Intermittent hypoxia and neurorehabilitation

In recent years, it has become clear that brief, repeated presentations of hypoxia [i.e., acute intermittent hypoxia (AIH)] can boost the efficacy of more traditional therapeutic strategies in certain cases of neurologic dysfunction. This hypothesis derives from a series of studies in animal models...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physiology (1985) Vol. 119; no. 12; pp. 1455 - 1465
Main Authors Gonzalez-Rothi, Elisa J., Lee, Kun-Ze, Dale, Erica A., Reier, Paul J., Mitchell, Gordon S., Fuller, David D.
Format Journal Article
LanguageEnglish
Published United States American Physiological Society 15.12.2015
SeriesHypoxia 2015
Subjects
Online AccessGet full text
ISSN8750-7587
1522-1601
1522-1601
DOI10.1152/japplphysiol.00235.2015

Cover

More Information
Summary:In recent years, it has become clear that brief, repeated presentations of hypoxia [i.e., acute intermittent hypoxia (AIH)] can boost the efficacy of more traditional therapeutic strategies in certain cases of neurologic dysfunction. This hypothesis derives from a series of studies in animal models and human subjects performed over the past 35 yr. In 1980, Millhorn et al. (Millhorn DE, Eldridge FL, Waldrop TG. Respir Physiol 41: 87-103, 1980) showed that electrical stimulation of carotid chemoafferent neurons produced a persistent, serotonin-dependent increase in phrenic motor output that outlasts the stimulus for more than 90 min (i.e., a “respiratory memory”). AIH elicits similar phrenic “long-term facilitation” (LTF) by a mechanism that requires cervical spinal serotonin receptor activation and de novo protein synthesis. From 2003 to present, a series of studies demonstrated that AIH can induce neuroplasticity in the injured spinal cord, causing functional recovery of breathing capacity after cervical spinal injury. Subsequently, it was demonstrated that repeated AIH (rAIH) can induce recovery of limb function, and the functional benefits of rAIH are greatest when paired with task-specific training. Since uncontrolled and/or prolonged intermittent hypoxia can elicit pathophysiology, a challenge of intermittent hypoxia research is to ensure that therapeutic protocols are well below the threshold for pathogenesis. This is possible since many low dose rAIH protocols have induced functional benefits without evidence of pathology. We propose that carefully controlled rAIH is a safe and noninvasive modality that can be paired with other neurorehabilitative strategies including traditional activity-based physical therapy or cell-based therapies such as intraspinal transplantation of neural progenitors.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ISSN:8750-7587
1522-1601
1522-1601
DOI:10.1152/japplphysiol.00235.2015