Secure State Estimation for Artificial Neural Networks With Unknown-But-Bounded Noises: A Homomorphic Encryption Scheme
This article is concerned with the secure state estimation problem for artificial neural networks (ANNs) subject to unknown-but-bounded noises, where sensors and the remote estimator are connected via open and bandwidth-limited communication networks. Using the encoding-decoding mechanism (EDM) and...
Saved in:
| Published in | IEEE transaction on neural networks and learning systems Vol. 36; no. 4; pp. 6780 - 6791 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2162-237X 2162-2388 2162-2388 |
| DOI | 10.1109/TNNLS.2024.3389873 |
Cover
| Abstract | This article is concerned with the secure state estimation problem for artificial neural networks (ANNs) subject to unknown-but-bounded noises, where sensors and the remote estimator are connected via open and bandwidth-limited communication networks. Using the encoding-decoding mechanism (EDM) and the Paillier encryption technique, a novel homomorphic encryption scheme (HES) is introduced, which aims to ensure the secure transmission of measurement information within communication networks that are constrained by bandwidth. Under this encoding-decoding-based HES, the data being transmitted can be encrypted into ciphertexts comprising finite bits. The emphasis of this research is placed on the development of a secure set-membership state estimation algorithm, which allows for the computation of estimates using encrypted data without the need for decryption, thereby ensuring data security throughout the entire estimation process. Taking into account the unknown-but-bounded noises, the underlying ANN, and the adopted HES, sufficient conditions are determined for the existence of the desired ellipsoidal set. The related secure state estimator gains are then derived by addressing optimization problems using the Lagrange multiplier method. Lastly, an example is presented to verify the effectiveness of the proposed secure state estimation approach. |
|---|---|
| AbstractList | This article is concerned with the secure state estimation problem for artificial neural networks (ANNs) subject to unknown-but-bounded noises, where sensors and the remote estimator are connected via open and bandwidth-limited communication networks. Using the encoding-decoding mechanism (EDM) and the Paillier encryption technique, a novel homomorphic encryption scheme (HES) is introduced, which aims to ensure the secure transmission of measurement information within communication networks that are constrained by bandwidth. Under this encoding-decoding-based HES, the data being transmitted can be encrypted into ciphertexts comprising finite bits. The emphasis of this research is placed on the development of a secure set-membership state estimation algorithm, which allows for the computation of estimates using encrypted data without the need for decryption, thereby ensuring data security throughout the entire estimation process. Taking into account the unknown-but-bounded noises, the underlying ANN, and the adopted HES, sufficient conditions are determined for the existence of the desired ellipsoidal set. The related secure state estimator gains are then derived by addressing optimization problems using the Lagrange multiplier method. Lastly, an example is presented to verify the effectiveness of the proposed secure state estimation approach.This article is concerned with the secure state estimation problem for artificial neural networks (ANNs) subject to unknown-but-bounded noises, where sensors and the remote estimator are connected via open and bandwidth-limited communication networks. Using the encoding-decoding mechanism (EDM) and the Paillier encryption technique, a novel homomorphic encryption scheme (HES) is introduced, which aims to ensure the secure transmission of measurement information within communication networks that are constrained by bandwidth. Under this encoding-decoding-based HES, the data being transmitted can be encrypted into ciphertexts comprising finite bits. The emphasis of this research is placed on the development of a secure set-membership state estimation algorithm, which allows for the computation of estimates using encrypted data without the need for decryption, thereby ensuring data security throughout the entire estimation process. Taking into account the unknown-but-bounded noises, the underlying ANN, and the adopted HES, sufficient conditions are determined for the existence of the desired ellipsoidal set. The related secure state estimator gains are then derived by addressing optimization problems using the Lagrange multiplier method. Lastly, an example is presented to verify the effectiveness of the proposed secure state estimation approach. This article is concerned with the secure state estimation problem for artificial neural networks (ANNs) subject to unknown-but-bounded noises, where sensors and the remote estimator are connected via open and bandwidth-limited communication networks. Using the encoding-decoding mechanism (EDM) and the Paillier encryption technique, a novel homomorphic encryption scheme (HES) is introduced, which aims to ensure the secure transmission of measurement information within communication networks that are constrained by bandwidth. Under this encoding-decoding-based HES, the data being transmitted can be encrypted into ciphertexts comprising finite bits. The emphasis of this research is placed on the development of a secure set-membership state estimation algorithm, which allows for the computation of estimates using encrypted data without the need for decryption, thereby ensuring data security throughout the entire estimation process. Taking into account the unknown-but-bounded noises, the underlying ANN, and the adopted HES, sufficient conditions are determined for the existence of the desired ellipsoidal set. The related secure state estimator gains are then derived by addressing optimization problems using the Lagrange multiplier method. Lastly, an example is presented to verify the effectiveness of the proposed secure state estimation approach. |
| Author | Zhu, Kaiqun Ding, Derui Xu, Cheng-Zhong Dong, Hongli Wang, Zidong |
| Author_xml | – sequence: 1 givenname: Kaiqun orcidid: 0000-0002-0658-0806 surname: Zhu fullname: Zhu, Kaiqun email: zkqun@163.com organization: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China – sequence: 2 givenname: Zidong orcidid: 0000-0002-9576-7401 surname: Wang fullname: Wang, Zidong email: Zidong.Wang@brunel.ac.uk organization: Department of Computer Science, Brunel University London, Uxbridge, Middlesex, U.K – sequence: 3 givenname: Derui orcidid: 0000-0001-7402-6682 surname: Ding fullname: Ding, Derui email: deruiding2010@usst.edu.cn organization: Department of Control Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China – sequence: 4 givenname: Hongli orcidid: 0000-0001-8531-6757 surname: Dong fullname: Dong, Hongli email: shiningdhl@vip.126.com organization: Artificial Intelligence Energy Research Institute, Northeast Petroleum University, Daqing, China – sequence: 5 givenname: Cheng-Zhong orcidid: 0000-0001-9480-0356 surname: Xu fullname: Xu, Cheng-Zhong email: czxu@um.edu.mo organization: Department of Computer and Information Science, State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38656844$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1uEzEUhS1U1JbSF0AIeclmgv9mxsMurQJFitJFWtGd5fFcK6YzdrA9ivr2TJMUIRa1F_fq6nxncc47dOKDB4Q-UDKjlDRf7lar5XrGCBMzzmUja_4GnTNasYJxKU_-7vXDGbpM6ReZXkXKSjSn6IzLqqykEOdotwYzRsDrrDPgRcpu0NkFj22IeB6zs8443eMVjHE_8i7Ex4R_urzB9_7Rh50vrsZcXIXRd9DhVXAJ0lc8xzdhmH7cbpzBC2_i03ZvvDYbGOA9emt1n-DyOC_Q_bfF3fVNsbz9_uN6viwMb6pcWGu41dR0tC4Z11Q3Xcs73taUNVUroBSMEdPpRkzH0ras5DVYXnJr-XSn_AJ9PvhuY_g9QspqcMlA32sPYUyKE1GVlDJBJumno3RsB-jUNk5ZxCf1EtYkkAeBiSGlCFYZl_dp5ahdryhRz9WofTXquRp1rGZC2X_oi_ur0McD5ADgH6AktRSS_wEzv5uD |
| CODEN | ITNNAL |
| CitedBy_id | crossref_primary_10_1007_s11277_024_11565_7 |
| Cites_doi | 10.1080/21642583.2023.2173682 10.1109/TCYB.2020.3025932 10.1016/j.neucom.2022.11.079 10.1080/21642583.2022.2158959 10.1080/00207721.2020.1871528 10.1007/978-0-8176-4606-6 10.53941/ijndi.2023.100015 10.1016/j.neucom.2023.01.066 10.1109/TNNLS.2021.3102127 10.1109/TII.2020.3030709 10.1109/TAC.2013.2283096 10.1080/00207721.2022.2055192 10.1109/TCYB.2022.3165041 10.1109/JPROC.2016.2558521 10.1109/TIE.2003.812470 10.1109/TNNLS.2021.3053652 10.1109/TCYB.2022.3209793 10.1016/j.automatica.2021.110154 10.1109/TNNLS.2022.3192346 10.1109/TCYB.2022.3202486 10.1109/MCS.2021.3062956 10.1109/TNSE.2023.3237639 10.53941/ijndi0201007 10.1080/00207721.2022.2122904 10.1016/j.jfranklin.2021.02.035 10.1007/3-540-48910-X_16 10.1109/TAC.2021.3069388 10.1016/j.neucom.2022.10.020 10.1016/j.neucom.2018.02.060 10.1080/21642583.2023.2247007 10.1016/j.automatica.2020.109182 10.53941/ijndi.2023.100018 10.1109/TCYB.2020.3003752 10.1109/tcyb.2023.3239368 10.1109/TCSII.2021.3073724 10.1109/TAC.2022.3140384 10.1016/j.neucom.2022.06.074 10.1109/TNNLS.2022.3174880 10.1080/00207721.2023.2241957 10.1080/00207721.2023.2216274 10.1016/j.inffus.2019.07.008 10.1109/TII.2019.2929747 10.1007/s12555-021-0676-x 10.1016/S1474-6670(17)58301-9 10.1038/s41467-019-12490-1 10.1109/TKDE.2022.3176466 10.1109/TCYB.2021.3049858 10.53941/ijndi0201003 10.1016/j.neunet.2022.02.028 10.1016/j.ins.2022.10.018 10.1145/3561387 10.1109/TAC.2022.3217022 10.1016/j.automatica.2017.10.022 10.1109/TSMC.2020.3035173 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TNNLS.2024.3389873 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Digital Libary (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2162-2388 |
| EndPage | 6791 |
| ExternalDocumentID | 38656844 10_1109_TNNLS_2024_3389873 10507848 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: Alexander von Humboldt Foundation of Germany funderid: 10.13039/100005156 – fundername: Science and Technology Development Fund, Macau, SAR grantid: 0123/2022/AFJ; 0081/2022/A2 – fundername: Royal Society of the U.K. funderid: 10.13039/501100000288 – fundername: Shanghai Pujiang Program grantid: 22PJ1411700 – fundername: National Natural Science Foundation of China grantid: 61933007; U21A2019 funderid: 10.13039/501100001809 – fundername: Hainan Province Science and Technology Special Fund of China grantid: ZDYF2022SHFZ105 – fundername: University of Macau (UM) Talent Program grantid: UMTP2023-PF01-0046 – fundername: China Postdoctoral Science Foundation grantid: 2023M732322 funderid: 10.13039/501100002858 |
| GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c396t-ffc3fa1cd17523a1a9db3d3b71296b4e54220cda94d3b5fb2537ef353ff30cd13 |
| IEDL.DBID | RIE |
| ISSN | 2162-237X 2162-2388 |
| IngestDate | Sun Sep 28 07:18:32 EDT 2025 Sun Apr 06 01:21:23 EDT 2025 Thu Apr 24 23:00:07 EDT 2025 Wed Oct 01 06:34:52 EDT 2025 Wed Aug 27 02:04:58 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-ffc3fa1cd17523a1a9db3d3b71296b4e54220cda94d3b5fb2537ef353ff30cd13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9576-7401 0000-0001-9480-0356 0000-0001-7402-6682 0000-0002-0658-0806 0000-0001-8531-6757 |
| PMID | 38656844 |
| PQID | 3046511240 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | pubmed_primary_38656844 crossref_citationtrail_10_1109_TNNLS_2024_3389873 proquest_miscellaneous_3046511240 ieee_primary_10507848 crossref_primary_10_1109_TNNLS_2024_3389873 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transaction on neural networks and learning systems |
| PublicationTitleAbbrev | TNNLS |
| PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref12 Durieu (ref15) 1996; 29 ref56 Xiao (ref39) 2023; 528 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 Paillier (ref33) 1999 ref19 Yi (ref43) 2023; 54 ref51 ref50 ref46 ref48 ref44 Xu (ref40) 2022; 138 ref49 ref8 Yuan (ref45) 2019; 10 ref7 ref9 ref4 ref6 ref5 Liu (ref30) 2022; 150 ref34 ref37 Liu (ref29) 2018; 291 ref36 ref31 ref32 ref2 ref1 ref38 Zhang (ref47) 2021; 358 Yang (ref42) 2022; 503 Boyd (ref3) 1994 ref24 ref23 ref25 ref20 ref22 Yang (ref41) 2022; 53 Gao (ref18) 2023; 21 Reddy (ref35) 2023; 11 ref28 ref27 Huang (ref21) 2020; 121 Li (ref26) 2023; 54 |
| References_xml | – ident: ref16 doi: 10.1080/21642583.2023.2173682 – ident: ref37 doi: 10.1109/TCYB.2020.3025932 – ident: ref24 doi: 10.1016/j.neucom.2022.11.079 – ident: ref20 doi: 10.1080/21642583.2022.2158959 – volume: 54 start-page: 2875 issue: 15 year: 2023 ident: ref26 article-title: Dynamic event-triggered distributed filtering design for interval type-2 fuzzy systems over sensor networks under deception attacks publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2020.1871528 – ident: ref2 doi: 10.1007/978-0-8176-4606-6 – ident: ref52 doi: 10.53941/ijndi.2023.100015 – volume: 528 start-page: 217 year: 2023 ident: ref39 article-title: Anti-synchronization for Markovian neural networks via asynchronous intermittent control publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.01.066 – ident: ref55 doi: 10.1109/TNNLS.2021.3102127 – ident: ref5 doi: 10.1109/TII.2020.3030709 – ident: ref23 doi: 10.1109/TAC.2013.2283096 – volume: 53 start-page: 2742 issue: 13 year: 2022 ident: ref41 article-title: L2-L∞ state estimation for continuous stochastic delayed neural networks via memory event-triggering strategy publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2022.2055192 – ident: ref51 doi: 10.1109/TCYB.2022.3165041 – ident: ref56 doi: 10.1109/JPROC.2016.2558521 – ident: ref32 doi: 10.1109/TIE.2003.812470 – ident: ref12 doi: 10.1109/TNNLS.2021.3053652 – ident: ref19 doi: 10.1109/TCYB.2022.3209793 – volume: 138 year: 2022 ident: ref40 article-title: On extended state estimation for nonlinear uncertain systems with round-robin protocol publication-title: Automatica doi: 10.1016/j.automatica.2021.110154 – ident: ref50 doi: 10.1109/TNNLS.2022.3192346 – ident: ref7 doi: 10.1109/TCYB.2022.3202486 – ident: ref11 doi: 10.1109/MCS.2021.3062956 – ident: ref49 doi: 10.1109/TNSE.2023.3237639 – ident: ref38 doi: 10.53941/ijndi0201007 – ident: ref53 doi: 10.1080/00207721.2022.2122904 – volume: 358 start-page: 3554 issue: 7 year: 2021 ident: ref47 article-title: Event-triggered H∞ control for networked spar-type floating production platforms with active tuned heave plate mechanisms and deception attacks publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2021.02.035 – volume-title: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes year: 1999 ident: ref33 doi: 10.1007/3-540-48910-X_16 – ident: ref44 doi: 10.1109/TAC.2021.3069388 – ident: ref8 doi: 10.1016/j.neucom.2022.10.020 – volume: 291 start-page: 35 year: 2018 ident: ref29 article-title: Quantized state estimation for neural networks with cyber attacks and hybrid triggered communication scheme publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.060 – ident: ref17 doi: 10.1080/21642583.2023.2247007 – volume: 121 year: 2020 ident: ref21 article-title: Secure remote state estimation against linear man-in-the-middle attacks using watermarking publication-title: Automatica doi: 10.1016/j.automatica.2020.109182 – ident: ref22 doi: 10.53941/ijndi.2023.100018 – ident: ref28 doi: 10.1109/TCYB.2020.3003752 – ident: ref27 doi: 10.1109/tcyb.2023.3239368 – ident: ref34 doi: 10.1109/TCSII.2021.3073724 – ident: ref54 doi: 10.1109/TAC.2022.3140384 – volume: 503 start-page: 162 year: 2022 ident: ref42 article-title: Event-triggered privacy-preserving bipartite consensus for multi-agent systems based on encryption publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.06.074 – volume: 11 issue: 1 year: 2023 ident: ref35 article-title: Hybrid AC/DC control techniques with improved harmonic conditions using DBN based fuzzy controller and compensator modules publication-title: Syst. Sci. Control Eng. – ident: ref10 doi: 10.1109/TNNLS.2022.3174880 – ident: ref14 doi: 10.1080/00207721.2023.2241957 – volume: 54 start-page: 2059 issue: 9 year: 2023 ident: ref43 article-title: Probability-guaranteed state estimation for nonlinear delayed systems under mixed attacks publication-title: Int. J. Syst. Sci. doi: 10.1080/00207721.2023.2216274 – ident: ref4 doi: 10.1016/j.inffus.2019.07.008 – ident: ref48 doi: 10.1109/TII.2019.2929747 – volume: 21 start-page: 684 issue: 2 year: 2023 ident: ref18 article-title: Robust resilient H∞ state estimation for time-varying recurrent neural networks subject to probabilistic quantization under variance constraint publication-title: Int. J. Control, Autom. Syst. doi: 10.1007/s12555-021-0676-x – volume: 29 start-page: 3975 issue: 1 year: 1996 ident: ref15 article-title: Trace versus determinant in ellipsoidal outer-bounding, with application to state estimation publication-title: IFAC Proc. Volumes doi: 10.1016/S1474-6670(17)58301-9 – volume: 10 start-page: 1 issue: 1 year: 2019 ident: ref45 article-title: Data driven discovery of cyber physical systems publication-title: Nature Commun. doi: 10.1038/s41467-019-12490-1 – ident: ref31 doi: 10.1109/TKDE.2022.3176466 – ident: ref36 doi: 10.1109/TCYB.2021.3049858 – ident: ref25 doi: 10.53941/ijndi0201003 – volume-title: System and Control Theory year: 1994 ident: ref3 article-title: Linear matrix inequal – volume: 150 start-page: 181 year: 2022 ident: ref30 article-title: Synchronization and state estimation for discrete-time coupled delayed complex-valued neural networks with random system parameters publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.02.028 – ident: ref9 doi: 10.1016/j.ins.2022.10.018 – ident: ref6 doi: 10.1145/3561387 – ident: ref46 doi: 10.1109/TAC.2022.3217022 – ident: ref1 doi: 10.1016/j.automatica.2017.10.022 – ident: ref13 doi: 10.1109/TSMC.2020.3035173 |
| SSID | ssj0000605649 |
| Score | 2.5423927 |
| Snippet | This article is concerned with the secure state estimation problem for artificial neural networks (ANNs) subject to unknown-but-bounded noises, where sensors... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 6780 |
| SubjectTerms | Artificial neural networks Artificial neural networks (ANNs) Bandwidth bandwidth constraints Cryptography Encryption homomorphic encryption scheme (HES) Noise secure state estimation Security set-membership state estimation State estimation |
| Title | Secure State Estimation for Artificial Neural Networks With Unknown-But-Bounded Noises: A Homomorphic Encryption Scheme |
| URI | https://ieeexplore.ieee.org/document/10507848 https://www.ncbi.nlm.nih.gov/pubmed/38656844 https://www.proquest.com/docview/3046511240 |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Libary (IEL) customDbUrl: eissn: 2162-2388 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000605649 issn: 2162-237X databaseCode: RIE dateStart: 20120101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT1xoCwUWKDISN-QlsR0n4dZWW60Q5EJX7C3yY6yuoAnqJqrg1zN2khVUKkI5JLLsPDTj-JvxzHyEvE01IG7zmnknNQsrNCsRZTOXSu64Lb0WIcH5c6WWK_lxna3HZPWYCwMAMfgM5uEy7uW71vbBVYYzHNFLIYs9spcXakjW2jlUEgTmKsJdnirOuMjXU5JMUr6_rKpPX9Ac5HKORhka2oFAJ_BdqkLKv9akSLJyP96M687FAammNx7CTb7N-87M7a87xRz_-5MOyaMRgdLTQWWOyANoHpODid2BjpP9CbmNrnigEY7SBf4KhixHijA3jh5qT9BQ3iOeYjz5ln7ddFd01QRnXcPO-o6dBeYmcLRqN1vYfqCndNle44ES3li6aOzNz_jfwkdfwTUck9XF4vJ8yUaaBmZFqTrmvRVep9YhEuFCp7p0RjhhcoQSykjIJOeJdbqU2Jh5wzORgxeZ8F5geyqekv2mbeA5oSYHxGumMKnJpAXsLhVYpbUDm_vczUg6Caq2Yw3zQKXxvY62TFLWUc51kHM9ynlG3u3G_BgqePyz93EQ0h89B_nMyJtJIWqcgGFXRTfQ9ts6bC0H1CqTGXk2aMpu9KRgL-6560vykAc-4RgJ9Irsdzc9nCDI6czrqNy_AX1F954 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHOBCCxS6UMBI3JCXxHaSTW9ttdUC21zYFXuL_BirK9oEdROh9tczdpIVIBWhHBJZdh6acfzNeGY-Qt7HChC3OcWclYr5FZrliLKZjSW33OROCZ_gfF6ks6X8vEpWfbJ6yIUBgBB8BmN_GfbybW1a7yrDGY7oZSIn98mDREqZdOlaW5dKhNA8DYCXxylnXGSrIU0myj8uimL-FQ1CLsdolqGp7Sl0PONlOpHyj1Up0KzcjTjDynO2S4rhnbuAk-_jttFjc_tXOcf__qg98rjHoPS4U5on5B5UT8nuwO9A--n-jPwMznigAZDSKf4MujxHikA3jO6qT1Bf4COcQkT5hn5bNxd0WXl3XcVO2oadeO4msLSo1xvYHNFjOquv8EAZrw2dVub6Jvy58NEXcAX7ZHk2XZzOWE_UwIzI04Y5Z4RTsbGIRbhQscqtFlboDMFEqiUkkvPIWJVLbEyc5onIwIlEOCewPRbPyU5VV3BAqM4AEZue6Fgn0gB2lymYVCkLJnOZHZF4EFRp-irmnkzjsgzWTJSXQc6ll3PZy3lEPmzH_OhqePyz974X0m89O_mMyLtBIUqcgn5fRVVQt5vSby573CqjEXnRacp29KBgL--461vycLY4n5fzT8WXV-QR9-zCIS7okOw01y28RsjT6DdB0X8Bl1b66w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Secure+State+Estimation+for+Artificial+Neural+Networks+With+Unknown-But-Bounded+Noises%3A+A+Homomorphic+Encryption+Scheme&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Zhu%2C+Kaiqun&rft.au=Wang%2C+Zidong&rft.au=Ding%2C+Derui&rft.au=Dong%2C+Hongli&rft.date=2025-04-01&rft.pub=IEEE&rft.issn=2162-237X&rft.volume=36&rft.issue=4&rft.spage=6780&rft.epage=6791&rft_id=info:doi/10.1109%2FTNNLS.2024.3389873&rft_id=info%3Apmid%2F38656844&rft.externalDocID=10507848 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |