Catalytic transfer hydrogenation for stabilization of bio-oil oxygenates: Reduction of p-cresol and furfural over bimetallic Ni–Cu catalysts using isopropanol
γ-Alumina and carbon supported mono and bimetallic Ni and Cu catalysts were synthesized and applied to the reduction of p-cresol and furfural via transfer hydrogenation. The developed reaction system was applied to alkyl phenol rich pyrolysis oils produced from the ARS tail gas reactive pyrolysis (T...
Saved in:
Published in | Fuel processing technology Vol. 137; pp. 220 - 228 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0378-3820 1873-7188 |
DOI | 10.1016/j.fuproc.2015.04.023 |
Cover
Abstract | γ-Alumina and carbon supported mono and bimetallic Ni and Cu catalysts were synthesized and applied to the reduction of p-cresol and furfural via transfer hydrogenation. The developed reaction system was applied to alkyl phenol rich pyrolysis oils produced from the ARS tail gas reactive pyrolysis (TGRP) of switchgrass and oak wood. The catalysts used were characterized pre- and post-reactions using XRD, TPR, TEM and TGA. When isopropanol was used as the hydrogen donor solvent, yields of >95% of a mixture of products from the reduction of p-cresol were achieved using the Ni–Cu/Al2O3 catalyst. This product mixture includes ring hydrogenation products (4-methylcyclohexanol and 4-methylcyclohexanone) as well as deoxygenated products (methylcyclohexane and toluene), with 4-methylcyclohexanol being the major product. The activity remained high in the presence of water with very high levels of water concentration resulting in a higher selectivity towards the ketone product. The system was also effective for the reduction of furfural to furfuryl alcohol, although lower temperatures were required to prevent polymerization of the furfural. When applied to bio-oil, although increases in H/C and C/O ratios and energy content were realized, effective reduction of the alkyl phenols in the bio-oils was below expectation. Rather, solid formation, a result of the polymerization of bio-oil compounds was also observed. Our effort to extend the successes encountered with the model compounds to improve the application of transfer hydrogenation to real bio-oils is the subject of ongoing research.
•Catalytic transfer hydrogenation was studied for stabilization of bio-oil oxygenates.•Ni–Cu catalysts were effective for transfer hydrogenation of p-cresol and furfural.•Isopropanol is a good hydrogen donor for this transformation.•Studied conditions were applied to biomass pyrolysis oils.•Increase in H content and heating value of bio-oil was observed. |
---|---|
AbstractList | [gamma]-Alumina and carbon supported mono and bimetallic Ni and Cu catalysts were synthesized and applied to the reduction of p-cresol and furfural via transfer hydrogenation. The developed reaction system was applied to alkyl phenol rich pyrolysis oils produced from the ARS tail gas reactive pyrolysis (TGRP) of switchgrass and oak wood. The catalysts used were characterized pre- and post-reactions using XRD, TPR, TEM and TGA. When isopropanol was used as the hydrogen donor solvent yields of >95% of a mixture of products from the reduction of p-cresol were achieved using the Ni-Cu/Al sub(2)O sub(3) catalyst. This product mixture includes ring hydrogenation products (4-methylcydohexanol and 4-methyIcyclohexanone) as well as deoxygenated products (methylcydohexane and toluene), with 4-methylcydohexanol being the major product. The activity remained high in the presence of water with very high levels of water concentration resulting in a higher selectivity towards the ketone product. The system was also effective for the reduction of furfural to furfuryl alcohol, although lower temperatures were required to prevent polymerization of the furfural. When applied to bio-oil, although increases in H/C and C/O ratios and energy content were realized, effective reduction of the alkyl phenols in the bio-oils was below expectation. Rather, solid formation, a result of the polymerization of bio-oil compounds was also observed. Our effort to extend the successes encountered with the model compounds to improve the application of transfer hydrogenation to real bio-oils is the subject of ongoing research. γ-Alumina and carbon supported mono and bimetallic Ni and Cu catalysts were synthesized and applied to the reduction of p-cresol and furfural via transfer hydrogenation. The developed reaction system was applied to alkyl phenol rich pyrolysis oils produced from the ARS tail gas reactive pyrolysis (TGRP) of switchgrass and oak wood. The catalysts used were characterized pre- and post-reactions using XRD, TPR, TEM and TGA. When isopropanol was used as the hydrogen donor solvent, yields of N95% of a mixture of products from the reduction of p-cresol were achieved using the Ni–Cu/Al2O3 catalyst. This product mixture includes ring hydrogenation products (4-methylcyclohexanol and 4-methylcyclohexanone) as well as deoxygenated products (methylcyclohexane and toluene), with 4-methylcyclohexanol being the major product. The activity remained high in the presence of water with very high levels of water concentration resulting in a higher selectivity towards the ketone product. The system was also effective for the reduction of furfural to furfuryl alcohol, although lower temperatures were required to prevent polymerization of the furfural. When applied to bio-oil, although increases in H/C and C/O ratios and energy content were realized, effective reduction of the alkyl phenols in the bio-oils was below expectation. Rather, solid formation, a result of the polymerization of bio-oil compounds was also observed. Our effort to extend the successes encountered with the model compounds to improve the application of transfer hydrogenation to real bio-oils is the subject of ongoing research. γ-Alumina and carbon supported mono and bimetallic Ni and Cu catalysts were synthesized and applied to the reduction of p-cresol and furfural via transfer hydrogenation. The developed reaction system was applied to alkyl phenol rich pyrolysis oils produced from the ARS tail gas reactive pyrolysis (TGRP) of switchgrass and oak wood. The catalysts used were characterized pre- and post-reactions using XRD, TPR, TEM and TGA. When isopropanol was used as the hydrogen donor solvent, yields of >95% of a mixture of products from the reduction of p-cresol were achieved using the Ni–Cu/Al2O3 catalyst. This product mixture includes ring hydrogenation products (4-methylcyclohexanol and 4-methylcyclohexanone) as well as deoxygenated products (methylcyclohexane and toluene), with 4-methylcyclohexanol being the major product. The activity remained high in the presence of water with very high levels of water concentration resulting in a higher selectivity towards the ketone product. The system was also effective for the reduction of furfural to furfuryl alcohol, although lower temperatures were required to prevent polymerization of the furfural. When applied to bio-oil, although increases in H/C and C/O ratios and energy content were realized, effective reduction of the alkyl phenols in the bio-oils was below expectation. Rather, solid formation, a result of the polymerization of bio-oil compounds was also observed. Our effort to extend the successes encountered with the model compounds to improve the application of transfer hydrogenation to real bio-oils is the subject of ongoing research. •Catalytic transfer hydrogenation was studied for stabilization of bio-oil oxygenates.•Ni–Cu catalysts were effective for transfer hydrogenation of p-cresol and furfural.•Isopropanol is a good hydrogen donor for this transformation.•Studied conditions were applied to biomass pyrolysis oils.•Increase in H content and heating value of bio-oil was observed. |
Author | Mullen, Charles A. Elkasabi, Yaseen Reddy Kannapu, Hari P. Boateng, Akwasi A. |
Author_xml | – sequence: 1 givenname: Hari P. surname: Reddy Kannapu fullname: Reddy Kannapu, Hari P. – sequence: 2 givenname: Charles A. surname: Mullen fullname: Mullen, Charles A. – sequence: 3 givenname: Yaseen surname: Elkasabi fullname: Elkasabi, Yaseen – sequence: 4 givenname: Akwasi A. surname: Boateng fullname: Boateng, Akwasi A. email: akwasi.boateng@ars.usda.gov |
BookMark | eNqFkc2KFDEUhQsZwZ7RNxDM0k2V-atUZRaCNDoKg4I665BK3bRpqpM2SQ22q3kHX8Bn80lMd-nGhQOBQPjOPbnnnFdnPnioqqcENwQT8WLb2Hkfg2koJm2DeYMpe1CtSN-xuiN9f1atMOv6mvUUP6rOU9pijNtWdqvq51pnPR2yMyhH7ZOFiL4cxhg24HV2wSMbIkpZD25y35eXYNHgQh3chMK3wwmEdIk-wjibv8C-NhFSmJD2I7JzLEcX_LaMH9wOiudULN-7X3c_1jMyp0-knNCcnN8gl0LZZ699mB5XD62eEjz5c19UN29ef16_ra8_XL1bv7quDZMi16NshRhgNJTqQehess5yADowoGVViik2lkpDbQuyNVQw3bOWgZXGdpQLdlE9X-YW468zpKx2LhmYJu0hzEmRTlDccyH4_aiQnPeSE1zQywU1MaQUwSrj8inFkrabFMHq2KDaqqVBdWxQYa5Kg0XM_xHvo9vpeLhP9myRWR2U3kSX1M2nI4AxkYwJUoiXCwEl0FsHUSXjwBsYXQST1Rjc_y1-A4AdyEg |
CitedBy_id | crossref_primary_10_1016_j_jmst_2024_11_076 crossref_primary_10_1016_j_apcata_2017_09_011 crossref_primary_10_1080_10826076_2017_1308378 crossref_primary_10_1080_15567036_2015_1128017 crossref_primary_10_1002_jctb_7186 crossref_primary_10_1016_j_fluid_2019_06_016 crossref_primary_10_1039_C7RA05558G crossref_primary_10_1016_j_fuel_2022_125320 crossref_primary_10_1002_cssc_201601410 crossref_primary_10_1021_acs_energyfuels_4c04131 crossref_primary_10_1016_j_catcom_2017_02_029 crossref_primary_10_1039_D1GC02154K crossref_primary_10_1039_D2NJ03040C crossref_primary_10_1002_slct_201900476 crossref_primary_10_1021_acssuschemeng_6b01677 crossref_primary_10_1002_cctc_202101170 crossref_primary_10_1021_acsomega_2c08045 crossref_primary_10_1007_s40789_017_0181_2 crossref_primary_10_1016_j_fuel_2023_129233 crossref_primary_10_1016_j_jclepro_2021_126645 crossref_primary_10_1080_15567036_2017_1310959 crossref_primary_10_1039_D2GC01353C crossref_primary_10_1016_j_fuel_2019_03_035 crossref_primary_10_1039_D0CS01601B crossref_primary_10_1016_j_cattod_2022_01_014 crossref_primary_10_1002_aic_18709 crossref_primary_10_1016_j_fuel_2016_04_045 crossref_primary_10_1002_cctc_201801722 crossref_primary_10_1007_s10562_016_1900_9 crossref_primary_10_1021_acs_iecr_8b01246 crossref_primary_10_1007_s10562_019_03027_8 crossref_primary_10_1039_D1GC04592J crossref_primary_10_1016_j_rser_2017_10_091 crossref_primary_10_1021_acs_chemrev_8b00134 crossref_primary_10_1021_acs_energyfuels_0c03771 crossref_primary_10_1016_j_cej_2020_126527 crossref_primary_10_1016_j_apcata_2020_117409 crossref_primary_10_1007_s11814_021_0988_9 crossref_primary_10_1021_acssuschemeng_8b04579 crossref_primary_10_1016_j_rser_2020_110667 crossref_primary_10_1039_C5NJ02164B crossref_primary_10_1039_D0CY01427C crossref_primary_10_1021_acs_jced_4c00046 crossref_primary_10_1002_cctc_202201062 crossref_primary_10_1016_j_cej_2019_122912 crossref_primary_10_3390_catal12111307 crossref_primary_10_1016_j_apcata_2021_118247 