Exploring dimensionality reduction of EEG features in motor imagery task classification

•This work analyzes feature selection and transformation methods for BCI systems.•Three representative feature extraction methods are used: BP, Hjorth and AAR.•An efficient LOO-CV technique is introduced for choosing the embedded dimensionality.•Experiments have been conducted on five novice users d...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 41; no. 11; pp. 5285 - 5295
Main Authors García-Laencina, Pedro J., Rodríguez-Bermudez, Germán, Roca-Dorda, Joaquín
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.09.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2014.02.043

Cover

Abstract •This work analyzes feature selection and transformation methods for BCI systems.•Three representative feature extraction methods are used: BP, Hjorth and AAR.•An efficient LOO-CV technique is introduced for choosing the embedded dimensionality.•Experiments have been conducted on five novice users during their first BCI sessions.•According to its excellent results, LFDA is a promising method to design BCI systems. A Brain-Computer Interface (BCI) system based on motor imagery (MI) identifies patterns of electrical brain activity to predict the user intention while certain movement imagination tasks are performed. Currently, one of the most important challenges is the adaptive design of a BCI system. For solving it, this work explores dimensionality reduction techniques: once features have been extracted from Electroencephalogram (EEG) signals, the high-dimensional EEG data has to be mapped onto a new reduced feature space to make easier the classification stage. Besides the standard sequential feature selection methods, this paper analyzes two unsupervised transformation-based approaches – Principal Component Analysis and Locality Preserving Projections – and the Local Fisher Discriminant Analysis (LFDA), which works in a supervised manner. The dimensionality in the projected space is chosen following a wrapper-based approach by an efficient leave-one-out estimation. Experiments have been conducted on five novice subjects during their first sessions with MI-based BCI systems in order to show that the appropriate use of dimensionality reduction methods allows increasing the performance. In particular, obtained results show that LFDA gives a significant enhancement in classification terms without increasing the computational complexity and, then, it is a promising technique for designing MI-based BCI system.
AbstractList •This work analyzes feature selection and transformation methods for BCI systems.•Three representative feature extraction methods are used: BP, Hjorth and AAR.•An efficient LOO-CV technique is introduced for choosing the embedded dimensionality.•Experiments have been conducted on five novice users during their first BCI sessions.•According to its excellent results, LFDA is a promising method to design BCI systems. A Brain-Computer Interface (BCI) system based on motor imagery (MI) identifies patterns of electrical brain activity to predict the user intention while certain movement imagination tasks are performed. Currently, one of the most important challenges is the adaptive design of a BCI system. For solving it, this work explores dimensionality reduction techniques: once features have been extracted from Electroencephalogram (EEG) signals, the high-dimensional EEG data has to be mapped onto a new reduced feature space to make easier the classification stage. Besides the standard sequential feature selection methods, this paper analyzes two unsupervised transformation-based approaches – Principal Component Analysis and Locality Preserving Projections – and the Local Fisher Discriminant Analysis (LFDA), which works in a supervised manner. The dimensionality in the projected space is chosen following a wrapper-based approach by an efficient leave-one-out estimation. Experiments have been conducted on five novice subjects during their first sessions with MI-based BCI systems in order to show that the appropriate use of dimensionality reduction methods allows increasing the performance. In particular, obtained results show that LFDA gives a significant enhancement in classification terms without increasing the computational complexity and, then, it is a promising technique for designing MI-based BCI system.
A Brain-Computer Interface (BCI) system based on motor imagery (Ml) identifies patterns of electrical brain activity to predict the user intention while certain movement imagination tasks are performed. Currently, one of the most important challenges is the adaptive design of a BCI system. For solving it, this work explores dimensionality reduction techniques: once features have been extracted from Electroencephalogram (EEG) signals, the high-dimensional EEG data has to be mapped onto a new reduced feature space to make easier the classification stage. Besides the standard sequential feature selection methods, this paper analyzes two unsupervised transformation-based approaches - Principal Component Analysis and Locality Preserving Projections - and the Local Fisher Discriminant Analysis (LFDA), which works in a supervised manner. The dimensionality in the projected space is chosen following a wrapper-based approach by an efficient leave-one-out estimation. Experiments have been conducted on five novice subjects during their first sessions with MI-based BCI systems in order to show that the appropriate use of dimensionality reduction methods allows increasing the performance. In particular, obtained results show that LFDA gives a significant enhancement in classification terms without increasing the computational complexity and, then, it is a promising technique for designing MI-based BCI system.
Author García-Laencina, Pedro J.
Rodríguez-Bermudez, Germán
Roca-Dorda, Joaquín
Author_xml – sequence: 1
  givenname: Pedro J.
  surname: García-Laencina
  fullname: García-Laencina, Pedro J.
  email: pedroj.garcia@cud.upct.es
– sequence: 2
  givenname: Germán
  surname: Rodríguez-Bermudez
  fullname: Rodríguez-Bermudez, Germán
  email: german.rodriguez@cud.upct.es
– sequence: 3
  givenname: Joaquín
  surname: Roca-Dorda
  fullname: Roca-Dorda, Joaquín
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28438260$$DView record in Pascal Francis
BookMark eNqFkU1r3DAQhkVJoZuPP9CTLoVe7IxsybIglxK2SSDQS0OPQpZHQVuvtJG0Sfffx5sNPeSQnIZhnmdg5j0mRyEGJOQrg5oB685XNeYnUzfAeA1NDbz9RBasl23VSdUekQUoISvOJP9CjnNeATAJIBfkz_LfZorJh3s6-jWG7GMwky87mnDc2jK3NDq6XF5Rh6ZsE2bqA13HEhP1a3OPaUeLyX-pnUzO3nlr9tIp-ezMlPHstZ6Qu5_L35fX1e2vq5vLH7eVbVVXKpSuH6RkSrkBQSFjg7CNVcC5Qy5ki3I0zqiBD1xYbvoBhTX9POMduHFoT8j3w95Nig9bzEWvfbY4TSZg3GbNOtkDiI7Lj1HRSRBCtWxGv72iJlszuWSC9Vlv0nxx2umm523fdDBzzYGzKeac0P1HGOh9MHql98HofTAaGj0HM0v9G8n68vK0koyf3lcvDirOL330mHS2HoPF0Se0RY_Rv6c_A0xZrMQ
CitedBy_id crossref_primary_10_1016_j_eswa_2017_12_015
crossref_primary_10_1142_S0218127415400234
crossref_primary_10_1088_1741_2560_14_1_016003
crossref_primary_10_1016_j_bspc_2016_09_014
crossref_primary_10_3390_a17080346
crossref_primary_10_3390_app9234990
crossref_primary_10_1016_j_neucom_2016_08_082
crossref_primary_10_1016_j_bspc_2021_102763
crossref_primary_10_1016_j_eswa_2015_03_008
crossref_primary_10_1016_j_jneumeth_2024_110215
crossref_primary_10_58496_ADSA_2024_007
crossref_primary_10_1088_1741_2552_abce70
crossref_primary_10_1155_2017_2727856
crossref_primary_10_3390_diagnostics10121087
crossref_primary_10_3389_fnhum_2023_1223307
crossref_primary_10_1371_journal_pone_0248511
crossref_primary_10_1016_j_eswa_2015_01_031
crossref_primary_10_62347_ZWRY8401
crossref_primary_10_1016_j_asoc_2019_105519
crossref_primary_10_1109_THMS_2016_2573827
crossref_primary_10_1155_2021_6625141
crossref_primary_10_1016_j_eswa_2015_06_058
crossref_primary_10_1109_ACCESS_2019_2895133
crossref_primary_10_1515_phys_2017_0056
crossref_primary_10_1088_1741_2552_ab7264
crossref_primary_10_1016_j_bbr_2024_115345
crossref_primary_10_3389_fninf_2022_811756
crossref_primary_10_3390_app142310980
crossref_primary_10_1371_journal_pone_0218181
crossref_primary_10_1007_s11517_023_02840_z
crossref_primary_10_1109_TNSRE_2023_3249831
crossref_primary_10_1088_1741_2552_aa61bb
crossref_primary_10_3389_fnhum_2024_1525139
Cites_doi 10.1371/journal.pone.0000637
10.1155/2009/537504
10.1016/j.neucom.2013.05.005
10.1088/1741-2560/4/2/R03
10.1088/1741-2560/7/1/016003
10.1016/j.neucom.2013.03.027
10.1109/IEMBS.2010.5627239
10.1016/j.neucom.2013.01.001
10.1142/S0129065706000482
10.1016/j.neucom.2013.06.046
10.3109/17483107.2014.884174
10.1109/IEMBS.2011.6091898
10.1016/j.neuroimage.2005.12.003
10.3389/fnins.2010.00198
10.1016/j.eswa.2012.08.046
10.1016/j.eswa.2011.03.066
10.1109/MSP.2008.4408441
10.1007/s11517-009-0569-2
10.3390/s120201211
10.1016/j.ijleo.2013.09.013
10.3389/fnins.2012.00042
10.1109/10.661153
10.1109/TNSRE.2003.814441
10.1016/j.neucom.2012.02.041
10.1109/7333.918276
10.1177/1550059413491559
10.1088/1741-2560/8/2/025009
10.1007/s11517-013-1123-9
10.1016/j.bspc.2010.01.001
10.1088/1741-2560/3/1/R02
10.1371/journal.pone.0080886
10.1016/j.ijpsycho.2013.08.011
10.1155/2013/591216
10.1016/j.bspc.2007.03.003
10.1016/0013-4694(70)90143-4
10.1016/j.eswa.2011.07.106
10.1142/S0218001409007478
10.1088/1741-2560/4/2/R01
10.1016/j.cmpb.2013.12.020
10.1088/1741-2560/8/2/025002
10.1109/TNSRE.2003.814484
10.1142/S0129065713500159
10.1016/j.eswa.2010.12.079
10.1016/j.jneumeth.2011.04.037
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2014.02.043
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 5295
ExternalDocumentID 28438260
10_1016_j_eswa_2014_02_043
S0957417414001195
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
08R
AALMO
AAPBV
ABPIF
ABPTK
ADALY
IPNFZ
IQODW
PQEST
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-e7f8b77199fbe09e11b5c2c9044fe4573e7dafa9b4b45c4a8be5ca8fe4460fdb3
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Sat Sep 27 17:49:37 EDT 2025
Sun Sep 28 12:16:36 EDT 2025
Thu Nov 24 18:35:11 EST 2022
Thu Apr 24 22:51:55 EDT 2025
Wed Oct 01 03:51:42 EDT 2025
Fri Feb 23 02:29:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Dimensionality reduction
Feature transformation
Local Fisher Discriminant Analysis
Electroencephalogram signals
Brain-computer interfaces
Motor imagery
Linear discriminants
Brain
Electrical activity
Adaptive system
Central nervous system
Electroencephalography
Encephalon
Projection method
User interface
Sequential method
Classification
Selection criterion
Reduced order systems
Discriminant analysis
Computational complexity
Standards
Data reduction
Fisher information
Dimension reduction
Reduction method
Imagination
Intention
User behavior
Principal component analysis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-e7f8b77199fbe09e11b5c2c9044fe4573e7dafa9b4b45c4a8be5ca8fe4460fdb3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1567055931
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1678005647
proquest_miscellaneous_1567055931
pascalfrancis_primary_28438260
crossref_primary_10_1016_j_eswa_2014_02_043
crossref_citationtrail_10_1016_j_eswa_2014_02_043
elsevier_sciencedirect_doi_10_1016_j_eswa_2014_02_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Nicolas-Alonso, Gomez-Gil (b0225) 2012; 2
Liang, Saratchandran, Huang, Sundararajan (b0185) 2006; 16
Fukunaga (b0100) 1990
Yu (b0325) 2011; 38
Naeem, Brunner, Pfurtscheller (b0220) 2009; 2009
(pp. 1–5).
Serre (b0280) 2002
Delgado-Saa, J. F., & Cetin, M. (2011). Hidden conditional random fields for classification of imagery motor tasks from EEG data. In
6 (42).
Shi, Lu (b0290) 2013; 102
Zhang, Xu, Liu, Zhang, Guo, Li (b0340) 2013; 2013
Pacific Grove, CA, USA.
Müller, Krauledat, Dornhege, Curio, Blankertz (b0215) 2004; 49
Anderson, Stolz, Shamsunder (b0015) 1998; 45
Alpaydin (b0010) 2010
(pp. 7703 –7706).
Chung (b0070) 1997
Huster, Mokom, Enriquez-Geppert, Herrmann (b0160) 2014; 91
(in press).
(Vol. 5669, pp. 106–117).
Gao, Kwan, Huang (b0110) 2009; 23
Atyabi, Luerssen, Powers (b0020) 2013; 119
Lee, F., Scherer, R., Leeb, R., Schlgl, A., Bischof, H., & Pfurtscheller, G. (2004). Feature mapping using PCA, locally linear embedding and isometric feature mapping for EEG-based brain computer interface. In
Wang, Nie, Lu (b0320) 2014; 129
Guyon, Elisseeff (b0130) 2003; 3
.
Hsu (b0150) 2012; 39
Popescu, Fazli, Badower, Blankertz, Müller (b0240) 2007; 2
Gan, J. (2006). Feature dimensionality reduction by manifold learning in brain-computer interfaces. In
Sanei, Chambers (b0265) 2008
Blankertz, Tomioka, Lemm, Kawanabe, Muller (b0050) 2008; 25
Corralejo, R., Hornero, R., & Alvarez, D. (2011). Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface. In
Krusienski, Grosse-Wentrup, Galán, Coyle, Miller, Forney (b0170) 2011; 8
Cabrera, Farina, Dremstrup (b0060) 2010; 48
Rodríguez-Bermúdez, García-Laencina, Roca-Dorda (b0250) 2013; 23
Oh, Yoo, Pedrycz (b0230) 2013; 40
Sardouie, H. S., & Shamsollahi, M. B. (xxxx). Discriminating MEG signals recorded during hand movements using selection of efficient features.
(pp. 4946–4949).
Sugiyama (b0300) 2007; 8
Duda, Hart, Stork (b0085) 2000
(pp. 189–196).
Tong, Thankor (b0305) 2009
Koprinska, I. (2009). Feature Selection for brain-computer interfaces. In
Siuly, S., Li, Y., & Wen, P. (2014). Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
Guger, Schlogl, Neuper, Walterspacher, Strein, Pfurtscheller (b0125) 2001; 9
Lotte, Congedo, Lécuyer, Lamarche, Arnaldi (b0195) 2007; 4
Muller, Anderson, Birch (b0210) 2003; 11
Pfurtscheller, Brunner, Schlgl, da Silva (b0235) 2006; 31
Garrett, Peterson, Anderson, Thaut (b0115) 2003; 11
Rejer, Lorenz (b0245) 2013; 7
Bhattacharyya, Sengupta, Chakraborti, Konar, Tibarewala (b0030) 2014; 52
Rodríguez-Bermúdez, García-Laencina, Roca-González, Roca-Dorda (b0255) 2013; 115
van der Maaten, L. J. P., Postma, E. O., & van den Herik, H. J. (2009). Dimensionality reduction: A comparative review. Technical report, Tilburg University.
Guerrero-Mosquera, C., Verleysen, M., & Navia Vazquez, A. (2010). EEG feature selection using mutual information and support vector machine: A comparative analysis. In
Ahn, Cho, Ahn, Jun (b0005) 2013; 8
(pp. 1377–1381). Barcelona, Spain.
Liu, Zhang, Zheng (b0190) 2010; 5
Billinger, M., Brunner, C., & Neuper, C. (2010). Classification of adaptive autoregressive models at different sampling rates in a motor imagery-based BCI. In
(pp. 28–29). Graz, Austria.
McCann, M. T., Thompson, D. E., Syed, Z. H., & Huggins, J. E. (2014). Electrode subset selection methods for an EEG-based P300 brain-computer interface. In
Lee, Verleysen (b0180) 2007
Blankertz, Tangermann, Vidaurre, Fazli, Sannelli, Haufe (b0045) 2010; 4
Bontempi, G. (2011). Statistical foundations of machine learning. Université Libre de Bruxelles.
McFarland, Sarnacki, Wolpaw (b0205) 2011; 199
Vidaurre, Sannelli, Müller, Blankertz (b0315) 2011; 8
Erfanian, A., & Erfani, A. (2004). EEG-based brain-computer interface for hand grasp control: Feature extraction by using ICA. In
Fruitet, McFarland, Wolpaw (b0095) 2010; 7
He, Niyogi (b0140) 2004; Vol. 16
Chen, Liu, Yang, Liu, Wang (b0065) 2011; 38
Zelnik-Manor, Perona (b0335) 2005; Vol. 17
He, Hu, Li, Li (b0135) 2013; 121
Bashashati, Fatourechi, Ward, Birch (b0025) 2007; 4
Hjorth (b0145) 1970; 29
Schlögl (b0275) 2000
Bishop (b0040) 2006
Shenoy, Krauledat, Blankertz, Rao, Müller (b0285) 2006; 3
Hsu, W. -Y. (2013). Improving classification accuracy of motor imagery EEG using genetic feature selection.
Yu, Chum, Sim (b0330) 2014; 125
Sabeti, Boostani, Katebi, Price (b0260) 2007; 2
Nicolas-Alonso (10.1016/j.eswa.2014.02.043_b0225) 2012; 2
Anderson (10.1016/j.eswa.2014.02.043_b0015) 1998; 45
Fruitet (10.1016/j.eswa.2014.02.043_b0095) 2010; 7
10.1016/j.eswa.2014.02.043_b0120
Yu (10.1016/j.eswa.2014.02.043_b0325) 2011; 38
10.1016/j.eswa.2014.02.043_b0165
Rodríguez-Bermúdez (10.1016/j.eswa.2014.02.043_b0255) 2013; 115
10.1016/j.eswa.2014.02.043_b0200
Garrett (10.1016/j.eswa.2014.02.043_b0115) 2003; 11
10.1016/j.eswa.2014.02.043_b0080
Zelnik-Manor (10.1016/j.eswa.2014.02.043_b0335) 2005; Vol. 17
Müller (10.1016/j.eswa.2014.02.043_b0215) 2004; 49
Fukunaga (10.1016/j.eswa.2014.02.043_b0100) 1990
Alpaydin (10.1016/j.eswa.2014.02.043_b0010) 2010
Duda (10.1016/j.eswa.2014.02.043_b0085) 2000
Bishop (10.1016/j.eswa.2014.02.043_b0040) 2006
Huster (10.1016/j.eswa.2014.02.043_b0160) 2014; 91
He (10.1016/j.eswa.2014.02.043_b0135) 2013; 121
Sanei (10.1016/j.eswa.2014.02.043_b0265) 2008
Atyabi (10.1016/j.eswa.2014.02.043_b0020) 2013; 119
10.1016/j.eswa.2014.02.043_b0270
10.1016/j.eswa.2014.02.043_b0075
10.1016/j.eswa.2014.02.043_b0155
10.1016/j.eswa.2014.02.043_b0035
10.1016/j.eswa.2014.02.043_b0310
Hsu (10.1016/j.eswa.2014.02.043_b0150) 2012; 39
Hjorth (10.1016/j.eswa.2014.02.043_b0145) 1970; 29
McFarland (10.1016/j.eswa.2014.02.043_b0205) 2011; 199
Bashashati (10.1016/j.eswa.2014.02.043_b0025) 2007; 4
Blankertz (10.1016/j.eswa.2014.02.043_b0050) 2008; 25
Lee (10.1016/j.eswa.2014.02.043_b0180) 2007
Serre (10.1016/j.eswa.2014.02.043_b0280) 2002
Oh (10.1016/j.eswa.2014.02.043_b0230) 2013; 40
Gao (10.1016/j.eswa.2014.02.043_b0110) 2009; 23
Sabeti (10.1016/j.eswa.2014.02.043_b0260) 2007; 2
10.1016/j.eswa.2014.02.043_b0105
Ahn (10.1016/j.eswa.2014.02.043_b0005) 2013; 8
Krusienski (10.1016/j.eswa.2014.02.043_b0170) 2011; 8
Cabrera (10.1016/j.eswa.2014.02.043_b0060) 2010; 48
Vidaurre (10.1016/j.eswa.2014.02.043_b0315) 2011; 8
Guyon (10.1016/j.eswa.2014.02.043_b0130) 2003; 3
He (10.1016/j.eswa.2014.02.043_b0140) 2004; Vol. 16
Blankertz (10.1016/j.eswa.2014.02.043_b0045) 2010; 4
Sugiyama (10.1016/j.eswa.2014.02.043_b0300) 2007; 8
Liu (10.1016/j.eswa.2014.02.043_b0190) 2010; 5
Muller (10.1016/j.eswa.2014.02.043_b0210) 2003; 11
Shenoy (10.1016/j.eswa.2014.02.043_b0285) 2006; 3
10.1016/j.eswa.2014.02.043_b0295
10.1016/j.eswa.2014.02.043_b0175
Bhattacharyya (10.1016/j.eswa.2014.02.043_b0030) 2014; 52
10.1016/j.eswa.2014.02.043_b0055
Shi (10.1016/j.eswa.2014.02.043_b0290) 2013; 102
Chen (10.1016/j.eswa.2014.02.043_b0065) 2011; 38
10.1016/j.eswa.2014.02.043_b0090
Naeem (10.1016/j.eswa.2014.02.043_b0220) 2009; 2009
Rejer (10.1016/j.eswa.2014.02.043_b0245) 2013; 7
Yu (10.1016/j.eswa.2014.02.043_b0330) 2014; 125
Rodríguez-Bermúdez (10.1016/j.eswa.2014.02.043_b0250) 2013; 23
Tong (10.1016/j.eswa.2014.02.043_b0305) 2009
Guger (10.1016/j.eswa.2014.02.043_b0125) 2001; 9
Wang (10.1016/j.eswa.2014.02.043_b0320) 2014; 129
Popescu (10.1016/j.eswa.2014.02.043_b0240) 2007; 2
Pfurtscheller (10.1016/j.eswa.2014.02.043_b0235) 2006; 31
Schlögl (10.1016/j.eswa.2014.02.043_b0275) 2000
Chung (10.1016/j.eswa.2014.02.043_b0070) 1997
Zhang (10.1016/j.eswa.2014.02.043_b0340) 2013; 2013
Liang (10.1016/j.eswa.2014.02.043_b0185) 2006; 16
Lotte (10.1016/j.eswa.2014.02.043_b0195) 2007; 4
References_xml – volume: 9
  start-page: 49
  year: 2001
  end-page: 58
  ident: b0125
  article-title: Rapid prototyping of an EEG-based brain-computer interface (BCI)
  publication-title: IEEE Transactions on Rehabilitation Engineering Neural Systems and Rehabilitation Engineering
– volume: 3
  start-page: R13
  year: 2006
  end-page: R23
  ident: b0285
  article-title: Towards adaptive classification for BCI
  publication-title: Journal of Neural Engineering
– reference: Billinger, M., Brunner, C., & Neuper, C. (2010). Classification of adaptive autoregressive models at different sampling rates in a motor imagery-based BCI. In
– reference: (pp. 4946–4949).
– volume: 16
  start-page: 29
  year: 2006
  end-page: 38
  ident: b0185
  article-title: Classification of mental task from EEG signals using extreme learning machine
  publication-title: International Journal of Neural Systems
– volume: 11
  start-page: 141
  year: 2003
  end-page: 144
  ident: b0115
  article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– reference: (Vol. 5669, pp. 106–117).
– volume: 119
  start-page: 319
  year: 2013
  end-page: 331
  ident: b0020
  article-title: PSO-based dimension reduction of EEG recordings: Implications for subject transfer in BCI
  publication-title: Neurocomputing
– volume: 25
  start-page: 41
  year: 2008
  end-page: 56
  ident: b0050
  article-title: Optimizing spatial filters for Robust EEG single-trial analysis
  publication-title: IEEE Signal Processing Magazine
– reference: (in press).
– volume: 199
  start-page: 103
  year: 2011
  end-page: 107
  ident: b0205
  article-title: Should the parameters of a BCI translation algorithm be continually adapted?
  publication-title: Journal of Neuroscience Methods
– volume: 4
  start-page: R32
  year: 2007
  end-page: R57
  ident: b0025
  article-title: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals
  publication-title: Journal of Neural Engineering
– reference: , 6 (42).
– volume: 39
  start-page: 1055
  year: 2012
  end-page: 1061
  ident: b0150
  article-title: Fuzzy hopfield neural network clustering for single-trial motor imagery EEG classification
  publication-title: Expert Systems with Applications
– volume: 8
  start-page: e80886
  year: 2013
  ident: b0005
  article-title: High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery
  publication-title: PLoS One
– year: 2000
  ident: b0085
  article-title: Pattern classification
– year: 1990
  ident: b0100
  article-title: Introduction to statistical pattern recognition
  publication-title: Computer science & scientific computing
– volume: 2
  start-page: e637+
  year: 2007
  ident: b0240
  article-title: Single trial classification of motor imagination using 6 dry EEG electrodes
  publication-title: PloS One
– volume: 125
  start-page: 14981502
  year: 2014
  ident: b0330
  article-title: Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system
  publication-title: Optik – International Journal for Light and Electron Optics
– volume: 91
  start-page: 36
  year: 2014
  end-page: 45
  ident: b0160
  article-title: Brain-computer interfaces for EEG neurofeedback: Peculiarities and solutions
  publication-title: International Journal of Psychophysiology
– volume: Vol. 16
  year: 2004
  ident: b0140
  article-title: Locality preserving projections
  publication-title: Advances in neural information processing systems
– volume: 7
  start-page: 16003
  year: 2010
  ident: b0095
  article-title: A comparison of regression techniques for a two-dimensional sensorimotor rhythm-based brain-computer interface
  publication-title: Journal of Neural Engineering
– volume: 121
  start-page: 423
  year: 2013
  end-page: 433
  ident: b0135
  article-title: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG
  publication-title: Neurocomputing
– reference: van der Maaten, L. J. P., Postma, E. O., & van den Herik, H. J. (2009). Dimensionality reduction: A comparative review. Technical report, Tilburg University.
– reference: (pp. 7703 –7706).
– volume: 5
  start-page: 124
  year: 2010
  end-page: 130
  ident: b0190
  article-title: EEG-based estimation of mental fatigue by using KPCA-HMM and complexity parameters
  publication-title: Biomedical Signal Processing and Control
– volume: 23
  start-page: 1129
  year: 2009
  end-page: 1143
  ident: b0110
  article-title: Comprehensive analysis for the local Fisher discriminant analysis
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
– reference: Siuly, S., Li, Y., & Wen, P. (2014). Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
– year: 2009
  ident: b0305
  article-title: Quantitative EEG analysis methods and clinical applications
– reference: . Pacific Grove, CA, USA.
– volume: 2
  start-page: 1211
  year: 2012
  end-page: 1279
  ident: b0225
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
– year: 2008
  ident: b0265
  article-title: EEG signal processing
– reference: Lee, F., Scherer, R., Leeb, R., Schlgl, A., Bischof, H., & Pfurtscheller, G. (2004). Feature mapping using PCA, locally linear embedding and isometric feature mapping for EEG-based brain computer interface. In
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: b0130
  article-title: An introduction to variable and feature selection
  publication-title: Journal of Machine Learning Research
– volume: 23
  start-page: 1350015
  year: 2013
  ident: b0250
  article-title: Efficient automatic selection and combination of EEG features in least squares classifiers for motor-imagery brain computer interfaces
  publication-title: International Journal of Neural Systems
– volume: 38
  start-page: 7440
  year: 2011
  end-page: 7450
  ident: b0325
  article-title: Bearing performance degradation assessment using locality preserving projections
  publication-title: Expert Systems with Applications
– volume: 38
  start-page: 11796
  year: 2011
  end-page: 11803
  ident: b0065
  article-title: A new hybrid method based on local Fisher discriminant analysis and support vector machines for hepatitis disease diagnosis
  publication-title: Expert Systems with Applications
– volume: 8
  start-page: 1
  year: 2011
  end-page: 8
  ident: b0170
  article-title: Critical issue in state-of-the-art brain-computer interface signal processing
  publication-title: Journal of Neural Engineering
– volume: 102
  start-page: 135
  year: 2013
  end-page: 143
  ident: b0290
  article-title: EEG-based vigilance estimation using extreme learning machines
  publication-title: Neurocomputing
– year: 2010
  ident: b0010
  article-title: Introduction to machine learning
– reference: (pp. 189–196).
– year: 1997
  ident: b0070
  article-title: Spectral graph theory
– volume: 49
  start-page: 11
  year: 2004
  end-page: 22
  ident: b0215
  article-title: Machine learning techniques for brain-computer interfaces
  publication-title: Biomedical Technology
– volume: 8
  start-page: 025009
  year: 2011
  ident: b0315
  article-title: Co-adaptive calibration to improve BCI efficiency
  publication-title: Journal of Neural Engineering
– year: 2007
  ident: b0180
  article-title: Nonlinear dimensionality reduction
– volume: 2009
  start-page: 537504
  year: 2009
  ident: b0220
  article-title: Dimensionality reduction and channel selection of motor imagery electroencephalographic data
  publication-title: Computational Intelligence and Neuroscience
– reference: Delgado-Saa, J. F., & Cetin, M. (2011). Hidden conditional random fields for classification of imagery motor tasks from EEG data. In
– year: 2002
  ident: b0280
  article-title: Matrices: Theory and applications
– volume: 52
  start-page: 131
  year: 2014
  end-page: 139
  ident: b0030
  article-title: Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata
  publication-title: Medical & Biological Engineering & Computing
– reference: Erfanian, A., & Erfani, A. (2004). EEG-based brain-computer interface for hand grasp control: Feature extraction by using ICA. In
– reference: (pp. 28–29). Graz, Austria.
– reference: (pp. 1–5).
– reference: McCann, M. T., Thompson, D. E., Syed, Z. H., & Huggins, J. E. (2014). Electrode subset selection methods for an EEG-based P300 brain-computer interface. In
– volume: 4
  start-page: 1
  year: 2010
  end-page: 17
  ident: b0045
  article-title: The Berlin brain-computer interface: Non-medical uses of BCI technology
  publication-title: Frontiers in Neuroscience
– reference: Guerrero-Mosquera, C., Verleysen, M., & Navia Vazquez, A. (2010). EEG feature selection using mutual information and support vector machine: A comparative analysis. In
– reference: Sardouie, H. S., & Shamsollahi, M. B. (xxxx). Discriminating MEG signals recorded during hand movements using selection of efficient features.
– reference: Koprinska, I. (2009). Feature Selection for brain-computer interfaces. In
– volume: 129
  start-page: 94
  year: 2014
  end-page: 106
  ident: b0320
  article-title: Emotional state classification from EEG data using machine learning approach
  publication-title: Neurocomputing
– volume: Vol. 17
  start-page: 1601
  year: 2005
  end-page: 1608
  ident: b0335
  article-title: Self-tuning spectral clustering
  publication-title: Advances in neural information processing systems
– reference: (pp. 1377–1381). Barcelona, Spain.
– volume: 4
  start-page: R1
  year: 2007
  end-page: R13
  ident: b0195
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces
  publication-title: Journal of Neural Engineering
– reference: Bontempi, G. (2011). Statistical foundations of machine learning. Université Libre de Bruxelles.
– volume: 115
  start-page: 161
  year: 2013
  end-page: 165
  ident: b0255
  article-title: Efficient feature selection and linear discrimination of EEG signals
  publication-title: Neurocomputing
– volume: 2
  start-page: 122
  year: 2007
  end-page: 134
  ident: b0260
  article-title: Selection of relevant features for EEG signal classification of schizophrenic patients
  publication-title: Biomedical Signal Processing and Control
– volume: 45
  start-page: 277
  year: 1998
  end-page: 286
  ident: b0015
  article-title: Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks
  publication-title: IEEE Transactions on Biomedical Engineering
– reference: Hsu, W. -Y. (2013). Improving classification accuracy of motor imagery EEG using genetic feature selection.
