Exponentially accurate spectral and spectral element methods for fractional ODEs

Current discretizations of fractional differential equations lead to numerical solutions of low order of accuracy. Here, we present different methods for fractional ODEs that lead to exponentially fast decay of the error. First, we develop a Petrov–Galerkin (PG) spectral method for Fractional Initia...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 257; pp. 460 - 480
Main Authors Zayernouri, Mohsen, Karniadakis, George Em
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2014
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2013.09.039

Cover

Abstract Current discretizations of fractional differential equations lead to numerical solutions of low order of accuracy. Here, we present different methods for fractional ODEs that lead to exponentially fast decay of the error. First, we develop a Petrov–Galerkin (PG) spectral method for Fractional Initial-Value Problems (FIVPs) of the form Dtν0u(t)=f(t) and Fractional Final-Value Problems (FFVPs) DTνtu(t)=g(t), where ν∈(0,1), subject to Dirichlet initial/final conditions. These schemes are developed based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), which has been recently developed in [1]. Specifically, we obtain solutions to FIVPs and FFVPs in terms of the new fractional (non-polynomial) basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of first kind (FSLP-I). Correspondingly, we employ another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Subsequently, we develop a Discontinuous Spectral Method (DSM) of Petrov–Galerkin sense for the aforementioned FIVPs and FFVPs, where the basis functions do not satisfy the initial/final conditions. Finally, we extend the DSM scheme to a Discontinuous Spectral Element Method (DSEM) for efficient longer time-integration and adaptive refinement. In these discontinuous schemes, we employ the asymptotic eigensolutions to FSLP-I & -II, which are of Jacobi polynomial forms, as basis and test functions. Our numerical tests confirm the exponential/algebraic convergence, respectively, in p- and h-refinements, for various test cases with integer- and fractional-order solutions.
AbstractList Current discretizations of fractional differential equations lead to numerical solutions of low order of accuracy. Here, we present different methods for fractional ODEs that lead to exponentially fast decay of the error. First, we develop a Petrov-Galerkin (PG) spectral method for Fractional Initial-Value Problems (FIVPs) of the form (ProQuest: Formulae and/or non-USASCII text omitted) and Fractional Final-Value Problems (FFVPs) (ProQuest: Formulae and/or non-USASCII text omitted), where v [setmembership] (0.1), subject to Dirichlet initial/final conditions. These schemes are developed based on a new spectral theory for fractional Sturm-Liouville problems (FSLPs), which has been recently developed in [1]. Specifically, we obtain solutions to FIVPs and FFVPs in terms of the new fractional (non-polynomial) basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of first kind (FSLP-I). Correspondingly, we employ another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Subsequently, we develop a Discontinuous Spectral Method (DSM) of Petrov-Galerkin sense for the aforementioned FIVPs and FFVPs, where the basis functions do not satisfy the initial/final conditions. Finally, we extend the DSM scheme to a Discontinuous Spectral Element Method (DSEM) for efficient longer time-integration and adaptive refinement. In these discontinuous schemes, we employ the asymptotic eigensolutions to FSLP-I & -II, which are of Jacobi polynomial forms, as basis and test functions. Our numerical tests confirm the exponential/algebraic convergence, respectively, in p- and h-refinements, for various test cases with integer- and fractional-order solutions.
Current discretizations of fractional differential equations lead to numerical solutions of low order of accuracy. Here, we present different methods for fractional ODEs that lead to exponentially fast decay of the error. First, we develop a Petrov–Galerkin (PG) spectral method for Fractional Initial-Value Problems (FIVPs) of the form Dtν0u(t)=f(t) and Fractional Final-Value Problems (FFVPs) DTνtu(t)=g(t), where ν∈(0,1), subject to Dirichlet initial/final conditions. These schemes are developed based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), which has been recently developed in [1]. Specifically, we obtain solutions to FIVPs and FFVPs in terms of the new fractional (non-polynomial) basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of first kind (FSLP-I). Correspondingly, we employ another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Subsequently, we develop a Discontinuous Spectral Method (DSM) of Petrov–Galerkin sense for the aforementioned FIVPs and FFVPs, where the basis functions do not satisfy the initial/final conditions. Finally, we extend the DSM scheme to a Discontinuous Spectral Element Method (DSEM) for efficient longer time-integration and adaptive refinement. In these discontinuous schemes, we employ the asymptotic eigensolutions to FSLP-I & -II, which are of Jacobi polynomial forms, as basis and test functions. Our numerical tests confirm the exponential/algebraic convergence, respectively, in p- and h-refinements, for various test cases with integer- and fractional-order solutions.
Current discretizations of fractional differential equations lead to numerical solutions of low order of accuracy. Here, we present different methods for fractional ODEs that lead to exponentially fast decay of the error. First, we develop a Petrov-Galerkin (PG) spectral method for Fractional Initial-Value Problems (FIVPs) of the form Dt nu 0u(t)=f(t) and Fractional Final-Value Problems (FFVPs) DT nu tu(t)=g(t), where nu [isin](0,1) nu [isin](0,1), subject to Dirichlet initial/final conditions. These schemes are developed based on a new spectral theory for fractional Sturm-Liouville problems (FSLPs), which has been recently developed in [1]. Specifically, we obtain solutions to FIVPs and FFVPs in terms of the new fractional (non-polynomial) basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of first kind (FSLP-I). Correspondingly, we employ another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Subsequently, we develop a Discontinuous Spectral Method (DSM) of Petrov-Galerkin sense for the aforementioned FIVPs and FFVPs, where the basis functions do not satisfy the initial/final conditions. Finally, we extend the DSM scheme to a Discontinuous Spectral Element Method (DSEM) for efficient longer time-integration and adaptive refinement. In these discontinuous schemes, we employ the asymptotic eigensolutions to FSLP-I & -II, which are of Jacobi polynomial forms, as basis and test functions. Our numerical tests confirm the exponential/algebraic convergence, respectively, in p- and h-refinements, for various test cases with integer- and fractional-order solutions.
Author Karniadakis, George Em
Zayernouri, Mohsen
Author_xml – sequence: 1
  givenname: Mohsen
  surname: Zayernouri
  fullname: Zayernouri, Mohsen
– sequence: 2
  givenname: George Em
  surname: Karniadakis
  fullname: Karniadakis, George Em
  email: george_karniadakis@brown.edu
BookMark eNqNkU1L7DAUhoMoOH78AHddumk9p0mTBleio14QdKHrkKanmKHT1qQj-u_NMIJwF967Coc8z4HzvkdsfxgHYuwMoUBAebEqVm4qSkBegC6A6z22QNCQlwrlPlsAlJhrrfGQHcW4AoC6EvWCPS0_prRpmL3t-8_MOrcJdqYsTuTmYPvMDu3PQD2tE5utaX4d25h1Y8i6YN3sxyF9P94s4wk76Gwf6fT7PWYvt8vn6_v84fHuz_XVQ-64lnPeSmpKzTXvGlcjd1o2XSkai9zKSmrUmgR3lkRbVlYIVNikoyRUqGyjoebH7Hy3dwrj24bibNY-Oup7O9C4iQalUlopVfJ_o1WFIHitxH-gHIGLSqmEqh3qwhhjoM44P9ttEikq3xsEs23GrExqxmybMaBNOiKZ-Jc5Bb-24fNX53LnUMr03VMw0XkaHLU-pHJMO_pf7C-Bq6d7
CitedBy_id crossref_primary_10_1007_s10915_021_01573_1
crossref_primary_10_1142_S0218348X17400023
crossref_primary_10_1016_j_jcp_2018_02_014
crossref_primary_10_1140_epjp_i2016_16012_0
crossref_primary_10_1016_j_padiff_2021_100188
crossref_primary_10_1137_130940967
crossref_primary_10_11948_20180134
crossref_primary_10_32628_IJSRSET207383
crossref_primary_10_1016_j_matcom_2022_06_018
crossref_primary_10_3390_math12233654
crossref_primary_10_1016_j_cam_2020_112739
crossref_primary_10_1016_j_jcp_2015_06_030
crossref_primary_10_3390_math6020016
crossref_primary_10_1016_j_jcp_2016_01_041
crossref_primary_10_1017_S096249292000001X