crossref_primary_10_1016_j_fuel_2018_11_129 crossref_primary_10_1039_D3GC02671J crossref_primary_10_1016_j_fuel_2022_123891 crossref_primary_10_1016_j_cej_2018_09_147 crossref_primary_10_1039_D2DT00361A crossref_primary_10_1016_j_catcom_2024_106895 crossref_primary_10_1016_j_fuproc_2019_106205 crossref_primary_10_1007_s10562_022_03924_5 crossref_primary_10_1016_j_apcata_2024_119609 crossref_primary_10_1002_cssc_201801620 crossref_primary_10_1016_S1872_2067_23_64606_6 crossref_primary_10_1039_D0CS00041H crossref_primary_10_1016_j_fuel_2022_124033 crossref_primary_10_1016_j_seppur_2019_05_061 crossref_primary_10_1016_j_jece_2021_106255 crossref_primary_10_1021_acs_jced_6b00040 crossref_primary_10_1080_01614940_2023_2267286 crossref_primary_10_1016_S1872_2067_20_63678_6 crossref_primary_10_1021_acssuschemeng_4c03588 crossref_primary_10_1016_j_ijbiomac_2024_131084 crossref_primary_10_1016_j_fuel_2022_124556 crossref_primary_10_1002_tcr_202400092 crossref_primary_10_3389_fenrg_2021_746109 crossref_primary_10_1016_j_rser_2019_109548 crossref_primary_10_1016_j_mcat_2024_114084 crossref_primary_10_1016_j_fuproc_2023_107726 crossref_primary_10_3390_catal9060488 crossref_primary_10_1016_j_mcat_2021_112065 crossref_primary_10_1039_C6RA00041J crossref_primary_10_1039_C5EE02666K crossref_primary_10_1021_acsomega_1c00766 crossref_primary_10_1002_ente_201800524 crossref_primary_10_1016_j_apcata_2022_118527 crossref_primary_10_1021_acs_energyfuels_6b01906 crossref_primary_10_1016_j_cej_2024_152552 crossref_primary_10_3390_molecules27030602 crossref_primary_10_1016_j_fuproc_2023_107690 crossref_primary_10_1007_s11244_016_0649_0 crossref_primary_10_1039_D0GC03931D crossref_primary_10_1016_j_fuproc_2019_05_003 crossref_primary_10_1021_acscatal_0c04242 crossref_primary_10_1016_j_supflu_2022_105815 crossref_primary_10_1016_j_ultsonch_2021_105502 crossref_primary_10_1016_j_renene_2019_09_035 crossref_primary_10_1039_C8CY02536C crossref_primary_10_1002_cssc_201600144 crossref_primary_10_1016_j_jcat_2016_11_002 crossref_primary_10_1002_ceat_202100239 crossref_primary_10_1016_j_jiec_2020_11_016 crossref_primary_10_1016_j_ijhydene_2020_07_136 crossref_primary_10_32604_jrm_2022_019680 crossref_primary_10_1021_acs_iecr_1c02447 crossref_primary_10_1021_acscatal_3c05844 crossref_primary_10_1016_j_jallcom_2018_03_051 crossref_primary_10_1021_acs_chemrev_6b00647 crossref_primary_10_1016_j_biombioe_2017_08_013 crossref_primary_10_1016_j_jcat_2025_116000 crossref_primary_10_1021_acs_inorgchem_0c03764 crossref_primary_10_1039_C5CY01462J crossref_primary_10_1021_acssuschemeng_0c00335 crossref_primary_10_1016_j_cattod_2018_07_033 crossref_primary_10_1021_acs_iecr_9b01774 crossref_primary_10_1007_s11244_018_1009_z crossref_primary_10_3390_catal12121655 crossref_primary_10_1039_C5RA22137D crossref_primary_10_1016_j_fuproc_2020_106721 |
Cites_doi | 10.1002/cssc.201300774 10.1021/ef00027a008 10.1016/S0360-5442(00)00009-8 10.1016/j.cattod.2014.02.039 10.1021/ie9006003 10.1039/b923170f 10.1007/s11244-012-9782-6 10.1016/j.catcom.2011.04.010 10.1016/S0926-860X(01)00700-1 10.1002/ep.10384 10.1021/ef070044u 10.1016/j.apcatb.2010.10.025 10.1016/j.catcom.2013.07.003 10.1039/c2gc35426h 10.1016/j.cej.2008.11.006 10.1021/ef400739u 10.1016/j.apcata.2013.08.052 10.1016/j.jcat.2011.01.019 10.1021/ie4030209 10.1016/j.ces.2012.01.052 10.1016/j.apcata.2012.09.047 10.1016/j.jcat.2012.03.004 10.1016/j.cattod.2012.03.067 10.1016/j.apcatb.2011.12.032 10.1002/cssc.201300288 10.1016/S0926-860X(99)00555-4 10.1021/sc5002879 10.1021/ef8007773 10.1002/cssc.200800018 10.1002/anie.201107390 10.1016/j.cej.2014.03.070 10.1021/ef901270h 10.1016/j.molcata.2013.08.003 10.1021/ie201831e 10.1016/0021-9517(94)90032-9 10.1016/j.cattod.2009.01.027 10.1021/cr068360d 10.1021/ef201286z 10.1016/j.ces.2013.12.023 10.1016/S0926-3373(00)00147-8 10.1016/0144-4565(90)90021-B 10.1021/ie0614529 |
ContentType | Journal Article |
Copyright | 2015 |
Copyright_xml | – notice: 2015 |
DBID | FBQ AAYXX CITATION 7S9 L.6 7TB 8FD FR3 H8D L7M |
DOI | 10.1016/j.fuproc.2015.04.023 |
DatabaseName | AGRIS CrossRef AGRICOLA AGRICOLA - Academic Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic Aerospace Database Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database AGRICOLA |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-7188 |
EndPage | 228 |
ExternalDocumentID | 10_1016_j_fuproc_2015_04_023 US201500193361 S0378382015001836 |
GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SES SEW SPC SPCBC SSG SSK SSR SSZ T5K TWZ UHS WUQ ZY4 ~02 ~G- AAHBH AATTM AAXKI ABWVN ACRPL ADNMO ADVLN AEIPS AFJKZ AKRWK ANKPU BNPGV FBQ GROUPED_DOAJ SSH AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION 7S9 EFKBS L.6 7TB 8FD FR3 H8D L7M |
ID | FETCH-LOGICAL-c396t-d9566bedc22ab6a8937f4ee2b3e20552020cf29c2f5e95c263a8353ef9cf72463 |
IEDL.DBID | AIKHN |
ISSN | 0378-3820 |
IngestDate | Thu Sep 04 19:18:26 EDT 2025 Fri Sep 05 05:29:40 EDT 2025 Thu Apr 24 23:13:09 EDT 2025 Tue Jul 01 03:04:30 EDT 2025 Thu Apr 03 09:44:31 EDT 2025 Fri Feb 23 02:35:05 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Transfer hydrogenation p-Cresol Catalysis Bio-oil |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-d9566bedc22ab6a8937f4ee2b3e20552020cf29c2f5e95c263a8353ef9cf72463 |
Notes | http://handle.nal.usda.gov/10113/60881 http://dx.doi.org/10.1016/j.fuproc.2015.04.023 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1694489410 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1762084664 proquest_miscellaneous_1694489410 crossref_citationtrail_10_1016_j_fuproc_2015_04_023 crossref_primary_10_1016_j_fuproc_2015_04_023 fao_agris_US201500193361 elsevier_sciencedirect_doi_10_1016_j_fuproc_2015_04_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Fuel processing technology |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Furimsky (bb0015) 2000; 199 Wildschut, Mahfud, Venderbosch, Heeres (bb0055) 2009; 48 Elliott (bb0010) 2007; 21 Laurent, Delmon (bb0210) 1994; 146 Dickinson, Savage (bb0215) 2014; 388–389 Gandarias, Arias, Fernández, Requies, El Doukkali, Güemez (bb0165) 2012; 195 Wan, Chaudhari, Subramaniam (bb0120) 2012; 55 Jae, Zheng, Lobo, Vlachos (bb0150) 2013; 6 Gross, Mebane, Armstrong (bb0155) 2001; 219 Bui, Laurenti, Afanasiev, Geantet (bb0050) 2011; 101 Bian, Xiao, Wang, Wang, Lu, Meng (bb0190) 2009; 147 Wildschut, Iqbal, Mahfud, Cabrera, Venderbosch, Heeres (bb0060) 2010; 3 Scholz, Aellig, Hermans (bb0145) 2014; 7 Boateng, Daugaard, Goldberg, Hicks (bb0180) 2007; 46 Li, Fu, Flytzani-Stephanopoulos (bb0200) 2000; 27 Gandarias, Requies, Arias, Armbruster, Martin (bb0205) 2012; 290 Jae, Coolman, Mountziaris, Huber (bb0080) 2014; 108 Cheng, Jae, Shi, Fan, Huber (bb0100) 2012; 51 Mullen, Boateng (bb0070) 2013; 52 Wang, Li, Cai, Zhan, Mu, Shen (bb0185) 2009; 146 Carlson, Vispute, Huber (bb0090) 2008; 1 Whiffen, Smith (bb0135) 2010; 24 Elliott, Baker, Beckman, Solantausta, Tolenhiemo, Gevert, Hörnell, Östman, Kjellström (bb0020) 1990; 22 Elliott, Hart (bb0025) 2008; 23 Wang, Fang, He, Hu, Wu (bb0045) 2011; 12 Ardiyanti, Khromova, Venderbosch, Yakovlev, Heeres (bb0175) 2012; 117–118 Wang, Zhang, Liu, Qiao, Yang, Ren (bb0125) 2013; 41 Joshi, Lawal (bb0040) 2012; 74 Kersten, Swaaij, Lefferts, Seshan (bb0225) 2007 Mullen, Boateng, Goldberg (bb0005) 2013; 27 Williams, Nugranad (bb0105) 2000; 25 Elliott, Beckman, Bridgwater, Diebold, Gevert, Solantausta (bb0035) 1991; 5 Elliott, Hart, Neuenschwander, Rotness, Zacher (bb0030) 2009; 28 Elkasabi, Mullen, Boateng (bb0115) 2014; 2 Huber, Iborra, Corma (bb0170) 2006; 106 Deutsch, Shanks (bb0130) 2012; 447–448 Zhang, Ye, Xue, Guan, Wang (bb0140) 2014; 234 Mihalcik, Boateng, Mullen, Goldberg (bb0085) 2011; 50 C.A. Mullen, A.A. Boateng, N.M. Goldberg, Methods for Production of Bio-oil. US Patent Application. S/N: 13/777,020. Filed February 26, 2013. Park, Kim, Pradhan, Sohn (bb0195) 2014; 250 Jae, Tompsett, Foster, Hammond, Auerbach, Lobo, Huber (bb0095) 2011; 279 Liu, Zhang, Qv, Jiang, Yu (bb0160) 2012; 14 Mullen, Boateng, Mihalcik, Goldberg (bb0075) 2011; 25 Hronec, Fulajtárova, Mičušik (bb0220) 2013; 468 Li (10.1016/j.fuproc.2015.04.023_bb0200) 2000; 27 Zhang (10.1016/j.fuproc.2015.04.023_bb0140) 2014; 234 Jae (10.1016/j.fuproc.2015.04.023_bb0150) 2013; 6 Mullen (10.1016/j.fuproc.2015.04.023_bb0075) 2011; 25 Scholz (10.1016/j.fuproc.2015.04.023_bb0145) 2014; 7 Wang (10.1016/j.fuproc.2015.04.023_bb0045) 2011; 12 Carlson (10.1016/j.fuproc.2015.04.023_bb0090) 2008; 1 Jae (10.1016/j.fuproc.2015.04.023_bb0095) 2011; 279 Gandarias (10.1016/j.fuproc.2015.04.023_bb0205) 2012; 290 Hronec (10.1016/j.fuproc.2015.04.023_bb0220) 2013; 468 Boateng (10.1016/j.fuproc.2015.04.023_bb0180) 2007; 46 Park (10.1016/j.fuproc.2015.04.023_bb0195) 2014; 250 Mullen (10.1016/j.fuproc.2015.04.023_bb0005) 2013; 27 Ardiyanti (10.1016/j.fuproc.2015.04.023_bb0175) 2012; 117–118 Wildschut (10.1016/j.fuproc.2015.04.023_bb0055) 2009; 48 Wildschut (10.1016/j.fuproc.2015.04.023_bb0060) 2010; 3 Laurent (10.1016/j.fuproc.2015.04.023_bb0210) 1994; 146 Elliott (10.1016/j.fuproc.2015.04.023_bb0020) 1990; 22 Bui (10.1016/j.fuproc.2015.04.023_bb0050) 2011; 101 Mullen (10.1016/j.fuproc.2015.04.023_bb0070) 2013; 52 Cheng (10.1016/j.fuproc.2015.04.023_bb0100) 2012; 51 Deutsch (10.1016/j.fuproc.2015.04.023_bb0130) 2012; 447–448 Bian (10.1016/j.fuproc.2015.04.023_bb0190) 2009; 147 Kersten (10.1016/j.fuproc.2015.04.023_bb0225) 2007 Elliott (10.1016/j.fuproc.2015.04.023_bb0010) 2007; 21 Dickinson (10.1016/j.fuproc.2015.04.023_bb0215) 2014; 388–389 Joshi (10.1016/j.fuproc.2015.04.023_bb0040) 2012; 74 Wan (10.1016/j.fuproc.2015.04.023_bb0120) 2012; 55 Elliott (10.1016/j.fuproc.2015.04.023_bb0030) 2009; 28 Mihalcik (10.1016/j.fuproc.2015.04.023_bb0085) 2011; 50 Wang (10.1016/j.fuproc.2015.04.023_bb0125) 2013; 41 Whiffen (10.1016/j.fuproc.2015.04.023_bb0135) 2010; 24 Elliott (10.1016/j.fuproc.2015.04.023_bb0025) 2008; 23 Liu (10.1016/j.fuproc.2015.04.023_bb0160) 2012; 14 Gandarias (10.1016/j.fuproc.2015.04.023_bb0165) 2012; 195 10.1016/j.fuproc.2015.04.023_bb0110 Wang (10.1016/j.fuproc.2015.04.023_bb0185) 2009; 146 Elliott (10.1016/j.fuproc.2015.04.023_bb0035) 1991; 5 Huber (10.1016/j.fuproc.2015.04.023_bb0170) 2006; 106 Furimsky (10.1016/j.fuproc.2015.04.023_bb0015) 2000; 199 Williams (10.1016/j.fuproc.2015.04.023_bb0105) 2000; 25 Elkasabi (10.1016/j.fuproc.2015.04.023_bb0115) 2014; 2 Jae (10.1016/j.fuproc.2015.04.023_bb0080) 2014; 108 Gross (10.1016/j.fuproc.2015.04.023_bb0155) 2001; 219 |
References_xml | – volume: 25 start-page: 493 year: 2000 end-page: 513 ident: bb0105 article-title: Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks publication-title: Energy – volume: 234 start-page: 133 year: 2014 end-page: 138 ident: bb0140 article-title: Transfer hydrogenation of phenol on supported Pd catalysts using formic acid as an alternative hydrogen source publication-title: Catal. Today – volume: 48 start-page: 10324 year: 2009 end-page: 10334 ident: bb0055 article-title: Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts publication-title: Ind. Eng. Chem. Res. – volume: 51 start-page: 1387 year: 2012 end-page: 1390 ident: bb0100 article-title: Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts publication-title: Angew. Chem. Int. Ed. – volume: 12 start-page: 1201 year: 2011 end-page: 1205 ident: bb0045 article-title: Hydrodeoxygenation of dibenzofuran over noble metal supported on mesoporous zeolite publication-title: Catal. Commun. – volume: 101 start-page: 239 year: 2011 end-page: 245 ident: bb0050 article-title: Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity publication-title: Appl. Catal. B Environ. – volume: 388–389 start-page: 56 year: 2014 end-page: 65 ident: bb0215 article-title: Stability and activity of Pt and Ni catalysts for hydrodeoxygenation in supercritical water publication-title: J. Mol. Catal. A Chem. – volume: 41 start-page: 41 year: 2013 end-page: 46 ident: bb0125 article-title: Hydrodeoxygenation of publication-title: Catal. Commun. – volume: 24 start-page: 4728 year: 2010 end-page: 4737 ident: bb0135 article-title: Hydrodeoxygenation of 4-methylphenol over unsupported MoP, MoS publication-title: Energy Fuel – volume: 117–118 start-page: 105 year: 2012 end-page: 117 ident: bb0175 article-title: Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni–Cu catalysts on a δ-Al publication-title: Appl. Catal. B Environ. – volume: 46 start-page: 1891 year: 2007 end-page: 1897 ident: bb0180 article-title: Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production publication-title: Ind. Eng. Chem. Res. – volume: 6 start-page: 1158 year: 2013 end-page: 1162 ident: bb0150 article-title: Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon publication-title: ChemSusChem – volume: 146 start-page: 31 year: 2009 end-page: 36 ident: bb0185 article-title: Ethanol steam reforming over Ni and Ni–Cu catalysts publication-title: Catal. Today – reference: C.A. Mullen, A.A. Boateng, N.M. Goldberg, Methods for Production of Bio-oil. US Patent Application. S/N: 13/777,020. Filed February 26, 2013. – volume: 468 start-page: 426 year: 2013 end-page: 431 ident: bb0220 article-title: Influence of furanic polymers on selectivity of furfural rearrangement to cyclopentanone publication-title: Appl. Catal. A Gen. – volume: 3 start-page: 962 year: 2010 end-page: 970 ident: bb0060 article-title: Insights in the hydrotreatment of fast pyrolysis oil using a ruthenium on carbon catalyst publication-title: Energy Environ. Sci. – volume: 2 start-page: 2042 year: 2014 end-page: 2052 ident: bb0115 article-title: Distillation and isolation of commodity chemicals from bio-oil made by tail-gas reactive pyrolysis publication-title: ACS Sustain. Chem. Eng. – volume: 290 start-page: 79 year: 2012 end-page: 89 ident: bb0205 article-title: Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al publication-title: J. Catal. – volume: 5 start-page: 399 year: 1991 end-page: 410 ident: bb0035 article-title: Developments in direct thermochemical liquefaction of biomass: 1983–1990 publication-title: Energy Fuel – volume: 250 start-page: 25 year: 2014 end-page: 34 ident: bb0195 article-title: Surface treatment effects on CO oxidation reactions over Co, Cu, and Ni-doped and codoped CeO publication-title: Chem. Eng. J. – volume: 219 start-page: 281 year: 2001 end-page: 289 ident: bb0155 article-title: Transfer hydrogenolysis of aromatic alcohols using Raney catalysts and 2-propanol publication-title: Appl. Catal. A Gen. – volume: 279 start-page: 257 year: 2011 end-page: 268 ident: bb0095 article-title: Investigation into the shape selectivity of zeolite catalysts for biomass conversion publication-title: J. Catal. – volume: 106 start-page: 4044 year: 2006 end-page: 4098 ident: bb0170 article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering publication-title: Chem. Rev. – volume: 21 start-page: 1792 year: 2007 end-page: 1815 ident: bb0010 article-title: Historical developments in hydroprocessing bio-oils publication-title: Energy Fuel – volume: 28 start-page: 441 year: 2009 end-page: 449 ident: bb0030 article-title: Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products publication-title: Environ. Prog. Sustain. Energy – volume: 1 start-page: 397 year: 2008 end-page: 400 ident: bb0090 article-title: Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds publication-title: ChemSusChem – volume: 23 start-page: 631 year: 2008 end-page: 637 ident: bb0025 article-title: Catalytic hydroprocessing of chemical models for bio-oil publication-title: Energy Fuel – volume: 55 start-page: 129 year: 2012 end-page: 139 ident: bb0120 article-title: Catalytic hydroprocessing of p-cresol: metal, solvent and mass-transfer effects publication-title: Top. Catal. – volume: 25 start-page: 5444 year: 2011 end-page: 5451 ident: bb0075 article-title: Catalytic fast pyrolysis of white oak wood in a bubbling fluidized bed publication-title: Energy Fuel – volume: 14 start-page: 2226 year: 2012 end-page: 2233 ident: bb0160 article-title: Bio-oil upgrading at ambient pressure and temperature using zero valent metals publication-title: Green Chem. – volume: 50 start-page: 13304 year: 2011 end-page: 13312 ident: bb0085 article-title: Packed-bed catalytic cracking of oak-derived pyrolytic vapors publication-title: Ind. Eng. Chem. Res. – volume: 195 start-page: 22 year: 2012 end-page: 31 ident: bb0165 article-title: Hydrogenolysis through catalytic transfer hydrogenation: glycerol conversion to 1,2-propanediol publication-title: Catal. Today – volume: 27 start-page: 179 year: 2000 end-page: 191 ident: bb0200 article-title: Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts publication-title: Appl. Catal. B Environ. – volume: 146 start-page: 281 year: 1994 end-page: 291 ident: bb0210 article-title: Influence of water in the deactivation of a sulfided NiMo/γ-Al publication-title: J. Catal. – volume: 27 start-page: 3867 year: 2013 end-page: 3874 ident: bb0005 article-title: Production of deoxygenated biomass fast pyrolysis oils via product gas recycling publication-title: Energy Fuel – volume: 108 start-page: 33 year: 2014 end-page: 46 ident: bb0080 article-title: Catalytic pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal publication-title: Chem. Eng. Sci. – volume: 199 start-page: 147 year: 2000 end-page: 190 ident: bb0015 article-title: Catalytic hydrodeoxygenation publication-title: Appl. Catal. A Gen. – start-page: 119 year: 2007 end-page: 145 ident: bb0225 article-title: Options for catalysis in the thermochemical conversion of biomass into fuels publication-title: Catalysis for Renewables: From Feedstock to Energy Production – volume: 52 start-page: 17156 year: 2013 end-page: 17161 ident: bb0070 article-title: Accumulation of inorganic impurities on HZSM-5 zeolites during catalytic fast pyrolysis of switchgrass publication-title: Ind. Eng. Chem. Res. – volume: 7 start-page: 268 year: 2014 end-page: 275 ident: bb0145 article-title: Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural publication-title: ChemSusChem – volume: 74 start-page: 1 year: 2012 end-page: 8 ident: bb0040 article-title: Hydrodeoxygenation of pyrolysis oil in a microreactor publication-title: Chem. Eng. Sci. – volume: 447–448 start-page: 144 year: 2012 end-page: 150 ident: bb0130 article-title: Hydrodeoxygenation of lignin model compounds over a copper chromite catalyst publication-title: Appl. Catal. A Gen. – volume: 147 start-page: 287 year: 2009 end-page: 296 ident: bb0190 article-title: Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper–nickel/graphite bimetallic nanocomposite catalyst publication-title: Chem. Eng. J. – volume: 22 start-page: 251 year: 1990 end-page: 269 ident: bb0020 article-title: Technoeconomic assessment of direct biomass liquefaction to transportation fuels publication-title: Biomass – volume: 7 start-page: 268 year: 2014 ident: 10.1016/j.fuproc.2015.04.023_bb0145 article-title: Catalytic transfer hydrogenation/hydrogenolysis for reductive upgrading of furfural and 5-(hydroxymethyl)furfural publication-title: ChemSusChem doi: 10.1002/cssc.201300774 – volume: 5 start-page: 399 year: 1991 ident: 10.1016/j.fuproc.2015.04.023_bb0035 article-title: Developments in direct thermochemical liquefaction of biomass: 1983–1990 publication-title: Energy Fuel doi: 10.1021/ef00027a008 – volume: 25 start-page: 493 year: 2000 ident: 10.1016/j.fuproc.2015.04.023_bb0105 article-title: Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks publication-title: Energy doi: 10.1016/S0360-5442(00)00009-8 – volume: 234 start-page: 133 year: 2014 ident: 10.1016/j.fuproc.2015.04.023_bb0140 article-title: Transfer hydrogenation of phenol on supported Pd catalysts using formic acid as an alternative hydrogen source publication-title: Catal. Today doi: 10.1016/j.cattod.2014.02.039 – volume: 48 start-page: 10324 year: 2009 ident: 10.1016/j.fuproc.2015.04.023_bb0055 article-title: Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie9006003 – volume: 3 start-page: 962 year: 2010 ident: 10.1016/j.fuproc.2015.04.023_bb0060 article-title: Insights in the hydrotreatment of fast pyrolysis oil using a ruthenium on carbon catalyst publication-title: Energy Environ. Sci. doi: 10.1039/b923170f – volume: 55 start-page: 129 year: 2012 ident: 10.1016/j.fuproc.2015.04.023_bb0120 article-title: Catalytic hydroprocessing of p-cresol: metal, solvent and mass-transfer effects publication-title: Top. Catal. doi: 10.1007/s11244-012-9782-6 – volume: 12 start-page: 1201 year: 2011 ident: 10.1016/j.fuproc.2015.04.023_bb0045 article-title: Hydrodeoxygenation of dibenzofuran over noble metal supported on mesoporous zeolite publication-title: Catal. Commun. doi: 10.1016/j.catcom.2011.04.010 – volume: 219 start-page: 281 year: 2001 ident: 10.1016/j.fuproc.2015.04.023_bb0155 article-title: Transfer hydrogenolysis of aromatic alcohols using Raney catalysts and 2-propanol publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(01)00700-1 – volume: 28 start-page: 441 year: 2009 ident: 10.1016/j.fuproc.2015.04.023_bb0030 article-title: Catalytic hydroprocessing of biomass fast pyrolysis bio-oil to produce hydrocarbon products publication-title: Environ. Prog. Sustain. Energy doi: 10.1002/ep.10384 – start-page: 119 year: 2007 ident: 10.1016/j.fuproc.2015.04.023_bb0225 article-title: Options for catalysis in the thermochemical conversion of biomass into fuels – volume: 21 start-page: 1792 year: 2007 ident: 10.1016/j.fuproc.2015.04.023_bb0010 article-title: Historical developments in hydroprocessing bio-oils publication-title: Energy Fuel doi: 10.1021/ef070044u – volume: 101 start-page: 239 year: 2011 ident: 10.1016/j.fuproc.2015.04.023_bb0050 article-title: Hydrodeoxygenation of guaiacol with CoMo catalysts. Part I: promoting effect of cobalt on HDO selectivity and activity publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2010.10.025 – volume: 41 start-page: 41 year: 2013 ident: 10.1016/j.fuproc.2015.04.023_bb0125 article-title: Hydrodeoxygenation of p-cresol on unsupported Ni–P catalysts prepared by thermal decomposition method publication-title: Catal. Commun. doi: 10.1016/j.catcom.2013.07.003 – volume: 14 start-page: 2226 year: 2012 ident: 10.1016/j.fuproc.2015.04.023_bb0160 article-title: Bio-oil upgrading at ambient pressure and temperature using zero valent metals publication-title: Green Chem. doi: 10.1039/c2gc35426h – volume: 147 start-page: 287 year: 2009 ident: 10.1016/j.fuproc.2015.04.023_bb0190 article-title: Highly effective synthesis of dimethyl carbonate from methanol and carbon dioxide using a novel copper–nickel/graphite bimetallic nanocomposite catalyst publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2008.11.006 – volume: 27 start-page: 3867 year: 2013 ident: 10.1016/j.fuproc.2015.04.023_bb0005 article-title: Production of deoxygenated biomass fast pyrolysis oils via product gas recycling publication-title: Energy Fuel doi: 10.1021/ef400739u – volume: 468 start-page: 426 year: 2013 ident: 10.1016/j.fuproc.2015.04.023_bb0220 article-title: Influence of furanic polymers on selectivity of furfural rearrangement to cyclopentanone publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2013.08.052 – volume: 279 start-page: 257 year: 2011 ident: 10.1016/j.fuproc.2015.04.023_bb0095 article-title: Investigation into the shape selectivity of zeolite catalysts for biomass conversion publication-title: J. Catal. doi: 10.1016/j.jcat.2011.01.019 – volume: 52 start-page: 17156 year: 2013 ident: 10.1016/j.fuproc.2015.04.023_bb0070 article-title: Accumulation of inorganic impurities on HZSM-5 zeolites during catalytic fast pyrolysis of switchgrass publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie4030209 – volume: 74 start-page: 1 year: 2012 ident: 10.1016/j.fuproc.2015.04.023_bb0040 article-title: Hydrodeoxygenation of pyrolysis oil in a microreactor publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2012.01.052 – volume: 447–448 start-page: 144 year: 2012 ident: 10.1016/j.fuproc.2015.04.023_bb0130 article-title: Hydrodeoxygenation of lignin model compounds over a copper chromite catalyst publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2012.09.047 – volume: 290 start-page: 79 year: 2012 ident: 10.1016/j.fuproc.2015.04.023_bb0205 article-title: Liquid-phase glycerol hydrogenolysis by formic acid over Ni–Cu/Al2O3 catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2012.03.004 – volume: 195 start-page: 22 year: 2012 ident: 10.1016/j.fuproc.2015.04.023_bb0165 article-title: Hydrogenolysis through catalytic transfer hydrogenation: glycerol conversion to 1,2-propanediol publication-title: Catal. Today doi: 10.1016/j.cattod.2012.03.067 – volume: 117–118 start-page: 105 year: 2012 ident: 10.1016/j.fuproc.2015.04.023_bb0175 article-title: Catalytic hydrotreatment of fast-pyrolysis oil using non-sulfided bimetallic Ni–Cu catalysts on a δ-Al2O3 support publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2011.12.032 – volume: 6 start-page: 1158 year: 2013 ident: 10.1016/j.fuproc.2015.04.023_bb0150 article-title: Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon publication-title: ChemSusChem doi: 10.1002/cssc.201300288 – volume: 199 start-page: 147 year: 2000 ident: 10.1016/j.fuproc.2015.04.023_bb0015 article-title: Catalytic hydrodeoxygenation publication-title: Appl. Catal. A Gen. doi: 10.1016/S0926-860X(99)00555-4 – volume: 2 start-page: 2042 year: 2014 ident: 10.1016/j.fuproc.2015.04.023_bb0115 article-title: Distillation and isolation of commodity chemicals from bio-oil made by tail-gas reactive pyrolysis publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/sc5002879 – volume: 23 start-page: 631 year: 2008 ident: 10.1016/j.fuproc.2015.04.023_bb0025 article-title: Catalytic hydroprocessing of chemical models for bio-oil publication-title: Energy Fuel doi: 10.1021/ef8007773 – volume: 1 start-page: 397 year: 2008 ident: 10.1016/j.fuproc.2015.04.023_bb0090 article-title: Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds publication-title: ChemSusChem doi: 10.1002/cssc.200800018 – volume: 51 start-page: 1387 year: 2012 ident: 10.1016/j.fuproc.2015.04.023_bb0100 article-title: Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201107390 – volume: 250 start-page: 25 year: 2014 ident: 10.1016/j.fuproc.2015.04.023_bb0195 article-title: Surface treatment effects on CO oxidation reactions over Co, Cu, and Ni-doped and codoped CeO2 catalysts publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2014.03.070 – volume: 24 start-page: 4728 year: 2010 ident: 10.1016/j.fuproc.2015.04.023_bb0135 article-title: Hydrodeoxygenation of 4-methylphenol over unsupported MoP, MoS2, and MoOx catalysts publication-title: Energy Fuel doi: 10.1021/ef901270h – volume: 388–389 start-page: 56 year: 2014 ident: 10.1016/j.fuproc.2015.04.023_bb0215 article-title: Stability and activity of Pt and Ni catalysts for hydrodeoxygenation in supercritical water publication-title: J. Mol. Catal. A Chem. doi: 10.1016/j.molcata.2013.08.003 – volume: 50 start-page: 13304 year: 2011 ident: 10.1016/j.fuproc.2015.04.023_bb0085 article-title: Packed-bed catalytic cracking of oak-derived pyrolytic vapors publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie201831e – volume: 146 start-page: 281 year: 1994 ident: 10.1016/j.fuproc.2015.04.023_bb0210 article-title: Influence of water in the deactivation of a sulfided NiMo/γ-Al2O3 catalyst during hydrodeoxygenation publication-title: J. Catal. doi: 10.1016/0021-9517(94)90032-9 – volume: 146 start-page: 31 year: 2009 ident: 10.1016/j.fuproc.2015.04.023_bb0185 article-title: Ethanol steam reforming over Ni and Ni–Cu catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2009.01.027 – volume: 106 start-page: 4044 year: 2006 ident: 10.1016/j.fuproc.2015.04.023_bb0170 article-title: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering publication-title: Chem. Rev. doi: 10.1021/cr068360d – volume: 25 start-page: 5444 year: 2011 ident: 10.1016/j.fuproc.2015.04.023_bb0075 article-title: Catalytic fast pyrolysis of white oak wood in a bubbling fluidized bed publication-title: Energy Fuel doi: 10.1021/ef201286z – volume: 108 start-page: 33 year: 2014 ident: 10.1016/j.fuproc.2015.04.023_bb0080 article-title: Catalytic pyrolysis of lignocellulosic biomass in a process development unit with continual catalyst addition and removal publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2013.12.023 – ident: 10.1016/j.fuproc.2015.04.023_bb0110 – volume: 27 start-page: 179 year: 2000 ident: 10.1016/j.fuproc.2015.04.023_bb0200 article-title: Low-temperature water-gas shift reaction over Cu- and Ni-loaded cerium oxide catalysts publication-title: Appl. Catal. B Environ. doi: 10.1016/S0926-3373(00)00147-8 – volume: 22 start-page: 251 year: 1990 ident: 10.1016/j.fuproc.2015.04.023_bb0020 article-title: Technoeconomic assessment of direct biomass liquefaction to transportation fuels publication-title: Biomass doi: 10.1016/0144-4565(90)90021-B – volume: 46 start-page: 1891 year: 2007 ident: 10.1016/j.fuproc.2015.04.023_bb0180 article-title: Bench-scale fluidized-bed pyrolysis of switchgrass for bio-oil production publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0614529 |
SSID | ssj0005597 |
Score | 2.4841793 |
Snippet | γ-Alumina and carbon supported mono and bimetallic Ni and Cu catalysts were synthesized and applied to the reduction of p-cresol and furfural via transfer... [gamma]-Alumina and carbon supported mono and bimetallic Ni and Cu catalysts were synthesized and applied to the reduction of p-cresol and furfural via... |
SourceID | proquest crossref fao elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 220 |
SubjectTerms | Bio-oil biofuels carbon Catalysis Catalysts copper energy content Furfural furfuryl alcohol hydrogen Hydrogenation isopropyl alcohol Nickel oils p-Cresol Panicum virgatum Phenol Polymerization pyrolysis Quercus Reduction solvents temperature toluene Transfer hydrogenation transmission electron microscopy wood X-ray diffraction |
Title | Catalytic transfer hydrogenation for stabilization of bio-oil oxygenates: Reduction of p-cresol and furfural over bimetallic Ni–Cu catalysts using isopropanol |
URI | https://dx.doi.org/10.1016/j.fuproc.2015.04.023 https://www.proquest.com/docview/1694489410 https://www.proquest.com/docview/1762084664 |
Volume | 137 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELa23QscEL_asrAyElfTxHachNuqYlVA9MBSaW-Wk9hLUImrJpG2F8Q78AI8G0_CTH74EYKVOCYay45nPPPZ-WZMyNMINmjOxZKlSZIxaYKApapImEiUMBaTSyJMcH6zUsu1fHURXRyQxZgLg7TKwff3Pr3z1sOb-TCb821Zzs8DEScCA1iEN8sJNSGHXKQqmpLD05evl6ufTI-ou2MF5Rk2GDPoOpqXazFSIMcr6mqecvG3CDVxxv_hsbswdHab3BrwIz3th3iHHNjqLrn5S1XBe-TrAo9k9iBAmw6W2h19vy92Hmyl0wMFoEoBFSIvts_CpN7RrPTMlxvqr_adoK2f07dY2HUU2DJAmGCq1FQFde3OYcUOihRQaPvRQp8b6HJVfvv8ZdHS7lxoXzc1RWr9JS1rD98Evsdv7pP12Yt3iyUbLmJgOUxowwrYRKnMFjnnJlMGIY6T1vJMWA6zywFy5o6nOXeRTaOcg5oB2Anr0tzFXCrxgEwrX9kjQpUMsgRgn7GBlAU3qQtk6MATuCKMrUlmRIyTr_OhSjlelrHRIx3tg-5VplFlOpAaVDYj7EerbV-l4xr5eNSr_s3aNASSa1oegRlocwkuWK_PB-tLhVDhjDwZbUPDGsUfL6ayvq11qFLYBacyDP4hA1EpSLDY_8P_HtwxuYFPPQXuEZk2u9Y-BszUZCdk8uxTeDKsjO-ycBma |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELbacgAOiF91-TUSV7OJ7TgxN7SiWqDdA-1KvVlOYrdBS7LaJFL3UvEOvADPxpMwkx9UhKAS12QsO57xzGfnmzEhryLYoHkfS6aTJGXSBgHTKk-YSJSwDpNLIkxwPlqo-VJ-OI1Od8hszIVBWuXg-3uf3nnr4cl0mM3puiimx4GIE4EBLMKb5YTaJTdkJGLk9b2-vMLziLobVlCaofiYP9eRvHyLcQIZXlFX8ZSLv8WnXW-rP_x1F4QO7pI7A3qkb_sB3iM7rrxPbl-pKfiAfJ_hgcwWBGjTgVK3oefbfFOBpXRaoABTKWBCZMX2OZi08jQtKlYVK1pdbDtBV7-hn7Cs6yiwZoAvwVCpLXPq243Heh0UCaDQ9ouDPlfQ5aL48fXbrKXdqdC2bmqKxPozWtQVfBN4nmr1kCwP3p3M5my4hoFlQquG5bCFUqnLM85tqiwCHC-d46lwHGaXA-DMPNcZ95HTUcZByQDrhPM68zGXSjwie2VVun1ClQzSBECfdYGUObfaBzL04Ad8HsbOJhMixsk32VCjHK_KWJmRjPbZ9CozqDITSAMqmxD2q9W6r9FxjXw86tX8ZmsGwsg1LffBDIw9AwdslseD7WkhVDghL0fbMLBC8beLLV3V1iZUGvbAWobBP2QgJgUJlvp__N-De0Fuzk-ODs3h-8XHJ-QWvunJcE_JXrNp3TNAT036vFsdPwEe4hpl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Catalytic+transfer+hydrogenation+for+stabilization+of+bio-oil+oxygenates%3A+Reduction+of+p-cresol+and+furfural+over+bimetallic+Ni-Cu+catalysts+using+isopropanol&rft.jtitle=Fuel+processing+technology&rft.au=Kannapu%2C+Bari+P+Reddy&rft.au=Mullen%2C+Charles+A&rft.au=Elkasabi%2C+Yaseen&rft.au=Boateng%2C+Akwasi+A&rft.date=2015-09-01&rft.issn=0378-3820&rft.volume=137&rft.spage=220&rft.epage=228&rft_id=info:doi/10.1016%2Fj.fuproc.2015.04.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-3820&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-3820&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-3820&client=summon |