An approximate method via Taylor series for stochastic functional differential equations

The subject of this paper is an analytic approximate method for stochastic functional differential equations whose coefficients are functionals, sufficiently smooth in the sense of Fréchet derivatives. The approximate equations are defined on equidistant partitions of the time interval, and their co...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical analysis and applications Vol. 363; no. 1; pp. 128 - 137
Main Authors MILOSEVIC, Marija, JOVANOVIC, Miljana, JANKOVIC, Svetlana
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.03.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0022-247X
1096-0813
DOI10.1016/j.jmaa.2009.07.061

Cover

Abstract The subject of this paper is an analytic approximate method for stochastic functional differential equations whose coefficients are functionals, sufficiently smooth in the sense of Fréchet derivatives. The approximate equations are defined on equidistant partitions of the time interval, and their coefficients are general Taylor expansions of the coefficients of the initial equation. It will be shown that the approximate solutions converge in the L p -norm and with probability one to the solution of the initial equation, and also that the rate of convergence increases when degrees in Taylor expansions increase, analogously to real analysis.
AbstractList The subject of this paper is an analytic approximate method for stochastic functional differential equations whose coefficients are functionals, sufficiently smooth in the sense of Fréchet derivatives. The approximate equations are defined on equidistant partitions of the time interval, and their coefficients are general Taylor expansions of the coefficients of the initial equation. It will be shown that the approximate solutions converge in the L p -norm and with probability one to the solution of the initial equation, and also that the rate of convergence increases when degrees in Taylor expansions increase, analogously to real analysis.
Author Janković, Svetlana
Jovanović, Miljana
Milošević, Marija
Author_xml – sequence: 1
  givenname: Marija
  surname: MILOSEVIC
  fullname: MILOSEVIC, Marija
  organization: University of Niš, Faculty of Science and Mathematics, Višegradska 33, 18000 Niš, Serbia
– sequence: 2
  givenname: Miljana
  surname: JOVANOVIC
  fullname: JOVANOVIC, Miljana
  organization: University of Niš, Faculty of Science and Mathematics, Višegradska 33, 18000 Niš, Serbia
– sequence: 3
  givenname: Svetlana
  surname: JANKOVIC
  fullname: JANKOVIC, Svetlana
  organization: University of Niš, Faculty of Science and Mathematics, Višegradska 33, 18000 Niš, Serbia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22581073$$DView record in Pascal Francis
BookMark eNp9kE1LxDAQhoMouH78AU-9eGydJG3TghdZ_ALBi4K3MJtO2JRuW5O46L-3dcWDhz1lMjzPwPuesMN-6ImxCw4ZB15etVm7QcwEQJ2ByqDkB2zBoS5TqLg8ZAsAIVKRq7djdhJCC8B5ofiCvd30CY6jHz7dBiMlG4rroUm2DpMX_OoGnwTyjkJi5zEOZo0hOpPYj95EN_TYJY2zljz10U0fev_AeR_O2JHFLtD573vKXu9uX5YP6dPz_ePy5ik1si5jahtZyiIXViHPV7moqCLeoJXGUI4qNxJyW9QoVCNB1qI2K1TlRKOCShglT9nl7u6IwWBnPfbGBT36KY__0kIUFQclJ07sOOOHEDzZP4SDnjvUrZ471HOHGpSeOpyk6p9kXPzJFz26br96vVNpCr915HUwjnpDjfNkom4Gt0__BpmfkLs
CODEN JMANAK
CitedBy_id crossref_primary_10_1016_j_mcm_2011_05_033
crossref_primary_10_1016_j_cam_2015_11_019
crossref_primary_10_1007_s10092_024_00594_0
crossref_primary_10_1016_j_amc_2014_07_042
crossref_primary_10_1016_j_amc_2015_11_026
crossref_primary_10_1016_j_cam_2011_04_009
crossref_primary_10_1016_j_mcm_2012_09_016
crossref_primary_10_2478_auom_2021_0037
crossref_primary_10_1080_07362994_2012_628907
crossref_primary_10_1016_j_amc_2014_03_132
crossref_primary_10_1016_j_amc_2018_11_037
crossref_primary_10_1007_s10092_019_0306_7
crossref_primary_10_1186_1687_1847_2013_230
crossref_primary_10_1080_07362994_2021_1936041
crossref_primary_10_2478_auom_2024_0032
crossref_primary_10_1016_j_cam_2015_10_014
crossref_primary_10_1016_j_cam_2014_12_002
crossref_primary_10_1016_j_mcm_2010_08_016
Cites_doi 10.1007/s10543-009-0211-6
10.1098/rspa.2007.0055
10.1016/j.jmaa.2005.06.092
10.1016/j.apnum.2005.05.001
10.1016/S0898-1221(04)90074-0
ContentType Journal Article
Copyright 2009 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.jmaa.2009.07.061
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1096-0813
EndPage 137
ExternalDocumentID 22581073
10_1016_j_jmaa_2009_07_061
S0022247X09006143
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
0SF
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
85S
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AASFE
AAXUO
ABAOU
ABEFU
ABFNM
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEKER
AENEX
AETEA
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
M25
M41
MCRUF
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OHT
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
UPT
VH1
VOH
WH7
WUQ
XOL
XPP
YQT
YYP
ZCG
ZMT
ZU3
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c396t-fd363542f7a14b428e8e1daf3cce4a74c304f59a27d303929cba76f7aa7082c73
IEDL.DBID .~1
ISSN 0022-247X
IngestDate Mon Jul 21 09:15:09 EDT 2025
Thu Apr 24 22:52:00 EDT 2025
Tue Jul 01 01:38:39 EDT 2025
Fri Feb 23 02:23:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Stochastic functional differential equation
Taylor approximation
Fréchet derivative
L p and almost sure convergence
Partition
Approximation
Approximate method
Fréchet differentiability
Taylor series
Probability distribution
Stochastic method
L
Convergence
Functional
Mathematical analysis
Analytical method
and almost sure convergence
Convergence rate
Time interval
Approximate solution
Application
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-fd363542f7a14b428e8e1daf3cce4a74c304f59a27d303929cba76f7aa7082c73
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0022247X09006143
PageCount 10
ParticipantIDs pascalfrancis_primary_22581073
crossref_primary_10_1016_j_jmaa_2009_07_061
crossref_citationtrail_10_1016_j_jmaa_2009_07_061
elsevier_sciencedirect_doi_10_1016_j_jmaa_2009_07_061
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-03-01
PublicationDateYYYYMMDD 2010-03-01
PublicationDate_xml – month: 03
  year: 2010
  text: 2010-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of mathematical analysis and applications
PublicationYear 2010
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Mao (bib012) 2007
Mao (bib014) 2003; 6
Kloeden, Platen (bib008) 1999
Kloeden, Platen, Schurz (bib009) 1999
Atalla (bib002) 1987
Mohammed (bib015) 1986
Kloeden, Jentzen (bib010) 2007; 463
Mao (bib013) 1994
Griffel (bib004) 2002
Janković, Ilić (bib007) 2006; 320
Jentzen, Kloeden (bib011) 2009; 49
Huston, Pym, Cloud (bib005) 2005
Janković, Ilić (bib006) 2004; 47
Atalla (bib001) 1986
Buckwar (bib003) 2006; 56
Kloeden (10.1016/j.jmaa.2009.07.061_bib008) 1999
Buckwar (10.1016/j.jmaa.2009.07.061_bib003) 2006; 56
Mohammed (10.1016/j.jmaa.2009.07.061_bib015) 1986
Atalla (10.1016/j.jmaa.2009.07.061_bib002) 1987
Jentzen (10.1016/j.jmaa.2009.07.061_bib011) 2009; 49
Janković (10.1016/j.jmaa.2009.07.061_bib006) 2004; 47
Huston (10.1016/j.jmaa.2009.07.061_bib005) 2005
Janković (10.1016/j.jmaa.2009.07.061_bib007) 2006; 320
Mao (10.1016/j.jmaa.2009.07.061_bib013) 1994
Mao (10.1016/j.jmaa.2009.07.061_bib014) 2003; 6
Atalla (10.1016/j.jmaa.2009.07.061_bib001) 1986
Griffel (10.1016/j.jmaa.2009.07.061_bib004) 2002
Mao (10.1016/j.jmaa.2009.07.061_bib012) 2007
Kloeden (10.1016/j.jmaa.2009.07.061_bib009) 1999
Kloeden (10.1016/j.jmaa.2009.07.061_bib010) 2007; 463
References_xml – volume: 463
  start-page: 2929
  year: 2007
  end-page: 2944
  ident: bib010
  article-title: Pathwise convergent higher order numerical schemes for random ordinary differential equations
  publication-title: Proc. R. Soc. Lond. Ser. A
– year: 1994
  ident: bib013
  article-title: Exponential Stability for Stochastic Differential Equations
– year: 1986
  ident: bib015
  article-title: Stochastic Functional Differential Equations
– year: 1999
  ident: bib009
  article-title: Numerical Solution of SDE through Computer Experiments
– volume: 6
  start-page: 14
  year: 2003
  end-page: 161
  ident: bib014
  article-title: Numerical solutions of stochastic functional differential equations
  publication-title: London Math. Soc.
– start-page: 11
  year: 1986
  end-page: 16
  ident: bib001
  article-title: Finite-difference approximations for stochastic differential equations
  publication-title: Probabilistic Methods for the Investigation of Systems with an Infinite Number of Degrees of Freedom
– year: 2007
  ident: bib012
  article-title: Stochastic Differential Equations and Applications
– volume: 56
  start-page: 667
  year: 2006
  end-page: 681
  ident: bib003
  article-title: One-step approximation for stochastic functional differential equations
  publication-title: Appl. Numer. Math.
– start-page: 15
  year: 1987
  end-page: 22
  ident: bib002
  article-title: On one approximating method for stochastic differential equations
  publication-title: Asymptotic Methods for the Theory of Stochastic Processes
– year: 1999
  ident: bib008
  article-title: Numerical Solution of Stochastic Differential Equations
– volume: 49
  start-page: 113
  year: 2009
  end-page: 140
  ident: bib011
  article-title: Pathwise Taylor schemes for random ordinary differential equations
  publication-title: BIT
– volume: 320
  start-page: 230
  year: 2006
  end-page: 245
  ident: bib007
  article-title: An analytic approximate method for solving stochastic integrodifferential equations
  publication-title: J. Math. Anal. Appl.
– year: 2005
  ident: bib005
  article-title: Applications of Functional Analysis and Operator Theory
– year: 2002
  ident: bib004
  article-title: Applied Functional Analysis
– volume: 47
  start-page: 903
  year: 2004
  end-page: 912
  ident: bib006
  article-title: An analytic approximation of solutions of stochastic differential equations
  publication-title: Comput. Math. Appl.
– start-page: 15
  year: 1987
  ident: 10.1016/j.jmaa.2009.07.061_bib002
  article-title: On one approximating method for stochastic differential equations
– year: 2007
  ident: 10.1016/j.jmaa.2009.07.061_bib012
– volume: 6
  start-page: 14
  year: 2003
  ident: 10.1016/j.jmaa.2009.07.061_bib014
  article-title: Numerical solutions of stochastic functional differential equations
  publication-title: London Math. Soc.
– volume: 49
  start-page: 113
  issue: 1
  year: 2009
  ident: 10.1016/j.jmaa.2009.07.061_bib011
  article-title: Pathwise Taylor schemes for random ordinary differential equations
  publication-title: BIT
  doi: 10.1007/s10543-009-0211-6
– year: 1999
  ident: 10.1016/j.jmaa.2009.07.061_bib009
– year: 1999
  ident: 10.1016/j.jmaa.2009.07.061_bib008
– volume: 463
  start-page: 2929
  year: 2007
  ident: 10.1016/j.jmaa.2009.07.061_bib010
  article-title: Pathwise convergent higher order numerical schemes for random ordinary differential equations
  publication-title: Proc. R. Soc. Lond. Ser. A
  doi: 10.1098/rspa.2007.0055
– year: 2002
  ident: 10.1016/j.jmaa.2009.07.061_bib004
– volume: 320
  start-page: 230
  year: 2006
  ident: 10.1016/j.jmaa.2009.07.061_bib007
  article-title: An analytic approximate method for solving stochastic integrodifferential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2005.06.092
– year: 1986
  ident: 10.1016/j.jmaa.2009.07.061_bib015
– volume: 56
  start-page: 667
  year: 2006
  ident: 10.1016/j.jmaa.2009.07.061_bib003
  article-title: One-step approximation for stochastic functional differential equations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.05.001
– start-page: 11
  year: 1986
  ident: 10.1016/j.jmaa.2009.07.061_bib001
  article-title: Finite-difference approximations for stochastic differential equations
– volume: 47
  start-page: 903
  year: 2004
  ident: 10.1016/j.jmaa.2009.07.061_bib006
  article-title: An analytic approximation of solutions of stochastic differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(04)90074-0
– year: 2005
  ident: 10.1016/j.jmaa.2009.07.061_bib005
– year: 1994
  ident: 10.1016/j.jmaa.2009.07.061_bib013
SSID ssj0011571
Score 2.0364065
Snippet The subject of this paper is an analytic approximate method for stochastic functional differential equations whose coefficients are functionals, sufficiently...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 128
SubjectTerms [formula omitted] and almost sure convergence
Acceleration of convergence
Calculus of variations and optimal control
Exact sciences and technology
Fréchet derivative
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical methods in probability and statistics
Sciences and techniques of general use
Stochastic functional differential equation
Taylor approximation
Title An approximate method via Taylor series for stochastic functional differential equations
URI https://dx.doi.org/10.1016/j.jmaa.2009.07.061
Volume 363
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1096-0813
  dateEnd: 20210915
  omitProxy: true
  ssIdentifier: ssj0011571
  issn: 0022-247X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1096-0813
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011571
  issn: 0022-247X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1096-0813
  dateEnd: 20211001
  omitProxy: true
  ssIdentifier: ssj0011571
  issn: 0022-247X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Titles
  customDbUrl:
  eissn: 1096-0813
  dateEnd: 20211001
  omitProxy: true
  ssIdentifier: ssj0011571
  issn: 0022-247X
  databaseCode: IXB
  dateStart: 19600601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1096-0813
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011571
  issn: 0022-247X
  databaseCode: AKRWK
  dateStart: 19600601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8IXjTG-Bnxg_TgzQy2tazsiEQCEjkYibstbddFDAK6aTz5t_se3Ygc5OBpS9Nuy-vb-2je-_0IuQKbL7lvtOMzLhyuVOrIQGOvDFJche1Epku0z1HQH_O7qBVVSLfshcGyysL2W5u-tNbFSLOQZnMxmWCPL_g2LiI3RD_MEfET0b9ApxvfqzIPxJLxSsRwnF00ztgar5dXKQvMStFwA-8v57S7kBmILLVcF78cUG-f7BWRI-3YjzsgFTM7JDv3K9jV7IhEnRldgoR_TWDIUEsPTT8nktrMnKLCmYymeJvP9bNEmGaKzs2eCdKSMAV-_Ck1bxYIPDsm497tY7fvFNQJjmZhkDtpwiCS4H4qpMcVpBimbTyQO9PacCm4Zi5PW6H0RQI-DEIkraQIYLYUEBNowU5IdTafmVNCU45RRqK5krBUGum5iRKiZUKmmJeIGvFKmcW6wBVHeotpXBaQvcQoZyS8DGNXxCDnGrlerVlYVI2Ns1vlVsRruhGD2d-4rr62b6tXgQ1rQ9rLzv754HOybYsIsBTtglTz9w9zCbFJrupL5auTrc5g2B_hdfjwNITRQXTzA9Vn56s
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFG7mPKgxxp9x_pg9eDM4oIWO41w0m247bQk3UkqJLJNNQeOf7ysF4g7u4I00LZDX8t7X8t73IXQLPp9TWwrDJpQZNAxjg7tC1cooiSuvG_G4YPucuIMZffYdv4H6VS2MSqssfb_26YW3Lls6pTU7qyRRNb4Q2yjzTU_FYUq20DagAVPldQ39h_pXguUwq6IMV93Lyhmd5DV_47wkrWT3pmv9FZ32VzwDm8Va7OJXBHo6RAcldMQ9_XZHqCHTY7Q3rnlXsxPk91JcsIR_J9AksdaHxl8Jx3prjtWKkxmO1WW-FK9c8TRjFd30oSCuFFPgy19g-a6ZwLNTNHt6nPYHRqmdYAjiubkRRwSgBLVjxi0awh5DdqUFhidCSMoZFcSkseNxm0UQxAAjiZAzF3pzBqBAMHKGmukylecIx1TBjEjQkMNQLrllRiFjjvRISKyItZBV2SwQJbG40rdYBFUG2TxQdlaKl15gsgDs3EJ39ZiVptXY2NuppiJYWxwB-P2N49pr81Y_CpxYF_a95OKfN75BO4PpeBSMhpOXS7SrMwpUXtoVauYfn_IagEoetouF-AOh4uah
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approximate+method+via+Taylor+series+for+stochastic+functional+differential+equations&rft.jtitle=Journal+of+mathematical+analysis+and+applications&rft.au=MILOSEVIC%2C+Marija&rft.au=JOVANOVIC%2C+Miljana&rft.au=JANKOVIC%2C+Svetlana&rft.date=2010-03-01&rft.pub=Elsevier&rft.issn=0022-247X&rft.volume=363&rft.issue=1&rft.spage=128&rft.epage=137&rft_id=info:doi/10.1016%2Fj.jmaa.2009.07.061&rft.externalDBID=n%2Fa&rft.externalDocID=22581073
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-247X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-247X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-247X&client=summon