– volume: 8
  start-page: 1027
  year: 2007
  end-page: 1061
  ident: b0300
  article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
  publication-title: Journal of Machine Learning Research
– volume: 31
  start-page: 153
  year: 2006
  end-page: 159
  ident: b0235
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
– reference: .
– volume: 11
  start-page: 165
  year: 2003
  end-page: 169
  ident: b0210
  article-title: Linear and nonlinear methods for brain-computer interfaces
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
– year: 2000
  ident: b0275
  article-title: The electroencephalogram and the adaptive autoregressive model: Theory and applications
– volume: 29
  start-page: 306
  year: 1970
  end-page: 310
  ident: b0145
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalography and Clinical Neurophysiology
– volume: 48
  start-page: 123
  year: 2010
  end-page: 132
  ident: b0060
  article-title: Comparison of feature selection and classification methods for a brain-computer interface driven by non-motor imagery
  publication-title: Medical and Biological Engineering and Computing
– volume: 40
  start-page: 1451
  year: 2013
  end-page: 1466
  ident: b0230
  article-title: Design of face recognition algorithm using PCA-LDA combined for hybrid data pre-processing and polynomial-based RBF neural networks: Design and its application
  publication-title: Expert Systems with Applications
– reference: Corralejo, R., Hornero, R., & Alvarez, D. (2011). Feature selection using a genetic algorithm in a motor imagery-based Brain Computer Interface. In
– year: 2006
  ident: b0040
  article-title: Pattern recognition and machine learning
– volume: 7
  start-page: 72
  year: 2013
  end-page: 82
  ident: b0245
  article-title: Genetic algorithm and forward method for feature selection in EEG feature space
  publication-title: Journal of Theoretical and Applied Computer Science
– reference: Gan, J. (2006). Feature dimensionality reduction by manifold learning in brain-computer interfaces. In
– volume: 2013
  start-page: 591216
  year: 2013
  ident: b0340
  article-title: Local temporal correlation common spatial patterns for single trial EEG classification during motor imagery
  publication-title: Computational and Mathematical Methods in Medicine
– volume: 49
  start-page: 11
  issue: 1
  year: 2004
  ident: 10.1016/j.eswa.2014.02.043_b0215
  article-title: Machine learning techniques for brain-computer interfaces
  publication-title: Biomedical Technology
– volume: 2
  start-page: e637+
  issue: 7
  year: 2007
  ident: 10.1016/j.eswa.2014.02.043_b0240
  article-title: Single trial classification of motor imagination using 6 dry EEG electrodes
  publication-title: PloS One
  doi: 10.1371/journal.pone.0000637
– ident: 10.1016/j.eswa.2014.02.043_b0175
– year: 2006
  ident: 10.1016/j.eswa.2014.02.043_b0040
– volume: 2009
  start-page: 537504
  year: 2009
  ident: 10.1016/j.eswa.2014.02.043_b0220
  article-title: Dimensionality reduction and channel selection of motor imagery electroencephalographic data
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2009/537504
– year: 2010
  ident: 10.1016/j.eswa.2014.02.043_b0010
– volume: 121
  start-page: 423
  year: 2013
  ident: 10.1016/j.eswa.2014.02.043_b0135
  article-title: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.005
– volume: 4
  start-page: R32
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2014.02.043_b0025
  article-title: A survey of signal processing algorithms in brain-computer interfaces based on electrical brain signals
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/4/2/R03
– volume: 7
  start-page: 16003
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2014.02.043_b0095
  article-title: A comparison of regression techniques for a two-dimensional sensorimotor rhythm-based brain-computer interface
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/7/1/016003
– volume: 119
  start-page: 319
  issue: 0
  year: 2013
  ident: 10.1016/j.eswa.2014.02.043_b0020
  article-title: PSO-based dimension reduction of EEG recordings: Implications for subject transfer in BCI
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.03.027
– ident: 10.1016/j.eswa.2014.02.043_b0120
  doi: 10.1109/IEMBS.2010.5627239
– ident: 10.1016/j.eswa.2014.02.043_b0165
– volume: 115
  start-page: 161
  year: 2013
  ident: 10.1016/j.eswa.2014.02.043_b0255
  article-title: Efficient feature selection and linear discrimination of EEG signals
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.01.001
– volume: 16
  start-page: 29
  issue: 01
  year: 2006
  ident: 10.1016/j.eswa.2014.02.043_b0185
  article-title: Classification of mental task from EEG signals using extreme learning machine
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065706000482
– volume: 129
  start-page: 94
  year: 2014
  ident: 10.1016/j.eswa.2014.02.043_b0320
  article-title: Emotional state classification from EEG data using machine learning approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.06.046
– ident: 10.1016/j.eswa.2014.02.043_b0200
  doi: 10.3109/17483107.2014.884174
– ident: 10.1016/j.eswa.2014.02.043_b0075
  doi: 10.1109/IEMBS.2011.6091898
– volume: Vol. 16
  year: 2004
  ident: 10.1016/j.eswa.2014.02.043_b0140
  article-title: Locality preserving projections
– volume: 31
  start-page: 153
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2014.02.043_b0235
  article-title: Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2005.12.003
– volume: 4
  start-page: 1
  year: 2010
  ident: 10.1016/j.eswa.2014.02.043_b0045
  article-title: The Berlin brain-computer interface: Non-medical uses of BCI technology
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2010.00198
– ident: 10.1016/j.eswa.2014.02.043_b0105
– volume: 40
  start-page: 1451
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2014.02.043_b0230
  article-title: Design of face recognition algorithm using PCA-LDA combined for hybrid data pre-processing and polynomial-based RBF neural networks: Design and its application
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2012.08.046
– volume: Vol. 17
  start-page: 1601
  year: 2005
  ident: 10.1016/j.eswa.2014.02.043_b0335
  article-title: Self-tuning spectral clustering
– volume: 38
  start-page: 11796
  issue: 9
  year: 2011
  ident: 10.1016/j.eswa.2014.02.043_b0065
  article-title: A new hybrid method based on local Fisher discriminant analysis and support vector machines for hepatitis disease diagnosis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.03.066
– year: 1997
  ident: 10.1016/j.eswa.2014.02.043_b0070
– volume: 25
  start-page: 41
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2014.02.043_b0050
  article-title: Optimizing spatial filters for Robust EEG single-trial analysis
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2008.4408441
– volume: 48
  start-page: 123
  issn: 0140-0118
  year: 2010
  ident: 10.1016/j.eswa.2014.02.043_b0060
  article-title: Comparison of feature selection and classification methods for a brain-computer interface driven by non-motor imagery
  publication-title: Medical and Biological Engineering and Computing
  doi: 10.1007/s11517-009-0569-2
– volume: 2
  start-page: 1211
  year: 2012
  ident: 10.1016/j.eswa.2014.02.043_b0225
  article-title: Brain computer interfaces, a review
  publication-title: Sensors
  doi: 10.3390/s120201211
– volume: 125
  start-page: 14981502
  issn: 0030-4026
  issue: 3
  year: 2014
  ident: 10.1016/j.eswa.2014.02.043_b0330
  article-title: Analysis the effect of PCA for feature reduction in non-stationary EEG based motor imagery of BCI system
  publication-title: Optik – International Journal for Light and Electron Optics
  doi: 10.1016/j.ijleo.2013.09.013
– ident: 10.1016/j.eswa.2014.02.043_b0270
  doi: 10.3389/fnins.2012.00042
– volume: 45
  start-page: 277
  issn: 0018-9294
  issue: 3
  year: 1998
  ident: 10.1016/j.eswa.2014.02.043_b0015
  article-title: Multivariate autoregressive models for classification of spontaneous electroencephalographic signals during mental tasks
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/10.661153
– volume: 11
  start-page: 141
  issue: 2
  year: 2003
  ident: 10.1016/j.eswa.2014.02.043_b0115
  article-title: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2003.814441
– volume: 102
  start-page: 135
  year: 2013
  ident: 10.1016/j.eswa.2014.02.043_b0290
  article-title: EEG-based vigilance estimation using extreme learning machines
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.02.041
– volume: 9
  start-page: 49
  issue: 1
  year: 2001
  ident: 10.1016/j.eswa.2014.02.043_b0125
  article-title: Rapid prototyping of an EEG-based brain-computer interface (BCI)
  publication-title: IEEE Transactions on Rehabilitation Engineering Neural Systems and Rehabilitation Engineering
  doi: 10.1109/7333.918276
– ident: 10.1016/j.eswa.2014.02.043_b0155
  doi: 10.1177/1550059413491559
– volume: 8
  start-page: 025009
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2014.02.043_b0315
  article-title: Co-adaptive calibration to improve BCI efficiency
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/8/2/025009
– ident: 10.1016/j.eswa.2014.02.043_b0035
– ident: 10.1016/j.eswa.2014.02.043_b0310
– year: 2000
  ident: 10.1016/j.eswa.2014.02.043_b0275
– volume: 52
  start-page: 131
  issue: 2
  year: 2014
  ident: 10.1016/j.eswa.2014.02.043_b0030
  article-title: Automatic feature selection of motor imagery EEG signals using differential evolution and learning automata
  publication-title: Medical & Biological Engineering & Computing
  doi: 10.1007/s11517-013-1123-9
– ident: 10.1016/j.eswa.2014.02.043_b0055
– year: 1990
  ident: 10.1016/j.eswa.2014.02.043_b0100
  article-title: Introduction to statistical pattern recognition
– year: 2008
  ident: 10.1016/j.eswa.2014.02.043_b0265
– year: 2009
  ident: 10.1016/j.eswa.2014.02.043_b0305
– volume: 5
  start-page: 124
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2014.02.043_b0190
  article-title: EEG-based estimation of mental fatigue by using KPCA-HMM and complexity parameters
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2010.01.001
– volume: 3
  start-page: R13
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2014.02.043_b0285
  article-title: Towards adaptive classification for BCI
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/3/1/R02
– volume: 8
  start-page: e80886
  issue: 11
  year: 2013
  ident: 10.1016/j.eswa.2014.02.043_b0005
  article-title: High theta and low alpha powers may be indicative of BCI-illiteracy in motor imagery
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0080886
– year: 2007
  ident: 10.1016/j.eswa.2014.02.043_b0180
– volume: 91
  start-page: 36
  issue: 1
  year: 2014
  ident: 10.1016/j.eswa.2014.02.043_b0160
  article-title: Brain-computer interfaces for EEG neurofeedback: Peculiarities and solutions
  publication-title: International Journal of Psychophysiology
  doi: 10.1016/j.ijpsycho.2013.08.011
– year: 2000
  ident: 10.1016/j.eswa.2014.02.043_b0085
– volume: 2013
  start-page: 591216
  year: 2013
  ident: 10.1016/j.eswa.2014.02.043_b0340
  article-title: Local temporal correlation common spatial patterns for single trial EEG classification during motor imagery
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2013/591216
– volume: 2
  start-page: 122
  issn: 1746-8094
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2014.02.043_b0260
  article-title: Selection of relevant features for EEG signal classification of schizophrenic patients
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2007.03.003
– volume: 29
  start-page: 306
  issn: 0013-4694
  issue: 3
  year: 1970
  ident: 10.1016/j.eswa.2014.02.043_b0145
  article-title: EEG analysis based on time domain properties
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/0013-4694(70)90143-4
– ident: 10.1016/j.eswa.2014.02.043_b0090
– volume: 39
  start-page: 1055
  issn: 0957-4174
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2014.02.043_b0150
  article-title: Fuzzy hopfield neural network clustering for single-trial motor imagery EEG classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.07.106
– volume: 23
  start-page: 1129
  issue: 6
  year: 2009
  ident: 10.1016/j.eswa.2014.02.043_b0110
  article-title: Comprehensive analysis for the local Fisher discriminant analysis
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001409007478
– volume: 3
  start-page: 1157
  issn: 1532-4435
  year: 2003
  ident: 10.1016/j.eswa.2014.02.043_b0130
  article-title: An introduction to variable and feature selection
  publication-title: Journal of Machine Learning Research
– volume: 4
  start-page: R1
  issn: 1741-2560
  issue: 2
  year: 2007
  ident: 10.1016/j.eswa.2014.02.043_b0195
  article-title: A review of classification algorithms for EEG-based brain-computer interfaces
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/4/2/R01
– year: 2002
  ident: 10.1016/j.eswa.2014.02.043_b0280
– ident: 10.1016/j.eswa.2014.02.043_b0295
  doi: 10.1016/j.cmpb.2013.12.020
– volume: 8
  start-page: 1
  year: 2011
  ident: 10.1016/j.eswa.2014.02.043_b0170
  article-title: Critical issue in state-of-the-art brain-computer interface signal processing
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/8/2/025002
– volume: 7
  start-page: 72
  issue: 2
  year: 2013
  ident: 10.1016/j.eswa.2014.02.043_b0245
  article-title: Genetic algorithm and forward method for feature selection in EEG feature space
  publication-title: Journal of Theoretical and Applied Computer Science
– volume: 11
  start-page: 165
  issue: 2
  year: 2003
  ident: 10.1016/j.eswa.2014.02.043_b0210
  article-title: Linear and nonlinear methods for brain-computer interfaces
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2003.814484
– volume: 23
  start-page: 1350015
  issue: 04
  year: 2013
  ident: 10.1016/j.eswa.2014.02.043_b0250
  article-title: Efficient automatic selection and combination of EEG features in least squares classifiers for motor-imagery brain computer interfaces
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065713500159
– volume: 38
  start-page: 7440
  issue: 6
  year: 2011
  ident: 10.1016/j.eswa.2014.02.043_b0325
  article-title: Bearing performance degradation assessment using locality preserving projections
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.12.079
– ident: 10.1016/j.eswa.2014.02.043_b0080
– volume: 199
  start-page: 103
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2014.02.043_b0205
  article-title: Should the parameters of a BCI translation algorithm be continually adapted?
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2011.04.037
– volume: 8
  start-page: 1027
  year: 2007
  ident: 10.1016/j.eswa.2014.02.043_b0300
  article-title: Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
  publication-title: Journal of Machine Learning Research
SSID ssj0017007
Score 2.373297
Snippet •This work analyzes feature selection and transformation methods for BCI systems.•Three representative feature extraction methods are used: BP, Hjorth and...
A Brain-Computer Interface (BCI) system based on motor imagery (Ml) identifies patterns of electrical brain activity to predict the user intention while...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5285
SubjectTerms Applied sciences
Biological and medical sciences
Brain-computer interfaces
Classification
Cognition. Intelligence
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Data processing. List processing. Character string processing
Dimensionality reduction
Electrodiagnosis. Electric activity recording
Electroencephalogram signals
Electroencephalography
Exact sciences and technology
Feature extraction
Feature transformation
Fundamental and applied biological sciences. Psychology
Human-computer interface
Imagery
Investigative techniques, diagnostic techniques (general aspects)
Linear discriminants
Local Fisher Discriminant Analysis
Medical sciences
Memory organisation. Data processing
Mental imagery. Mental representation
Motor imagery
Motors
Nervous system
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Reduction
Software
Tasks
Title Exploring dimensionality reduction of EEG features in motor imagery task classification
URI https://dx.doi.org/10.1016/j.eswa.2014.02.043
https://www.proquest.com/docview/1567055931
https://www.proquest.com/docview/1678005647
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhvRRKH0lLt49Fgd6Ks7IlWatjCJtuE5pLG5KbkOURbNN6l_WG0kt_e2cseyGE7qHgi-0RFjPSfCM88w1jHwo9tXUEnclaiExZWWdWxBI3Xh29l4jhnqqRv1yW8yt1fqNv9tjpUAtDaZW9708-vfPW_ZNJr83JarGYfMXgAOEQL5WIy6iCXRnqYnD8Z5vmQfRzJvHtmYyk-8KZlOMF7S_iHspVx9up5L_A6cnKt6iymHpdPHDbHRadPWdP-yCSn6R5vmB70BywZ0ODBt7v10N2vc2w4zWx-CcGDoy7-ZoYW8kmfBn5bPaJR-gYPlu-aDhab7nmi59Eb_Gbb3x7ywMF2ZRV1BnyJbs6m307nWd9J4UsSFtuMjBxWhmTWxsrEBbyvNKhCFYoFUFpI8HUPnpbqUrpoPy0Ah38FN-pUsS6kq_YfrNs4DXjEQHe51BioAQqFOiktJKlCBqMhcIWI5YPKnShpxmnbhc_3JBP9t2R2h2p3YnCodpH7ON2zCqRbOyU1oNl3L2l4hAFdo4b3zPj9lOI0BJPWWLEjga7Otxk9OfEN7C8ax0ecol1yMp8hwzCPhGrKvPmPyf4lj2mu5TB9o7tb9Z38B5Dnk017tb0mD06-Xwxv_wLGUEBxQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcgAJ8Y1YoMVI3FBYJ7bj9RFVWxZoe6EVvVmOY0tbILvabIW49Ld3Jk5WqlD3gJRTbCvWjD1vrDy_AXhfqImpY1CZqDnPpBF1ZngscePV0TmBGO7oNvLxSTk7k1_P1fkOHAx3YYhW2cf-FNO7aN2_GffWHC_n8_F3TA4QDvGRSbjsDtyVqtB0Avt4teF5kP6cToJ7OqPu_c2ZRPIK7R8SH8plJ9wpxW3o9GDpWrRZTMUu_onbHRgdPoaHfRbJPqWJPoGd0DyFR0OFBtZv2GfwY0OxYzXJ-CcJDky82YokW8kpbBHZdPqZxdBJfLZs3jB032LF5r9J3-IvW7v2J_OUZROtqPPkczg7nJ4ezLK-lELmhSnXWdBxUmmdGxOrwE3I80r5whsuZQxSaRF07aIzlayk8tJNqqC8m2CbLHmsK_ECdptFE14Ci4jwLg8lZkpB-gKjlJKi5F4FbUJhihHkgwmt73XGqdzFLzsQyi4smd2S2S0vLJp9BB82Y5ZJZWNrbzV4xt5YKxZhYOu4_Rtu3HwKIVrgMYuP4N3gV4u7jH6duCYsLluLp1ySHTIi39IHcZ-UVaV-9Z8TfAv3ZqfHR_boy8m313CfWhKd7Q3srleXYQ_zn3W1363va_8SA1o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+dimensionality+reduction+of+EEG+features+in+motor+imagery+task+classification&rft.jtitle=Expert+systems+with+applications&rft.au=Garc%C3%ADa-Laencina%2C+Pedro+J.&rft.au=Rodr%C3%ADguez-Bermudez%2C+Germ%C3%A1n&rft.au=Roca-Dorda%2C+Joaqu%C3%ADn&rft.date=2014-09-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=41&rft.issue=11&rft.spage=5285&rft.epage=5295&rft_id=info:doi/10.1016%2Fj.eswa.2014.02.043&rft.externalDocID=S0957417414001195
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon