Hierarchical Tubular Structures Composed of Mn-Based Mixed Metal Oxide Nanoflakes with Enhanced Electrochemical Properties
In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn‐based (Co‐Mn, Ni‐Mn, Cu‐Mn, Zn‐Mn) mixed metal oxides. The first step in the synthesis involves redox reaction mediated growth of nanoflakes on carbon nanofibers under hydrothermal conditions. Afte...
Saved in:
Published in | Advanced functional materials Vol. 25; no. 32; pp. 5184 - 5189 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Blackwell Publishing Ltd
01.08.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 1616-301X 1616-3028 |
DOI | 10.1002/adfm.201501974 |
Cover
Abstract | In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn‐based (Co‐Mn, Ni‐Mn, Cu‐Mn, Zn‐Mn) mixed metal oxides. The first step in the synthesis involves redox reaction mediated growth of nanoflakes on carbon nanofibers under hydrothermal conditions. After calcination in air, carbon nanofibers are removed and HTS of mixed metal oxides can be obtained with little structural deterioration. The resultant HTS are advantageous as electrodes for electrochemical energy storage. As an example, it is shown that the Co‐Mn‐HTS sample exhibits outstanding electrochemical performance as electrode materials for hybrid supercapacitors and lithium ion batteries.
A general strategy is developed for the synthesis of hierarchical tubular structures of Mn‐based mixed metal oxides. The derived Co‐Mn mixed oxide hierarchical tubular structures manifest enhanced electrochemical properties as electrodes for both hybrid supercapacitors and lithium ion batteries. |
---|---|
AbstractList | In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn‐based (Co‐Mn, Ni‐Mn, Cu‐Mn, Zn‐Mn) mixed metal oxides. The first step in the synthesis involves redox reaction mediated growth of nanoflakes on carbon nanofibers under hydrothermal conditions. After calcination in air, carbon nanofibers are removed and HTS of mixed metal oxides can be obtained with little structural deterioration. The resultant HTS are advantageous as electrodes for electrochemical energy storage. As an example, it is shown that the Co‐Mn‐HTS sample exhibits outstanding electrochemical performance as electrode materials for hybrid supercapacitors and lithium ion batteries.
A general strategy is developed for the synthesis of hierarchical tubular structures of Mn‐based mixed metal oxides. The derived Co‐Mn mixed oxide hierarchical tubular structures manifest enhanced electrochemical properties as electrodes for both hybrid supercapacitors and lithium ion batteries. In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn-based (Co-Mn, Ni-Mn, Cu-Mn, Zn-Mn) mixed metal oxides. The first step in the synthesis involves redox reaction mediated growth of nanoflakes on carbon nanofibers under hydrothermal conditions. After calcination in air, carbon nanofibers are removed and HTS of mixed metal oxides can be obtained with little structural deterioration. The resultant HTS are advantageous as electrodes for electrochemical energy storage. As an example, it is shown that the Co-Mn-HTS sample exhibits outstanding electrochemical performance as electrode materials for hybrid supercapacitors and lithium ion batteries. A general strategy is developed for the synthesis of hierarchical tubular structures of Mn-based mixed metal oxides. The derived Co-Mn mixed oxide hierarchical tubular structures manifest enhanced electrochemical properties as electrodes for both hybrid supercapacitors and lithium ion batteries. In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn‐based (Co‐Mn, Ni‐Mn, Cu‐Mn, Zn‐Mn) mixed metal oxides. The first step in the synthesis involves redox reaction mediated growth of nanoflakes on carbon nanofibers under hydrothermal conditions. After calcination in air, carbon nanofibers are removed and HTS of mixed metal oxides can be obtained with little structural deterioration. The resultant HTS are advantageous as electrodes for electrochemical energy storage. As an example, it is shown that the Co‐Mn‐HTS sample exhibits outstanding electrochemical performance as electrode materials for hybrid supercapacitors and lithium ion batteries. |
Author | Lou, Xiong Wen (David) Guo, Yan Lin, Zhan Wang, Cheng-Yang Yu, Le |
Author_xml | – sequence: 1 givenname: Yan surname: Guo fullname: Guo, Yan organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore – sequence: 2 givenname: Le surname: Yu fullname: Yu, Le organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore – sequence: 3 givenname: Cheng-Yang surname: Wang fullname: Wang, Cheng-Yang organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China – sequence: 4 givenname: Zhan surname: Lin fullname: Lin, Zhan email: xwlou@ntu.edu.sg organization: Institute of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, 310027, Hangzhou, P. R. China – sequence: 5 givenname: Xiong Wen (David) surname: Lou fullname: Lou, Xiong Wen (David) email: xwlou@ntu.edu.sg organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore |
BookMark | eNqF0M9P2zAUB3ALMYkf48o5Ry7p7DixmyMrBaZRmApou1kv7rPq4cTFdkTZX790nSo0Ce1iv8P34yd_j8h-5zsk5JTREaO0-AQL044KyirKalnukUMmmMg5Lcb7u5n9OCBHMf6klEnJy0Py69pigKCXVoPLHvqmdxCy-xR6nfqAMZv4duUjLjJvslmXf4bNPLPrzYlpMHdru8DsFjpvHDwN4sWmZTbtltDpITR1qFPweontnxXfgl9hSBbjR_LBgIt48vc-Jo-X04fJdX5zd_Vlcn6Taz78Ix8zIWgJDTVjXQuQomnqooHSjKk2vKi0LopGF1pUVBqha-B1w0qgkhlRyUXFj8nZ9t1V8M89xqRaGzU6Bx36Piomy1LUFZN0iI62UR18jAGNWgXbQnhVjKpNyWpTstqVPIDyH6BtgmR9lwJY9z6rt-zFOnz9zxJ1fnE5e2vzrbUx4XpnITwpIbms1PfbK3V_MZ8zPvmq5vw38I2kiw |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_2c02441 crossref_primary_10_1016_j_jelechem_2020_114830 crossref_primary_10_1039_C6TA06172A crossref_primary_10_1016_j_jallcom_2019_04_027 crossref_primary_10_1039_C9TA07147D crossref_primary_10_1021_acssuschemeng_7b02689 crossref_primary_10_1002_ange_201608279 crossref_primary_10_1016_j_ensm_2018_09_007 crossref_primary_10_1016_j_scib_2019_11_028 crossref_primary_10_1016_j_electacta_2017_06_171 crossref_primary_10_1016_j_jallcom_2023_169571 crossref_primary_10_1002_ange_201907516 crossref_primary_10_1039_D0TA05662F crossref_primary_10_1002_aenm_201700983 crossref_primary_10_1149_2_0031912jes crossref_primary_10_1002_adfm_201705817 crossref_primary_10_1039_C5CS00580A crossref_primary_10_1016_j_ijhydene_2018_06_067 crossref_primary_10_1021_acsaem_8b02167 crossref_primary_10_1002_slct_202001410 crossref_primary_10_1039_C9DT03609A crossref_primary_10_1016_j_ensm_2018_10_022 crossref_primary_10_1016_j_jallcom_2016_12_094 crossref_primary_10_1016_j_chempr_2018_01_003 crossref_primary_10_1002_adfm_201605011 crossref_primary_10_1007_s11581_016_1914_8 crossref_primary_10_1002_smll_201602204 crossref_primary_10_1039_C6TA05693H crossref_primary_10_1016_j_cej_2022_134701 crossref_primary_10_1016_j_rser_2020_110085 crossref_primary_10_1002_aenm_201803612 crossref_primary_10_1002_adma_201902807 crossref_primary_10_1016_j_cej_2024_148516 crossref_primary_10_1016_j_cej_2016_07_071 crossref_primary_10_1039_C6RA03351B crossref_primary_10_1021_acsami_7b12298 crossref_primary_10_1016_j_electacta_2019_03_171 crossref_primary_10_1007_s13233_017_5158_x crossref_primary_10_1039_C6RA13902G crossref_primary_10_1016_j_electacta_2018_02_130 crossref_primary_10_1016_j_jhazmat_2016_09_004 crossref_primary_10_1016_j_jallcom_2017_05_218 crossref_primary_10_1016_j_mset_2018_11_008 crossref_primary_10_1039_C9NA00547A crossref_primary_10_1016_j_electacta_2016_05_195 crossref_primary_10_1016_j_electacta_2018_11_028 crossref_primary_10_1016_j_jallcom_2017_02_301 crossref_primary_10_1002_cplu_201800220 crossref_primary_10_1002_anie_201600133 crossref_primary_10_1016_j_electacta_2017_12_047 crossref_primary_10_1007_s40820_020_00435_z crossref_primary_10_1002_adfm_201503711 crossref_primary_10_1039_C5CP07361H crossref_primary_10_1002_ange_201600133 crossref_primary_10_1016_j_chphi_2024_100639 crossref_primary_10_1039_C9TA05790K crossref_primary_10_1016_j_jallcom_2018_12_029 crossref_primary_10_1002_aenm_201802427 crossref_primary_10_1021_acsaem_9b01537 crossref_primary_10_1016_j_optmat_2023_114306 crossref_primary_10_1039_C7TA08115D crossref_primary_10_1016_j_nanoen_2016_09_012 crossref_primary_10_1039_C5CP07301D crossref_primary_10_1002_chem_201803982 crossref_primary_10_1016_j_jcis_2022_12_159 crossref_primary_10_1016_j_mtener_2019_100358 crossref_primary_10_1039_C8CS00336J crossref_primary_10_1039_C6NR02267G crossref_primary_10_1016_j_est_2023_107565 crossref_primary_10_1016_j_jelechem_2017_01_052 crossref_primary_10_1016_j_ceramint_2020_05_099 crossref_primary_10_1016_j_carbon_2017_08_013 crossref_primary_10_1021_acsami_6b13153 crossref_primary_10_1002_cssc_201501151 crossref_primary_10_1007_s11051_025_06246_w crossref_primary_10_1039_C8DT04716B crossref_primary_10_1002_anie_201608279 crossref_primary_10_1039_C7TA05256A crossref_primary_10_1016_j_carbon_2019_07_059 crossref_primary_10_1016_j_cej_2016_08_086 crossref_primary_10_1016_j_mseb_2024_117795 crossref_primary_10_1016_j_matlet_2020_128400 crossref_primary_10_1039_C9QI00390H crossref_primary_10_1002_adma_201800939 crossref_primary_10_1007_s10854_018_8678_z crossref_primary_10_1016_j_electacta_2016_05_213 crossref_primary_10_1007_s10854_018_0332_2 crossref_primary_10_1016_j_jpcs_2016_07_003 crossref_primary_10_1002_smll_201601959 crossref_primary_10_1016_j_nanoen_2017_01_044 crossref_primary_10_1016_j_jallcom_2018_10_216 crossref_primary_10_1016_j_jcat_2018_10_034 crossref_primary_10_1007_s11426_017_9064_9 crossref_primary_10_1016_j_jallcom_2021_160301 crossref_primary_10_1039_C7DT03386A crossref_primary_10_1007_s40843_017_9153_x crossref_primary_10_1039_D1NA00271F crossref_primary_10_1002_anie_201907516 crossref_primary_10_1007_s12274_016_0987_z crossref_primary_10_1016_j_electacta_2015_12_178 crossref_primary_10_1039_D0RA01844A crossref_primary_10_1021_acssuschemeng_8b01782 crossref_primary_10_1103_PhysRevMaterials_2_085801 crossref_primary_10_1021_acsnano_8b00901 crossref_primary_10_1007_s11581_020_03581_x crossref_primary_10_3390_nano13061125 crossref_primary_10_1016_j_electacta_2016_12_109 crossref_primary_10_1039_C7DT01289F crossref_primary_10_1002_adma_201604563 crossref_primary_10_1002_slct_202303656 crossref_primary_10_1016_j_cej_2017_06_097 crossref_primary_10_1002_chem_201701251 crossref_primary_10_1002_adma_201701820 crossref_primary_10_1016_j_jpcs_2021_110467 crossref_primary_10_1021_acsami_7b14686 crossref_primary_10_1021_acsaelm_9b00810 crossref_primary_10_1002_ange_201706652 crossref_primary_10_1007_s10854_019_00897_x crossref_primary_10_1016_j_ijhydene_2018_06_079 crossref_primary_10_1016_j_jpowsour_2016_08_079 crossref_primary_10_54097_hset_v21i_3133 crossref_primary_10_1002_aenm_201601906 crossref_primary_10_1039_C8TA07080F |
Cites_doi | 10.1039/C4CS00218K 10.1002/ange.201404604 10.1002/ange.201400226 10.1039/C2NR33326K 10.1021/nn4023894 10.1021/am403546s 10.1021/jp512795g 10.1002/anie.200602373 10.1002/anie.201303971 10.1039/c2nr33576j 10.1021/ja909321d 10.1039/c2jm32261g 10.1021/nn506851x 10.1002/adma.200902175 10.1016/j.electacta.2013.10.089 10.1038/nmat1368 10.1039/C1CS15060J 10.1016/j.elecom.2008.05.026 10.1038/nnano.2007.411 10.1039/c4mh00004h 10.1038/35035045 10.1002/ange.201304355 10.1039/C4CE01323A 10.1021/cr3001884 10.1126/science.1249625 10.1002/aenm.201200269 10.1149/2.0971412jes 10.1002/adma.201003587 10.1039/C4TA03123G 10.1038/nnano.2011.13 10.1021/am5048653 10.1038/nmat2297 10.1016/j.matchemphys.2012.11.024 10.1021/nl301748m 10.1039/C3EE41181H 10.1021/ja105296a 10.1021/nn901311t 10.1002/adma.200903328 10.1039/C0CS00127A 10.1002/adma.201300105 10.1021/am3026294 10.1002/adma.201104407 10.1016/j.electacta.2013.11.081 10.1007/s11581-013-1009-8 10.1039/c0jm04465b 10.1016/j.jpowsour.2012.12.069 |
ContentType | Journal Article |
Copyright | 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
Copyright_xml | – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim |
DBID | BSCLL AAYXX CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adfm.201501974 |
DatabaseName | Istex CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1616-3028 |
EndPage | 5189 |
ExternalDocumentID | 10_1002_adfm_201501974 ADFM201501974 ark_67375_WNG_SDRR13CK_R |
Genre | article |
GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WFSAM WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ~IA ~WT AAHHS AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION 7SP 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c3974-816604ab0f8c96a76bb92ba4f80cf325cc22bc2c6507f6c9a39b14a071f657d53 |
IEDL.DBID | DR2 |
ISSN | 1616-301X |
IngestDate | Fri Sep 05 11:29:25 EDT 2025 Thu Apr 24 22:58:11 EDT 2025 Tue Jul 01 01:30:20 EDT 2025 Wed Aug 20 07:26:10 EDT 2025 Sun Sep 21 06:18:08 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3974-816604ab0f8c96a76bb92ba4f80cf325cc22bc2c6507f6c9a39b14a071f657d53 |
Notes | ark:/67375/WNG-SDRR13CK-R istex:27E87BAD33FA6649EA5AF24CDC9BBC78264C5AB1 ArticleID:ADFM201501974 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1744695170 |
PQPubID | 23500 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1744695170 crossref_primary_10_1002_adfm_201501974 crossref_citationtrail_10_1002_adfm_201501974 wiley_primary_10_1002_adfm_201501974_ADFM201501974 istex_primary_ark_67375_WNG_SDRR13CK_R |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-08-01 |
PublicationDateYYYYMMDD | 2015-08-01 |
PublicationDate_xml | – month: 08 year: 2015 text: 2015-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Advanced functional materials |
PublicationTitleAlternate | Adv. Funct. Mater |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | C. Z. Yuan, H. B. Wu, Y. Xie, X. W. Lou, Angew. Chem. Int. Ed. 2014, 53, 1488. L. Li, F. He, S. L. Gai, S. H. Zhang, P. Gao, M. L. Zhang, Y. J. Chen, P. P. Yang, CrystEngComm 2014, 16, 9873. G. Q. Zhang, L. Yu, H. E. Hoster, X. W. Lou, Nanoscale 2013, 5, 877. G. P. Wang, L. Zhang, J. J. Zhang, Chem. Soc. Rev. 2012, 41, 797. S. J. Peng, L. L. Li, Y. X. Hu, M. Srinivasan, F. Y. Cheng, J. Chen, S. Ramakrishna, ACS Nano 2015, 9, 1945. P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845. J. G. Kim, S. H. Lee, Y. M. Kim, W. B. Kim, ACS Appl. Mater. Interfaces 2013, 5, 11321. L. Li, Y. Q. Zhang, F. Shi, Y. J. Zhang, J. H. Zhang, C. D. Gu, X. L. Wang, J. P. Tu, ACS Appl. Mater. Interfaces 2014, 6, 18040. Y. N. Xu, X. F. Wang, C. H. An, Y. J. Wang, L. F. Jiao, H. T. Yuan, J. Mater. Chem. A 2014, 2, 16480. K. Wang, Y. Yang, H.-W. Liang, J.-W. Liu, S.-H. Yu, Mater. Horiz. 2014, 1, 338. J. F. Li, S. L. Xiong, Y. R. Liu, Z. C. Ju, Y. T. Qian, ACS Appl. Mater. Interfaces 2013, 5, 981. Y. Y. Yang, Y. Q. Zhao, L. F. Xiao, L. Z. Zhang, Electrochem. Commun. 2008, 10, 1117. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 2000, 407, 496. M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Chem. Rev. 2013, 113, 5364. Y. Xia, Z. Xiao, X. Dou, H. Huang, X. H. Lu, R. J. Yan, Y. P. Gan, W. J. Zhu, J. P. Tu, W. K. Zhang, X. Y. Tao, ACS Nano 2013, 7, 7083. C. Wang, Y. Zhou, M. Y. Ge, X. B. Xu, Z. L. Zhang, J. Z. Jiang, J. Am. Chem. Soc. 2010, 132, 46. A. S. Arico, P. Bruce, B. Scrosati, J. Tarascon, W. V. Schalkwijk, Nat. Mater. 2005, 4, 366. L. Zhou, D. Y. Zhao, X. W. Lou, Adv. Mater. 2012, 24, 745. L. Zhang, G. Q. Zhang, H. B. Wu, L. Yu, X. W. Lou, Adv. Mater. 2013, 25, 2589. L. Yu, L. Zhang, H. B. Wu, X. W. Lou, Angew. Chem. Int. Ed. 2014, 126, 3785. X. Lang, A. Hirata, T. Fujita, M. Chen, Nat. Nanotechnol. 2011, 6, 232. J. Zhao, F. Q. Wang, P. P. Su, M. G. Li, J. Chen, Q. H. Yang, C. Li, J. Mater. Chem. 2012, 22, 13328. H. L. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Y. Liang, Y. Cui, H. J. Dai, J. Am. Chem. Soc. 2010, 132, 13978. F. M. Courtel, H. Duncan, Y. Abu-Lebdeh, I. J. Davidson, J. Mater. Chem. 2011, 21, 10206. T. Zhu, H. B. Wu, Y. B. Wang, R. Xu, X. W. Lou, Adv. Energy Mater. 2012, 2, 1497. W. F. Wei, X. W. Cui, W. X. Chen, D. G. Ivey, Chem. Soc. Rev. 2011, 40, 1697. S. Chen, J. W. Zhu, X. D. Wu, Q. F. Han, X. Wang, ACS Nano 2010, 4, 2822. G. L. Wang, G. J. Shao, J. P. Du, Y. Zhang, Z. P. Ma, Mater. Chem. Phys. 2013, 138, 108. T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, C. C. Hu, Adv. Mater. 2010, 22, 347. G. Q. Zhang, X. W. Lou, Angew. Chem. Int. Ed. 2014, 126, 9187. K. Zhang, X. P. Han, Z. Hu, X. L. Zhang, Z. L. Tao, J. Chen, Chem. Soc. Rev. 2015, 44, 699. P. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210. L. Li, Y. Q. Zhang, X. Y. Liu, S. J. Shi, X. Y. Zhao, H. Zhang, X. Ge, G. F. Cai, C. D. Gu, X. L. Wang, J. P. Tu, Electrochim. Acta 2014, 116, 467. C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31. Q. Zhou, X. Wang, Y. Liu, Y. He, Y. Gao, J. Liu, J. Electrochem. Soc. 2014, 161, A1922. F. Y. Cheng, J. Liang, Z. L. Tao, J. Chen, Adv. Mater. 2011, 23, 1695. J. F. Li, S. L. Xiong, X. W. Li, Y. T. Qian, Nanoscale 2013, 5, 2045. C. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater. 2010, 22, E28. J. Gomez, E. E. Kalu, J. Power Sources 2013, 230, 218. L. Yu, L. Zhang, H. B. Wu, G. Q. Zhang, X. W. Lou, Energy Environ. Sci. 2013, 6, 2664. L. B. Kong, C. Lu, M. C. Liu, Y. C. Luo, L. Kang, X. H. Li, F. C. Walsh, Electrochim. Acta 2014, 115, 22. N. Padmanathan, S. Selladurai, Ionics 2014, 20, 479. G. Q. Zhang, B. Y. Xia, C. Xiao, L. Yu, X. Wang, Y. Xie, X. W. Lou, Angew. Chem. Int. Ed. 2013, 125, 8805. C. L. Tang, X. Wei, Y. M. Jiang, X. Y. Wu, L. N. Han, K. X. Wang, J. S. Chen, J. Phys. Chem. C 2015, 119, 8465. Q. Li, Z. L. Wang, G. R. Li, R. Guo, L. X. Ding, Y. X. Tong, Nano Lett. 2012, 12, 3803. N. Armaroli, V. Balzani, Angew. Chem. Int. Ed. 2007, 46, 52. 2014; 116 2013; 25 2011; 40 2008; 7 2013; 125 2008; 10 2008; 3 2013; 7 2015; 9 2011; 6 2013; 5 2012; 12 2013; 6 2014; 115 2014; 20 2000; 407 2014; 1 2010; 22 2012; 2 2014; 2 2013; 138 2015; 44 2014; 16 2010; 132 2005; 4 2013; 113 2011; 21 2015; 119 2014; 161 2011; 23 2013; 230 2012; 24 2010; 4 2012; 22 2014; 6 2007; 46 2014; 126 2012; 41 2014; 343 2014; 53 e_1_2_5_27_1 e_1_2_5_28_1 e_1_2_5_25_1 e_1_2_5_26_1 e_1_2_5_23_1 e_1_2_5_46_1 e_1_2_5_24_1 e_1_2_5_45_1 e_1_2_5_21_1 e_1_2_5_44_1 e_1_2_5_22_1 e_1_2_5_43_1 e_1_2_5_29_1 e_1_2_5_42_1 e_1_2_5_20_1 e_1_2_5_41_1 e_1_2_5_40_1 e_1_2_5_15_1 e_1_2_5_38_1 e_1_2_5_14_1 e_1_2_5_39_1 e_1_2_5_17_1 e_1_2_5_36_1 e_1_2_5_9_1 e_1_2_5_16_1 e_1_2_5_37_1 e_1_2_5_8_1 e_1_2_5_11_1 e_1_2_5_34_1 e_1_2_5_7_1 e_1_2_5_10_1 e_1_2_5_35_1 e_1_2_5_6_1 e_1_2_5_13_1 e_1_2_5_32_1 e_1_2_5_5_1 e_1_2_5_12_1 e_1_2_5_33_1 e_1_2_5_4_1 e_1_2_5_3_1 e_1_2_5_2_1 e_1_2_5_1_1 e_1_2_5_19_1 e_1_2_5_18_1 e_1_2_5_30_1 e_1_2_5_31_1 |
References_xml | – reference: F. M. Courtel, H. Duncan, Y. Abu-Lebdeh, I. J. Davidson, J. Mater. Chem. 2011, 21, 10206. – reference: L. Yu, L. Zhang, H. B. Wu, G. Q. Zhang, X. W. Lou, Energy Environ. Sci. 2013, 6, 2664. – reference: Y. Y. Yang, Y. Q. Zhao, L. F. Xiao, L. Z. Zhang, Electrochem. Commun. 2008, 10, 1117. – reference: L. Li, Y. Q. Zhang, X. Y. Liu, S. J. Shi, X. Y. Zhao, H. Zhang, X. Ge, G. F. Cai, C. D. Gu, X. L. Wang, J. P. Tu, Electrochim. Acta 2014, 116, 467. – reference: C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31. – reference: G. Q. Zhang, L. Yu, H. E. Hoster, X. W. Lou, Nanoscale 2013, 5, 877. – reference: P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845. – reference: P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 2000, 407, 496. – reference: Q. Zhou, X. Wang, Y. Liu, Y. He, Y. Gao, J. Liu, J. Electrochem. Soc. 2014, 161, A1922. – reference: J. Zhao, F. Q. Wang, P. P. Su, M. G. Li, J. Chen, Q. H. Yang, C. Li, J. Mater. Chem. 2012, 22, 13328. – reference: N. Padmanathan, S. Selladurai, Ionics 2014, 20, 479. – reference: T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, C. C. Hu, Adv. Mater. 2010, 22, 347. – reference: K. Wang, Y. Yang, H.-W. Liang, J.-W. Liu, S.-H. Yu, Mater. Horiz. 2014, 1, 338. – reference: L. B. Kong, C. Lu, M. C. Liu, Y. C. Luo, L. Kang, X. H. Li, F. C. Walsh, Electrochim. Acta 2014, 115, 22. – reference: G. Q. Zhang, B. Y. Xia, C. Xiao, L. Yu, X. Wang, Y. Xie, X. W. Lou, Angew. Chem. Int. Ed. 2013, 125, 8805. – reference: C. Z. Yuan, H. B. Wu, Y. Xie, X. W. Lou, Angew. Chem. Int. Ed. 2014, 53, 1488. – reference: Y. N. Xu, X. F. Wang, C. H. An, Y. J. Wang, L. F. Jiao, H. T. Yuan, J. Mater. Chem. A 2014, 2, 16480. – reference: C. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater. 2010, 22, E28. – reference: F. Y. Cheng, J. Liang, Z. L. Tao, J. Chen, Adv. Mater. 2011, 23, 1695. – reference: G. P. Wang, L. Zhang, J. J. Zhang, Chem. Soc. Rev. 2012, 41, 797. – reference: N. Armaroli, V. Balzani, Angew. Chem. Int. Ed. 2007, 46, 52. – reference: A. S. Arico, P. Bruce, B. Scrosati, J. Tarascon, W. V. Schalkwijk, Nat. Mater. 2005, 4, 366. – reference: S. J. Peng, L. L. Li, Y. X. Hu, M. Srinivasan, F. Y. Cheng, J. Chen, S. Ramakrishna, ACS Nano 2015, 9, 1945. – reference: K. Zhang, X. P. Han, Z. Hu, X. L. Zhang, Z. L. Tao, J. Chen, Chem. Soc. Rev. 2015, 44, 699. – reference: J. F. Li, S. L. Xiong, X. W. Li, Y. T. Qian, Nanoscale 2013, 5, 2045. – reference: P. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210. – reference: J. Gomez, E. E. Kalu, J. Power Sources 2013, 230, 218. – reference: L. Yu, L. Zhang, H. B. Wu, X. W. Lou, Angew. Chem. Int. Ed. 2014, 126, 3785. – reference: X. Lang, A. Hirata, T. Fujita, M. Chen, Nat. Nanotechnol. 2011, 6, 232. – reference: L. Li, Y. Q. Zhang, F. Shi, Y. J. Zhang, J. H. Zhang, C. D. Gu, X. L. Wang, J. P. Tu, ACS Appl. Mater. Interfaces 2014, 6, 18040. – reference: M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Chem. Rev. 2013, 113, 5364. – reference: L. Li, F. He, S. L. Gai, S. H. Zhang, P. Gao, M. L. Zhang, Y. J. Chen, P. P. Yang, CrystEngComm 2014, 16, 9873. – reference: L. Zhang, G. Q. Zhang, H. B. Wu, L. Yu, X. W. Lou, Adv. Mater. 2013, 25, 2589. – reference: L. Zhou, D. Y. Zhao, X. W. Lou, Adv. Mater. 2012, 24, 745. – reference: C. L. Tang, X. Wei, Y. M. Jiang, X. Y. Wu, L. N. Han, K. X. Wang, J. S. Chen, J. Phys. Chem. C 2015, 119, 8465. – reference: G. L. Wang, G. J. Shao, J. P. Du, Y. Zhang, Z. P. Ma, Mater. Chem. Phys. 2013, 138, 108. – reference: J. G. Kim, S. H. Lee, Y. M. Kim, W. B. Kim, ACS Appl. Mater. Interfaces 2013, 5, 11321. – reference: T. Zhu, H. B. Wu, Y. B. Wang, R. Xu, X. W. Lou, Adv. Energy Mater. 2012, 2, 1497. – reference: W. F. Wei, X. W. Cui, W. X. Chen, D. G. Ivey, Chem. Soc. Rev. 2011, 40, 1697. – reference: C. Wang, Y. Zhou, M. Y. Ge, X. B. Xu, Z. L. Zhang, J. Z. Jiang, J. Am. Chem. Soc. 2010, 132, 46. – reference: H. L. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Y. Liang, Y. Cui, H. J. Dai, J. Am. Chem. Soc. 2010, 132, 13978. – reference: S. Chen, J. W. Zhu, X. D. Wu, Q. F. Han, X. Wang, ACS Nano 2010, 4, 2822. – reference: Q. Li, Z. L. Wang, G. R. Li, R. Guo, L. X. Ding, Y. X. Tong, Nano Lett. 2012, 12, 3803. – reference: J. F. Li, S. L. Xiong, Y. R. Liu, Z. C. Ju, Y. T. Qian, ACS Appl. Mater. Interfaces 2013, 5, 981. – reference: G. Q. Zhang, X. W. Lou, Angew. Chem. Int. Ed. 2014, 126, 9187. – reference: Y. Xia, Z. Xiao, X. Dou, H. Huang, X. H. Lu, R. J. Yan, Y. P. Gan, W. J. Zhu, J. P. Tu, W. K. Zhang, X. Y. Tao, ACS Nano 2013, 7, 7083. – volume: 10 start-page: 1117 year: 2008 publication-title: Electrochem. Commun. – volume: 6 start-page: 18040 year: 2014 publication-title: ACS Appl. Mater. Interfaces – volume: 230 start-page: 218 year: 2013 publication-title: J. Power Sources – volume: 5 start-page: 2045 year: 2013 publication-title: Nanoscale – volume: 5 start-page: 11321 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 343 start-page: 1210 year: 2014 publication-title: Science – volume: 6 start-page: 232 year: 2011 publication-title: Nat. Nanotechnol. – volume: 6 start-page: 2664 year: 2013 publication-title: Energy Environ. Sci. – volume: 12 start-page: 3803 year: 2012 publication-title: Nano Lett. – volume: 23 start-page: 1695 year: 2011 publication-title: Adv. Mater. – volume: 16 start-page: 9873 year: 2014 publication-title: CrystEngComm – volume: 4 start-page: 366 year: 2005 publication-title: Nat. Mater. – volume: 7 start-page: 845 year: 2008 publication-title: Nat. Mater. – volume: 22 start-page: E28 year: 2010 publication-title: Adv. Mater. – volume: 407 start-page: 496 year: 2000 publication-title: Nature – volume: 138 start-page: 108 year: 2013 publication-title: Mater. Chem. Phys. – volume: 22 start-page: 13328 year: 2012 publication-title: J. Mater. Chem. – volume: 132 start-page: 13978 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 797 year: 2012 publication-title: Chem. Soc. Rev. – volume: 21 start-page: 10206 year: 2011 publication-title: J. Mater. Chem. – volume: 5 start-page: 877 year: 2013 publication-title: Nanoscale – volume: 3 start-page: 31 year: 2008 publication-title: Nat. Nanotechnol. – volume: 115 start-page: 22 year: 2014 publication-title: Electrochim. Acta – volume: 4 start-page: 2822 year: 2010 publication-title: ACS Nano – volume: 9 start-page: 1945 year: 2015 publication-title: ACS Nano – volume: 53 start-page: 1488 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 44 start-page: 699 year: 2015 publication-title: Chem. Soc. Rev. – volume: 119 start-page: 8465 year: 2015 publication-title: J. Phys. Chem. C – volume: 7 start-page: 7083 year: 2013 publication-title: ACS Nano – volume: 5 start-page: 981 year: 2013 publication-title: ACS Appl. Mater. Interfaces – volume: 126 start-page: 9187 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 161 start-page: A1922 year: 2014 publication-title: J. Electrochem. Soc. – volume: 113 start-page: 5364 year: 2013 publication-title: Chem. Rev. – volume: 46 start-page: 52 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 125 start-page: 8805 year: 2013 publication-title: Angew. Chem. Int. Ed. – volume: 2 start-page: 1497 year: 2012 publication-title: Adv. Energy Mater. – volume: 40 start-page: 1697 year: 2011 publication-title: Chem. Soc. Rev. – volume: 132 start-page: 46 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 116 start-page: 467 year: 2014 publication-title: Electrochim. Acta – volume: 24 start-page: 745 year: 2012 publication-title: Adv. Mater. – volume: 20 start-page: 479 year: 2014 publication-title: Ionics – volume: 25 start-page: 2589 year: 2013 publication-title: Adv. Mater. – volume: 1 start-page: 338 year: 2014 publication-title: Mater. Horiz. – volume: 2 start-page: 16480 year: 2014 publication-title: J. Mater. Chem. A – volume: 126 start-page: 3785 year: 2014 publication-title: Angew. Chem. Int. Ed. – volume: 22 start-page: 347 year: 2010 publication-title: Adv. Mater. – ident: e_1_2_5_9_1 doi: 10.1039/C4CS00218K – ident: e_1_2_5_26_1 doi: 10.1002/ange.201404604 – ident: e_1_2_5_44_1 doi: 10.1002/ange.201400226 – ident: e_1_2_5_31_1 doi: 10.1039/C2NR33326K – ident: e_1_2_5_13_1 doi: 10.1021/nn4023894 – ident: e_1_2_5_32_1 doi: 10.1021/am403546s – ident: e_1_2_5_35_1 doi: 10.1021/jp512795g – ident: e_1_2_5_2_1 doi: 10.1002/anie.200602373 – ident: e_1_2_5_5_1 doi: 10.1002/anie.201303971 – ident: e_1_2_5_21_1 doi: 10.1039/c2nr33576j – ident: e_1_2_5_46_1 doi: 10.1021/ja909321d – ident: e_1_2_5_20_1 doi: 10.1039/c2jm32261g – ident: e_1_2_5_30_1 doi: 10.1021/nn506851x – ident: e_1_2_5_16_1 doi: 10.1002/adma.200902175 – ident: e_1_2_5_39_1 doi: 10.1016/j.electacta.2013.10.089 – ident: e_1_2_5_1_1 doi: 10.1038/nmat1368 – ident: e_1_2_5_6_1 doi: 10.1039/C1CS15060J – ident: e_1_2_5_19_1 doi: 10.1016/j.elecom.2008.05.026 – ident: e_1_2_5_27_1 doi: 10.1038/nnano.2007.411 – ident: e_1_2_5_34_1 doi: 10.1039/c4mh00004h – ident: e_1_2_5_8_1 doi: 10.1038/35035045 – ident: e_1_2_5_33_1 doi: 10.1002/ange.201304355 – ident: e_1_2_5_24_1 doi: 10.1039/C4CE01323A – ident: e_1_2_5_4_1 doi: 10.1021/cr3001884 – ident: e_1_2_5_40_1 doi: 10.1126/science.1249625 – ident: e_1_2_5_43_1 doi: 10.1002/aenm.201200269 – ident: e_1_2_5_37_1 doi: 10.1149/2.0971412jes – ident: e_1_2_5_7_1 doi: 10.1002/adma.201003587 – ident: e_1_2_5_23_1 doi: 10.1039/C4TA03123G – ident: e_1_2_5_11_1 doi: 10.1038/nnano.2011.13 – ident: e_1_2_5_38_1 doi: 10.1021/am5048653 – ident: e_1_2_5_3_1 doi: 10.1038/nmat2297 – ident: e_1_2_5_36_1 doi: 10.1016/j.matchemphys.2012.11.024 – ident: e_1_2_5_29_1 doi: 10.1021/nl301748m – ident: e_1_2_5_18_1 doi: 10.1039/C3EE41181H – ident: e_1_2_5_45_1 doi: 10.1021/ja105296a – ident: e_1_2_5_12_1 doi: 10.1021/nn901311t – ident: e_1_2_5_25_1 doi: 10.1002/adma.200903328 – ident: e_1_2_5_10_1 doi: 10.1039/C0CS00127A – ident: e_1_2_5_28_1 doi: 10.1002/adma.201300105 – ident: e_1_2_5_15_1 doi: 10.1021/am3026294 – ident: e_1_2_5_22_1 doi: 10.1002/adma.201104407 – ident: e_1_2_5_42_1 doi: 10.1016/j.electacta.2013.11.081 – ident: e_1_2_5_14_1 doi: 10.1007/s11581-013-1009-8 – ident: e_1_2_5_17_1 doi: 10.1039/c0jm04465b – ident: e_1_2_5_41_1 doi: 10.1016/j.jpowsour.2012.12.069 |
SSID | ssj0017734 |
Score | 2.5183291 |
Snippet | In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn‐based (Co‐Mn, Ni‐Mn, Cu‐Mn, Zn‐Mn) mixed metal oxides.... In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn-based (Co-Mn, Ni-Mn, Cu-Mn, Zn-Mn) mixed metal oxides.... |
SourceID | proquest crossref wiley istex |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5184 |
SubjectTerms | Carbon fibers Electrochemical analysis Electrodes hierarchical tubular structures hybrid supercapacitors Lithium batteries lithium ion batteries Manganese Metal oxides mixed metal oxides Nanostructure Strategy |
Title | Hierarchical Tubular Structures Composed of Mn-Based Mixed Metal Oxide Nanoflakes with Enhanced Electrochemical Properties |
URI | https://api.istex.fr/ark:/67375/WNG-SDRR13CK-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201501974 https://www.proquest.com/docview/1744695170 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swELcQvLCH8WebVjaQkabxFIgdx2kfgbZUTGWogNY3y3ZsUbVKJkqlauKBj8Bn5JNwl7RZizRN2l6iRLKVxL47_3x3_h0hX0LjXGSNCKSzaSAsYDgDchTAWsy4EXEoNDr0uxeycyPO-3F_4RR_yQ9ROdxQMwp7jQquzfjoN2moTj2eJAdAwwATgxFmkUTy_Gav4o9iSVKGlSXDBC_Wn7M2hvxoufvSqrSGAzxdgpyLwLVYedobRM-_uUw4GR5O7s2h_fWKzvF_fmqTvJ3BUnpcytEWWXHZNnmzQFb4jjx0BnhYuaidMqLXE4MJrPSq4J-dwKadomnJxy6luafd7Pnx6UTjU3cwxasDlE-_Twepo2DRcz_SQ-iDbmDaym6LPATaKmvy2BmJAb3ESMEdUr6-Jzft1vVpJ5jVbggsIBwRYDgS5tmEvm4bUifSmAY3Wvh6aH3EY2s5N5ZbAIiJl7aho4ZhQgPg8TJO0jj6QFazPHMfCQUQ4h3uK51wQlhmAOFq6dB9WzeW8RoJ5nOn7IzYHOtrjFRJycwVjqqqRrVGDqr2P0tKjz-2_FqIQtVM3w0xES6J1Y-LM3XV7PVYdPpN9Wpkfy4rCtQTYy46c_lkrGDDJySg2CSsEV7M_F_eqY6b7W71tPMvnT6Rdbwv0xQ_k1UQBLcL0One7BXq8QKDdxGA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELdgewAe-D9R_hoJwVO22HGc9nFs7QpbCuo6sTfLdmxRtUrQtkoV4oGPwGfkk3DnNNmKhJDgJZIjW4ntO_vnu_PvCHkVG-cSa0QknS0iYQHDGZCjCPZixo1IY6HRoJ-P5PBEvD9Nm2hCvAtT80O0BjfUjLBeo4KjQXrnkjVUFx6vkgOiYQCKr5PN4KRDXDRuGaRYltWOZckwxIudNryNMd9Zb7-2L23iEC_XQOdV6Br2nsEdYpq_rkNOZtuLC7Ntv_5G6Phf3bpLbq-QKd2tRekeuebK--TWFb7CB-TbcIr3lUP6lDmdLAzGsNLjQEG7gHM7xdWlOncFrTzNy5_ff7zVWMqnS3w6APr0w3JaOAqLeuXnegZt0BJM--XnEIpA-3VaHrviMaAf0VlwhqyvD8nJoD_ZG0ar9A2RBZAjIvRIwlSb2HdtT-pMGtPjRgvfja1PeGot58ZyCxgx89L2dNIzTGjAPF6mWZEmW2SjrEr3iFDAId7h0dIJJ4RlBkCulg4tuF1jGe-QqJk8ZVfc5phiY65qVmaucFRVO6od8qat_6Vm9fhjzddBFtpq-myGsXBZqj6NDtTx_njMkr1DNe6Ql42wKNBQdLvo0lWLcwVnPiEByGZxh_Aw9X_5ptrdH-Rt6fG_NHpBbgwn-ZE6ejc6fEJu4vs6avEp2QChcM8ASV2Y50FXfgGagRWe |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BJiF42PgrOv4ZCcFTtsRxnPZxW1sKo2XqNtE3y3ZsUbVKpm2VKsQDH4HPuE-yu6QNLRJCgpdIiWwlse98P9-dfwfwJjTOxdaIQDqbBcIihjMoRwHa4ogbkYRCk0O_P5C9M_FxlIxWTvFX_BC1w400o1yvScHPM7_3izRUZ55OkiOgiRAT34ZNIdFWEiwa1gRSUZpWcWUZUYZXNFrSNoZ8b73_mlnapBGer2HOVeRamp7uNujlR1cZJ5Pd2ZXZtd9-43P8n7-6D1sLXMr2K0F6ALdc_hDurbAVPoLvvTGdVi6Lp0zZ6cxQBis7KQloZ7hrZ7S2FJcuY4Vn_fz6x88DTXf98ZyuDmE--zwfZ47hkl74qZ5gH_IDs07-tUxEYJ2qKI9dsBiwYwoVXBDn62M463ZOD3vBonhDYBHiiIDikTjRJvRN25I6lca0uNHCN0PrY55Yy7mx3CJCTL20LR23TCQ0Ih4vkzRL4iewkRe5ewoMUYh3tLF0wglhI4MQV0tH_tumsRFvQLCcO2UXzOZUYGOqKk5mrmhUVT2qDXhXtz-vOD3-2PJtKQp1M30xoUy4NFFfBu_VSXs4jOLDIzVswOulrCjUTwq66NwVs0uFOz4hEcamYQN4OfN_eafab3f79d3Ov3R6BXeO21316cPg6BncpcdVyuJz2ECZcC8QRl2Zl6Wm3ABGXxRN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Tubular+Structures+Composed+of+Mn%E2%80%90Based+Mixed+Metal+Oxide+Nanoflakes+with+Enhanced+Electrochemical+Properties&rft.jtitle=Advanced+functional+materials&rft.au=Guo%2C+Yan&rft.au=Yu%2C+Le&rft.au=Wang%2C+Cheng%E2%80%90Yang&rft.au=Lin%2C+Zhan&rft.date=2015-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=32&rft.spage=5184&rft.epage=5189&rft_id=info:doi/10.1002%2Fadfm.201501974&rft.externalDBID=10.1002%252Fadfm.201501974&rft.externalDocID=ADFM201501974 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon |