Exploring dimensionality reduction of EEG features in motor imagery task classification
•This work analyzes feature selection and transformation methods for BCI systems.•Three representative feature extraction methods are used: BP, Hjorth and AAR.•An efficient LOO-CV technique is introduced for choosing the embedded dimensionality.•Experiments have been conducted on five novice users d...
Saved in:
| Published in | Expert systems with applications Vol. 41; no. 11; pp. 5285 - 5295 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier Ltd
01.09.2014
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2014.02.043 |
Cover
| Abstract | •This work analyzes feature selection and transformation methods for BCI systems.•Three representative feature extraction methods are used: BP, Hjorth and AAR.•An efficient LOO-CV technique is introduced for choosing the embedded dimensionality.•Experiments have been conducted on five novice users during their first BCI sessions.•According to its excellent results, LFDA is a promising method to design BCI systems.
A Brain-Computer Interface (BCI) system based on motor imagery (MI) identifies patterns of electrical brain activity to predict the user intention while certain movement imagination tasks are performed. Currently, one of the most important challenges is the adaptive design of a BCI system. For solving it, this work explores dimensionality reduction techniques: once features have been extracted from Electroencephalogram (EEG) signals, the high-dimensional EEG data has to be mapped onto a new reduced feature space to make easier the classification stage. Besides the standard sequential feature selection methods, this paper analyzes two unsupervised transformation-based approaches – Principal Component Analysis and Locality Preserving Projections – and the Local Fisher Discriminant Analysis (LFDA), which works in a supervised manner. The dimensionality in the projected space is chosen following a wrapper-based approach by an efficient leave-one-out estimation. Experiments have been conducted on five novice subjects during their first sessions with MI-based BCI systems in order to show that the appropriate use of dimensionality reduction methods allows increasing the performance. In particular, obtained results show that LFDA gives a significant enhancement in classification terms without increasing the computational complexity and, then, it is a promising technique for designing MI-based BCI system. |
|---|---|
| AbstractList | •This work analyzes feature selection and transformation methods for BCI systems.•Three representative feature extraction methods are used: BP, Hjorth and AAR.•An efficient LOO-CV technique is introduced for choosing the embedded dimensionality.•Experiments have been conducted on five novice users during their first BCI sessions.•According to its excellent results, LFDA is a promising method to design BCI systems.
A Brain-Computer Interface (BCI) system based on motor imagery (MI) identifies patterns of electrical brain activity to predict the user intention while certain movement imagination tasks are performed. Currently, one of the most important challenges is the adaptive design of a BCI system. For solving it, this work explores dimensionality reduction techniques: once features have been extracted from Electroencephalogram (EEG) signals, the high-dimensional EEG data has to be mapped onto a new reduced feature space to make easier the classification stage. Besides the standard sequential feature selection methods, this paper analyzes two unsupervised transformation-based approaches – Principal Component Analysis and Locality Preserving Projections – and the Local Fisher Discriminant Analysis (LFDA), which works in a supervised manner. The dimensionality in the projected space is chosen following a wrapper-based approach by an efficient leave-one-out estimation. Experiments have been conducted on five novice subjects during their first sessions with MI-based BCI systems in order to show that the appropriate use of dimensionality reduction methods allows increasing the performance. In particular, obtained results show that LFDA gives a significant enhancement in classification terms without increasing the computational complexity and, then, it is a promising technique for designing MI-based BCI system. A Brain-Computer Interface (BCI) system based on motor imagery (Ml) identifies patterns of electrical brain activity to predict the user intention while certain movement imagination tasks are performed. Currently, one of the most important challenges is the adaptive design of a BCI system. For solving it, this work explores dimensionality reduction techniques: once features have been extracted from Electroencephalogram (EEG) signals, the high-dimensional EEG data has to be mapped onto a new reduced feature space to make easier the classification stage. Besides the standard sequential feature selection methods, this paper analyzes two unsupervised transformation-based approaches - Principal Component Analysis and Locality Preserving Projections - and the Local Fisher Discriminant Analysis (LFDA), which works in a supervised manner. The dimensionality in the projected space is chosen following a wrapper-based approach by an efficient leave-one-out estimation. Experiments have been conducted on five novice subjects during their first sessions with MI-based BCI systems in order to show that the appropriate use of dimensionality reduction methods allows increasing the performance. In particular, obtained results show that LFDA gives a significant enhancement in classification terms without increasing the computational complexity and, then, it is a promising technique for designing MI-based BCI system. |
| Author | García-Laencina, Pedro J. Rodríguez-Bermudez, Germán Roca-Dorda, Joaquín |
| Author_xml | – sequence: 1 givenname: Pedro J. surname: García-Laencina fullname: García-Laencina, Pedro J. email: pedroj.garcia@cud.upct.es – sequence: 2 givenname: Germán surname: Rodríguez-Bermudez fullname: Rodríguez-Bermudez, Germán email: german.rodriguez@cud.upct.es – sequence: 3 givenname: Joaquín surname: Roca-Dorda fullname: Roca-Dorda, Joaquín |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28438260$$DView record in Pascal Francis |
| BookMark | eNqFkU1r3DAQhkVJoZuPP9CTLoVe7IxsybIglxK2SSDQS0OPQpZHQVuvtJG0Sfffx5sNPeSQnIZhnmdg5j0mRyEGJOQrg5oB685XNeYnUzfAeA1NDbz9RBasl23VSdUekQUoISvOJP9CjnNeATAJIBfkz_LfZorJh3s6-jWG7GMwky87mnDc2jK3NDq6XF5Rh6ZsE2bqA13HEhP1a3OPaUeLyX-pnUzO3nlr9tIp-ezMlPHstZ6Qu5_L35fX1e2vq5vLH7eVbVVXKpSuH6RkSrkBQSFjg7CNVcC5Qy5ki3I0zqiBD1xYbvoBhTX9POMduHFoT8j3w95Nig9bzEWvfbY4TSZg3GbNOtkDiI7Lj1HRSRBCtWxGv72iJlszuWSC9Vlv0nxx2umm523fdDBzzYGzKeac0P1HGOh9MHql98HofTAaGj0HM0v9G8n68vK0koyf3lcvDirOL330mHS2HoPF0Se0RY_Rv6c_A0xZrMQ |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2017_12_015 crossref_primary_10_1142_S0218127415400234 crossref_primary_10_1088_1741_2560_14_1_016003 crossref_primary_10_1016_j_bspc_2016_09_014 crossref_primary_10_3390_a17080346 crossref_primary_10_3390_app9234990 crossref_primary_10_1016_j_neucom_2016_08_082 crossref_primary_10_1016_j_bspc_2021_102763 crossref_primary_10_1016_j_eswa_2015_03_008 crossref_primary_10_1016_j_jneumeth_2024_110215 crossref_primary_10_58496_ADSA_2024_007 crossref_primary_10_1088_1741_2552_abce70 crossref_primary_10_1155_2017_2727856 crossref_primary_10_3390_diagnostics10121087 crossref_primary_10_3389_fnhum_2023_1223307 crossref_primary_10_1371_journal_pone_0248511 crossref_primary_10_1016_j_eswa_2015_01_031 crossref_primary_10_62347_ZWRY8401 crossref_primary_10_1016_j_asoc_2019_105519 crossref_primary_10_1109_THMS_2016_2573827 crossref_primary_10_1155_2021_6625141 crossref_primary_10_1016_j_eswa_2015_06_058 crossref_primary_10_1109_ACCESS_2019_2895133 crossref_primary_10_1515_phys_2017_0056 crossref_primary_10_1088_1741_2552_ab7264 crossref_primary_10_1016_j_bbr_2024_115345 crossref_primary_10_3389_fninf_2022_811756 crossref_primary_10_3390_app142310980 crossref_primary_10_1371_journal_pone_0218181 crossref_primary_10_1007_s11517_023_02840_z crossref_primary_10_1109_TNSRE_2023_3249831 crossref_primary_10_1088_1741_2552_aa61bb crossref_primary_10_3389_fnhum_2024_1525139 |
| Cites_doi | 10.1371/journal.pone.0000637 10.1155/2009/537504 10.1016/j.neucom.2013.05.005 10.1088/1741-2560/4/2/R03 10.1088/1741-2560/7/1/016003 10.1016/j.neucom.2013.03.027 10.1109/IEMBS.2010.5627239 10.1016/j.neucom.2013.01.001 10.1142/S0129065706000482 10.1016/j.neucom.2013.06.046 10.3109/17483107.2014.884174 10.1109/IEMBS.2011.6091898 10.1016/j.neuroimage.2005.12.003 10.3389/fnins.2010.00198 10.1016/j.eswa.2012.08.046 10.1016/j.eswa.2011.03.066 10.1109/MSP.2008.4408441 10.1007/s11517-009-0569-2 10.3390/s120201211 10.1016/j.ijleo.2013.09.013 10.3389/fnins.2012.00042 10.1109/10.661153 10.1109/TNSRE.2003.814441 10.1016/j.neucom.2012.02.041 10.1109/7333.918276 10.1177/1550059413491559 10.1088/1741-2560/8/2/025009 10.1007/s11517-013-1123-9 10.1016/j.bspc.2010.01.001 10.1088/1741-2560/3/1/R02 10.1371/journal.pone.0080886 10.1016/j.ijpsycho.2013.08.011 10.1155/2013/591216 10.1016/j.bspc.2007.03.003 10.1016/0013-4694(70)90143-4 10.1016/j.eswa.2011.07.106 10.1142/S0218001409007478 10.1088/1741-2560/4/2/R01 10.1016/j.cmpb.2013.12.020 10.1088/1741-2560/8/2/025002 10.1109/TNSRE.2003.814484 10.1142/S0129065713500159 10.1016/j.eswa.2010.12.079 10.1016/j.jneumeth.2011.04.037 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2014.02.043 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-6793 |
| EndPage | 5295 |
| ExternalDocumentID | 28438260 10_1016_j_eswa_2014_02_043 S0957417414001195 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD 08R AALMO AAPBV ABPIF ABPTK ADALY IPNFZ IQODW PQEST 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c396t-e7f8b77199fbe09e11b5c2c9044fe4573e7dafa9b4b45c4a8be5ca8fe4460fdb3 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Sat Sep 27 17:49:37 EDT 2025 Sun Sep 28 12:16:36 EDT 2025 Thu Nov 24 18:35:11 EST 2022 Thu Apr 24 22:51:55 EDT 2025 Wed Oct 01 03:51:42 EDT 2025 Fri Feb 23 02:29:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Dimensionality reduction Feature transformation Local Fisher Discriminant Analysis Electroencephalogram signals Brain-computer interfaces Motor imagery Linear discriminants Brain Electrical activity Adaptive system Central nervous system Electroencephalography Encephalon Projection method User interface Sequential method Classification Selection criterion Reduced order systems Discriminant analysis Computational complexity Standards Data reduction Fisher information Dimension reduction Reduction method Imagination Intention User behavior Principal component analysis |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-e7f8b77199fbe09e11b5c2c9044fe4573e7dafa9b4b45c4a8be5ca8fe4460fdb3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1567055931 |
| PQPubID | 23500 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_1678005647 proquest_miscellaneous_1567055931 pascalfrancis_primary_28438260 crossref_primary_10_1016_j_eswa_2014_02_043 crossref_citationtrail_10_1016_j_eswa_2014_02_043 elsevier_sciencedirect_doi_10_1016_j_eswa_2014_02_043 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-01 |
| PublicationDateYYYYMMDD | 2014-09-01 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Nicolas-Alonso, Gomez-Gil (b0225) 2012; 2 Liang, Saratchandran, Huang, Sundararajan (b0185) 2006; 16 Fukunaga (b0100) 1990 Yu (b0325) 2011; 38 Naeem, Brunner, Pfurtscheller (b0220) 2009; 2009 (pp. 1–5). Serre (b0280) 2002 Delgado-Saa, J. F., & Cetin, M. (2011). Hidden conditional random fields for classification of imagery motor tasks from EEG data. In 6 (42). Shi, Lu (b0290) 2013; 102 Zhang, Xu, Liu, Zhang, Guo, Li (b0340) 2013; 2013 Pacific Grove, CA, USA. Müller, Krauledat, Dornhege, Curio, Blankertz (b0215) 2004; 49 Anderson, Stolz, Shamsunder (b0015) 1998; 45 Alpaydin (b0010) 2010 (pp. 7703 –7706). Chung (b0070) 1997 Huster, Mokom, Enriquez-Geppert, Herrmann (b0160) 2014; 91 (in press). (Vol. 5669, pp. 106–117). Gao, Kwan, Huang (b0110) 2009; 23 Atyabi, Luerssen, Powers (b0020) 2013; 119 Lee, F., Scherer, R., Leeb, R., Schlgl, A., Bischof, H., & Pfurtscheller, G. (2004). Feature mapping using PCA, locally linear embedding and isometric feature mapping for EEG-based brain computer interface. In Wang, Nie, Lu (b0320) 2014; 129 Guyon, Elisseeff (b0130) 2003; 3 . Hsu (b0150) 2012; 39 Popescu, Fazli, Badower, Blankertz, Müller (b0240) 2007; 2 Gan, J. (2006). Feature dimensionality reduction by manifold learning in brain-computer interfaces. In Sanei, Chambers (b0265) 2008 Blankertz, Tomioka, Lemm, Kawanabe, Muller (b0050) 2008; 25 Corralejo, R., Hornero, R., & Alvarez, D. (2011). Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface. In Krusienski, Grosse-Wentrup, Galán, Coyle, Miller, Forney (b0170) 2011; 8 Cabrera, Farina, Dremstrup (b0060) 2010; 48 Rodríguez-Bermúdez, García-Laencina, Roca-Dorda (b0250) 2013; 23 Oh, Yoo, Pedrycz (b0230) 2013; 40 Sardouie, H. S., & Shamsollahi, M. B. (xxxx). Discriminating MEG signals recorded during hand movements using selection of efficient features. (pp. 4946–4949). Sugiyama (b0300) 2007; 8 Duda, Hart, Stork (b0085) 2000 (pp. 189–196). Tong, Thankor (b0305) 2009 Koprinska, I. (2009). Feature Selection for brain-computer interfaces. In Siuly, S., Li, Y., & Wen, P. (2014). Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface. Guger, Schlogl, Neuper, Walterspacher, Strein, Pfurtscheller (b0125) 2001; 9 Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (b0195) 2007; 4 Muller, Anderson, Birch (b0210) 2003; 11 Pfurtscheller, Brunner, Schlgl, da Silva (b0235) 2006; 31 Garrett, Peterson, Anderson, Thaut (b0115) 2003; 11 Rejer, Lorenz (b0245) 2013; 7 Bhattacharyya, Sengupta, Chakraborti, Konar, Tibarewala (b0030) 2014; 52 Rodríguez-Bermúdez, García-Laencina, Roca-González, Roca-Dorda (b0255) 2013; 115 van der Maaten, L. J. P., Postma, E. O., & van den Herik, H. J. (2009). Dimensionality reduction: A comparative review. Technical report, Tilburg University. Guerrero-Mosquera, C., Verleysen, M., & Navia Vazquez, A. (2010). EEG feature selection using mutual information and support vector machine: A comparative analysis. In Ahn, Cho, Ahn, Jun (b0005) 2013; 8 (pp. 1377–1381). Barcelona, Spain. Liu, Zhang, Zheng (b0190) 2010; 5 Billinger, M., Brunner, C., & Neuper, C. (2010). Classification of adaptive autoregressive models at different sampling rates in a motor imagery-based BCI. In (pp. 28–29). Graz, Austria. McCann, M. T., Thompson, D. E., Syed, Z. H., & Huggins, J. E. (2014). Electrode subset selection methods for an EEG-based P300 brain-computer interface. In Lee, Verleysen (b0180) 2007 Blankertz, Tangermann, Vidaurre, Fazli, Sannelli, Haufe (b0045) 2010; 4 Bontempi, G. (2011). Statistical foundations of machine learning. Université Libre de Bruxelles. McFarland, Sarnacki, Wolpaw (b0205) 2011; 199 Vidaurre, Sannelli, Müller, Blankertz (b0315) 2011; 8 Erfanian, A., & Erfani, A. (2004). EEG-based brain-computer interface for hand grasp control: Feature extraction by using ICA. In Fruitet, McFarland, Wolpaw (b0095) 2010; 7 He, Niyogi (b0140) 2004; Vol. 16 Chen, Liu, Yang, Liu, Wang (b0065) 2011; 38 Zelnik-Manor, Perona (b0335) 2005; Vol. 17 He, Hu, Li, Li (b0135) 2013; 121 Bashashati, Fatourechi, Ward, Birch (b0025) 2007; 4 Hjorth (b0145) 1970; 29 Schlögl (b0275) 2000 Bishop (b0040) 2006 Shenoy, Krauledat, Blankertz, Rao, Müller (b0285) 2006; 3 Hsu, W. -Y. (2013). Improving classification accuracy of motor imagery EEG using genetic feature selection. Yu, Chum, Sim (b0330) 2014; 125 Sabeti, Boostani, Katebi, Price (b0260) 2007; 2 Nicolas-Alonso (10.1016/j.eswa.2014.02.043_b0225) 2012; 2 Anderson (10.1016/j.eswa.2014.02.043_b0015) 1998; 45 Fruitet (10.1016/j.eswa.2014.02.043_b0095) 2010; 7 10.1016/j.eswa.2014.02.043_b0120 Yu (10.1016/j.eswa.2014.02.043_b0325) 2011; 38 10.1016/j.eswa.2014.02.043_b0165 Rodríguez-Bermúdez (10.1016/j.eswa.2014.02.043_b0255) 2013; 115 10.1016/j.eswa.2014.02.043_b0200 Garrett (10.1016/j.eswa.2014.02.043_b0115) 2003; 11 10.1016/j.eswa.2014.02.043_b0080 Zelnik-Manor (10.1016/j.eswa.2014.02.043_b0335) 2005; Vol. 17 Müller (10.1016/j.eswa.2014.02.043_b0215) 2004; 49 Fukunaga (10.1016/j.eswa.2014.02.043_b0100) 1990 Alpaydin (10.1016/j.eswa.2014.02.043_b0010) 2010 Duda (10.1016/j.eswa.2014.02.043_b0085) 2000 Bishop (10.1016/j.eswa.2014.02.043_b0040) 2006 Huster (10.1016/j.eswa.2014.02.043_b0160) 2014; 91 He (10.1016/j.eswa.2014.02.043_b0135) 2013; 121 Sanei (10.1016/j.eswa.2014.02.043_b0265) 2008 Atyabi (10.1016/j.eswa.2014.02.043_b0020) 2013; 119 10.1016/j.eswa.2014.02.043_b0270 10.1016/j.eswa.2014.02.043_b0075 10.1016/j.eswa.2014.02.043_b0155 10.1016/j.eswa.2014.02.043_b0035 10.1016/j.eswa.2014.02.043_b0310 Hsu (10.1016/j.eswa.2014.02.043_b0150) 2012; 39 Hjorth (10.1016/j.eswa.2014.02.043_b0145) 1970; 29 McFarland (10.1016/j.eswa.2014.02.043_b0205) 2011; 199 Bashashati (10.1016/j.eswa.2014.02.043_b0025) 2007; 4 Blankertz (10.1016/j.eswa.2014.02.043_b0050) 2008; 25 Lee (10.1016/j.eswa.2014.02.043_b0180) 2007 Serre (10.1016/j.eswa.2014.02.043_b0280) 2002 Oh (10.1016/j.eswa.2014.02.043_b0230) 2013; 40 Gao (10.1016/j.eswa.2014.02.043_b0110) 2009; 23 Sabeti (10.1016/j.eswa.2014.02.043_b0260) 2007; 2 10.1016/j.eswa.2014.02.043_b0105 Ahn (10.1016/j.eswa.2014.02.043_b0005) 2013; 8 Krusienski (10.1016/j.eswa.2014.02.043_b0170) 2011; 8 Cabrera (10.1016/j.eswa.2014.02.043_b0060) 2010; 48 Vidaurre (10.1016/j.eswa.2014.02.043_b0315) 2011; 8 Guyon (10.1016/j.eswa.2014.02.043_b0130) 2003; 3 He (10.1016/j.eswa.2014.02.043_b0140) 2004; Vol. 16 Blankertz (10.1016/j.eswa.2014.02.043_b0045) 2010; 4 Sugiyama (10.1016/j.eswa.2014.02.043_b0300) 2007; 8 Liu (10.1016/j.eswa.2014.02.043_b0190) 2010; 5 Muller (10.1016/j.eswa.2014.02.043_b0210) 2003; 11 Shenoy (10.1016/j.eswa.2014.02.043_b0285) 2006; 3 10.1016/j.eswa.2014.02.043_b0295 10.1016/j.eswa.2014.02.043_b0175 Bhattacharyya (10.1016/j.eswa.2014.02.043_b0030) 2014; 52 10.1016/j.eswa.2014.02.043_b0055 Shi (10.1016/j.eswa.2014.02.043_b0290) 2013; 102 Chen (10.1016/j.eswa.2014.02.043_b0065) 2011; 38 10.1016/j.eswa.2014.02.043_b0090 Naeem (10.1016/j.eswa.2014.02.043_b0220) 2009; 2009 Rejer (10.1016/j.eswa.2014.02.043_b0245) 2013; 7 Yu (10.1016/j.eswa.2014.02.043_b0330) 2014; 125 Rodríguez-Bermúdez (10.1016/j.eswa.2014.02.043_b0250) 2013; 23 Tong (10.1016/j.eswa.2014.02.043_b0305) 2009 Guger (10.1016/j.eswa.2014.02.043_b0125) 2001; 9 Wang (10.1016/j.eswa.2014.02.043_b0320) 2014; 129 Popescu (10.1016/j.eswa.2014.02.043_b0240) 2007; 2 Pfurtscheller (10.1016/j.eswa.2014.02.043_b0235) 2006; 31 Schlögl (10.1016/j.eswa.2014.02.043_b0275) 2000 Chung (10.1016/j.eswa.2014.02.043_b0070) 1997 Zhang (10.1016/j.eswa.2014.02.043_b0340) 2013; 2013 Liang (10.1016/j.eswa.2014.02.043_b0185) 2006; 16 Lotte (10.1016/j.eswa.2014.02.043_b0195) 2007; 4 |
| References_xml | – volume: 9 start-page: 49 year: 2001 end-page: 58 ident: b0125 article-title: Rapid prototyping of an EEG-based brain-computer interface (BCI) publication-title: IEEE Transactions on Rehabilitation Engineering Neural Systems and Rehabilitation Engineering – volume: 3 start-page: R13 year: 2006 end-page: R23 ident: b0285 article-title: Towards adaptive classification for BCI publication-title: Journal of Neural Engineering – reference: Billinger, M., Brunner, C., & Neuper, C. (2010). Classification of adaptive autoregressive models at different sampling rates in a motor imagery-based BCI. In – reference: (pp. 4946–4949). – volume: 16 start-page: 29 year: 2006 end-page: 38 ident: b0185 article-title: Classification of mental task from EEG signals using extreme learning machine publication-title: International Journal of Neural Systems – volume: 11 start-page: 141 year: 2003 end-page: 144 ident: b0115 article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – reference: (Vol. 5669, pp. 106–117). – volume: 119 start-page: 319 year: 2013 end-page: 331 ident: b0020 article-title: PSO-based dimension reduction of EEG recordings: Implications for subject transfer in BCI publication-title: Neurocomputing – volume: 25 start-page: 41 year: 2008 end-page: 56 ident: b0050 article-title: Optimizing spatial filters for Robust EEG single-trial analysis publication-title: IEEE Signal Processing Magazine – reference: (in press). – volume: 199 start-page: 103 year: 2011 end-page: 107 ident: b0205 article-title: Should the parameters of a BCI translation algorithm be continually adapted? publication-title: Journal of Neuroscience Methods – volume: 4 start-page: R32 year: 2007 end-page: R57 ident: b0025 article-title: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals publication-title: Journal of Neural Engineering – reference: , 6 (42). – volume: 39 start-page: 1055 year: 2012 end-page: 1061 ident: b0150 article-title: Fuzzy hopfield neural network clustering for single-trial motor imagery EEG classification publication-title: Expert Systems with Applications – volume: 8 start-page: e80886 year: 2013 ident: b0005 article-title: High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery publication-title: PLoS One – year: 2000 ident: b0085 article-title: Pattern classification – year: 1990 ident: b0100 article-title: Introduction to statistical pattern recognition publication-title: Computer science & scientific computing – volume: 2 start-page: e637+ year: 2007 ident: b0240 article-title: Single trial classification of motor imagination using 6 dry EEG electrodes publication-title: PloS One – volume: 125 start-page: 14981502 year: 2014 ident: b0330 article-title: Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system publication-title: Optik – International Journal for Light and Electron Optics – volume: 91 start-page: 36 year: 2014 end-page: 45 ident: b0160 article-title: Brain-computer interfaces for EEG neurofeedback: Peculiarities and solutions publication-title: International Journal of Psychophysiology – volume: Vol. 16 year: 2004 ident: b0140 article-title: Locality preserving projections publication-title: Advances in neural information processing systems – volume: 7 start-page: 16003 year: 2010 ident: b0095 article-title: A comparison of regression techniques for a two-dimensional sensorimotor rhythm-based brain-computer interface publication-title: Journal of Neural Engineering – volume: 121 start-page: 423 year: 2013 end-page: 433 ident: b0135 article-title: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG publication-title: Neurocomputing – reference: van der Maaten, L. J. P., Postma, E. O., & van den Herik, H. J. (2009). Dimensionality reduction: A comparative review. Technical report, Tilburg University. – reference: (pp. 7703 –7706). – volume: 5 start-page: 124 year: 2010 end-page: 130 ident: b0190 article-title: EEG-based estimation of mental fatigue by using KPCA-HMM and complexity parameters publication-title: Biomedical Signal Processing and Control – volume: 23 start-page: 1129 year: 2009 end-page: 1143 ident: b0110 article-title: Comprehensive analysis for the local Fisher discriminant analysis publication-title: International Journal of Pattern Recognition and Artificial Intelligence – reference: Siuly, S., Li, Y., & Wen, P. (2014). Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface. – year: 2009 ident: b0305 article-title: Quantitative EEG analysis methods and clinical applications – reference: . Pacific Grove, CA, USA. – volume: 2 start-page: 1211 year: 2012 end-page: 1279 ident: b0225 article-title: Brain computer interfaces, a review publication-title: Sensors – year: 2008 ident: b0265 article-title: EEG signal processing – reference: Lee, F., Scherer, R., Leeb, R., Schlgl, A., Bischof, H., & Pfurtscheller, G. (2004). Feature mapping using PCA, locally linear embedding and isometric feature mapping for EEG-based brain computer interface. In – volume: 3 start-page: 1157 year: 2003 end-page: 1182 ident: b0130 article-title: An introduction to variable and feature selection publication-title: Journal of Machine Learning Research – volume: 23 start-page: 1350015 year: 2013 ident: b0250 article-title: Efficient automatic selection and combination of EEG features in least squares classifiers for motor-imagery brain computer interfaces publication-title: International Journal of Neural Systems – volume: 38 start-page: 7440 year: 2011 end-page: 7450 ident: b0325 article-title: Bearing performance degradation assessment using locality preserving projections publication-title: Expert Systems with Applications – volume: 38 start-page: 11796 year: 2011 end-page: 11803 ident: b0065 article-title: A new hybrid method based on local Fisher discriminant analysis and support vector machines for hepatitis disease diagnosis publication-title: Expert Systems with Applications – volume: 8 start-page: 1 year: 2011 end-page: 8 ident: b0170 article-title: Critical issue in state-of-the-art brain-computer interface signal processing publication-title: Journal of Neural Engineering – volume: 102 start-page: 135 year: 2013 end-page: 143 ident: b0290 article-title: EEG-based vigilance estimation using extreme learning machines publication-title: Neurocomputing – year: 2010 ident: b0010 article-title: Introduction to machine learning – reference: (pp. 189–196). – year: 1997 ident: b0070 article-title: Spectral graph theory – volume: 49 start-page: 11 year: 2004 end-page: 22 ident: b0215 article-title: Machine learning techniques for brain-computer interfaces publication-title: Biomedical Technology – volume: 8 start-page: 025009 year: 2011 ident: b0315 article-title: Co-adaptive calibration to improve BCI efficiency publication-title: Journal of Neural Engineering – year: 2007 ident: b0180 article-title: Nonlinear dimensionality reduction – volume: 2009 start-page: 537504 year: 2009 ident: b0220 article-title: Dimensionality reduction and channel selection of motor imagery electroencephalographic data publication-title: Computational Intelligence and Neuroscience – reference: Delgado-Saa, J. F., & Cetin, M. (2011). Hidden conditional random fields for classification of imagery motor tasks from EEG data. In – year: 2002 ident: b0280 article-title: Matrices: Theory and applications – volume: 52 start-page: 131 year: 2014 end-page: 139 ident: b0030 article-title: Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata publication-title: Medical & Biological Engineering & Computing – reference: Erfanian, A., & Erfani, A. (2004). EEG-based brain-computer interface for hand grasp control: Feature extraction by using ICA. In – reference: (pp. 28–29). Graz, Austria. – reference: (pp. 1–5). – reference: McCann, M. T., Thompson, D. E., Syed, Z. H., & Huggins, J. E. (2014). Electrode subset selection methods for an EEG-based P300 brain-computer interface. In – volume: 4 start-page: 1 year: 2010 end-page: 17 ident: b0045 article-title: The Berlin brain-computer interface: Non-medical uses of BCI technology publication-title: Frontiers in Neuroscience – reference: Guerrero-Mosquera, C., Verleysen, M., & Navia Vazquez, A. (2010). EEG feature selection using mutual information and support vector machine: A comparative analysis. In – reference: Sardouie, H. S., & Shamsollahi, M. B. (xxxx). Discriminating MEG signals recorded during hand movements using selection of efficient features. – reference: Koprinska, I. (2009). Feature Selection for brain-computer interfaces. In – volume: 129 start-page: 94 year: 2014 end-page: 106 ident: b0320 article-title: Emotional state classification from EEG data using machine learning approach publication-title: Neurocomputing – volume: Vol. 17 start-page: 1601 year: 2005 end-page: 1608 ident: b0335 article-title: Self-tuning spectral clustering publication-title: Advances in neural information processing systems – reference: (pp. 1377–1381). Barcelona, Spain. – volume: 4 start-page: R1 year: 2007 end-page: R13 ident: b0195 article-title: A review of classification algorithms for EEG-based brain-computer interfaces publication-title: Journal of Neural Engineering – reference: Bontempi, G. (2011). Statistical foundations of machine learning. Université Libre de Bruxelles. – volume: 115 start-page: 161 year: 2013 end-page: 165 ident: b0255 article-title: Efficient feature selection and linear discrimination of EEG signals publication-title: Neurocomputing – volume: 2 start-page: 122 year: 2007 end-page: 134 ident: b0260 article-title: Selection of relevant features for EEG signal classification of schizophrenic patients publication-title: Biomedical Signal Processing and Control – volume: 45 start-page: 277 year: 1998 end-page: 286 ident: b0015 article-title: Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks publication-title: IEEE Transactions on Biomedical Engineering – reference: Hsu, W. -Y. (2013). Improving classification accuracy of motor imagery EEG using genetic feature selection. – volume: 8 start-page: 1027 year: 2007 end-page: 1061 ident: b0300 article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis publication-title: Journal of Machine Learning Research – volume: 31 start-page: 153 year: 2006 end-page: 159 ident: b0235 article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks publication-title: NeuroImage – reference: . – volume: 11 start-page: 165 year: 2003 end-page: 169 ident: b0210 article-title: Linear and nonlinear methods for brain-computer interfaces publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering – year: 2000 ident: b0275 article-title: The electroencephalogram and the adaptive autoregressive model: Theory and applications – volume: 29 start-page: 306 year: 1970 end-page: 310 ident: b0145 article-title: EEG analysis based on time domain properties publication-title: Electroencephalography and Clinical Neurophysiology – volume: 48 start-page: 123 year: 2010 end-page: 132 ident: b0060 article-title: Comparison of feature selection and classification methods for a brain-computer interface driven by non-motor imagery publication-title: Medical and Biological Engineering and Computing – volume: 40 start-page: 1451 year: 2013 end-page: 1466 ident: b0230 article-title: Design of face recognition algorithm using PCA-LDA combined for hybrid data pre-processing and polynomial-based RBF neural networks: Design and its application publication-title: Expert Systems with Applications – reference: Corralejo, R., Hornero, R., & Alvarez, D. (2011). Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface. In – year: 2006 ident: b0040 article-title: Pattern recognition and machine learning – volume: 7 start-page: 72 year: 2013 end-page: 82 ident: b0245 article-title: Genetic algorithm and forward method for feature selection in EEG feature space publication-title: Journal of Theoretical and Applied Computer Science – reference: Gan, J. (2006). Feature dimensionality reduction by manifold learning in brain-computer interfaces. In – volume: 2013 start-page: 591216 year: 2013 ident: b0340 article-title: Local temporal correlation common spatial patterns for single trial EEG classification during motor imagery publication-title: Computational and Mathematical Methods in Medicine – volume: 49 start-page: 11 issue: 1 year: 2004 ident: 10.1016/j.eswa.2014.02.043_b0215 article-title: Machine learning techniques for brain-computer interfaces publication-title: Biomedical Technology – volume: 2 start-page: e637+ issue: 7 year: 2007 ident: 10.1016/j.eswa.2014.02.043_b0240 article-title: Single trial classification of motor imagination using 6 dry EEG electrodes publication-title: PloS One doi: 10.1371/journal.pone.0000637 – ident: 10.1016/j.eswa.2014.02.043_b0175 – year: 2006 ident: 10.1016/j.eswa.2014.02.043_b0040 – volume: 2009 start-page: 537504 year: 2009 ident: 10.1016/j.eswa.2014.02.043_b0220 article-title: Dimensionality reduction and channel selection of motor imagery electroencephalographic data publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2009/537504 – year: 2010 ident: 10.1016/j.eswa.2014.02.043_b0010 – volume: 121 start-page: 423 year: 2013 ident: 10.1016/j.eswa.2014.02.043_b0135 article-title: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.005 – volume: 4 start-page: R32 issue: 2 year: 2007 ident: 10.1016/j.eswa.2014.02.043_b0025 article-title: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/4/2/R03 – volume: 7 start-page: 16003 issue: 1 year: 2010 ident: 10.1016/j.eswa.2014.02.043_b0095 article-title: A comparison of regression techniques for a two-dimensional sensorimotor rhythm-based brain-computer interface publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/7/1/016003 – volume: 119 start-page: 319 issue: 0 year: 2013 ident: 10.1016/j.eswa.2014.02.043_b0020 article-title: PSO-based dimension reduction of EEG recordings: Implications for subject transfer in BCI publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.03.027 – ident: 10.1016/j.eswa.2014.02.043_b0120 doi: 10.1109/IEMBS.2010.5627239 – ident: 10.1016/j.eswa.2014.02.043_b0165 – volume: 115 start-page: 161 year: 2013 ident: 10.1016/j.eswa.2014.02.043_b0255 article-title: Efficient feature selection and linear discrimination of EEG signals publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.01.001 – volume: 16 start-page: 29 issue: 01 year: 2006 ident: 10.1016/j.eswa.2014.02.043_b0185 article-title: Classification of mental task from EEG signals using extreme learning machine publication-title: International Journal of Neural Systems doi: 10.1142/S0129065706000482 – volume: 129 start-page: 94 year: 2014 ident: 10.1016/j.eswa.2014.02.043_b0320 article-title: Emotional state classification from EEG data using machine learning approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.06.046 – ident: 10.1016/j.eswa.2014.02.043_b0200 doi: 10.3109/17483107.2014.884174 – ident: 10.1016/j.eswa.2014.02.043_b0075 doi: 10.1109/IEMBS.2011.6091898 – volume: Vol. 16 year: 2004 ident: 10.1016/j.eswa.2014.02.043_b0140 article-title: Locality preserving projections – volume: 31 start-page: 153 issue: 1 year: 2006 ident: 10.1016/j.eswa.2014.02.043_b0235 article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks publication-title: NeuroImage doi: 10.1016/j.neuroimage.2005.12.003 – volume: 4 start-page: 1 year: 2010 ident: 10.1016/j.eswa.2014.02.043_b0045 article-title: The Berlin brain-computer interface: Non-medical uses of BCI technology publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2010.00198 – ident: 10.1016/j.eswa.2014.02.043_b0105 – volume: 40 start-page: 1451 issue: 5 year: 2013 ident: 10.1016/j.eswa.2014.02.043_b0230 article-title: Design of face recognition algorithm using PCA-LDA combined for hybrid data pre-processing and polynomial-based RBF neural networks: Design and its application publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2012.08.046 – volume: Vol. 17 start-page: 1601 year: 2005 ident: 10.1016/j.eswa.2014.02.043_b0335 article-title: Self-tuning spectral clustering – volume: 38 start-page: 11796 issue: 9 year: 2011 ident: 10.1016/j.eswa.2014.02.043_b0065 article-title: A new hybrid method based on local Fisher discriminant analysis and support vector machines for hepatitis disease diagnosis publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.03.066 – year: 1997 ident: 10.1016/j.eswa.2014.02.043_b0070 – volume: 25 start-page: 41 issue: 1 year: 2008 ident: 10.1016/j.eswa.2014.02.043_b0050 article-title: Optimizing spatial filters for Robust EEG single-trial analysis publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2008.4408441 – volume: 48 start-page: 123 issn: 0140-0118 year: 2010 ident: 10.1016/j.eswa.2014.02.043_b0060 article-title: Comparison of feature selection and classification methods for a brain-computer interface driven by non-motor imagery publication-title: Medical and Biological Engineering and Computing doi: 10.1007/s11517-009-0569-2 – volume: 2 start-page: 1211 year: 2012 ident: 10.1016/j.eswa.2014.02.043_b0225 article-title: Brain computer interfaces, a review publication-title: Sensors doi: 10.3390/s120201211 – volume: 125 start-page: 14981502 issn: 0030-4026 issue: 3 year: 2014 ident: 10.1016/j.eswa.2014.02.043_b0330 article-title: Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system publication-title: Optik – International Journal for Light and Electron Optics doi: 10.1016/j.ijleo.2013.09.013 – ident: 10.1016/j.eswa.2014.02.043_b0270 doi: 10.3389/fnins.2012.00042 – volume: 45 start-page: 277 issn: 0018-9294 issue: 3 year: 1998 ident: 10.1016/j.eswa.2014.02.043_b0015 article-title: Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/10.661153 – volume: 11 start-page: 141 issue: 2 year: 2003 ident: 10.1016/j.eswa.2014.02.043_b0115 article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2003.814441 – volume: 102 start-page: 135 year: 2013 ident: 10.1016/j.eswa.2014.02.043_b0290 article-title: EEG-based vigilance estimation using extreme learning machines publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.02.041 – volume: 9 start-page: 49 issue: 1 year: 2001 ident: 10.1016/j.eswa.2014.02.043_b0125 article-title: Rapid prototyping of an EEG-based brain-computer interface (BCI) publication-title: IEEE Transactions on Rehabilitation Engineering Neural Systems and Rehabilitation Engineering doi: 10.1109/7333.918276 – ident: 10.1016/j.eswa.2014.02.043_b0155 doi: 10.1177/1550059413491559 – volume: 8 start-page: 025009 issue: 2 year: 2011 ident: 10.1016/j.eswa.2014.02.043_b0315 article-title: Co-adaptive calibration to improve BCI efficiency publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/8/2/025009 – ident: 10.1016/j.eswa.2014.02.043_b0035 – ident: 10.1016/j.eswa.2014.02.043_b0310 – year: 2000 ident: 10.1016/j.eswa.2014.02.043_b0275 – volume: 52 start-page: 131 issue: 2 year: 2014 ident: 10.1016/j.eswa.2014.02.043_b0030 article-title: Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata publication-title: Medical & Biological Engineering & Computing doi: 10.1007/s11517-013-1123-9 – ident: 10.1016/j.eswa.2014.02.043_b0055 – year: 1990 ident: 10.1016/j.eswa.2014.02.043_b0100 article-title: Introduction to statistical pattern recognition – year: 2008 ident: 10.1016/j.eswa.2014.02.043_b0265 – year: 2009 ident: 10.1016/j.eswa.2014.02.043_b0305 – volume: 5 start-page: 124 issue: 2 year: 2010 ident: 10.1016/j.eswa.2014.02.043_b0190 article-title: EEG-based estimation of mental fatigue by using KPCA-HMM and complexity parameters publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2010.01.001 – volume: 3 start-page: R13 issue: 1 year: 2006 ident: 10.1016/j.eswa.2014.02.043_b0285 article-title: Towards adaptive classification for BCI publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/3/1/R02 – volume: 8 start-page: e80886 issue: 11 year: 2013 ident: 10.1016/j.eswa.2014.02.043_b0005 article-title: High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery publication-title: PLoS One doi: 10.1371/journal.pone.0080886 – year: 2007 ident: 10.1016/j.eswa.2014.02.043_b0180 – volume: 91 start-page: 36 issue: 1 year: 2014 ident: 10.1016/j.eswa.2014.02.043_b0160 article-title: Brain-computer interfaces for EEG neurofeedback: Peculiarities and solutions publication-title: International Journal of Psychophysiology doi: 10.1016/j.ijpsycho.2013.08.011 – year: 2000 ident: 10.1016/j.eswa.2014.02.043_b0085 – volume: 2013 start-page: 591216 year: 2013 ident: 10.1016/j.eswa.2014.02.043_b0340 article-title: Local temporal correlation common spatial patterns for single trial EEG classification during motor imagery publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2013/591216 – volume: 2 start-page: 122 issn: 1746-8094 issue: 2 year: 2007 ident: 10.1016/j.eswa.2014.02.043_b0260 article-title: Selection of relevant features for EEG signal classification of schizophrenic patients publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2007.03.003 – volume: 29 start-page: 306 issn: 0013-4694 issue: 3 year: 1970 ident: 10.1016/j.eswa.2014.02.043_b0145 article-title: EEG analysis based on time domain properties publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/0013-4694(70)90143-4 – ident: 10.1016/j.eswa.2014.02.043_b0090 – volume: 39 start-page: 1055 issn: 0957-4174 issue: 1 year: 2012 ident: 10.1016/j.eswa.2014.02.043_b0150 article-title: Fuzzy hopfield neural network clustering for single-trial motor imagery EEG classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.07.106 – volume: 23 start-page: 1129 issue: 6 year: 2009 ident: 10.1016/j.eswa.2014.02.043_b0110 article-title: Comprehensive analysis for the local Fisher discriminant analysis publication-title: International Journal of Pattern Recognition and Artificial Intelligence doi: 10.1142/S0218001409007478 – volume: 3 start-page: 1157 issn: 1532-4435 year: 2003 ident: 10.1016/j.eswa.2014.02.043_b0130 article-title: An introduction to variable and feature selection publication-title: Journal of Machine Learning Research – volume: 4 start-page: R1 issn: 1741-2560 issue: 2 year: 2007 ident: 10.1016/j.eswa.2014.02.043_b0195 article-title: A review of classification algorithms for EEG-based brain-computer interfaces publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/4/2/R01 – year: 2002 ident: 10.1016/j.eswa.2014.02.043_b0280 – ident: 10.1016/j.eswa.2014.02.043_b0295 doi: 10.1016/j.cmpb.2013.12.020 – volume: 8 start-page: 1 year: 2011 ident: 10.1016/j.eswa.2014.02.043_b0170 article-title: Critical issue in state-of-the-art brain-computer interface signal processing publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/8/2/025002 – volume: 7 start-page: 72 issue: 2 year: 2013 ident: 10.1016/j.eswa.2014.02.043_b0245 article-title: Genetic algorithm and forward method for feature selection in EEG feature space publication-title: Journal of Theoretical and Applied Computer Science – volume: 11 start-page: 165 issue: 2 year: 2003 ident: 10.1016/j.eswa.2014.02.043_b0210 article-title: Linear and nonlinear methods for brain-computer interfaces publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2003.814484 – volume: 23 start-page: 1350015 issue: 04 year: 2013 ident: 10.1016/j.eswa.2014.02.043_b0250 article-title: Efficient automatic selection and combination of EEG features in least squares classifiers for motor-imagery brain computer interfaces publication-title: International Journal of Neural Systems doi: 10.1142/S0129065713500159 – volume: 38 start-page: 7440 issue: 6 year: 2011 ident: 10.1016/j.eswa.2014.02.043_b0325 article-title: Bearing performance degradation assessment using locality preserving projections publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.12.079 – ident: 10.1016/j.eswa.2014.02.043_b0080 – volume: 199 start-page: 103 issue: 1 year: 2011 ident: 10.1016/j.eswa.2014.02.043_b0205 article-title: Should the parameters of a BCI translation algorithm be continually adapted? publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2011.04.037 – volume: 8 start-page: 1027 year: 2007 ident: 10.1016/j.eswa.2014.02.043_b0300 article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis publication-title: Journal of Machine Learning Research |
| SSID | ssj0017007 |
| Score | 2.373297 |
| Snippet | •This work analyzes feature selection and transformation methods for BCI systems.•Three representative feature extraction methods are used: BP, Hjorth and... A Brain-Computer Interface (BCI) system based on motor imagery (Ml) identifies patterns of electrical brain activity to predict the user intention while... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5285 |
| SubjectTerms | Applied sciences Biological and medical sciences Brain-computer interfaces Classification Cognition. Intelligence Computer science; control theory; systems Computer systems and distributed systems. User interface Data processing. List processing. Character string processing Dimensionality reduction Electrodiagnosis. Electric activity recording Electroencephalogram signals Electroencephalography Exact sciences and technology Feature extraction Feature transformation Fundamental and applied biological sciences. Psychology Human-computer interface Imagery Investigative techniques, diagnostic techniques (general aspects) Linear discriminants Local Fisher Discriminant Analysis Medical sciences Memory organisation. Data processing Mental imagery. Mental representation Motor imagery Motors Nervous system Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Reduction Software Tasks |
| Title | Exploring dimensionality reduction of EEG features in motor imagery task classification |
| URI | https://dx.doi.org/10.1016/j.eswa.2014.02.043 https://www.proquest.com/docview/1567055931 https://www.proquest.com/docview/1678005647 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvRRKH0lLt49Fgd6Ks7IlWatjCJtuE5pLG5KbkOURbNN6l_WG0kt_e2cseyGE7qHgi-0RFjPSfCM88w1jHwo9tXUEnclaiExZWWdWxBI3Xh29l4jhnqqRv1yW8yt1fqNv9tjpUAtDaZW9708-vfPW_ZNJr83JarGYfMXgAOEQL5WIy6iCXRnqYnD8Z5vmQfRzJvHtmYyk-8KZlOMF7S_iHspVx9up5L_A6cnKt6iymHpdPHDbHRadPWdP-yCSn6R5vmB70BywZ0ODBt7v10N2vc2w4zWx-CcGDoy7-ZoYW8kmfBn5bPaJR-gYPlu-aDhab7nmi59Eb_Gbb3x7ywMF2ZRV1BnyJbs6m307nWd9J4UsSFtuMjBxWhmTWxsrEBbyvNKhCFYoFUFpI8HUPnpbqUrpoPy0Ah38FN-pUsS6kq_YfrNs4DXjEQHe51BioAQqFOiktJKlCBqMhcIWI5YPKnShpxmnbhc_3JBP9t2R2h2p3YnCodpH7ON2zCqRbOyU1oNl3L2l4hAFdo4b3zPj9lOI0BJPWWLEjga7Otxk9OfEN7C8ax0ecol1yMp8hwzCPhGrKvPmPyf4lj2mu5TB9o7tb9Z38B5Dnk017tb0mD06-Xwxv_wLGUEBxQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcgAJ8Y1YoMVI3FBYJ7bj9RFVWxZoe6EVvVmOY0tbILvabIW49Ld3Jk5WqlD3gJRTbCvWjD1vrDy_AXhfqImpY1CZqDnPpBF1ZngscePV0TmBGO7oNvLxSTk7k1_P1fkOHAx3YYhW2cf-FNO7aN2_GffWHC_n8_F3TA4QDvGRSbjsDtyVqtB0Avt4teF5kP6cToJ7OqPu_c2ZRPIK7R8SH8plJ9wpxW3o9GDpWrRZTMUu_onbHRgdPoaHfRbJPqWJPoGd0DyFR0OFBtZv2GfwY0OxYzXJ-CcJDky82YokW8kpbBHZdPqZxdBJfLZs3jB032LF5r9J3-IvW7v2J_OUZROtqPPkczg7nJ4ezLK-lELmhSnXWdBxUmmdGxOrwE3I80r5whsuZQxSaRF07aIzlayk8tJNqqC8m2CbLHmsK_ECdptFE14Ci4jwLg8lZkpB-gKjlJKi5F4FbUJhihHkgwmt73XGqdzFLzsQyi4smd2S2S0vLJp9BB82Y5ZJZWNrbzV4xt5YKxZhYOu4_Rtu3HwKIVrgMYuP4N3gV4u7jH6duCYsLluLp1ySHTIi39IHcZ-UVaV-9Z8TfAv3ZqfHR_boy8m313CfWhKd7Q3srleXYQ_zn3W1363va_8SA1o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+dimensionality+reduction+of+EEG+features+in+motor+imagery+task+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Garc%C3%ADa-Laencina%2C+Pedro+J.&rft.au=Rodr%C3%ADguez-Bermudez%2C+Germ%C3%A1n&rft.au=Roca-Dorda%2C+Joaqu%C3%ADn&rft.date=2014-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=41&rft.issue=11&rft.spage=5285&rft.epage=5295&rft_id=info:doi/10.1016%2Fj.eswa.2014.02.043&rft.externalDocID=S0957417414001195 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |