Hierarchical Tubular Structures Composed of Mn-Based Mixed Metal Oxide Nanoflakes with Enhanced Electrochemical Properties

In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn‐based (Co‐Mn, Ni‐Mn, Cu‐Mn, Zn‐Mn) mixed metal oxides. The first step in the synthesis involves redox reaction mediated growth of nanoflakes on carbon nanofibers under hydrothermal conditions. Afte...

Full description

Saved in:
Bibliographic Details
Published inAdvanced functional materials Vol. 25; no. 32; pp. 5184 - 5189
Main Authors Guo, Yan, Yu, Le, Wang, Cheng-Yang, Lin, Zhan, Lou, Xiong Wen (David)
Format Journal Article
LanguageEnglish
Published Blackwell Publishing Ltd 01.08.2015
Subjects
Online AccessGet full text
ISSN1616-301X
1616-3028
DOI10.1002/adfm.201501974

Cover

Abstract In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn‐based (Co‐Mn, Ni‐Mn, Cu‐Mn, Zn‐Mn) mixed metal oxides. The first step in the synthesis involves redox reaction mediated growth of nanoflakes on carbon nanofibers under hydrothermal conditions. After calcination in air, carbon nanofibers are removed and HTS of mixed metal oxides can be obtained with little structural deterioration. The resultant HTS are advantageous as electrodes for electrochemical energy storage. As an example, it is shown that the Co‐Mn‐HTS sample exhibits outstanding electrochemical performance as electrode materials for hybrid supercapacitors and lithium ion batteries. A general strategy is developed for the synthesis of hierarchical tubular structures of Mn‐based mixed metal oxides. The derived Co‐Mn mixed oxide hierarchical tubular structures manifest enhanced electrochemical properties as electrodes for both hybrid supercapacitors and lithium ion batteries.
AbstractList In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn‐based (Co‐Mn, Ni‐Mn, Cu‐Mn, Zn‐Mn) mixed metal oxides. The first step in the synthesis involves redox reaction mediated growth of nanoflakes on carbon nanofibers under hydrothermal conditions. After calcination in air, carbon nanofibers are removed and HTS of mixed metal oxides can be obtained with little structural deterioration. The resultant HTS are advantageous as electrodes for electrochemical energy storage. As an example, it is shown that the Co‐Mn‐HTS sample exhibits outstanding electrochemical performance as electrode materials for hybrid supercapacitors and lithium ion batteries. A general strategy is developed for the synthesis of hierarchical tubular structures of Mn‐based mixed metal oxides. The derived Co‐Mn mixed oxide hierarchical tubular structures manifest enhanced electrochemical properties as electrodes for both hybrid supercapacitors and lithium ion batteries.
In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn-based (Co-Mn, Ni-Mn, Cu-Mn, Zn-Mn) mixed metal oxides. The first step in the synthesis involves redox reaction mediated growth of nanoflakes on carbon nanofibers under hydrothermal conditions. After calcination in air, carbon nanofibers are removed and HTS of mixed metal oxides can be obtained with little structural deterioration. The resultant HTS are advantageous as electrodes for electrochemical energy storage. As an example, it is shown that the Co-Mn-HTS sample exhibits outstanding electrochemical performance as electrode materials for hybrid supercapacitors and lithium ion batteries. A general strategy is developed for the synthesis of hierarchical tubular structures of Mn-based mixed metal oxides. The derived Co-Mn mixed oxide hierarchical tubular structures manifest enhanced electrochemical properties as electrodes for both hybrid supercapacitors and lithium ion batteries.
In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn‐based (Co‐Mn, Ni‐Mn, Cu‐Mn, Zn‐Mn) mixed metal oxides. The first step in the synthesis involves redox reaction mediated growth of nanoflakes on carbon nanofibers under hydrothermal conditions. After calcination in air, carbon nanofibers are removed and HTS of mixed metal oxides can be obtained with little structural deterioration. The resultant HTS are advantageous as electrodes for electrochemical energy storage. As an example, it is shown that the Co‐Mn‐HTS sample exhibits outstanding electrochemical performance as electrode materials for hybrid supercapacitors and lithium ion batteries.
