0
10.1016/S0166-1280(02)00619-X
10.1002/adic.200690087
10.1016/j.chemolab.2003.11.006
10.1002/cem.651
10.1016/j.memsci.2010.09.026
10.1016/S0169-7439(98)00135-X
10.1016/S0009-2614(02)01547-6
10.1021/ci060087t
10.1021/ci0255228
10.1016/S0003-2670(00)01114-4
10.1016/B978-012213810-2/50003-7
10.1016/S0922-3487(03)23001-X
10.1021/ac980451q
10.1016/j.chemolab.2006.04.004
10.1016/j.talanta.2010.07.062
10.1016/S0003-2670(01)00910-2
10.1002/cem.1000
10.2116/analsci.20.1701
10.1021/ac00119a015
10.1002/app.29609
10.1016/j.chroma.2007.04.025
10.1016/0169-7439(93)80028-G
10.1016/0165-9936(91)85132-B
10.1021/ci049763m
10.1016/0003-2670(95)00163-T
10.1002/(SICI)1099-128X(199605)10:3<253::AID-CEM420>3.0.CO;2-Z
10.1002/(SICI)1096-987X(19970715)18:9<1233::AID-JCC11>3.0.CO;2-6
10.1016/S0003-2670(02)00272-6
10.1016/j.aca.2006.12.023
10.1016/S0169-7439(02)00033-3
10.1016/S0169-7439(98)00051-3
10.1016/S0922-3487(03)23002-1
10.1016/S0165-9936(97)00085-X
10.1016/j.seppur.2010.09.017
10.1081/SL-100001446
10.1038/376209a0
10.1002/cem.1180060506
10.1016/j.aca.2011.02.004
10.1080/10408340600969924
10.1016/S0169-7439(03)00091-1
10.1556/JPC.18.2005.2.5
10.1016/j.desal.2011.01.083
10.1016/j.aca.2004.03.048
10.1021/ac00073a006
10.1365/s10337-008-0608-4
10.1016/S0003-2670(97)00065-2
10.1255/jnirs.394
10.1366/000370210791666246
10.1016/0169-7439(93)80031-C
10.1016/S0013-4686(97)00139-4
10.1016/j.saa.2008.03.005
10.1016/S0003-2670(97)00033-0
10.1002/cem.812
10.1016/j.jmgm.2008.03.004
10.1016/j.aca.2006.01.048
10.1021/jm990472s
10.1016/S0003-2670(99)00081-1
10.2116/analsci.26.897
10.1016/S0165-2370(99)00002-9
10.1021/ci025661p
10.1007/BF00124503
10.1016/j.chemolab.2009.03.003
10.1016/0169-7439(93)80079-W
10.1016/S0169-7439(98)00148-8
10.1126/science.8346439
10.1002/1099-128X(200009/12)14:5/6<643::AID-CEM621>3.0.CO;2-E
10.1016/S0922-3487(03)23012-4
10.1021/ci9901284
10.1016/0301-4622(94)00130-C
10.1149/1.3517476
10.1007/s10910-011-9832-5
10.1366/0003702001951237
10.1007/s00604-005-0334-7
10.1016/S0922-3487(03)23006-9
10.1021/ci990010n
10.1021/j100141a013
10.1002/app.33252
10.1016/S0169-7439(96)00028-7
10.1016/j.commatsci.2008.04.032
10.1016/S0003-2670(03)00468-9
10.1002/(SICI)1096-987X(199903)20:4<455::AID-JCC6>3.0.CO;2-1
10.1255/jnirs.192
10.1016/j.aca.2004.05.067
10.1080/00032710600755868
10.1002/anie.199522801
10.1016/S0169-7439(02)00104-1
10.1016/S0921-4526(98)00398-6
10.1002/qsar.200630159
10.1002/elan.200403204
10.1002/cem.1339
10.1016/S0922-3487(03)23004-5
10.1002/cem.891
10.1016/j.chemolab.2010.02.003
10.1016/0003-2670(94)80155-X
10.1021/ac9715884
10.1016/S0169-7439(96)00062-7
10.1016/S0165-9936(98)00011-9
10.1016/S0169-7439(01)00156-3
10.1016/0009-2614(96)01009-3
10.1016/S0169-7439(98)00085-9
10.1016/S0039-9140(02)00505-2
10.1007/BF00202038
10.1134/S1061934807040090
ContentType Journal Article
Copyright Copyright © 2012 John Wiley & Sons, Ltd.
Copyright John Wiley and Sons, Limited Jun 2012
Copyright_xml – notice: Copyright © 2012 John Wiley & Sons, Ltd.
– notice: Copyright John Wiley and Sons, Limited Jun 2012
DBID BSCLL
AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/cem.2426
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1099-128X
EndPage 351
ExternalDocumentID 2696476711
10_1002_cem_2426
CEM2426
ark_67375_WNG_17C6PFZ6_G
Genre article
GrantInformation_xml – fundername: Italian Ministry of University and Research
  funderid: CUP:D31J0000020001
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RWI
WRC
AAYXX
CITATION
7SC
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3976-31df1d19c20c02f4a13ec3fd9b3dcf1a352d391bac63bbf6bf18c2a83e9c68d03
IEDL.DBID DR2
ISSN 0886-9383
IngestDate Fri Jul 25 10:58:52 EDT 2025
Thu Apr 24 22:58:29 EDT 2025
Thu Oct 16 04:44:15 EDT 2025
Wed Jan 22 16:41:51 EST 2025
Sun Sep 21 06:21:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3976-31df1d19c20c02f4a13ec3fd9b3dcf1a352d391bac63bbf6bf18c2a83e9c68d03
Notes ark:/67375/WNG-17C6PFZ6-G
ArticleID:CEM2426
Italian Ministry of University and Research - No. CUP:D31J0000020001
istex:FF3609FD7744B1CA2FE51A8D7B08023DCC4379C8
ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Literature Review-2
PQID 1022173359
PQPubID 37374
PageCount 7
ParticipantIDs proquest_journals_1022173359
crossref_primary_10_1002_cem_2426
crossref_citationtrail_10_1002_cem_2426
wiley_primary_10_1002_cem_2426_CEM2426
istex_primary_ark_67375_WNG_17C6PFZ6_G
PublicationCentury 2000
PublicationDate June 2012
PublicationDateYYYYMMDD 2012-06-01
PublicationDate_xml – month: 06
  year: 2012
  text: June 2012
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Journal of chemometrics
PublicationTitleAlternate J. Chemometrics
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley Subscription Services, Inc
References Maiocchi A. Genetic algorithms in molecular modeling: a review. Data Handl. Sci. Techn. 2003; 23: 109-139.
Hervas C. Algar JA, Silva M. Correction of temperature variations in kinetic-based determinations by use of pruning computational neural networks in conjucation with gentic algorithms. J. Chem. Inf. Comp. Sci. 2000; 40: 724-731.
Niazi A, Jameh-Bozorghi S, Nori-Shargh D. Prediction of acidity constants of thiazolidine-4-carbozylic acid derivatives using Ab initio and genetic algorithm-partial least squares. Turk. J. Chem. 2006; 30: 619-628.
Shaffer RE, Small GW. Learning optimization from nature: simulated annealing and genetic algorithms. Anal. Chem. 1997; 69: 236A-242A.
Hou TJ, Wang JM, Li YY, Xu XY. Application of genetic algorithm to the QSAR research of pyrrolobenzothiazepinones and pyrrolobenzoxazepinone-novel and specific non-nucleoside HIV-1 reverse transcription inhibitors. Chin. Chem. Lett. 1998; 9: 651-654.
Acros MJ, Alonso C, Ortiz MC. Genetic-algorithm-based potential selection in multivariate voltammetric determination of idomethacin and acemethacin by partial least squares. Electrochim. Acta 1998; 43: 479-485.
Hibbert DB. Hybrid genetic algorithms. Data Handl. Sci. Techn. 2003; 23: 55-68.
Holland JH. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Michigan, 1975.
Wang J, Krudy G, Xie XQ, Wu C, Holland G. Genetic algorithm-optimized QSPR model for bioavailability, protein binding, and urinary excretion. J. Chem. Inf. Model. 2006; 46: 2674-2683.
Ghasemi J, Niazi A, Leardi R. Genetic-algorithm-based wavelength selection in multicomponent spectrophotometric determination by PLS: application on copper and zinc mixture. Talanta 2003; 59: 311-317.
Leardi R, Boggia R, Terrile M. Genetic algorithms as a strategy for feature selection. J. Chemometr. 1992; 6: 267-281.
Lucasius CB, Kateman G. Understanding and using genetic algorithms. Part 1: concepts, properties and context. Chemometr. Intell. Lab 1993; 19: 1-33.
Hou TJ, Wang JM, Xu XJ. Applications of genetic algorithms on the structure-activity correlation study of a group of nin-nucleoside HIV-1 inhibitors. Chemometr. Intell. Lab 1999; 45: 303-310.
Wehrens R, Buydens LMC. Evolutionary optimization: a tutorial. Trends Anal. Chem. 1997; 17: 193-203.
Maddox J. Genetics helping molecular dynamics. Nature 1995; 376: 209.
Brodhurst D, Goodacre R, Jones A, Rowland JJ, Kell DB. Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression. Anal. Chim. Acta 1997; 348: 71-86.
Broudiscou A, Leardi R, Phan-Tan-Luu R. Genetic algorithm as a tool for selection of D-optimal design. Chemometr. Intell. Lab 1996; 35: 105-116.
Leardi R. Genetic algorithms in chemometrics and chemistry: a review. J. Chemometr. 2001; 15: 559-569.
Babic S, Horvat AJM, Kastelan-Macan M. Use of a genetic algorithm to optimize TLC separation. J. Planar Chromat. 2005; 18: 112-117.
Jian JH, Wang JH, Song XH, Yu RQ. Network training and architecture optimization by a recursive approach and modified genetic algorithm. J. Chemometr. 1996; 10: 253-267.
Wang J, Xian R, Yang B, Wang D, Wang Y, Chen S. Application of genetic algorithm-spectrophotometric method for the multicomponent simultaneous determination of rare earth elements in geological samples. Fenxi Huazue 1999; 27: 955-956.
Bhatti MS, Kapoor D, Kalia RK, Reddy AS, Thukral AK. RSM and ANN modeling for electrocoagulation of copper from simulated wastewater; multi objective optimization using genetic algorithm approach. Desalination 2011; 274: 74-80.
Csefalvayova L, Pelikan M, Kralj Cigic I, Kolar J, Strli M. Use of genetic algorithms with multivariate regression for determination of gelatine in historic papers based on FT-IR and NIR spectral data. Talanta 2010; 82: 1784-1790.
Goodarzi M, Freitas MP, Wu CH, Duchowicz PR. pKa modeling and prediction of series of pH indicators through genetic algorithm-least square support vector regression. Chemometr. Intell. Lab 2010; 101: 102-109.
Liu F, Wang JD. Using genetic algorithm for quantitative analysis of overlapped spectra in FTIR spectra. Spectroscopy Spectral Anal. 2001; 21: 609-610.
Ghavami R, Najafi A, Sajadi M, Djannaty F. Genetic algorithm as variable selection procedure for the simulation of 13 C nuclear magnetic resonance spectra of flavonoid derivatives using multiple linear regression. J. Mol. Graph. Model. 2008; 27: 105-115.
Guruprasad R, Behera BK. Genetic algorithms and its application to textile. Textile Asia 2009; 40: 35-38.
Ghasemi J, Ebrahimi DM, Hejazi L, Leardi R, Niazi A. Simultaneous kinetic-spectrophotometric determination of sulfide and sulfite by partial least squares and genetic algorithms variable selection. J. Anal. Chem. 2007; 62: 348-354.
Carneiro RL, Braga JWB, Bottoli CBG, Poppi RJ. Application of genetic algorithm for selection of variables for the BLLS method applied to determination of pesticides and metabolites in wine. Anal. Chim. Acta 2007; 595: 51-58.
Niazi A, Soufi A, Mobarakabadi M. Genetic algorithm applied to selection of wavelength in partial least squares for simultaneous spectrophotometric determination of nitrophenol isomers. Anal. Lett. 2006; 39: 2359-2372.
Vandeginste BGM, Massart DL, Buydens LMC, De Long S, Lewi PJ, Smeyers-Verbeke J. Handbook of Chemometrics and Qualimetrics, Part B. Elsevier Science: Amsterdam, 1998.
Luke BT. Genetic algorithms and beyond. Data Handl. Sci. Techn. 2003; 23: 3-54.
Hemmateenejad B, Miri R, Akhond M, Shamsipur M. QSAR study of the calcium channel antagonist activity of some recently synthesized dihydropyridine derivatives: an application of genetic algorithm for variable selection in MLR and PLS methods. Chemometr. Intell. Lab 2002; 64: 91-99.
Van Kampen AHC, Buydens LMC, Lucasius, CB, Blommers MJJ. Optimization of metric matrix embedding by genetic algorithms. J. Biomol. 1996; 7: 214-224.
Niesse JA, Mayne HR. global optimization of atomic and molecular clusters using the space-fixed modified genetic algorithm method. J. Comput. Chem. 1997; 18: 1233-1244.
Jalali-Heravi M, Kyani A. Application of genetic algorithm-kernel partial least squares as a novel nonlinear feature selection method: activity of carbonic anhydrase II inhibitors. Eur. J. Med. Chem. 2007; 45: 649-659.
Wold S, Trygg J, Berglund A, Antii H. Some recent developments in PLS mg. Chemometr. Intell. Lab 2001; 58: 131-151.
Lucasius CB, Beckers MLM, Kateman G. Genetic algorithms in wavelength selection: a comparative study. Anal. Chim. Acta 1994; 286: 135-153.
Majidi MR, Jouyban A, Asadpour-Zeynali K. Genetic algorithm based potential selection in simultaneous voltammetric determination of isoniazid and hydrazine by using partial least squares and artificial neural networks. Electroanalysis 2005; 17: 915-918.
Kompany-Zareh M, Farrokhi-Kurd S. Genetic algorithm applied to the selection of conditions for the simultaneous quantification of three-food colorants using a hand scanner. Microchim. Acta 2005; 150: 77-85.
Massart DL, Vandeginste BGM, Buydens LMC, De Long S, Lewi PJ, Smeyers-Verbeke J. Handbook of Chemometrics and Qualimetrics, Part A. Elsevier Science: Amsterdam, 1997.
Abdollahi H, Bagheri L. Simultaneous spectrophotometric of p-benzoquinone and chloranil after microcrystalline naphthalene extraction using genetic algorithm-based wavelength selection-partial least squares regression. Anal. Sci. 2004; 20: 1701-1706.
Lucasius CB, Kateman G. Genetic algorithms for large-scale optimization in chemometrics: an application. Trends Anal. Chem. 1991; 10: 254-261.
Hanger J, Huttner G. Optimization and analysis of force field parameters by combination genetic algorithms and neural networks. J. Comput. Chem. 1999; 20: 455-471.
Dods J, Gruner D, Brumer P. A genetic algorithm approach to fitting polyatomic spectra via geometry shifts. Chem. Phys. Lett. 1996; 261: 612-619.
Sadi M, Dabir B. Application of genetic algorithm to determine kinetic parameters of free radical polymerization of vinyl acetate by multi-objective optimization technique. Iran. J. Chem. Chem. Eng. 2007; 26: 29-37.
Zou X, Zhao J, Mao H, Shi J, Yin X, Li Y. Genetic algorithm interval partial least squares regression combined successive projection algorithm for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves. Appl. Spectrosc. 2010; 64: 786-794.
Kompany-Zareh M, Mirzaei M. Genetic algorithm-based method for selection conditions in multivariate determination of povidone-iodine using hand scanner. Anal. Chim. Acta 2004; 521: 231-236.
Horchner U, Kalivas JH. Further investigation on a comparative study on simulated annealing and genetic algorithm for wavelengths selection. Anal. Chim. Acta 1995; 311: 1-13.
Tominaga Y. Representative subset selection using genetic algorithms. Chemometr. Intell. Lab 1998; 43: 157-163.
Lestander TA, Leardi R, Geladi P. Selection of near infrared wavelengths using genetic algorithms for the determination of seed moisture content. J. Near Infrared Spec. 2003; 11: 433-446.
Smith BM, Gemperline PJ. Wavelength selection and optimization of pattern recognition methods using the genetic algorithm. Anal. Chim. Acta 2000; 423: 167-177.
Vadood M, Semnani D, Morshed M. Optimization of acrylic dry spinning production line by using artificial neural network and genetic algorithm. J. Appl. Polym. Sci. 2011; 120: 735-744.
Roger JM, Bellon-Maurel V. Using genetic algorithms to select wavelengths in near-infrared spectra: application to sugar content prediction in cherries. Appl. Spectrosc. 2000; 59: 1313-1320.
Frost VJ, Molt K. Use of genetic algorithm for factor selection in principal component regression. J. Near Infrared Spec. 1998; 6: A185-A190.
Chen K, Li T, Lu P. Application of genetic algorithms in resolution of chromatogram. Fenxi Huaxue 2003; 31: 158-162.
Guo W, Cai W, Shao X, Pan Z. Application of genetic stochastic resonance algorithm to quantitative structure-activity relationship study. Chemometr. Intell. Lab 2005; 75: 181-188.
Arakawa M, Yamashita Y, Funatsu K. Genetic algorithm-based wavelength
2004; 20
2006; 30
1991; 10
1995; 34
2006; 39
2010; 101
2006; 36
1999; 46
1996; 261
1975
1999; 45
1994; 66
2003; 59
1995; 376
2003; 50
2009; 114
1992; 6
1998; 17
2011; 366
2010; 26
2006; 20
2009; 97
2000; 14
2008; 27
2005; 75
2007; 62
1999; 50
2001; 58
2006; 562
2003; 43
2011; 120
1999; 27
1995; 55
1998
1997
1996
1995
1999; 20
1995; 311
2007; 97
1998; 253
1996; 10
2003; 31
1999
2001; 21
2001; 446
1994; 286
2003; 622
2002; 63
2002; 64
2006; 46
1999; 39
2002; 366
1998; 70
2007; 85
1998; 6
2001; 34
2005; 17
2005; 18
1998; 9
2003; 23
2009; 45
2011; 158
2009; 40
2004; 521
2000; 43
2003; 17
1998; 41
1996; 35
1998; 43
2008; 71
2003; 11
2005; 24
2011; 274
2010; 64
1997; 348
2004; 70
2002; 461
2000; 59
2002; 45
1995; 67
2002; 106
1997; 18
1997; 17
2008; 67
2001; 15
2011; 25
2003; 486
2007; 26
1996; 7
2010; 76
2005; 150
1997; 69
2007
1993; 261
1999; 388
2011; 690
2005; 45
2010; 82
1998; 38
1993; 19
2004; 18
2004; 16
2000; 423
2007; 595
2007; 1158
1993; 97
2000; 40
2011; 49
2004; 514
2007; 45
2003; 65
2003; 67
e_1_2_7_108_1
e_1_2_7_104_1
e_1_2_7_127_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_100_1
e_1_2_7_123_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_87_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
Judson RS (e_1_2_7_29_1) 1997
e_1_2_7_26_1
e_1_2_7_49_1
Massart DL (e_1_2_7_5_1) 1997
Hou T (e_1_2_7_25_1) 2004; 16
e_1_2_7_116_1
e_1_2_7_90_1
e_1_2_7_112_1
e_1_2_7_94_1
e_1_2_7_71_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_75_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_79_1
Sadi M (e_1_2_7_126_1) 2007; 26
e_1_2_7_109_1
Hou TJ (e_1_2_7_53_1) 1998; 9
Guruprasad R (e_1_2_7_128_1) 2009; 40
e_1_2_7_105_1
e_1_2_7_8_1
Liu F (e_1_2_7_92_1) 2001; 21
e_1_2_7_101_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_82_1
Chen K (e_1_2_7_98_1) 2003; 31
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_86_1
e_1_2_7_67_1
Fatemi S (e_1_2_7_124_1) 2005; 24
e_1_2_7_48_1
Niazi A (e_1_2_7_66_1) 2006; 30
Devillers J (e_1_2_7_28_1) 1996
e_1_2_7_117_1
Holland JH (e_1_2_7_2_1) 1975
e_1_2_7_113_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_74_1
e_1_2_7_97_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
Mitchell M (e_1_2_7_3_1) 1999
e_1_2_7_106_1
Kompany‐Zareh M (e_1_2_7_64_1) 2003; 50
e_1_2_7_9_1
e_1_2_7_102_1
e_1_2_7_125_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_81_1
e_1_2_7_121_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_85_1
e_1_2_7_47_1
Otto M (e_1_2_7_4_1) 2007
e_1_2_7_118_1
e_1_2_7_114_1
e_1_2_7_73_1
e_1_2_7_110_1
e_1_2_7_50_1
e_1_2_7_31_1
e_1_2_7_77_1
e_1_2_7_54_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
Kariuki BM (e_1_2_7_120_1) 1998; 38
e_1_2_7_58_1
e_1_2_7_39_1
Vandeginste BGM (e_1_2_7_6_1) 1998
Wang J (e_1_2_7_89_1) 1999; 27
e_1_2_7_107_1
e_1_2_7_80_1
e_1_2_7_103_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_122_1
e_1_2_7_61_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_88_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_119_1
e_1_2_7_91_1
e_1_2_7_115_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_111_1
e_1_2_7_30_1
e_1_2_7_76_1
e_1_2_7_99_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_38_1
References_xml – reference: Shaffer RE, Small GW. Learning optimization from nature: simulated annealing and genetic algorithms. Anal. Chem. 1997; 69: 236A-242A.
– reference: Riahi S, Ganjali MR, Pourbasheer E, Norouzi P. QSPR study of GC retention indices of essential oil compounds by multiple linear regression with a genetic algorithm. Chromatographia 2008; 67: 917-922.
– reference: Chedly S, Chettah A, Ichchou MN. Multiobjective optimization of molded LDPE foams characteristics using genetic algorithm. J. Appl. Ploym. Sci. 2009; 114: 358-368.
– reference: Hervas C. Algar JA, Silva M. Correction of temperature variations in kinetic-based determinations by use of pruning computational neural networks in conjucation with gentic algorithms. J. Chem. Inf. Comp. Sci. 2000; 40: 724-731.
– reference: Jouan-Rimbaud D, Massart DL, De Noord OE. Random correlation in variable selection for multivariate calibration with a genetic algorithm. Chemometr. Intell. Lab 1996; 35: 213-220.
– reference: Yoshida H, Leardi R, Funatsu K, Varmuza K. Feature selection by genetic algorithms for mass spectral classifiers. Anal. Chim. Acta 2001; 446: 485-494.
– reference: Luke BT. Applying genetic algorithms and neural networks to chemometric problems. Data Handl. Sci. Techn. 2003; 23: 343-375.
– reference: Vadood M, Semnani D, Morshed M. Optimization of acrylic dry spinning production line by using artificial neural network and genetic algorithm. J. Appl. Polym. Sci. 2011; 120: 735-744.
– reference: Luke BT. Genetic algorithms and beyond. Data Handl. Sci. Techn. 2003; 23: 3-54.
– reference: Lucasius CB, Beckers MLM, Kateman G. Genetic algorithms in wavelength selection: a comparative study. Anal. Chim. Acta 1994; 286: 135-153.
– reference: Acros MJ, Alonso C, Ortiz MC. Genetic-algorithm-based potential selection in multivariate voltammetric determination of idomethacin and acemethacin by partial least squares. Electrochim. Acta 1998; 43: 479-485.
– reference: Guo W, Cai W, Shao X, Pan Z. Application of genetic stochastic resonance algorithm to quantitative structure-activity relationship study. Chemometr. Intell. Lab 2005; 75: 181-188.
– reference: Shi J, Xue X. Optimization design of electrodes for anode-supported solid oxide fuel cells via genetic algorithm. J. Electrochem. Soc. 2011; 158: B143-B151.
– reference: Wold S, Trygg J, Berglund A, Antii H. Some recent developments in PLS mg. Chemometr. Intell. Lab 2001; 58: 131-151.
– reference: Chen XG, Li X, Kong L, Ni JY, Zhao RH, Zou HF. Application of uniform design and genetic algorithm in optimization of reversed-phase chromatographic separation. Chemometr. Intell. Lab 2003; 67: 157-166.
– reference: Kompany-Zareh M, Farrokhi-Kurd S. Genetic algorithm applied to the selection of conditions for the simultaneous quantification of three-food colorants using a hand scanner. Microchim. Acta 2005; 150: 77-85.
– reference: Wehrens R, Prestsch E, Buydens LMC. The quality of optimization by genetic algorithms. Anal. Chim. Acta 1999; 388: 265-271.
– reference: Lavin BK, Moores A, Helfend LK. Genetic algorithm for pattern recognition analysis of pyrolysis gas chromatographic data. J. Anal. Appl. Pyrol. 1999; 50: 47-62.
– reference: Broudiscou A, Leardi R, Phan-Tan-Luu R. Genetic algorithm as a tool for selection of D-optimal design. Chemometr. Intell. Lab 1996; 35: 105-116.
– reference: Wang J, Xian R, Yang B, Wang D, Wang Y, Chen S. Application of genetic algorithm-spectrophotometric method for the multicomponent simultaneous determination of rare earth elements in geological samples. Fenxi Huazue 1999; 27: 955-956.
– reference: Hou TJ, Wang JM, Liao N, Xu XJ. Applications of genetic algorithms on the structure-activity relationship analysis of some cinnamamides. J. Chem. Inf. Comp. Sci. 1999; 39: 775-781.
– reference: Hemmateenejad B, Akhond M, Miri R, Shamsipur M. Genetic algorithm applied to the selection of factors in principal component-artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1,4-dihydropyridines. J. Chem. Inf. Comp. Sci. 2003; 43: 1328-1334.
– reference: Yu K, Lin Z, Cheng Y. optimization of the buffer system of micellar electrokinetic capillary chromatography for the separation of the active components in Chinese medicine 'SHUANGDAN' granule by genetic algorithm. Anal. Chim. Acta 2006; 562: 66-72.
– reference: Bhatti MS, Kapoor D, Kalia RK, Reddy AS, Thukral AK. RSM and ANN modeling for electrocoagulation of copper from simulated wastewater; multi objective optimization using genetic algorithm approach. Desalination 2011; 274: 74-80.
– reference: Dieterle F, Kieser B, Gauglitz G. Genetic algorithms and neural networks for quantitative analysis of ternary mixtures using surface plasmon resonance. Chemometr. Intell. Lab 2003; 65: 67-81.
– reference: Leardi R, Seasholtz MB, Pell RJ. Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform-infrared spectral data. Anal. Chim. Acta 2002; 461: 189-200.
– reference: Lucasius CB, Kateman G. Understanding and using genetic algorithms. Part 1: concepts, properties and context. Chemometr. Intell. Lab 1993; 19: 1-33.
– reference: Abdollahi H, Bagheri L. Simultaneous spectrophotometric of p-benzoquinone and chloranil after microcrystalline naphthalene extraction using genetic algorithm-based wavelength selection-partial least squares regression. Anal. Sci. 2004; 20: 1701-1706.
– reference: Leardi R. Genetic algorithms in chemistry. J. Chromatogr. A 2007; 1158: 226-233.
– reference: Kompany-Zareh M. A QSPR study of boiling point of saturated alcohols using genetic algorithm. Acta Chim. Slov. 2003; 50: 259-273.
– reference: Dane AD, Veldusi A, de Beer DKG, Leenaers AJG, Buydens LMC. Application of genetic algorithms for characterization of thin layer materials by glancing incidence X-ray refractometry. Physica B 1998; 253: 254-268.
– reference: Jouan-Rimbaud D, Massart DL, Leardi R, De Noord OE. Genetic algorithms as a tool for wavelength selection in multivariate calibration. Anal. Chem. 1995; 67: 4295-4301.
– reference: Hou TJ, Wang JM, Xu XJ. Applications of genetic algorithms on the structure-activity correlation study of a group of nin-nucleoside HIV-1 inhibitors. Chemometr. Intell. Lab 1999; 45: 303-310.
– reference: Ghasemi J, Ebrahimi DM, Hejazi L, Leardi R, Niazi A. Simultaneous kinetic-spectrophotometric determination of sulfide and sulfite by partial least squares and genetic algorithms variable selection. J. Anal. Chem. 2007; 62: 348-354.
– reference: Weber L, Wallbaum S, Broger C, Gubernator K. Optimization of the biological activity of combinatorial compound libraries by a genetic algorithm. Angew. Chem. 1995; 34: 2280-2282.
– reference: Devillers J. Genetic Algorithms in Molecular Modeling. Principles of QSAR and Drug Design. Academic Press: New York, 1996.
– reference: Niesse JA, Mayne HR. global optimization of atomic and molecular clusters using the space-fixed modified genetic algorithm method. J. Comput. Chem. 1997; 18: 1233-1244.
– reference: Gianoli SI, Puxty G, Fisher U, Maeder M, Hungerbuchler K. Empirical kinetic modeling of on line simultaneous infrared and calorimetric measurement using a Pareto optimal approach and multi-objective genetic algorithm. Chemometr. Intell. Lab 2007; 85: 47-62.
– reference: Guruprasad R, Behera BK. Genetic algorithms and its application to textile. Textile Asia 2009; 40: 35-38.
– reference: Frost VJ, Molt K. Use of genetic algorithm for factor selection in principal component regression. J. Near Infrared Spec. 1998; 6: A185-A190.
– reference: Reynes C, De Souza S, Sabatier R, Figueres G, Vidal B. Selection of discriminant wavelength intervals in NIR spectrometry with genetic algorithms. J. Chemometr. 2006; 20: 136-145.
– reference: Hanger J, Huttner G. Optimization and analysis of force field parameters by combination genetic algorithms and neural networks. J. Comput. Chem. 1999; 20: 455-471.
– reference: Forrest S. Genetic algorithms: principles of natural selection applied to computation. Science 1993; 261: 872-878.
– reference: Abdollahi H, Bagheri L. Simultaneous spectrophotometric determination of vitamin K3 and 1,4-naphthoquinone after cloud point extraction by using genetic algorithm based wavelength selection-partial least squares regression. Anal. Chim. Acta 2004; 514: 211-218.
– reference: Leardi R, Boggia R, Terrile M. Genetic algorithms as a strategy for feature selection. J. Chemometr. 1992; 6: 267-281.
– reference: Liu F, Wang JD. Using genetic algorithm for quantitative analysis of overlapped spectra in FTIR spectra. Spectroscopy Spectral Anal. 2001; 21: 609-610.
– reference: Goicoechea HC, Olivieri AC. A new family of genetic algorithms for wavelength interval selection in multivariate analytical spectroscopy. J. Chemometr. 2003; 17: 338-345.
– reference: Horchner U, Kalivas JH. Further investigation on a comparative study on simulated annealing and genetic algorithm for wavelengths selection. Anal. Chim. Acta 1995; 311: 1-13.
– reference: Massart DL, Vandeginste BGM, Buydens LMC, De Long S, Lewi PJ, Smeyers-Verbeke J. Handbook of Chemometrics and Qualimetrics, Part A. Elsevier Science: Amsterdam, 1997.
– reference: Tominaga Y. Representative subset selection using genetic algorithms. Chemometr. Intell. Lab 1998; 43: 157-163.
– reference: De Weijer AP, Lucasius CB, Buydens LMC, Kateman G, Heuvel HM, Mannee H. Curve fitting using natural computation. Anal. Chem. 1994; 66: 23-31.
– reference: Clark DE, Westhead DR. Evolutionary algorithms in computer-aided molecular design. J. Comput. Aid. Mol. Des. 1996; 10: 337-358.
– reference: Van Kampen AHC, Buydens LMC, Lucasius, CB, Blommers MJJ. Optimization of metric matrix embedding by genetic algorithms. J. Biomol. 1996; 7: 214-224.
– reference: Gabrielsson J, Trygg J. Recent developments in multivariate calibration. Crit. Rev. Anal. Chem. 36; 2006: 243-255.
– reference: Niculescu SP. Artificial neural networks and genetic algorithms in QSAR. J. Mol. Struct. (THEOCHEM) 2003; 622: 71-83.
– reference: Csefalvayova L, Pelikan M, Kralj Cigic I, Kolar J, Strli M. Use of genetic algorithms with multivariate regression for determination of gelatine in historic papers based on FT-IR and NIR spectral data. Talanta 2010; 82: 1784-1790.
– reference: Mitchell M. An introduction to genetic algorithms. The MIT Press, Massachusetts, 1999.
– reference: Goicoechea HC, Olivieri AC. Wavelength selection for multivariate calibration using a genetic algorithm: a novel initialization strategy. J. Chem. Inf. Comp. Sci. 2002; 45: 1146-1153.
– reference: Leardi R. Genetic algorithm-PLS as a tool for wavelength selection in spectral data sets. Data Handl. Sci. Techn. 2003; 23: 169-196.
– reference: Kabrede H, Hentschke R. An improved genetic algorithm for global optimization and its application to sodium chloride clusters. J. Phys. Chem. B 2002; 106: 10089-10095.
– reference: Carneiro RL, Braga JWB, Bottoli CBG, Poppi RJ. Application of genetic algorithm for selection of variables for the BLLS method applied to determination of pesticides and metabolites in wine. Anal. Chim. Acta 2007; 595: 51-58.
– reference: Ghasemi J, Niazi A, Leardi R. Genetic-algorithm-based wavelength selection in multicomponent spectrophotometric determination by PLS: application on copper and zinc mixture. Talanta 2003; 59: 311-317.
– reference: Fatemi MH, Jalali-Heravi M, Konuze E. Prediction of bioconcentration factor using genetic algorithm and artificial neural network. Anal. Chim. Acta 2003; 486: 101-108.
– reference: Meusinger R, Moros R. Determination of quantitative structure-octane rating relationships of hydrocarbons by genetic algorithms. Chemometr. Intell. Lab 1999; 46: 67-78.
– reference: Benedetti G, Morosetti S. A genetic algorithm to search for optimal and suboptimal RNA secondary structures. Biophys. Chem. 1995; 55: 253-259.
– reference: Hemmateenejad B, Miri R, Akhond M, Shamsipur M. QSAR study of the calcium channel antagonist activity of some recently synthesized dihydropyridine derivatives: an application of genetic algorithm for variable selection in MLR and PLS methods. Chemometr. Intell. Lab 2002; 64: 91-99.
– reference: Hemmateenejad B. Optimal QSAR analysis of the carcinogenic activity of drugs by correlation ranking and gentic algorithm-based PCR. J. Chemometr. 2004; 18: 475-485.
– reference: Sadi M, Dabir B. Application of genetic algorithm to determine kinetic parameters of free radical polymerization of vinyl acetate by multi-objective optimization technique. Iran. J. Chem. Chem. Eng. 2007; 26: 29-37.
– reference: Kemsley EK. A genetic algorithm (GA) approach to the calculation of canonical variates. Trends Anal. Chem. 1998; 17: 24-34.
– reference: Afiuni-Zadeh S, Azimi G. A QSAR for modeling of 8-azaadenine analogues proposed as Al adenosine receptor antagonists using genetic algorithm coupling adaptive neuro-fuzzy inference system. Anal. Sci. 2010; 26: 897-902.
– reference: Hibbert DB. Hybrid genetic algorithms. Data Handl. Sci. Techn. 2003; 23: 55-68.
– reference: Ghavami R, Najafi A, Sajadi M, Djannaty F. Genetic algorithm as variable selection procedure for the simulation of 13 C nuclear magnetic resonance spectra of flavonoid derivatives using multiple linear regression. J. Mol. Graph. Model. 2008; 27: 105-115.
– reference: Madaeni SS, Hasankiadeh NT, Kurdian AR, Rahipour A. Modeling and optimization of membrane fabrication using artificial neural network and genetic algirthm. Sep. Purif. Technol. 2010; 76: 33-43.
– reference: Zupan J, Novic M. General type of a uniform and reversible representation of chemical structures. Anal. Chim. Acta 1997; 348: 409-418.
– reference: Zou X, Zhao J, Mao H, Shi J, Yin X, Li Y. Genetic algorithm interval partial least squares regression combined successive projection algorithm for variable selection in near-infrared quantitative analysis of pigment in cucumber leaves. Appl. Spectrosc. 2010; 64: 786-794.
– reference: Roger JM, Bellon-Maurel V. Using genetic algorithms to select wavelengths in near-infrared spectra: application to sugar content prediction in cherries. Appl. Spectrosc. 2000; 59: 1313-1320.
– reference: Brodhurst D, Goodacre R, Jones A, Rowland JJ, Kell DB. Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression. Anal. Chim. Acta 1997; 348: 71-86.
– reference: Ding Q, Small GW, Arnold MA. Genetic algorithm-based wavelength selection for the near-infrared determination of glucose in biological matrixes: initialization strategies and effects of spectral resolution. Anal. Chem. 1998; 70: 4472-4479.
– reference: Gharagheizi F. QSPR studies for solubility parameter by means of genetic algorithm-based multivariate linear regression and generalized regression neural network. QSAR Comb. Sci. 2008; 27: 165-170.
– reference: Harris KDM. Fundamentals and applications of genetic algorithms for structure solution from powder X-ray diffraction data. Comp. Mat. Sci. 2009; 45: 16-20.
– reference: Chen K, Li T, Lu P. Application of genetic algorithms in resolution of chromatogram. Fenxi Huaxue 2003; 31: 158-162.
– reference: Liu F, Wang JD. Application of a genetic algorithm to quantitative analysis of overlapped FTIR spectra. Spectrosc. Lett. 2001; 34: 13-24.
– reference: Ghasemi J, Ahmadi S. Combination of genetic algorithm and partial least squares for cloud point prediction of nonionic surfactants from molecular structures. Ann. Chim. 2007; 97: 69-83.
– reference: Hou T, Xu X. Applications of genetic algorithms to computer-aided drug design. Prog. Chem. 2004; 16: 35-41.
– reference: Maeder M, Neuhold YM, Puxty G. Applications of a genetic algorithm: near optimal estimation of the rate and equilibrium constants of complex reaction mechanism. Chemometr. Intell. Lab 2004; 70: 193-203.
– reference: Maiocchi A. Genetic algorithms in molecular modeling: a review. Data Handl. Sci. Techn. 2003; 23: 109-139.
– reference: Lucasius CB, Kateman G. Genetic algorithms for large-scale optimization in chemometrics: an application. Trends Anal. Chem. 1991; 10: 254-261.
– reference: Giro R, Cyrillo M, Galvao DS. Designing conducting polymers using genetic algorithms. Chem. Phys. Lett. 2002; 366: 170-175.
– reference: Cano-Odena A, Spilliers M, Dedroog T, De Grave K, Raman J, Vankelecom IFJ. Optimization of cellulose acetate nanaofilteration membrane for micropollutant removal via genetic algorithms and high throughout experimentation. J. Membrane Sci. 2011; 366: 25-32.
– reference: Tewari JC, Dixit V, Cho BK, Malik KA. Detemination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy. Spectrochim. Acta A 2008; 71: 1119-1127.
– reference: Maddox J. Genetics helping molecular dynamics. Nature 1995; 376: 209.
– reference: Jalali-Heravi M, Kyani A. Application of genetic algorithm-kernel partial least squares as a novel nonlinear feature selection method: activity of carbonic anhydrase II inhibitors. Eur. J. Med. Chem. 2007; 45: 649-659.
– reference: Niazi A, Soufi A, Mobarakabadi M. Genetic algorithm applied to selection of wavelength in partial least squares for simultaneous spectrophotometric determination of nitrophenol isomers. Anal. Lett. 2006; 39: 2359-2372.
– reference: Hao, M, Li Y, Wang Y, Zhang S. Prediction of P2Y12 antagonists using a novel genetic algorithm-support vector machine coupled approach. Anal. Chim. Acta 2011; 690: 56-63.
– reference: Milani G, Milani F. EPDM accelerated sulfur vulcanization: A kinetic model based on a genetic algorithm. J. Math. Chem. 2011; 49: 1357-1383.
– reference: Jian JH, Wang JH, Song XH, Yu RQ. Network training and architecture optimization by a recursive approach and modified genetic algorithm. J. Chemometr. 1996; 10: 253-267.
– reference: Zinn P, Adaptive multicomponent analysis by genetic algorithms. J. Chem. Inf. Model. 2005; 45: 880-887.
– reference: Kariuki BM, Johnston RL, Harris KDM, Psallidas K, Ahn S, Serrano-Gonzalez H. Application of a genetic algorithm in structure determination from powder diffraction data. Match 1998; 38: 123-135.
– reference: Goodarzi M, Freitas MP, Wu CH, Duchowicz PR. pKa modeling and prediction of series of pH indicators through genetic algorithm-least square support vector regression. Chemometr. Intell. Lab 2010; 101: 102-109.
– reference: Wehrens R, Buydens LMC. Evolutionary optimization: a tutorial. Trends Anal. Chem. 1997; 17: 193-203.
– reference: Babic S, Horvat AJM, Kastelan-Macan M. Use of a genetic algorithm to optimize TLC separation. J. Planar Chromat. 2005; 18: 112-117.
– reference: Holland JH. Adaptation in Natural and Artificial Systems. The University of Michigan Press, Michigan, 1975.
– reference: Dods J, Gruner D, Brumer P. A genetic algorithm approach to fitting polyatomic spectra via geometry shifts. Chem. Phys. Lett. 1996; 261: 612-619.
– reference: Fei Q, Li M, Wang B, Huan Y, Feng G, Ren Y. Analysis of cefalexin with NIR spectrometry coupled to artificial neural networks with modified genetic algorithm for wavelength selection. Chemometr. Intell. Lab 2009; 97: 127-131.
– reference: Meusinger R, Himmelreich U. Neural networks and genetic algorithms applications in nuclear magnetic resonance spectroscopy. Data Handl. Sci. Techn. 2003; 23: 281-321.
– reference: Otto M. Chemometrics. Wiely-VCH Verlag GmbH and Co.: Weinheim, 2007.
– reference: Leardi R. Application of genetic algorithm-PLS for feature selection in spectral data sets. J. Chemometr. 2000; 14: 643-655.
– reference: Fatemi S, Masoori M, Bozorgmehry Boozarjomehry R. Application of genetic algorithm in kinetic modeling and reaction mechanism studies. Iran. J. Chem. Chem. Eng. 2005; 24: 37-46.
– reference: Hoffman BT, Kopajtic T, Katz JL, Newman AH. 2D QSAR modeling and preliminary database searching for dopamine transporter inhibitors using genetic algorithm variable selection of Molconn Z descriptors. J. Med. Chem. 2000; 43: 4151-4159.
– reference: Smith BM, Gemperline PJ. Wavelength selection and optimization of pattern recognition methods using the genetic algorithm. Anal. Chim. Acta 2000; 423: 167-177.
– reference: Kompany-Zareh M, Mirzaei M. Genetic algorithm-based method for selection conditions in multivariate determination of povidone-iodine using hand scanner. Anal. Chim. Acta 2004; 521: 231-236.
– reference: Hou TJ, Wang JM, Li YY, Xu XY. Application of genetic algorithm to the QSAR research of pyrrolobenzothiazepinones and pyrrolobenzoxazepinone-novel and specific non-nucleoside HIV-1 reverse transcription inhibitors. Chin. Chem. Lett. 1998; 9: 651-654.
– reference: Leardi R, Lupianez Gonzalez A. Genetic algorithm applied to feature selection in PLS regression: How and when to use them. Chemometr. Intell. Lab 1998; 41: 195-207.
– reference: Arakawa M, Yamashita Y, Funatsu K. Genetic algorithm-based wavelength selection method for spectral calibration. J. Chemometr. 2011; 25: 10-19.
– reference: Majidi MR, Jouyban A, Asadpour-Zeynali K. Genetic algorithm based potential selection in simultaneous voltammetric determination of isoniazid and hydrazine by using partial least squares and artificial neural networks. Electroanalysis 2005; 17: 915-918.
– reference: Hibbert DB. Ahybrid genetic algorithm for the estimation of kinetic parameters. Chemometr. Intell. Lab 1993; 19: 319-329.
– reference: Leardi R. Genetic algorithms in chemometrics and chemistry: a review. J. Chemometr. 2001; 15: 559-569.
– reference: Vandeginste BGM, Massart DL, Buydens LMC, De Long S, Lewi PJ, Smeyers-Verbeke J. Handbook of Chemometrics and Qualimetrics, Part B. Elsevier Science: Amsterdam, 1998.
– reference: Hibbert DB. Genetic algorithms in chemistry. Chemometr. Intell. Lab 1993; 19: 277-293.
– reference: Hartke B. Global geometry optimization of clusters using genetic algorithms. J. Phys. Chem. 1993; 97: 9973-9976.
– reference: Ros F, Pintore M, Chretien JR. Molecular descriptor selection combining genetic algorithms and fuzzy logic: application to database mining procedure. Chemometr. Intell. Lab 2002; 63: 15-26.
– reference: Lestander TA, Leardi R, Geladi P. Selection of near infrared wavelengths using genetic algorithms for the determination of seed moisture content. J. Near Infrared Spec. 2003; 11: 433-446.
– reference: Niazi A, Jameh-Bozorghi S, Nori-Shargh D. Prediction of acidity constants of thiazolidine-4-carbozylic acid derivatives using Ab initio and genetic algorithm-partial least squares. Turk. J. Chem. 2006; 30: 619-628.
– reference: Wang J, Krudy G, Xie XQ, Wu C, Holland G. Genetic algorithm-optimized QSPR model for bioavailability, protein binding, and urinary excretion. J. Chem. Inf. Model. 2006; 46: 2674-2683.
– volume: 18
  start-page: 112
  year: 2005
  end-page: 117
  article-title: Use of a genetic algorithm to optimize TLC separation
  publication-title: J. Planar Chromat.
– volume: 120
  start-page: 735
  year: 2011
  end-page: 744
  article-title: Optimization of acrylic dry spinning production line by using artificial neural network and genetic algorithm
  publication-title: J. Appl. Polym. Sci.
– volume: 40
  start-page: 724
  year: 2000
  end-page: 731
  article-title: Correction of temperature variations in kinetic‐based determinations by use of pruning computational neural networks in conjucation with gentic algorithms
  publication-title: J. Chem. Inf. Comp. Sci.
– volume: 39
  start-page: 775
  year: 1999
  end-page: 781
  article-title: Applications of genetic algorithms on the structure‐activity relationship analysis of some cinnamamides
  publication-title: J. Chem. Inf. Comp. Sci.
– volume: 64
  start-page: 786
  year: 2010
  end-page: 794
  article-title: Genetic algorithm interval partial least squares regression combined successive projection algorithm for variable selection in near‐infrared quantitative analysis of pigment in cucumber leaves
  publication-title: Appl. Spectrosc.
– volume: 62
  start-page: 348
  year: 2007
  end-page: 354
  article-title: Simultaneous kinetic‐spectrophotometric determination of sulfide and sulfite by partial least squares and genetic algorithms variable selection
  publication-title: J. Anal. Chem.
– volume: 366
  start-page: 170
  year: 2002
  end-page: 175
  article-title: Designing conducting polymers using genetic algorithms
  publication-title: Chem. Phys. Lett.
– volume: 45
  start-page: 303
  year: 1999
  end-page: 310
  article-title: Applications of genetic algorithms on the structure‐activity correlation study of a group of nin‐nucleoside HIV‐1 inhibitors
  publication-title: Chemometr. Intell. Lab
– volume: 82
  start-page: 1784
  year: 2010
  end-page: 1790
  article-title: Use of genetic algorithms with multivariate regression for determination of gelatine in historic papers based on FT‐IR and NIR spectral data
  publication-title: Talanta
– year: 1975
– volume: 23
  start-page: 343
  year: 2003
  end-page: 375
  article-title: Applying genetic algorithms and neural networks to chemometric problems
  publication-title: Data Handl. Sci. Techn.
– volume: 34
  start-page: 13
  year: 2001
  end-page: 24
  article-title: Application of a genetic algorithm to quantitative analysis of overlapped FTIR spectra
  publication-title: Spectrosc. Lett.
– volume: 19
  start-page: 1
  year: 1993
  end-page: 33
  article-title: Understanding and using genetic algorithms. Part 1: concepts, properties and context
  publication-title: Chemometr. Intell. Lab
– volume: 43
  start-page: 479
  year: 1998
  end-page: 485
  article-title: Genetic‐algorithm‐based potential selection in multivariate voltammetric determination of idomethacin and acemethacin by partial least squares
  publication-title: Electrochim. Acta
– volume: 461
  start-page: 189
  year: 2002
  end-page: 200
  article-title: Variable selection for multivariate calibration using a genetic algorithm: prediction of additive concentrations in polymer films from Fourier transform‐infrared spectral data
  publication-title: Anal. Chim. Acta
– volume: 35
  start-page: 105
  year: 1996
  end-page: 116
  article-title: Genetic algorithm as a tool for selection of D‐optimal design
  publication-title: Chemometr. Intell. Lab
– volume: 46
  start-page: 2674
  year: 2006
  end-page: 2683
  article-title: Genetic algorithm‐optimized QSPR model for bioavailability, protein binding, and urinary excretion
  publication-title: J. Chem. Inf. Model.
– volume: 40
  start-page: 35
  year: 2009
  end-page: 38
  article-title: Genetic algorithms and its application to textile
  publication-title: Textile Asia
– volume: 10
  start-page: 254
  year: 1991
  end-page: 261
  article-title: Genetic algorithms for large-scale optimization in chemometrics: an application
  publication-title: Trends Anal. Chem
– year: 1998
– volume: 34
  start-page: 2280
  year: 1995
  end-page: 2282
  article-title: Optimization of the biological activity of combinatorial compound libraries by a genetic algorithm
  publication-title: Angew. Chem.
– volume: 622
  start-page: 71
  year: 2003
  end-page: 83
  article-title: Artificial neural networks and genetic algorithms in QSAR
  publication-title: J. Mol. Struct. (THEOCHEM)
– volume: 64
  start-page: 91
  year: 2002
  end-page: 99
  article-title: QSAR study of the calcium channel antagonist activity of some recently synthesized dihydropyridine derivatives: an application of genetic algorithm for variable selection in MLR and PLS methods
  publication-title: Chemometr. Intell. Lab
– volume: 9
  start-page: 651
  year: 1998
  end-page: 654
  article-title: Application of genetic algorithm to the QSAR research of pyrrolobenzothiazepinones and pyrrolobenzoxazepinone‐novel and specific non‐nucleoside HIV‐1 reverse transcription inhibitors
  publication-title: Chin. Chem. Lett.
– volume: 46
  start-page: 67
  year: 1999
  end-page: 78
  article-title: Determination of quantitative structure‐octane rating relationships of hydrocarbons by genetic algorithms
  publication-title: Chemometr. Intell. Lab
– volume: 18
  start-page: 1233
  year: 1997
  end-page: 1244
  article-title: global optimization of atomic and molecular clusters using the space‐fixed modified genetic algorithm method
  publication-title: J. Comput. Chem.
– volume: 348
  start-page: 71
  year: 1997
  end-page: 86
  article-title: Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression
  publication-title: Anal. Chim. Acta
– volume: 59
  start-page: 311
  year: 2003
  end-page: 317
  article-title: Genetic‐algorithm‐based wavelength selection in multicomponent spectrophotometric determination by PLS: application on copper and zinc mixture
  publication-title: Talanta
– volume: 41
  start-page: 195
  year: 1998
  end-page: 207
  article-title: Genetic algorithm applied to feature selection in PLS regression: How and when to use them
  publication-title: Chemometr. Intell. Lab
– volume: 50
  start-page: 259
  year: 2003
  end-page: 273
  article-title: A QSPR study of boiling point of saturated alcohols using genetic algorithm
  publication-title: Acta Chim. Slov.
– volume: 366
  start-page: 25
  year: 2011
  end-page: 32
  article-title: Optimization of cellulose acetate nanaofilteration membrane for micropollutant removal via genetic algorithms and high throughout experimentation
  publication-title: J. Membrane Sci.
– volume: 39
  start-page: 2359
  year: 2006
  end-page: 2372
  article-title: Genetic algorithm applied to selection of wavelength in partial least squares for simultaneous spectrophotometric determination of nitrophenol isomers
  publication-title: Anal. Lett.
– volume: 71
  start-page: 1119
  year: 2008
  end-page: 1127
  article-title: Detemination of origin and sugars of citrus fruits using genetic algorithm, correspondence analysis and partial least square combined with fiber optic NIR spectroscopy
  publication-title: Spectrochim. Acta A
– volume: 376
  start-page: 209
  year: 1995
  article-title: Genetics helping molecular dynamics
  publication-title: Nature
– volume: 17
  start-page: 915
  year: 2005
  end-page: 918
  article-title: Genetic algorithm based potential selection in simultaneous voltammetric determination of isoniazid and hydrazine by using partial least squares and artificial neural networks
  publication-title: Electroanalysis
– year: 2007
– volume: 49
  start-page: 1357
  year: 2011
  end-page: 1383
  article-title: EPDM accelerated sulfur vulcanization: A kinetic model based on a genetic algorithm
  publication-title: J. Math. Chem.
– volume: 70
  start-page: 4472
  year: 1998
  end-page: 4479
  article-title: Genetic algorithm‐based wavelength selection for the near‐infrared determination of glucose in biological matrixes: initialization strategies and effects of spectral resolution
  publication-title: Anal. Chem.
– volume: 67
  start-page: 917
  year: 2008
  end-page: 922
  article-title: QSPR study of GC retention indices of essential oil compounds by multiple linear regression with a genetic algorithm
  publication-title: Chromatographia
– start-page: 35
  year: 1996
  end-page: 66
– volume: 20
  start-page: 136
  year: 2006
  end-page: 145
  article-title: Selection of discriminant wavelength intervals in NIR spectrometry with genetic algorithms
  publication-title: J. Chemometr.
– volume: 15
  start-page: 559
  year: 2001
  end-page: 569
  article-title: Genetic algorithms in chemometrics and chemistry: a review
  publication-title: J. Chemometr.
– volume: 562
  start-page: 66
  year: 2006
  end-page: 72
  article-title: optimization of the buffer system of micellar electrokinetic capillary chromatography for the separation of the active components in Chinese medicine ‘SHUANGDAN’ granule by genetic algorithm
  publication-title: Anal. Chim. Acta
– volume: 50
  start-page: 47
  year: 1999
  end-page: 62
  article-title: Genetic algorithm for pattern recognition analysis of pyrolysis gas chromatographic data
  publication-title: J. Anal. Appl. Pyrol.
– volume: 45
  start-page: 1146
  year: 2002
  end-page: 1153
  article-title: Wavelength selection for multivariate calibration using a genetic algorithm: a novel initialization strategy
  publication-title: J. Chem. Inf. Comp. Sci.
– volume: 521
  start-page: 231
  year: 2004
  end-page: 236
  article-title: Genetic algorithm‐based method for selection conditions in multivariate determination of povidone‐iodine using hand scanner
  publication-title: Anal. Chim. Acta
– volume: 423
  start-page: 167
  year: 2000
  end-page: 177
  article-title: Wavelength selection and optimization of pattern recognition methods using the genetic algorithm
  publication-title: Anal. Chim. Acta
– volume: 35
  start-page: 213
  year: 1996
  end-page: 220
  article-title: Random correlation in variable selection for multivariate calibration with a genetic algorithm
  publication-title: Chemometr. Intell. Lab
– volume: 69
  start-page: 236A
  year: 1997
  end-page: 242A
  article-title: Learning optimization from nature: simulated annealing and genetic algorithms
  publication-title: Anal. Chem.
– volume: 31
  start-page: 158
  year: 2003
  end-page: 162
  article-title: Application of genetic algorithms in resolution of chromatogram
  publication-title: Fenxi Huaxue
– volume: 45
  start-page: 880
  year: 2005
  end-page: 887
  article-title: Adaptive multicomponent analysis by genetic algorithms
  publication-title: J. Chem. Inf. Model.
– volume: 59
  start-page: 1313
  year: 2000
  end-page: 1320
  article-title: Using genetic algorithms to select wavelengths in near‐infrared spectra: application to sugar content prediction in cherries
  publication-title: Appl. Spectrosc.
– volume: 19
  start-page: 319
  year: 1993
  end-page: 329
  article-title: Ahybrid genetic algorithm for the estimation of kinetic parameters
  publication-title: Chemometr. Intell. Lab
– volume: 24
  start-page: 37
  year: 2005
  end-page: 46
  article-title: Application of genetic algorithm in kinetic modeling and reaction mechanism studies
  publication-title: Iran. J. Chem. Chem. Eng.
– year: 1995
– volume: 274
  start-page: 74
  year: 2011
  end-page: 80
  article-title: RSM and ANN modeling for electrocoagulation of copper from simulated wastewater; multi objective optimization using genetic algorithm approach
  publication-title: Desalination
– volume: 26
  start-page: 897
  year: 2010
  end-page: 902
  article-title: A QSAR for modeling of 8‐azaadenine analogues proposed as Al adenosine receptor antagonists using genetic algorithm coupling adaptive neuro‐fuzzy inference system
  publication-title: Anal. Sci.
– volume: 85
  start-page: 47
  year: 2007
  end-page: 62
  article-title: Empirical kinetic modeling of on line simultaneous infrared and calorimetric measurement using a Pareto optimal approach and multi‐objective genetic algorithm
  publication-title: Chemometr. Intell. Lab
– volume: 10
  start-page: 337
  year: 1996
  end-page: 358
  article-title: Evolutionary algorithms in computer‐aided molecular design
  publication-title: J. Comput. Aid. Mol. Des.
– volume: 23
  start-page: 109
  year: 2003
  end-page: 139
  article-title: Genetic algorithms in molecular modeling: a review
  publication-title: Data Handl. Sci. Techn.
– volume: 388
  start-page: 265
  year: 1999
  end-page: 271
  article-title: The quality of optimization by genetic algorithms
  publication-title: Anal. Chim. Acta
– volume: 7
  start-page: 214
  year: 1996
  end-page: 224
  article-title: Optimization of metric matrix embedding by genetic algorithms
  publication-title: J. Biomol.
– volume: 486
  start-page: 101
  year: 2003
  end-page: 108
  article-title: Prediction of bioconcentration factor using genetic algorithm and artificial neural network
  publication-title: Anal. Chim. Acta
– volume: 6
  start-page: A185
  year: 1998
  end-page: A190
  article-title: Use of genetic algorithm for factor selection in principal component regression
  publication-title: J. Near Infrared Spec.
– volume: 17
  start-page: 338
  year: 2003
  end-page: 345
  article-title: A new family of genetic algorithms for wavelength interval selection in multivariate analytical spectroscopy
  publication-title: J. Chemometr.
– volume: 17
  start-page: 24
  year: 1998
  end-page: 34
  article-title: A genetic algorithm (GA) approach to the calculation of canonical variates
  publication-title: Trends Anal. Chem.
– volume: 23
  start-page: 281
  year: 2003
  end-page: 321
  article-title: Neural networks and genetic algorithms applications in nuclear magnetic resonance spectroscopy
  publication-title: Data Handl. Sci. Techn.
– volume: 6
  start-page: 267
  year: 1992
  end-page: 281
  article-title: Genetic algorithms as a strategy for feature selection
  publication-title: J. Chemometr.
– volume: 45
  start-page: 649
  year: 2007
  end-page: 659
  article-title: Application of genetic algorithm‐kernel partial least squares as a novel nonlinear feature selection method: activity of carbonic anhydrase II inhibitors
  publication-title: Eur. J. Med. Chem.
– volume: 286
  start-page: 135
  year: 1994
  end-page: 153
  article-title: Genetic algorithms in wavelength selection: a comparative study
  publication-title: Anal. Chim. Acta
– volume: 27
  start-page: 165
  year: 2008
  end-page: 170
  article-title: QSPR studies for solubility parameter by means of genetic algorithm‐based multivariate linear regression and generalized regression neural network
  publication-title: QSAR Comb. Sci.
– volume: 17
  start-page: 193
  year: 1997
  end-page: 203
  article-title: Evolutionary optimization: a tutorial
  publication-title: Trends Anal. Chem.
– volume: 23
  start-page: 3
  year: 2003
  end-page: 54
  article-title: Genetic algorithms and beyond
  publication-title: Data Handl. Sci. Techn.
– volume: 253
  start-page: 254
  year: 1998
  end-page: 268
  article-title: Application of genetic algorithms for characterization of thin layer materials by glancing incidence X‐ray refractometry
  publication-title: Physica B
– volume: 311
  start-page: 1
  year: 1995
  end-page: 13
  article-title: Further investigation on a comparative study on simulated annealing and genetic algorithm for wavelengths selection
  publication-title: Anal. Chim. Acta
– volume: 18
  start-page: 475
  year: 2004
  end-page: 485
  article-title: Optimal QSAR analysis of the carcinogenic activity of drugs by correlation ranking and gentic algorithm‐based PCR
  publication-title: J. Chemometr.
– volume: 43
  start-page: 4151
  year: 2000
  end-page: 4159
  article-title: 2D QSAR modeling and preliminary database searching for dopamine transporter inhibitors using genetic algorithm variable selection of Molconn Z descriptors
  publication-title: J. Med. Chem.
– volume: 20
  start-page: 455
  year: 1999
  end-page: 471
  article-title: Optimization and analysis of force field parameters by combination genetic algorithms and neural networks
  publication-title: J. Comput. Chem.
– volume: 446
  start-page: 485
  year: 2001
  end-page: 494
  article-title: Feature selection by genetic algorithms for mass spectral classifiers
  publication-title: Anal. Chim. Acta
– volume: 25
  start-page: 10
  year: 2011
  end-page: 19
  article-title: Genetic algorithm‐based wavelength selection method for spectral calibration
  publication-title: J. Chemometr.
– volume: 150
  start-page: 77
  year: 2005
  end-page: 85
  article-title: Genetic algorithm applied to the selection of conditions for the simultaneous quantification of three‐food colorants using a hand scanner
  publication-title: Microchim. Acta
– volume: 65
  start-page: 67
  year: 2003
  end-page: 81
  article-title: Genetic algorithms and neural networks for quantitative analysis of ternary mixtures using surface plasmon resonance
  publication-title: Chemometr. Intell. Lab
– volume: 58
  start-page: 131
  year: 2001
  end-page: 151
  article-title: Some recent developments in PLS mg
  publication-title: Chemometr. Intell. Lab
– year: 1997
– volume: 97
  start-page: 9973
  year: 1993
  end-page: 9976
  article-title: Global geometry optimization of clusters using genetic algorithms
  publication-title: J. Phys. Chem.
– volume: 55
  start-page: 253
  year: 1995
  end-page: 259
  article-title: A genetic algorithm to search for optimal and suboptimal RNA secondary structures
  publication-title: Biophys. Chem.
– volume: 70
  start-page: 193
  year: 2004
  end-page: 203
  article-title: Applications of a genetic algorithm: near optimal estimation of the rate and equilibrium constants of complex reaction mechanism
  publication-title: Chemometr. Intell. Lab
– volume: 97
  start-page: 127
  year: 2009
  end-page: 131
  article-title: Analysis of cefalexin with NIR spectrometry coupled to artificial neural networks with modified genetic algorithm for wavelength selection
  publication-title: Chemometr. Intell. Lab
– volume: 45
  start-page: 16
  year: 2009
  end-page: 20
  article-title: Fundamentals and applications of genetic algorithms for structure solution from powder X‐ray diffraction data
  publication-title: Comp. Mat. Sci.
– volume: 106
  start-page: 10089
  year: 2002
  end-page: 10095
  article-title: An improved genetic algorithm for global optimization and its application to sodium chloride clusters
  publication-title: J. Phys. Chem. B
– volume: 16
  start-page: 35
  year: 2004
  end-page: 41
  article-title: Applications of genetic algorithms to computer‐aided drug design
  publication-title: Prog. Chem.
– volume: 10
  start-page: 253
  year: 1996
  end-page: 267
  article-title: Network training and architecture optimization by a recursive approach and modified genetic algorithm
  publication-title: J. Chemometr.
– volume: 30
  start-page: 619
  year: 2006
  end-page: 628
  article-title: Prediction of acidity constants of thiazolidine‐4‐carbozylic acid derivatives using Ab initio and genetic algorithm‐partial least squares
  publication-title: Turk. J. Chem.
– volume: 101
  start-page: 102
  year: 2010
  end-page: 109
  article-title: pKa modeling and prediction of series of pH indicators through genetic algorithm‐least square support vector regression
  publication-title: Chemometr. Intell. Lab
– volume: 27
  start-page: 105
  year: 2008
  end-page: 115
  article-title: Genetic algorithm as variable selection procedure for the simulation of 13 C nuclear magnetic resonance spectra of flavonoid derivatives using multiple linear regression
  publication-title: J. Mol. Graph. Model.
– volume: 348
  start-page: 409
  year: 1997
  end-page: 418
  article-title: General type of a uniform and reversible representation of chemical structures
  publication-title: Anal. Chim. Acta
– volume: 11
  start-page: 433
  year: 2003
  end-page: 446
  article-title: Selection of near infrared wavelengths using genetic algorithms for the determination of seed moisture content
  publication-title: J. Near Infrared Spec.
– volume: 595
  start-page: 51
  year: 2007
  end-page: 58
  article-title: Application of genetic algorithm for selection of variables for the BLLS method applied to determination of pesticides and metabolites in wine
  publication-title: Anal. Chim. Acta
– volume: 26
  start-page: 29
  year: 2007
  end-page: 37
  article-title: Application of genetic algorithm to determine kinetic parameters of free radical polymerization of vinyl acetate by multi‐objective optimization technique
  publication-title: Iran. J. Chem. Chem. Eng.
– year: 1996
– volume: 20
  start-page: 1701
  year: 2004
  end-page: 1706
  article-title: Simultaneous spectrophotometric of p‐benzoquinone and chloranil after microcrystalline naphthalene extraction using genetic algorithm‐based wavelength selection‐partial least squares regression
  publication-title: Anal. Sci.
– volume: 23
  start-page: 169
  year: 2003
  end-page: 196
  article-title: Genetic algorithm‐PLS as a tool for wavelength selection in spectral data sets
  publication-title: Data Handl. Sci. Techn.
– volume: 67
  start-page: 157
  year: 2003
  end-page: 166
  article-title: Application of uniform design and genetic algorithm in optimization of reversed‐phase chromatographic separation
  publication-title: Chemometr. Intell. Lab
– volume: 66
  start-page: 23
  year: 1994
  end-page: 31
  article-title: Curve fitting using natural computation
  publication-title: Anal. Chem.
– volume: 36
  start-page: 243
  year: 2006
  end-page: 255
  article-title: Recent developments in multivariate calibration
  publication-title: Crit. Rev. Anal. Chem.
– volume: 76
  start-page: 33
  year: 2010
  end-page: 43
  article-title: Modeling and optimization of membrane fabrication using artificial neural network and genetic algirthm
  publication-title: Sep. Purif. Technol.
– volume: 19
  start-page: 277
  year: 1993
  end-page: 293
  article-title: Genetic algorithms in chemistry
  publication-title: Chemometr. Intell. Lab
– volume: 1158
  start-page: 226
  year: 2007
  end-page: 233
  article-title: Genetic algorithms in chemistry
  publication-title: J. Chromatogr. A
– volume: 75
  start-page: 181
  year: 2005
  end-page: 188
  article-title: Application of genetic stochastic resonance algorithm to quantitative structure‐activity relationship study
  publication-title: Chemometr. Intell. Lab
– volume: 261
  start-page: 872
  year: 1993
  end-page: 878
  article-title: Genetic algorithms: principles of natural selection applied to computation
  publication-title: Science
– volume: 97
  start-page: 69
  year: 2007
  end-page: 83
  article-title: Combination of genetic algorithm and partial least squares for cloud point prediction of nonionic surfactants from molecular structures
  publication-title: Ann. Chim.
– volume: 27
  start-page: 955
  year: 1999
  end-page: 956
  article-title: Application of genetic algorithm‐spectrophotometric method for the multicomponent simultaneous determination of rare earth elements in geological samples
  publication-title: Fenxi Huazue
– volume: 690
  start-page: 56
  year: 2011
  end-page: 63
  article-title: Prediction of P2Y12 antagonists using a novel genetic algorithm‐support vector machine coupled approach
  publication-title: Anal. Chim. Acta
– volume: 14
  start-page: 643
  year: 2000
  end-page: 655
  article-title: Application of genetic algorithm‐PLS for feature selection in spectral data sets
  publication-title: J. Chemometr.
– volume: 158
  start-page: B143
  year: 2011
  end-page: B151
  article-title: Optimization design of electrodes for anode‐supported solid oxide fuel cells via genetic algorithm
  publication-title: J. Electrochem. Soc.
– volume: 514
  start-page: 211
  year: 2004
  end-page: 218
  article-title: Simultaneous spectrophotometric determination of vitamin K3 and 1,4‐naphthoquinone after cloud point extraction by using genetic algorithm based wavelength selection‐partial least squares regression
  publication-title: Anal. Chim. Acta
– volume: 63
  start-page: 15
  year: 2002
  end-page: 26
  article-title: Molecular descriptor selection combining genetic algorithms and fuzzy logic: application to database mining procedure
  publication-title: Chemometr. Intell. Lab
– volume: 23
  start-page: 55
  year: 2003
  end-page: 68
  article-title: Hybrid genetic algorithms
  publication-title: Data Handl. Sci. Techn.
– volume: 43
  start-page: 1328
  year: 2003
  end-page: 1334
  article-title: Genetic algorithm applied to the selection of factors in principal component‐artificial neural networks: application to QSAR study of calcium channel antagonist activity of 1,4‐dihydropyridines
  publication-title: J. Chem. Inf. Comp. Sci.
– volume: 21
  start-page: 609
  year: 2001
  end-page: 610
  article-title: Using genetic algorithm for quantitative analysis of overlapped spectra in FTIR spectra
  publication-title: Spectroscopy Spectral Anal.
– volume: 43
  start-page: 157
  year: 1998
  end-page: 163
  article-title: Representative subset selection using genetic algorithms
  publication-title: Chemometr. Intell. Lab
– volume: 261
  start-page: 612
  year: 1996
  end-page: 619
  article-title: A genetic algorithm approach to fitting polyatomic spectra via geometry shifts
  publication-title: Chem. Phys. Lett.
– volume: 67
  start-page: 4295
  year: 1995
  end-page: 4301
  article-title: Genetic algorithms as a tool for wavelength selection in multivariate calibration
  publication-title: Anal. Chem.
– volume: 38
  start-page: 123
  year: 1998
  end-page: 135
  article-title: Application of a genetic algorithm in structure determination from powder diffraction data
  publication-title: Match
– volume: 114
  start-page: 358
  year: 2009
  end-page: 368
  article-title: Multiobjective optimization of molded LDPE foams characteristics using genetic algorithm
  publication-title: J. Appl. Ploym. Sci.
– year: 1999
– ident: e_1_2_7_65_1
  doi: 10.1016/j.chemolab.2004.07.004
– ident: e_1_2_7_69_1
  doi: 10.1016/j.ejmech.2006.12.020
– ident: e_1_2_7_40_1
  doi: 10.1021/jp026114
– ident: e_1_2_7_19_1
  doi: 10.1016/S0922-3487(03)23010-0
– ident: e_1_2_7_59_1
  doi: 10.1016/S0169-7439(02)00068-0
– ident: e_1_2_7_62_1
  doi: 10.1016/S0166-1280(02)00619-X
– ident: e_1_2_7_68_1
  doi: 10.1002/adic.200690087
– volume-title: Handbook of Chemometrics and Qualimetrics, Part A
  year: 1997
  ident: e_1_2_7_5_1
– ident: e_1_2_7_123_1
  doi: 10.1016/j.chemolab.2003.11.006
– ident: e_1_2_7_22_1
  doi: 10.1002/cem.651
– ident: e_1_2_7_46_1
  doi: 10.1016/j.memsci.2010.09.026
– ident: e_1_2_7_55_1
  doi: 10.1016/S0169-7439(98)00135-X
– ident: e_1_2_7_122_1
  doi: 10.1016/S0009-2614(02)01547-6
– ident: e_1_2_7_67_1
  doi: 10.1021/ci060087t
– ident: e_1_2_7_96_1
  doi: 10.1021/ci0255228
– ident: e_1_2_7_39_1
  doi: 10.1016/S0003-2670(00)01114-4
– ident: e_1_2_7_16_1
  doi: 10.1016/B978-012213810-2/50003-7
– ident: e_1_2_7_17_1
  doi: 10.1016/S0922-3487(03)23001-X
– ident: e_1_2_7_87_1
  doi: 10.1021/ac980451q
– ident: e_1_2_7_125_1
  doi: 10.1016/j.chemolab.2006.04.004
– ident: e_1_2_7_114_1
  doi: 10.1016/j.talanta.2010.07.062
– ident: e_1_2_7_94_1
  doi: 10.1016/S0003-2670(01)00910-2
– ident: e_1_2_7_107_1
  doi: 10.1002/cem.1000
– ident: e_1_2_7_103_1
  doi: 10.2116/analsci.20.1701
– ident: e_1_2_7_26_1
  doi: 10.1021/ac00119a015
– ident: e_1_2_7_44_1
  doi: 10.1002/app.29609
– ident: e_1_2_7_24_1
  doi: 10.1016/j.chroma.2007.04.025
– ident: e_1_2_7_10_1
  doi: 10.1016/0169-7439(93)80028-G
– ident: e_1_2_7_79_1
  doi: 10.1016/0165-9936(91)85132-B
– ident: e_1_2_7_106_1
  doi: 10.1021/ci049763m
– ident: e_1_2_7_80_1
  doi: 10.1016/0003-2670(95)00163-T
– ident: e_1_2_7_34_1
  doi: 10.1002/(SICI)1099-128X(199605)10:3<253::AID-CEM420>3.0.CO;2-Z
– ident: e_1_2_7_36_1
  doi: 10.1002/(SICI)1096-987X(19970715)18:9<1233::AID-JCC11>3.0.CO;2-6
– volume: 38
  start-page: 123
  year: 1998
  ident: e_1_2_7_120_1
  article-title: Application of a genetic algorithm in structure determination from powder diffraction data
  publication-title: Match
– ident: e_1_2_7_95_1
  doi: 10.1016/S0003-2670(02)00272-6
– ident: e_1_2_7_110_1
  doi: 10.1016/j.aca.2006.12.023
– ident: e_1_2_7_58_1
  doi: 10.1016/S0169-7439(02)00033-3
– volume-title: Handbook of Chemometrics and Qualimetrics, Part B
  year: 1998
  ident: e_1_2_7_6_1
– ident: e_1_2_7_86_1
  doi: 10.1016/S0169-7439(98)00051-3
– ident: e_1_2_7_20_1
  doi: 10.1016/S0922-3487(03)23002-1
– volume-title: An introduction to genetic algorithms
  year: 1999
  ident: e_1_2_7_3_1
– ident: e_1_2_7_12_1
  doi: 10.1016/S0165-9936(97)00085-X
– volume: 21
  start-page: 609
  year: 2001
  ident: e_1_2_7_92_1
  article-title: Using genetic algorithm for quantitative analysis of overlapped spectra in FTIR spectra
  publication-title: Spectroscopy Spectral Anal.
– ident: e_1_2_7_45_1
  doi: 10.1016/j.seppur.2010.09.017
– ident: e_1_2_7_93_1
  doi: 10.1081/SL-100001446
– ident: e_1_2_7_8_1
  doi: 10.1038/376209a0
– ident: e_1_2_7_78_1
  doi: 10.1002/cem.1180060506
– ident: e_1_2_7_75_1
  doi: 10.1016/j.aca.2011.02.004
– ident: e_1_2_7_76_1
  doi: 10.1080/10408340600969924
– volume-title: Review in Computational Chemistry
  year: 1997
  ident: e_1_2_7_29_1
– ident: e_1_2_7_41_1
  doi: 10.1016/S0169-7439(03)00091-1
– ident: e_1_2_7_42_1
  doi: 10.1556/JPC.18.2005.2.5
– ident: e_1_2_7_49_1
  doi: 10.1016/j.desal.2011.01.083
– ident: e_1_2_7_102_1
  doi: 10.1016/j.aca.2004.03.048
– ident: e_1_2_7_116_1
  doi: 10.1021/ac00073a006
– ident: e_1_2_7_71_1
  doi: 10.1365/s10337-008-0608-4
– ident: e_1_2_7_84_1
  doi: 10.1016/S0003-2670(97)00065-2
– volume: 31
  start-page: 158
  year: 2003
  ident: e_1_2_7_98_1
  article-title: Application of genetic algorithms in resolution of chromatogram
  publication-title: Fenxi Huaxue
– ident: e_1_2_7_101_1
  doi: 10.1255/jnirs.394
– ident: e_1_2_7_113_1
  doi: 10.1366/000370210791666246
– ident: e_1_2_7_31_1
  doi: 10.1016/0169-7439(93)80031-C
– ident: e_1_2_7_85_1
  doi: 10.1016/S0013-4686(97)00139-4
– ident: e_1_2_7_111_1
  doi: 10.1016/j.saa.2008.03.005
– ident: e_1_2_7_51_1
  doi: 10.1016/S0003-2670(97)00033-0
– ident: e_1_2_7_100_1
  doi: 10.1002/cem.812
– volume: 9
  start-page: 651
  year: 1998
  ident: e_1_2_7_53_1
  article-title: Application of genetic algorithm to the QSAR research of pyrrolobenzothiazepinones and pyrrolobenzoxazepinone‐novel and specific non‐nucleoside HIV‐1 reverse transcription inhibitors
  publication-title: Chin. Chem. Lett.
– ident: e_1_2_7_72_1
  doi: 10.1016/j.jmgm.2008.03.004
– ident: e_1_2_7_43_1
  doi: 10.1016/j.aca.2006.01.048
– volume-title: Adaptation in Natural and Artificial Systems
  year: 1975
  ident: e_1_2_7_2_1
– ident: e_1_2_7_57_1
  doi: 10.1021/jm990472s
– ident: e_1_2_7_30_1
  doi: 10.1016/S0003-2670(99)00081-1
– volume: 50
  start-page: 259
  year: 2003
  ident: e_1_2_7_64_1
  article-title: A QSPR study of boiling point of saturated alcohols using genetic algorithm
  publication-title: Acta Chim. Slov.
– volume-title: Chemometrics
  year: 2007
  ident: e_1_2_7_4_1
– ident: e_1_2_7_74_1
  doi: 10.2116/analsci.26.897
– ident: e_1_2_7_37_1
  doi: 10.1016/S0165-2370(99)00002-9
– ident: e_1_2_7_60_1
  doi: 10.1021/ci025661p
– ident: e_1_2_7_27_1
  doi: 10.1007/BF00124503
– ident: e_1_2_7_112_1
  doi: 10.1016/j.chemolab.2009.03.003
– ident: e_1_2_7_9_1
  doi: 10.1016/0169-7439(93)80079-W
– ident: e_1_2_7_54_1
  doi: 10.1016/S0169-7439(98)00148-8
– ident: e_1_2_7_7_1
  doi: 10.1126/science.8346439
– volume: 30
  start-page: 619
  year: 2006
  ident: e_1_2_7_66_1
  article-title: Prediction of acidity constants of thiazolidine‐4‐carbozylic acid derivatives using Ab initio and genetic algorithm‐partial least squares
  publication-title: Turk. J. Chem.
– ident: e_1_2_7_91_1
  doi: 10.1002/1099-128X(200009/12)14:5/6<643::AID-CEM621>3.0.CO;2-E
– ident: e_1_2_7_18_1
  doi: 10.1016/S0922-3487(03)23012-4
– ident: e_1_2_7_121_1
  doi: 10.1021/ci9901284
– ident: e_1_2_7_118_1
  doi: 10.1016/0301-4622(94)00130-C
– volume: 26
  start-page: 29
  year: 2007
  ident: e_1_2_7_126_1
  article-title: Application of genetic algorithm to determine kinetic parameters of free radical polymerization of vinyl acetate by multi‐objective optimization technique
  publication-title: Iran. J. Chem. Chem. Eng.
– ident: e_1_2_7_47_1
  doi: 10.1149/1.3517476
– ident: e_1_2_7_50_1
  doi: 10.1007/s10910-011-9832-5
– ident: e_1_2_7_81_1
– ident: e_1_2_7_90_1
  doi: 10.1366/0003702001951237
– ident: e_1_2_7_104_1
  doi: 10.1007/s00604-005-0334-7
– ident: e_1_2_7_23_1
  doi: 10.1016/S0922-3487(03)23006-9
– volume: 24
  start-page: 37
  year: 2005
  ident: e_1_2_7_124_1
  article-title: Application of genetic algorithm in kinetic modeling and reaction mechanism studies
  publication-title: Iran. J. Chem. Chem. Eng.
– ident: e_1_2_7_56_1
  doi: 10.1021/ci990010n
– ident: e_1_2_7_32_1
  doi: 10.1021/j100141a013
– volume: 27
  start-page: 955
  year: 1999
  ident: e_1_2_7_89_1
  article-title: Application of genetic algorithm‐spectrophotometric method for the multicomponent simultaneous determination of rare earth elements in geological samples
  publication-title: Fenxi Huazue
– volume: 16
  start-page: 35
  year: 2004
  ident: e_1_2_7_25_1
  article-title: Applications of genetic algorithms to computer‐aided drug design
  publication-title: Prog. Chem.
– ident: e_1_2_7_48_1
  doi: 10.1002/app.33252
– ident: e_1_2_7_82_1
  doi: 10.1016/S0169-7439(96)00028-7
– ident: e_1_2_7_127_1
  doi: 10.1016/j.commatsci.2008.04.032
– ident: e_1_2_7_63_1
  doi: 10.1016/S0003-2670(03)00468-9
– ident: e_1_2_7_38_1
  doi: 10.1002/(SICI)1096-987X(199903)20:4<455::AID-JCC6>3.0.CO;2-1
– ident: e_1_2_7_88_1
  doi: 10.1255/jnirs.192
– ident: e_1_2_7_52_1
  doi: 10.1016/j.aca.2004.05.067
– ident: e_1_2_7_108_1
  doi: 10.1080/00032710600755868
– ident: e_1_2_7_33_1
  doi: 10.1002/anie.199522801
– ident: e_1_2_7_97_1
  doi: 10.1016/S0169-7439(02)00104-1
– volume: 40
  start-page: 35
  year: 2009
  ident: e_1_2_7_128_1
  article-title: Genetic algorithms and its application to textile
  publication-title: Textile Asia
– ident: e_1_2_7_117_1
  doi: 10.1016/S0921-4526(98)00398-6
– ident: e_1_2_7_70_1
  doi: 10.1002/qsar.200630159
– ident: e_1_2_7_105_1
  doi: 10.1002/elan.200403204
– volume-title: Genetic Algorithms in Molecular Modeling. Principles of QSAR and Drug Design
  year: 1996
  ident: e_1_2_7_28_1
– ident: e_1_2_7_115_1
  doi: 10.1002/cem.1339
– ident: e_1_2_7_21_1
  doi: 10.1016/S0922-3487(03)23004-5
– ident: e_1_2_7_61_1
  doi: 10.1002/cem.891
– ident: e_1_2_7_73_1
  doi: 10.1016/j.chemolab.2010.02.003
– ident: e_1_2_7_11_1
  doi: 10.1016/0003-2670(94)80155-X
– ident: e_1_2_7_14_1
  doi: 10.1021/ac9715884
– ident: e_1_2_7_83_1
  doi: 10.1016/S0169-7439(96)00062-7
– ident: e_1_2_7_15_1
  doi: 10.1016/S0165-9936(98)00011-9
– ident: e_1_2_7_77_1
  doi: 10.1016/S0169-7439(01)00156-3
– ident: e_1_2_7_119_1
  doi: 10.1016/0009-2614(96)01009-3
– ident: e_1_2_7_13_1
  doi: 10.1016/S0169-7439(98)00085-9
– ident: e_1_2_7_99_1
  doi: 10.1016/S0039-9140(02)00505-2
– ident: e_1_2_7_35_1
  doi: 10.1007/BF00202038
– ident: e_1_2_7_109_1
  doi: 10.1134/S1061934807040090
SSID ssj0009934
Score 2.3800414
SecondaryResourceType review_article
Snippet This review covers the application of Genetic Algorithms (GAs) in Chemometrics. The first applications of GAs in chemistry date back to the 1970s, and in the...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 345
SubjectTerms Algorithms
Analytical chemistry
Calibration
Genetic algorithms
molecular modeling
optimization
Title Genetic algorithms in chemometrics
URI https://api.istex.fr/ark:/67375/WNG-17C6PFZ6-G/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcem.2426
https://www.proquest.com/docview/1022173359
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0886-9383
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-128X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009934
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEF6kPuiLt1itEkX0KW32yCZ5lNIDoUXEYtGHJTvZaOklPUD89e7maK0oiE95yOSYnd2Zb5bZbxC6BAWcecBs5kaezfxI2gEhiTPkOm1mEFNzOLnV5s0Ou-263ayq0pyFSfkhFhtuZmUk_tos8FBOK0vSUFDDsokv2v1iypNs6n7JHKXDLksBJLcDnYXlvLMOqeQPrkSidTOo7ysw8ytYTaJNfRs95_-ZFpn0y_OZLMPHNwrH_ymyg7YyEGrdpLNmF62p0R7aqOa93_bRhWGj1jetcPAynvRmr8Op1RtZ2sDD8dD04ILpAerUaw_Vpp11U7DBYA7tbKMYRzgA4oBDYhZiqoDGUSBpBDEONRKLaIBlCJxKGXMZYx9I6FMVAPcjhx6iwmg8UkfIIjHBijie50DImDQUgNzXiZYbSJ87yi2i63xkBWRU46bjxUCkJMlEaJ2F0bmIzheSbym9xg8yV4lxFgLhpG_K0TxXPLYbAntVfld_4qJRRKXceiJbiVNhMlrsUeoG-j2JGX79kKjWWuZ6_FfBE7Sp8RNJK8dKqDCbzNWpxigzeZbMxk_Fz9_9
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB48HvTFW6xnFNGntNkjmwSfpFjr0SKiKCIs2clGRdtKW0H89e4mTT1QEJ_ykMkxOzs73yyz3wBso0bBA-Qu95PA5WGi3IjSbDEUJm3mmDJ7OLnRFPVLfnztX4_AXnEWJueHGG64Wc_I1mvr4HZDuvLBGoq6VbYBZhTGuTBpikVE5x_cUSbw8hxCCjcyeVjBPOvRSvHkl1g0bof19QvQ_AxXs3hTm4bb4k_zMpPH8ktflfHtG4njP1WZgakBDnX284kzCyO6PQcT1aL92zxsWUJqc9OJn-463Yf-favnPLQdY-NWp2XbcGFvAS5rBxfVujtoqOCihR1mvU1SkpAIqYceTXlMmEaWJpFiCaYkNmAsYRFRMQqmVCpUSkKkcch0hCJMPLYIY-1OWy-BQ1NKNPWCwMOYc2VZAEVoci0_UqHwtF-C3WJoJQ7Yxm3TiyeZ8yRTaXSWVucSbA4ln3OGjR9kdjLrDAXi7qOtSAt8edU8lCSoirPajZCHJVgtzCcHztiTNqklAWN-ZN6T2eHXD8nqQcNel_8quAET9YvGqTw9ap6swKSBUzQvJFuFsX73Ra8ZyNJX69nUfAff3OQe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZTxsxEB5xSKUvvaBqWmiXqipPm6yP9a7VJxQIlCNCFQiEKlnrsQ0IkqAkSFV_fe3dbDhEJcTTPuzsMR6P5xtr_A3AN7QoeIY85qnJYp4bHUtKy8VQ-LSZo2PhcPJ-V2wf8Z2T9GQGftRnYSp-iOmGW_CMcr0ODm6vjWvdsoai7TVDgJmFeZ7KPNTzbfy65Y7ygZdXEFLE0udhNfNsQlv1k_di0XwY1j_3gOZduFrGm85r-F3_aVVmctm8Gesm_n1A4vhMVd7AqwkOjdarifMWZmz_HSy06_Zvi_A1EFL7m1FxdTYYXozPe6Pooh95G_cGvdCGC0dLcNTZPGxvx5OGCjEG2OHXW-OIIRJpggl1vCDMInNGambQkcKDMcMk0QUKprUT2pEcaZEzK1HkJmHvYa4_6NsPEFFHiaVJliVYcK4DC6DIfa6VSp2LxKYNWKuHVuGEbTw0vbhSFU8yVV5nFXRuwOpU8rpi2HhE5ntpnalAMbwMFWlZqo67W4pkbXHQORVqqwHLtfnUxBlHKiS1JGMslf49pR3--yHV3twP149PFfwCLw42OmrvZ3f3E7z0aIpWdWTLMDce3tgVj1jG-nM5M_8BrYXjog
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetic+algorithms+in+chemometrics&rft.jtitle=Journal+of+chemometrics&rft.au=Niazi%2C+Ali&rft.au=Leardi%2C+Riccardo&rft.date=2012-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0886-9383&rft.eissn=1099-128X&rft.volume=26&rft.issue=6&rft.spage=345&rft_id=info:doi/10.1002%2Fcem.2426&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2696476711
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0886-9383&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0886-9383&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0886-9383&client=summon