Author Lou, Xiong Wen (David)
Guo, Yan
Lin, Zhan
Wang, Cheng-Yang
Yu, Le
Author_xml – sequence: 1
  givenname: Yan
  surname: Guo
  fullname: Guo, Yan
  organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
– sequence: 2
  givenname: Le
  surname: Yu
  fullname: Yu, Le
  organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
– sequence: 3
  givenname: Cheng-Yang
  surname: Wang
  fullname: Wang, Cheng-Yang
  organization: Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, P. R. China
– sequence: 4
  givenname: Zhan
  surname: Lin
  fullname: Lin, Zhan
  email: xwlou@ntu.edu.sg
  organization: Institute of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Zhejiang, 310027, Hangzhou, P. R. China
– sequence: 5
  givenname: Xiong Wen (David)
  surname: Lou
  fullname: Lou, Xiong Wen (David)
  email: xwlou@ntu.edu.sg
  organization: School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore, Singapore
BookMark eNqF0M9P2zAUB3ALMYkf48o5Ry7p7DixmyMrBaZRmApou1kv7rPq4cTFdkTZX790nSo0Ce1iv8P34yd_j8h-5zsk5JTREaO0-AQL044KyirKalnukUMmmMg5Lcb7u5n9OCBHMf6klEnJy0Py69pigKCXVoPLHvqmdxCy-xR6nfqAMZv4duUjLjJvslmXf4bNPLPrzYlpMHdru8DsFjpvHDwN4sWmZTbtltDpITR1qFPweontnxXfgl9hSBbjR_LBgIt48vc-Jo-X04fJdX5zd_Vlcn6Taz78Ix8zIWgJDTVjXQuQomnqooHSjKk2vKi0LopGF1pUVBqha-B1w0qgkhlRyUXFj8nZ9t1V8M89xqRaGzU6Bx36Piomy1LUFZN0iI62UR18jAGNWgXbQnhVjKpNyWpTstqVPIDyH6BtgmR9lwJY9z6rt-zFOnz9zxJ1fnE5e2vzrbUx4XpnITwpIbms1PfbK3V_MZ8zPvmq5vw38I2kiw
CitedBy_id crossref_primary_10_1021_acs_energyfuels_2c02441
crossref_primary_10_1016_j_jelechem_2020_114830
crossref_primary_10_1039_C6TA06172A
crossref_primary_10_1016_j_jallcom_2019_04_027
crossref_primary_10_1039_C9TA07147D
crossref_primary_10_1021_acssuschemeng_7b02689
crossref_primary_10_1002_ange_201608279
crossref_primary_10_1016_j_ensm_2018_09_007
crossref_primary_10_1016_j_scib_2019_11_028
crossref_primary_10_1016_j_electacta_2017_06_171
crossref_primary_10_1016_j_jallcom_2023_169571
crossref_primary_10_1002_ange_201907516
crossref_primary_10_1039_D0TA05662F
crossref_primary_10_1002_aenm_201700983
crossref_primary_10_1149_2_0031912jes
crossref_primary_10_1002_adfm_201705817
crossref_primary_10_1039_C5CS00580A
crossref_primary_10_1016_j_ijhydene_2018_06_067
crossref_primary_10_1021_acsaem_8b02167
crossref_primary_10_1002_slct_202001410
crossref_primary_10_1039_C9DT03609A
crossref_primary_10_1016_j_ensm_2018_10_022
crossref_primary_10_1016_j_jallcom_2016_12_094
crossref_primary_10_1016_j_chempr_2018_01_003
crossref_primary_10_1002_adfm_201605011
crossref_primary_10_1007_s11581_016_1914_8
crossref_primary_10_1002_smll_201602204
crossref_primary_10_1039_C6TA05693H
crossref_primary_10_1016_j_cej_2022_134701
crossref_primary_10_1016_j_rser_2020_110085
crossref_primary_10_1002_aenm_201803612
crossref_primary_10_1002_adma_201902807
crossref_primary_10_1016_j_cej_2024_148516
crossref_primary_10_1016_j_cej_2016_07_071
crossref_primary_10_1039_C6RA03351B
crossref_primary_10_1021_acsami_7b12298
crossref_primary_10_1016_j_electacta_2019_03_171
crossref_primary_10_1007_s13233_017_5158_x
crossref_primary_10_1039_C6RA13902G
crossref_primary_10_1016_j_electacta_2018_02_130
crossref_primary_10_1016_j_jhazmat_2016_09_004
crossref_primary_10_1016_j_jallcom_2017_05_218
crossref_primary_10_1016_j_mset_2018_11_008
crossref_primary_10_1039_C9NA00547A
crossref_primary_10_1016_j_electacta_2016_05_195
crossref_primary_10_1016_j_electacta_2018_11_028
crossref_primary_10_1016_j_jallcom_2017_02_301
crossref_primary_10_1002_cplu_201800220
crossref_primary_10_1002_anie_201600133
crossref_primary_10_1016_j_electacta_2017_12_047
crossref_primary_10_1007_s40820_020_00435_z
crossref_primary_10_1002_adfm_201503711
crossref_primary_10_1039_C5CP07361H
crossref_primary_10_1002_ange_201600133
crossref_primary_10_1016_j_chphi_2024_100639
crossref_primary_10_1039_C9TA05790K
crossref_primary_10_1016_j_jallcom_2018_12_029
crossref_primary_10_1002_aenm_201802427
crossref_primary_10_1021_acsaem_9b01537
crossref_primary_10_1016_j_optmat_2023_114306
crossref_primary_10_1039_C7TA08115D
crossref_primary_10_1016_j_nanoen_2016_09_012
crossref_primary_10_1039_C5CP07301D
crossref_primary_10_1002_chem_201803982
crossref_primary_10_1016_j_jcis_2022_12_159
crossref_primary_10_1016_j_mtener_2019_100358
crossref_primary_10_1039_C8CS00336J
crossref_primary_10_1039_C6NR02267G
crossref_primary_10_1016_j_est_2023_107565
crossref_primary_10_1016_j_jelechem_2017_01_052
crossref_primary_10_1016_j_ceramint_2020_05_099
crossref_primary_10_1016_j_carbon_2017_08_013
crossref_primary_10_1021_acsami_6b13153
crossref_primary_10_1002_cssc_201501151
crossref_primary_10_1007_s11051_025_06246_w
crossref_primary_10_1039_C8DT04716B
crossref_primary_10_1002_anie_201608279
crossref_primary_10_1039_C7TA05256A
crossref_primary_10_1016_j_carbon_2019_07_059
crossref_primary_10_1016_j_cej_2016_08_086
crossref_primary_10_1016_j_mseb_2024_117795
crossref_primary_10_1016_j_matlet_2020_128400
crossref_primary_10_1039_C9QI00390H
crossref_primary_10_1002_adma_201800939
crossref_primary_10_1007_s10854_018_8678_z
crossref_primary_10_1016_j_electacta_2016_05_213
crossref_primary_10_1007_s10854_018_0332_2
crossref_primary_10_1016_j_jpcs_2016_07_003
crossref_primary_10_1002_smll_201601959
crossref_primary_10_1016_j_nanoen_2017_01_044
crossref_primary_10_1016_j_jallcom_2018_10_216
crossref_primary_10_1016_j_jcat_2018_10_034
crossref_primary_10_1007_s11426_017_9064_9
crossref_primary_10_1016_j_jallcom_2021_160301
crossref_primary_10_1039_C7DT03386A
crossref_primary_10_1007_s40843_017_9153_x
crossref_primary_10_1039_D1NA00271F
crossref_primary_10_1002_anie_201907516
crossref_primary_10_1007_s12274_016_0987_z
crossref_primary_10_1016_j_electacta_2015_12_178
crossref_primary_10_1039_D0RA01844A
crossref_primary_10_1021_acssuschemeng_8b01782
crossref_primary_10_1103_PhysRevMaterials_2_085801
crossref_primary_10_1021_acsnano_8b00901
crossref_primary_10_1007_s11581_020_03581_x
crossref_primary_10_3390_nano13061125
crossref_primary_10_1016_j_electacta_2016_12_109
crossref_primary_10_1039_C7DT01289F
crossref_primary_10_1002_adma_201604563
crossref_primary_10_1002_slct_202303656
crossref_primary_10_1016_j_cej_2017_06_097
crossref_primary_10_1002_chem_201701251
crossref_primary_10_1002_adma_201701820
crossref_primary_10_1016_j_jpcs_2021_110467
crossref_primary_10_1021_acsami_7b14686
crossref_primary_10_1021_acsaelm_9b00810
crossref_primary_10_1002_ange_201706652
crossref_primary_10_1007_s10854_019_00897_x
crossref_primary_10_1016_j_ijhydene_2018_06_079
crossref_primary_10_1016_j_jpowsour_2016_08_079
crossref_primary_10_54097_hset_v21i_3133
crossref_primary_10_1002_aenm_201601906
crossref_primary_10_1039_C8TA07080F
Cites_doi 10.1039/C4CS00218K
10.1002/ange.201404604
10.1002/ange.201400226
10.1039/C2NR33326K
10.1021/nn4023894
10.1021/am403546s
10.1021/jp512795g
10.1002/anie.200602373
10.1002/anie.201303971
10.1039/c2nr33576j
10.1021/ja909321d
10.1039/c2jm32261g
10.1021/nn506851x
10.1002/adma.200902175
10.1016/j.electacta.2013.10.089
10.1038/nmat1368
10.1039/C1CS15060J
10.1016/j.elecom.2008.05.026
10.1038/nnano.2007.411
10.1039/c4mh00004h
10.1038/35035045
10.1002/ange.201304355
10.1039/C4CE01323A
10.1021/cr3001884
10.1126/science.1249625
10.1002/aenm.201200269
10.1149/2.0971412jes
10.1002/adma.201003587
10.1039/C4TA03123G
10.1038/nnano.2011.13
10.1021/am5048653
10.1038/nmat2297
10.1016/j.matchemphys.2012.11.024
10.1021/nl301748m
10.1039/C3EE41181H
10.1021/ja105296a
10.1021/nn901311t
10.1002/adma.200903328
10.1039/C0CS00127A
10.1002/adma.201300105
10.1021/am3026294
10.1002/adma.201104407
10.1016/j.electacta.2013.11.081
10.1007/s11581-013-1009-8
10.1039/c0jm04465b
10.1016/j.jpowsour.2012.12.069
ContentType Journal Article
Copyright 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/adfm.201501974
DatabaseName Istex
CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1616-3028
EndPage 5189
ExternalDocumentID 10_1002_adfm_201501974
ADFM201501974
ark_67375_WNG_SDRR13CK_R
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
23M
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
~IA
~WT
AAHHS
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
7SP
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3974-816604ab0f8c96a76bb92ba4f80cf325cc22bc2c6507f6c9a39b14a071f657d53
IEDL.DBID DR2
ISSN 1616-301X
IngestDate Fri Sep 05 11:29:25 EDT 2025
Thu Apr 24 22:58:11 EDT 2025
Tue Jul 01 01:30:20 EDT 2025
Wed Aug 20 07:26:10 EDT 2025
Sun Sep 21 06:18:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3974-816604ab0f8c96a76bb92ba4f80cf325cc22bc2c6507f6c9a39b14a071f657d53
Notes ark:/67375/WNG-SDRR13CK-R
istex:27E87BAD33FA6649EA5AF24CDC9BBC78264C5AB1
ArticleID:ADFM201501974
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1744695170
PQPubID 23500
PageCount 6
ParticipantIDs proquest_miscellaneous_1744695170
crossref_primary_10_1002_adfm_201501974
crossref_citationtrail_10_1002_adfm_201501974
wiley_primary_10_1002_adfm_201501974_ADFM201501974
istex_primary_ark_67375_WNG_SDRR13CK_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-08-01
PublicationDateYYYYMMDD 2015-08-01
PublicationDate_xml – month: 08
  year: 2015
  text: 2015-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Advanced functional materials
PublicationTitleAlternate Adv. Funct. Mater
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References C. Z. Yuan, H. B. Wu, Y. Xie, X. W. Lou, Angew. Chem. Int. Ed. 2014, 53, 1488.
L. Li, F. He, S. L. Gai, S. H. Zhang, P. Gao, M. L. Zhang, Y. J. Chen, P. P. Yang, CrystEngComm 2014, 16, 9873.
G. Q. Zhang, L. Yu, H. E. Hoster, X. W. Lou, Nanoscale 2013, 5, 877.
G. P. Wang, L. Zhang, J. J. Zhang, Chem. Soc. Rev. 2012, 41, 797.
S. J. Peng, L. L. Li, Y. X. Hu, M. Srinivasan, F. Y. Cheng, J. Chen, S. Ramakrishna, ACS Nano 2015, 9, 1945.
P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.
J. G. Kim, S. H. Lee, Y. M. Kim, W. B. Kim, ACS Appl. Mater. Interfaces 2013, 5, 11321.
L. Li, Y. Q. Zhang, F. Shi, Y. J. Zhang, J. H. Zhang, C. D. Gu, X. L. Wang, J. P. Tu, ACS Appl. Mater. Interfaces 2014, 6, 18040.
Y. N. Xu, X. F. Wang, C. H. An, Y. J. Wang, L. F. Jiao, H. T. Yuan, J. Mater. Chem. A 2014, 2, 16480.
K. Wang, Y. Yang, H.-W. Liang, J.-W. Liu, S.-H. Yu, Mater. Horiz. 2014, 1, 338.
J. F. Li, S. L. Xiong, Y. R. Liu, Z. C. Ju, Y. T. Qian, ACS Appl. Mater. Interfaces 2013, 5, 981.
Y. Y. Yang, Y. Q. Zhao, L. F. Xiao, L. Z. Zhang, Electrochem. Commun. 2008, 10, 1117.
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 2000, 407, 496.
M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Chem. Rev. 2013, 113, 5364.
Y. Xia, Z. Xiao, X. Dou, H. Huang, X. H. Lu, R. J. Yan, Y. P. Gan, W. J. Zhu, J. P. Tu, W. K. Zhang, X. Y. Tao, ACS Nano 2013, 7, 7083.
C. Wang, Y. Zhou, M. Y. Ge, X. B. Xu, Z. L. Zhang, J. Z. Jiang, J. Am. Chem. Soc. 2010, 132, 46.
A. S. Arico, P. Bruce, B. Scrosati, J. Tarascon, W. V. Schalkwijk, Nat. Mater. 2005, 4, 366.
L. Zhou, D. Y. Zhao, X. W. Lou, Adv. Mater. 2012, 24, 745.
L. Zhang, G. Q. Zhang, H. B. Wu, L. Yu, X. W. Lou, Adv. Mater. 2013, 25, 2589.
L. Yu, L. Zhang, H. B. Wu, X. W. Lou, Angew. Chem. Int. Ed. 2014, 126, 3785.
X. Lang, A. Hirata, T. Fujita, M. Chen, Nat. Nanotechnol. 2011, 6, 232.
J. Zhao, F. Q. Wang, P. P. Su, M. G. Li, J. Chen, Q. H. Yang, C. Li, J. Mater. Chem. 2012, 22, 13328.
H. L. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Y. Liang, Y. Cui, H. J. Dai, J. Am. Chem. Soc. 2010, 132, 13978.
F. M. Courtel, H. Duncan, Y. Abu-Lebdeh, I. J. Davidson, J. Mater. Chem. 2011, 21, 10206.
T. Zhu, H. B. Wu, Y. B. Wang, R. Xu, X. W. Lou, Adv. Energy Mater. 2012, 2, 1497.
W. F. Wei, X. W. Cui, W. X. Chen, D. G. Ivey, Chem. Soc. Rev. 2011, 40, 1697.
S. Chen, J. W. Zhu, X. D. Wu, Q. F. Han, X. Wang, ACS Nano 2010, 4, 2822.
G. L. Wang, G. J. Shao, J. P. Du, Y. Zhang, Z. P. Ma, Mater. Chem. Phys. 2013, 138, 108.
T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, C. C. Hu, Adv. Mater. 2010, 22, 347.
G. Q. Zhang, X. W. Lou, Angew. Chem. Int. Ed. 2014, 126, 9187.
K. Zhang, X. P. Han, Z. Hu, X. L. Zhang, Z. L. Tao, J. Chen, Chem. Soc. Rev. 2015, 44, 699.
P. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210.
L. Li, Y. Q. Zhang, X. Y. Liu, S. J. Shi, X. Y. Zhao, H. Zhang, X. Ge, G. F. Cai, C. D. Gu, X. L. Wang, J. P. Tu, Electrochim. Acta 2014, 116, 467.
C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31.
Q. Zhou, X. Wang, Y. Liu, Y. He, Y. Gao, J. Liu, J. Electrochem. Soc. 2014, 161, A1922.
F. Y. Cheng, J. Liang, Z. L. Tao, J. Chen, Adv. Mater. 2011, 23, 1695.
J. F. Li, S. L. Xiong, X. W. Li, Y. T. Qian, Nanoscale 2013, 5, 2045.
C. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater. 2010, 22, E28.
J. Gomez, E. E. Kalu, J. Power Sources 2013, 230, 218.
L. Yu, L. Zhang, H. B. Wu, G. Q. Zhang, X. W. Lou, Energy Environ. Sci. 2013, 6, 2664.
L. B. Kong, C. Lu, M. C. Liu, Y. C. Luo, L. Kang, X. H. Li, F. C. Walsh, Electrochim. Acta 2014, 115, 22.
N. Padmanathan, S. Selladurai, Ionics 2014, 20, 479.
G. Q. Zhang, B. Y. Xia, C. Xiao, L. Yu, X. Wang, Y. Xie, X. W. Lou, Angew. Chem. Int. Ed. 2013, 125, 8805.
C. L. Tang, X. Wei, Y. M. Jiang, X. Y. Wu, L. N. Han, K. X. Wang, J. S. Chen, J. Phys. Chem. C 2015, 119, 8465.
Q. Li, Z. L. Wang, G. R. Li, R. Guo, L. X. Ding, Y. X. Tong, Nano Lett. 2012, 12, 3803.
N. Armaroli, V. Balzani, Angew. Chem. Int. Ed. 2007, 46, 52.
2014; 116
2013; 25
2011; 40
2008; 7
2013; 125
2008; 10
2008; 3
2013; 7
2015; 9
2011; 6
2013; 5
2012; 12
2013; 6
2014; 115
2014; 20
2000; 407
2014; 1
2010; 22
2012; 2
2014; 2
2013; 138
2015; 44
2014; 16
2010; 132
2005; 4
2013; 113
2011; 21
2015; 119
2014; 161
2011; 23
2013; 230
2012; 24
2010; 4
2012; 22
2014; 6
2007; 46
2014; 126
2012; 41
2014; 343
2014; 53
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_46_1
e_1_2_5_24_1
e_1_2_5_45_1
e_1_2_5_21_1
e_1_2_5_44_1
e_1_2_5_22_1
e_1_2_5_43_1
e_1_2_5_29_1
e_1_2_5_42_1
e_1_2_5_20_1
e_1_2_5_41_1
e_1_2_5_40_1
e_1_2_5_15_1
e_1_2_5_38_1
e_1_2_5_14_1
e_1_2_5_39_1
e_1_2_5_17_1
e_1_2_5_36_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_37_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_35_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_1_1
e_1_2_5_19_1
e_1_2_5_18_1
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – reference: F. M. Courtel, H. Duncan, Y. Abu-Lebdeh, I. J. Davidson, J. Mater. Chem. 2011, 21, 10206.
– reference: L. Yu, L. Zhang, H. B. Wu, G. Q. Zhang, X. W. Lou, Energy Environ. Sci. 2013, 6, 2664.
– reference: Y. Y. Yang, Y. Q. Zhao, L. F. Xiao, L. Z. Zhang, Electrochem. Commun. 2008, 10, 1117.
– reference: L. Li, Y. Q. Zhang, X. Y. Liu, S. J. Shi, X. Y. Zhao, H. Zhang, X. Ge, G. F. Cai, C. D. Gu, X. L. Wang, J. P. Tu, Electrochim. Acta 2014, 116, 467.
– reference: C. K. Chan, H. L. Peng, G. Liu, K. McIlwrath, X. F. Zhang, R. A. Huggins, Y. Cui, Nat. Nanotechnol. 2008, 3, 31.
– reference: G. Q. Zhang, L. Yu, H. E. Hoster, X. W. Lou, Nanoscale 2013, 5, 877.
– reference: P. Simon, Y. Gogotsi, Nat. Mater. 2008, 7, 845.
– reference: P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 2000, 407, 496.
– reference: Q. Zhou, X. Wang, Y. Liu, Y. He, Y. Gao, J. Liu, J. Electrochem. Soc. 2014, 161, A1922.
– reference: J. Zhao, F. Q. Wang, P. P. Su, M. G. Li, J. Chen, Q. H. Yang, C. Li, J. Mater. Chem. 2012, 22, 13328.
– reference: N. Padmanathan, S. Selladurai, Ionics 2014, 20, 479.
– reference: T. Y. Wei, C. H. Chen, H. C. Chien, S. Y. Lu, C. C. Hu, Adv. Mater. 2010, 22, 347.
– reference: K. Wang, Y. Yang, H.-W. Liang, J.-W. Liu, S.-H. Yu, Mater. Horiz. 2014, 1, 338.
– reference: L. B. Kong, C. Lu, M. C. Liu, Y. C. Luo, L. Kang, X. H. Li, F. C. Walsh, Electrochim. Acta 2014, 115, 22.
– reference: G. Q. Zhang, B. Y. Xia, C. Xiao, L. Yu, X. Wang, Y. Xie, X. W. Lou, Angew. Chem. Int. Ed. 2013, 125, 8805.
– reference: C. Z. Yuan, H. B. Wu, Y. Xie, X. W. Lou, Angew. Chem. Int. Ed. 2014, 53, 1488.
– reference: Y. N. Xu, X. F. Wang, C. H. An, Y. J. Wang, L. F. Jiao, H. T. Yuan, J. Mater. Chem. A 2014, 2, 16480.
– reference: C. Liu, F. Li, L. P. Ma, H. M. Cheng, Adv. Mater. 2010, 22, E28.
– reference: F. Y. Cheng, J. Liang, Z. L. Tao, J. Chen, Adv. Mater. 2011, 23, 1695.
– reference: G. P. Wang, L. Zhang, J. J. Zhang, Chem. Soc. Rev. 2012, 41, 797.
– reference: N. Armaroli, V. Balzani, Angew. Chem. Int. Ed. 2007, 46, 52.
– reference: A. S. Arico, P. Bruce, B. Scrosati, J. Tarascon, W. V. Schalkwijk, Nat. Mater. 2005, 4, 366.
– reference: S. J. Peng, L. L. Li, Y. X. Hu, M. Srinivasan, F. Y. Cheng, J. Chen, S. Ramakrishna, ACS Nano 2015, 9, 1945.
– reference: K. Zhang, X. P. Han, Z. Hu, X. L. Zhang, Z. L. Tao, J. Chen, Chem. Soc. Rev. 2015, 44, 699.
– reference: J. F. Li, S. L. Xiong, X. W. Li, Y. T. Qian, Nanoscale 2013, 5, 2045.
– reference: P. Simon, Y. Gogotsi, B. Dunn, Science 2014, 343, 1210.
– reference: J. Gomez, E. E. Kalu, J. Power Sources 2013, 230, 218.
– reference: L. Yu, L. Zhang, H. B. Wu, X. W. Lou, Angew. Chem. Int. Ed. 2014, 126, 3785.
– reference: X. Lang, A. Hirata, T. Fujita, M. Chen, Nat. Nanotechnol. 2011, 6, 232.
– reference: L. Li, Y. Q. Zhang, F. Shi, Y. J. Zhang, J. H. Zhang, C. D. Gu, X. L. Wang, J. P. Tu, ACS Appl. Mater. Interfaces 2014, 6, 18040.
– reference: M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, Chem. Rev. 2013, 113, 5364.
– reference: L. Li, F. He, S. L. Gai, S. H. Zhang, P. Gao, M. L. Zhang, Y. J. Chen, P. P. Yang, CrystEngComm 2014, 16, 9873.
– reference: L. Zhang, G. Q. Zhang, H. B. Wu, L. Yu, X. W. Lou, Adv. Mater. 2013, 25, 2589.
– reference: L. Zhou, D. Y. Zhao, X. W. Lou, Adv. Mater. 2012, 24, 745.
– reference: C. L. Tang, X. Wei, Y. M. Jiang, X. Y. Wu, L. N. Han, K. X. Wang, J. S. Chen, J. Phys. Chem. C 2015, 119, 8465.
– reference: G. L. Wang, G. J. Shao, J. P. Du, Y. Zhang, Z. P. Ma, Mater. Chem. Phys. 2013, 138, 108.
– reference: J. G. Kim, S. H. Lee, Y. M. Kim, W. B. Kim, ACS Appl. Mater. Interfaces 2013, 5, 11321.
– reference: T. Zhu, H. B. Wu, Y. B. Wang, R. Xu, X. W. Lou, Adv. Energy Mater. 2012, 2, 1497.
– reference: W. F. Wei, X. W. Cui, W. X. Chen, D. G. Ivey, Chem. Soc. Rev. 2011, 40, 1697.
– reference: C. Wang, Y. Zhou, M. Y. Ge, X. B. Xu, Z. L. Zhang, J. Z. Jiang, J. Am. Chem. Soc. 2010, 132, 46.
– reference: H. L. Wang, L. F. Cui, Y. Yang, H. S. Casalongue, J. T. Robinson, Y. Y. Liang, Y. Cui, H. J. Dai, J. Am. Chem. Soc. 2010, 132, 13978.
– reference: S. Chen, J. W. Zhu, X. D. Wu, Q. F. Han, X. Wang, ACS Nano 2010, 4, 2822.
– reference: Q. Li, Z. L. Wang, G. R. Li, R. Guo, L. X. Ding, Y. X. Tong, Nano Lett. 2012, 12, 3803.
– reference: J. F. Li, S. L. Xiong, Y. R. Liu, Z. C. Ju, Y. T. Qian, ACS Appl. Mater. Interfaces 2013, 5, 981.
– reference: G. Q. Zhang, X. W. Lou, Angew. Chem. Int. Ed. 2014, 126, 9187.
– reference: Y. Xia, Z. Xiao, X. Dou, H. Huang, X. H. Lu, R. J. Yan, Y. P. Gan, W. J. Zhu, J. P. Tu, W. K. Zhang, X. Y. Tao, ACS Nano 2013, 7, 7083.
– volume: 10
  start-page: 1117
  year: 2008
  publication-title: Electrochem. Commun.
– volume: 6
  start-page: 18040
  year: 2014
  publication-title: ACS Appl. Mater. Interfaces
– volume: 230
  start-page: 218
  year: 2013
  publication-title: J. Power Sources
– volume: 5
  start-page: 2045
  year: 2013
  publication-title: Nanoscale
– volume: 5
  start-page: 11321
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 343
  start-page: 1210
  year: 2014
  publication-title: Science
– volume: 6
  start-page: 232
  year: 2011
  publication-title: Nat. Nanotechnol.
– volume: 6
  start-page: 2664
  year: 2013
  publication-title: Energy Environ. Sci.
– volume: 12
  start-page: 3803
  year: 2012
  publication-title: Nano Lett.
– volume: 23
  start-page: 1695
  year: 2011
  publication-title: Adv. Mater.
– volume: 16
  start-page: 9873
  year: 2014
  publication-title: CrystEngComm
– volume: 4
  start-page: 366
  year: 2005
  publication-title: Nat. Mater.
– volume: 7
  start-page: 845
  year: 2008
  publication-title: Nat. Mater.
– volume: 22
  start-page: E28
  year: 2010
  publication-title: Adv. Mater.
– volume: 407
  start-page: 496
  year: 2000
  publication-title: Nature
– volume: 138
  start-page: 108
  year: 2013
  publication-title: Mater. Chem. Phys.
– volume: 22
  start-page: 13328
  year: 2012
  publication-title: J. Mater. Chem.
– volume: 132
  start-page: 13978
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 797
  year: 2012
  publication-title: Chem. Soc. Rev.
– volume: 21
  start-page: 10206
  year: 2011
  publication-title: J. Mater. Chem.
– volume: 5
  start-page: 877
  year: 2013
  publication-title: Nanoscale
– volume: 3
  start-page: 31
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 115
  start-page: 22
  year: 2014
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 2822
  year: 2010
  publication-title: ACS Nano
– volume: 9
  start-page: 1945
  year: 2015
  publication-title: ACS Nano
– volume: 53
  start-page: 1488
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 44
  start-page: 699
  year: 2015
  publication-title: Chem. Soc. Rev.
– volume: 119
  start-page: 8465
  year: 2015
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 7083
  year: 2013
  publication-title: ACS Nano
– volume: 5
  start-page: 981
  year: 2013
  publication-title: ACS Appl. Mater. Interfaces
– volume: 126
  start-page: 9187
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 161
  start-page: A1922
  year: 2014
  publication-title: J. Electrochem. Soc.
– volume: 113
  start-page: 5364
  year: 2013
  publication-title: Chem. Rev.
– volume: 46
  start-page: 52
  year: 2007
  publication-title: Angew. Chem. Int. Ed.
– volume: 125
  start-page: 8805
  year: 2013
  publication-title: Angew. Chem. Int. Ed.
– volume: 2
  start-page: 1497
  year: 2012
  publication-title: Adv. Energy Mater.
– volume: 40
  start-page: 1697
  year: 2011
  publication-title: Chem. Soc. Rev.
– volume: 132
  start-page: 46
  year: 2010
  publication-title: J. Am. Chem. Soc.
– volume: 116
  start-page: 467
  year: 2014
  publication-title: Electrochim. Acta
– volume: 24
  start-page: 745
  year: 2012
  publication-title: Adv. Mater.
– volume: 20
  start-page: 479
  year: 2014
  publication-title: Ionics
– volume: 25
  start-page: 2589
  year: 2013
  publication-title: Adv. Mater.
– volume: 1
  start-page: 338
  year: 2014
  publication-title: Mater. Horiz.
– volume: 2
  start-page: 16480
  year: 2014
  publication-title: J. Mater. Chem. A
– volume: 126
  start-page: 3785
  year: 2014
  publication-title: Angew. Chem. Int. Ed.
– volume: 22
  start-page: 347
  year: 2010
  publication-title: Adv. Mater.
– ident: e_1_2_5_9_1
  doi: 10.1039/C4CS00218K
– ident: e_1_2_5_26_1
  doi: 10.1002/ange.201404604
– ident: e_1_2_5_44_1
  doi: 10.1002/ange.201400226
– ident: e_1_2_5_31_1
  doi: 10.1039/C2NR33326K
– ident: e_1_2_5_13_1
  doi: 10.1021/nn4023894
– ident: e_1_2_5_32_1
  doi: 10.1021/am403546s
– ident: e_1_2_5_35_1
  doi: 10.1021/jp512795g
– ident: e_1_2_5_2_1
  doi: 10.1002/anie.200602373
– ident: e_1_2_5_5_1
  doi: 10.1002/anie.201303971
– ident: e_1_2_5_21_1
  doi: 10.1039/c2nr33576j
– ident: e_1_2_5_46_1
  doi: 10.1021/ja909321d
– ident: e_1_2_5_20_1
  doi: 10.1039/c2jm32261g
– ident: e_1_2_5_30_1
  doi: 10.1021/nn506851x
– ident: e_1_2_5_16_1
  doi: 10.1002/adma.200902175
– ident: e_1_2_5_39_1
  doi: 10.1016/j.electacta.2013.10.089
– ident: e_1_2_5_1_1
  doi: 10.1038/nmat1368
– ident: e_1_2_5_6_1
  doi: 10.1039/C1CS15060J
– ident: e_1_2_5_19_1
  doi: 10.1016/j.elecom.2008.05.026
– ident: e_1_2_5_27_1
  doi: 10.1038/nnano.2007.411
– ident: e_1_2_5_34_1
  doi: 10.1039/c4mh00004h
– ident: e_1_2_5_8_1
  doi: 10.1038/35035045
– ident: e_1_2_5_33_1
  doi: 10.1002/ange.201304355
– ident: e_1_2_5_24_1
  doi: 10.1039/C4CE01323A
– ident: e_1_2_5_4_1
  doi: 10.1021/cr3001884
– ident: e_1_2_5_40_1
  doi: 10.1126/science.1249625
– ident: e_1_2_5_43_1
  doi: 10.1002/aenm.201200269
– ident: e_1_2_5_37_1
  doi: 10.1149/2.0971412jes
– ident: e_1_2_5_7_1
  doi: 10.1002/adma.201003587
– ident: e_1_2_5_23_1
  doi: 10.1039/C4TA03123G
– ident: e_1_2_5_11_1
  doi: 10.1038/nnano.2011.13
– ident: e_1_2_5_38_1
  doi: 10.1021/am5048653
– ident: e_1_2_5_3_1
  doi: 10.1038/nmat2297
– ident: e_1_2_5_36_1
  doi: 10.1016/j.matchemphys.2012.11.024
– ident: e_1_2_5_29_1
  doi: 10.1021/nl301748m
– ident: e_1_2_5_18_1
  doi: 10.1039/C3EE41181H
– ident: e_1_2_5_45_1
  doi: 10.1021/ja105296a
– ident: e_1_2_5_12_1
  doi: 10.1021/nn901311t
– ident: e_1_2_5_25_1
  doi: 10.1002/adma.200903328
– ident: e_1_2_5_10_1
  doi: 10.1039/C0CS00127A
– ident: e_1_2_5_28_1
  doi: 10.1002/adma.201300105
– ident: e_1_2_5_15_1
  doi: 10.1021/am3026294
– ident: e_1_2_5_22_1
  doi: 10.1002/adma.201104407
– ident: e_1_2_5_42_1
  doi: 10.1016/j.electacta.2013.11.081
– ident: e_1_2_5_14_1
  doi: 10.1007/s11581-013-1009-8
– ident: e_1_2_5_17_1
  doi: 10.1039/c0jm04465b
– ident: e_1_2_5_41_1
  doi: 10.1016/j.jpowsour.2012.12.069
SSID ssj0017734
Score 2.5183291
Snippet In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn‐based (Co‐Mn, Ni‐Mn, Cu‐Mn, Zn‐Mn) mixed metal oxides....
In this work, a simple strategy is developed to synthesize hierarchical tubular structures (HTS) of Mn-based (Co-Mn, Ni-Mn, Cu-Mn, Zn-Mn) mixed metal oxides....
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5184
SubjectTerms Carbon fibers
Electrochemical analysis
Electrodes
hierarchical tubular structures
hybrid supercapacitors
Lithium batteries
lithium ion batteries
Manganese
Metal oxides
mixed metal oxides
Nanostructure
Strategy
Title Hierarchical Tubular Structures Composed of Mn-Based Mixed Metal Oxide Nanoflakes with Enhanced Electrochemical Properties
URI https://api.istex.fr/ark:/67375/WNG-SDRR13CK-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadfm.201501974
https://www.proquest.com/docview/1744695170
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fT9swELcQvLCH8WebVjaQkabxFIgdx2kfgbZUTGWogNY3y3ZsUbVKJkqlauKBj8Bn5JNwl7RZizRN2l6iRLKVxL47_3x3_h0hX0LjXGSNCKSzaSAsYDgDchTAWsy4EXEoNDr0uxeycyPO-3F_4RR_yQ9ROdxQMwp7jQquzfjoN2moTj2eJAdAwwATgxFmkUTy_Gav4o9iSVKGlSXDBC_Wn7M2hvxoufvSqrSGAzxdgpyLwLVYedobRM-_uUw4GR5O7s2h_fWKzvF_fmqTvJ3BUnpcytEWWXHZNnmzQFb4jjx0BnhYuaidMqLXE4MJrPSq4J-dwKadomnJxy6luafd7Pnx6UTjU3cwxasDlE-_Twepo2DRcz_SQ-iDbmDaym6LPATaKmvy2BmJAb3ESMEdUr6-Jzft1vVpJ5jVbggsIBwRYDgS5tmEvm4bUifSmAY3Wvh6aH3EY2s5N5ZbAIiJl7aho4ZhQgPg8TJO0jj6QFazPHMfCQUQ4h3uK51wQlhmAOFq6dB9WzeW8RoJ5nOn7IzYHOtrjFRJycwVjqqqRrVGDqr2P0tKjz-2_FqIQtVM3w0xES6J1Y-LM3XV7PVYdPpN9Wpkfy4rCtQTYy46c_lkrGDDJySg2CSsEV7M_F_eqY6b7W71tPMvnT6Rdbwv0xQ_k1UQBLcL0One7BXq8QKDdxGA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwELdgewAe-D9R_hoJwVO22HGc9nFs7QpbCuo6sTfLdmxRtUrQtkoV4oGPwGfkk3DnNNmKhJDgJZIjW4ntO_vnu_PvCHkVG-cSa0QknS0iYQHDGZCjCPZixo1IY6HRoJ-P5PBEvD9Nm2hCvAtT80O0BjfUjLBeo4KjQXrnkjVUFx6vkgOiYQCKr5PN4KRDXDRuGaRYltWOZckwxIudNryNMd9Zb7-2L23iEC_XQOdV6Br2nsEdYpq_rkNOZtuLC7Ntv_5G6Phf3bpLbq-QKd2tRekeuebK--TWFb7CB-TbcIr3lUP6lDmdLAzGsNLjQEG7gHM7xdWlOncFrTzNy5_ff7zVWMqnS3w6APr0w3JaOAqLeuXnegZt0BJM--XnEIpA-3VaHrviMaAf0VlwhqyvD8nJoD_ZG0ar9A2RBZAjIvRIwlSb2HdtT-pMGtPjRgvfja1PeGot58ZyCxgx89L2dNIzTGjAPF6mWZEmW2SjrEr3iFDAId7h0dIJJ4RlBkCulg4tuF1jGe-QqJk8ZVfc5phiY65qVmaucFRVO6od8qat_6Vm9fhjzddBFtpq-myGsXBZqj6NDtTx_njMkr1DNe6Ql42wKNBQdLvo0lWLcwVnPiEByGZxh_Aw9X_5ptrdH-Rt6fG_NHpBbgwn-ZE6ejc6fEJu4vs6avEp2QChcM8ASV2Y50FXfgGagRWe
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fb9MwED_BJiF42PgrOv4ZCcFTtsRxnPZxW1sKo2XqNtE3y3ZsUbVKpm2VKsQDH4HPuE-yu6QNLRJCgpdIiWwlse98P9-dfwfwJjTOxdaIQDqbBcIihjMoRwHa4ogbkYRCk0O_P5C9M_FxlIxWTvFX_BC1w400o1yvScHPM7_3izRUZ55OkiOgiRAT34ZNIdFWEiwa1gRSUZpWcWUZUYZXNFrSNoZ8b73_mlnapBGer2HOVeRamp7uNujlR1cZJ5Pd2ZXZtd9-43P8n7-6D1sLXMr2K0F6ALdc_hDurbAVPoLvvTGdVi6Lp0zZ6cxQBis7KQloZ7hrZ7S2FJcuY4Vn_fz6x88DTXf98ZyuDmE--zwfZ47hkl74qZ5gH_IDs07-tUxEYJ2qKI9dsBiwYwoVXBDn62M463ZOD3vBonhDYBHiiIDikTjRJvRN25I6lca0uNHCN0PrY55Yy7mx3CJCTL20LR23TCQ0Ih4vkzRL4iewkRe5ewoMUYh3tLF0wglhI4MQV0tH_tumsRFvQLCcO2UXzOZUYGOqKk5mrmhUVT2qDXhXtz-vOD3-2PJtKQp1M30xoUy4NFFfBu_VSXs4jOLDIzVswOulrCjUTwq66NwVs0uFOz4hEcamYQN4OfN_eafab3f79d3Ov3R6BXeO21316cPg6BncpcdVyuJz2ECZcC8QRl2Zl6Wm3ABGXxRN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Tubular+Structures+Composed+of+Mn%E2%80%90Based+Mixed+Metal+Oxide+Nanoflakes+with+Enhanced+Electrochemical+Properties&rft.jtitle=Advanced+functional+materials&rft.au=Guo%2C+Yan&rft.au=Yu%2C+Le&rft.au=Wang%2C+Cheng%E2%80%90Yang&rft.au=Lin%2C+Zhan&rft.date=2015-08-01&rft.issn=1616-301X&rft.eissn=1616-3028&rft.volume=25&rft.issue=32&rft.spage=5184&rft.epage=5189&rft_id=info:doi/10.1002%2Fadfm.201501974&rft.externalDBID=10.1002%252Fadfm.201501974&rft.externalDocID=ADFM201501974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1616-301X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1616-301X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1616-301X&client=summon