crossref_primary_10_1142_S0129183122501029
crossref_primary_10_1016_j_jcp_2014_10_016
crossref_primary_10_1007_s11071_021_07158_9
crossref_primary_10_1007_s11075_020_01055_9
crossref_primary_10_1016_j_camwa_2018_01_020
crossref_primary_10_23939_cds2022_01_095
crossref_primary_10_1016_j_apnum_2018_10_014
crossref_primary_10_1080_00207160_2015_1119270
crossref_primary_10_1137_130935884
crossref_primary_10_1155_2014_194249
crossref_primary_10_1016_j_jcp_2015_02_021
crossref_primary_10_1016_j_apnum_2020_07_020
crossref_primary_10_1108_AJMS_02_2021_0052
crossref_primary_10_1142_S1793962319410010
crossref_primary_10_1016_j_camwa_2020_08_020
crossref_primary_10_1002_mma_9343
crossref_primary_10_1016_j_apnum_2017_02_004
crossref_primary_10_1155_2015_871635
crossref_primary_10_1137_17M1113060
crossref_primary_10_1007_s11075_024_01884_y
crossref_primary_10_1080_00207160_2020_1792453
crossref_primary_10_1080_10652469_2014_966102
crossref_primary_10_1016_j_jcp_2015_03_063
crossref_primary_10_1137_16M1059278
crossref_primary_10_3390_math12203273
crossref_primary_10_1007_s12190_024_02349_0
crossref_primary_10_1016_j_cma_2019_01_040
crossref_primary_10_1016_j_camwa_2024_01_022
crossref_primary_10_1155_2019_3734617
crossref_primary_10_1002_cmm4_1125
crossref_primary_10_1016_j_apnum_2019_05_010
crossref_primary_10_1016_j_jcp_2014_06_007
crossref_primary_10_1080_00207160_2017_1343941
crossref_primary_10_1016_j_jcp_2016_04_041
crossref_primary_10_1016_j_jcp_2015_01_025
crossref_primary_10_1137_19M1269324
crossref_primary_10_1016_j_asej_2016_03_014
crossref_primary_10_1155_2021_8817794
crossref_primary_10_1016_j_camwa_2020_09_008
crossref_primary_10_1002_mma_4839
crossref_primary_10_1002_oca_2495
crossref_primary_10_1080_17415977_2021_1988590
crossref_primary_10_1016_j_rinam_2021_100149
crossref_primary_10_1016_j_cma_2017_06_006
crossref_primary_10_1016_j_cam_2021_113468
crossref_primary_10_1137_140988218
crossref_primary_10_1016_j_jcp_2014_12_001
crossref_primary_10_3390_fractalfract6010019
crossref_primary_10_1002_oca_2649
crossref_primary_10_1137_141001299
crossref_primary_10_1016_j_jcp_2015_06_022
crossref_primary_10_1371_journal_pone_0126620
crossref_primary_10_1080_00207160_2017_1322690
crossref_primary_10_1007_s10915_017_0506_8
crossref_primary_10_1007_s10915_019_01056_4
crossref_primary_10_1007_s11831_024_10083_w
crossref_primary_10_1137_140993697
crossref_primary_10_1002_mma_3600
crossref_primary_10_1007_s10915_018_0862_z
crossref_primary_10_1016_j_apnum_2020_04_006
crossref_primary_10_1016_j_jcp_2014_10_051
crossref_primary_10_1007_s40314_020_1117_9
crossref_primary_10_1007_s40314_017_0551_9
crossref_primary_10_1007_s40314_018_0641_3
crossref_primary_10_1155_2017_6328438
crossref_primary_10_1016_j_cma_2014_10_051
crossref_primary_10_1007_s10543_020_00812_5
crossref_primary_10_1016_j_jcp_2013_11_017
crossref_primary_10_1016_j_camwa_2016_07_018
crossref_primary_10_1016_j_cma_2016_05_030
crossref_primary_10_1137_16M1073121
crossref_primary_10_1515_fca_2015_0082
crossref_primary_10_4208_nmtma_2017_s11
crossref_primary_10_1016_j_automatica_2016_12_022
crossref_primary_10_1016_j_jcp_2017_02_060
crossref_primary_10_1137_15M1061496
crossref_primary_10_1016_j_amc_2020_125313
crossref_primary_10_1002_num_22233
crossref_primary_10_1007_s40314_019_0826_4
crossref_primary_10_1016_j_jcp_2014_07_020
crossref_primary_10_1016_j_jocs_2019_04_007
crossref_primary_10_1007_s00366_020_00936_w
crossref_primary_10_1016_j_jcp_2014_03_039
crossref_primary_10_1016_j_jcp_2017_09_060
crossref_primary_10_1007_s40819_019_0625_z
crossref_primary_10_1007_s11075_023_01742_3
crossref_primary_10_1007_s00466_021_02089_z
crossref_primary_10_1016_j_apnum_2019_04_003
crossref_primary_10_1137_140985536
crossref_primary_10_1016_j_apnum_2018_04_009
crossref_primary_10_1007_s11831_023_09911_2
crossref_primary_10_1016_j_apnum_2021_05_031
crossref_primary_10_1140_epjp_i2019_12498_0
crossref_primary_10_15388_NA_2019_2_2
crossref_primary_10_1007_s10409_017_0742_z
crossref_primary_10_1016_j_jcp_2014_04_048
crossref_primary_10_1007_s40314_022_01954_8
crossref_primary_10_1016_j_cam_2019_05_026
crossref_primary_10_1140_epjp_i2019_12951_0
crossref_primary_10_1016_j_chaos_2018_09_032
crossref_primary_10_1016_j_jcp_2015_07_011
crossref_primary_10_1016_j_apnum_2017_03_009
crossref_primary_10_1007_s11071_015_2087_0
crossref_primary_10_3390_appliedmath4030051
crossref_primary_10_3390_math11071677
crossref_primary_10_1080_00207160_2018_1425797
crossref_primary_10_1155_2022_8655340
crossref_primary_10_3390_fractalfract6120748
crossref_primary_10_1016_j_camwa_2017_12_004
crossref_primary_10_1002_mma_4463
crossref_primary_10_1007_s42967_019_00012_1
crossref_primary_10_1137_130933216
crossref_primary_10_1007_s11075_019_00857_w
crossref_primary_10_1016_j_cam_2018_12_028
crossref_primary_10_1007_s40314_017_0488_z
crossref_primary_10_1016_j_aml_2017_03_010
crossref_primary_10_1080_00207160_2014_915962
crossref_primary_10_1016_j_apnum_2021_07_012
crossref_primary_10_1080_00207160_2017_1324150
Cites_doi 10.1007/BF00946746
10.1016/0165-2125(85)90019-8
10.1137/0517050
10.1016/S0370-1573(00)00070-3
10.1016/S0378-4371(99)00469-0
10.1016/j.sigpro.2006.02.007
10.4208/nmtma.2012.m1038
10.1017/S0022112064000040
10.1023/A:1016547232119
10.1016/j.jcp.2007.02.001
10.1016/j.camwa.2004.10.003
10.1093/imanum/3.4.439
10.1016/0370-1573(90)90099-N
10.1016/j.apnum.2005.03.003
10.1016/j.jcp.2012.12.013
10.1016/j.cam.2005.06.005
10.1137/0725022
10.4208/cicp.020709.221209a
10.1006/jmaa.2000.7194
10.1137/080718942
10.1029/2000WR900031
10.1103/PhysRevE.61.132
10.1016/j.amc.2005.09.059
10.1016/S0022-0728(71)80115-8
10.1023/B:NUMA.0000027736.85078.be
10.1007/s10652-009-9145-4
10.1016/0022-247X(69)90165-6
10.1016/j.jcp.2004.11.025
10.1016/j.cnsns.2010.09.007
10.1007/s11075-008-9258-8
ContentType Journal Article
Copyright 2013 Elsevier Inc.
Copyright_xml – notice: 2013 Elsevier Inc.
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2013.09.039
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Technology Research Database
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 480
ExternalDocumentID 10_1016_j_jcp_2013_09_039
S0021999113006530
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-d6eb29393fbc813c96bf24ba13a6569199e43cae4d25a44171b03960517ab9083
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Sat Sep 27 22:19:14 EDT 2025
Thu Oct 02 03:40:17 EDT 2025
Thu Oct 02 07:00:09 EDT 2025
Thu Apr 24 22:56:54 EDT 2025
Wed Oct 01 05:12:34 EDT 2025
Fri Feb 23 02:18:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Exponential convergence
Jacobi polyfractonomials
Petrov–Galerkin spectral methods
Discontinuous spectral element method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-d6eb29393fbc813c96bf24ba13a6569199e43cae4d25a44171b03960517ab9083
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1531034577
PQPubID 23500
PageCount 21
ParticipantIDs proquest_miscellaneous_1677977723
proquest_miscellaneous_1551043874
proquest_miscellaneous_1531034577
crossref_citationtrail_10_1016_j_jcp_2013_09_039
crossref_primary_10_1016_j_jcp_2013_09_039
elsevier_sciencedirect_doi_10_1016_j_jcp_2013_09_039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: 20140101
  day: 01
PublicationDecade 2010
PublicationTitle Journal of computational physics
PublicationYear 2014
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Kumar, Agrawal (br0320) 2006; 86
Blank (br0350) 1996
Askey, Fitch (br0470) 1969; 26
Sanz-Serna (br0260) 1988; 25
Metzler, Klafter (br0080) 2000; 339
Podlubny (br0460) 1999
Rawashdeh (br0360) 2006; 176
Fix, Roop (br0410) 2004; 48
Hesthaven, Gottlieb, Gottlieb (br0210) 2007
Carella (br0450) 2012
Zayernouri, Karniadakis (br0010) 2013; 47
Karniadakis, Sherwin (br0230) 2005
Diethelm, Ford, Freed (br0280) 2004; 36
Khader (br0370) 2011; 16
Bouchaud, Georges (br0070) 1990; 195
Sugimoto (br0170) 1991; 225
McLean, Mustapha (br0430) 2009; 52
Lubich (br0240) 1983; 3
Huang, Tang, Vazquez (br0330) 2012; 5
Mainardi (br0040) 2010
Magin (br0060) 2006
Gustafsson, Kreiss, Oliger (br0190) 1995
Cao, Xu (br0340) 2013; 238
Hanert (br0440) 2010; 10
Diethelm, Ford (br0130) 2002; 265
Li, Xu (br0400) 2010; 8
Lubich (br0250) 1986; 17
Keller (br0110) 1981; 32
Barkai, Metzler, Klafter (br0160) 2000; 61
Benson, Wheatcraft, Meerschaert (br0030) 2000; 36
West, Bologna, Grigolini (br0050) 2003
Klages, Radons, Sokolov (br0090) 2008
LeVeque (br0200) 2002
Langlands, Henry (br0290) 2005; 205
Ichise, Nagayanagi, Kojima (br0020) 1971; 33
Klimek, Agrawal (br0150) July 2012
Lin, Xu (br0310) 2007; 225
Kilbass, Srivastava, Trujillo (br0140) 2006
Henry, Wearne (br0180) 2000; 276
Sun, Wu (br0300) 2006; 56
Zienkiewicz, Taylor, Zhu (br0220) 2005
Khader, Hendy (br0380) 2012; 74
Sugimoto, Kakutani (br0120) 1985; 7
Chester (br0100) 1964; 18
Li, Xu (br0390) 2009; 47
Roop (br0420) 2006; 193
Gorenflo, Mainardi, Moretti, Paradisi (br0270) 2002; 29
Zayernouri (10.1016/j.jcp.2013.09.039_br0010) 2013; 47
Khader (10.1016/j.jcp.2013.09.039_br0370) 2011; 16
Mainardi (10.1016/j.jcp.2013.09.039_br0040) 2010
Chester (10.1016/j.jcp.2013.09.039_br0100) 1964; 18
Podlubny (10.1016/j.jcp.2013.09.039_br0460) 1999
Bouchaud (10.1016/j.jcp.2013.09.039_br0070) 1990; 195
West (10.1016/j.jcp.2013.09.039_br0050) 2003
Li (10.1016/j.jcp.2013.09.039_br0400) 2010; 8
McLean (10.1016/j.jcp.2013.09.039_br0430) 2009; 52
Ichise (10.1016/j.jcp.2013.09.039_br0020) 1971; 33
Keller (10.1016/j.jcp.2013.09.039_br0110) 1981; 32
Lubich (10.1016/j.jcp.2013.09.039_br0240) 1983; 3
LeVeque (10.1016/j.jcp.2013.09.039_br0200) 2002
Roop (10.1016/j.jcp.2013.09.039_br0420) 2006; 193
Klages (10.1016/j.jcp.2013.09.039_br0090) 2008
Karniadakis (10.1016/j.jcp.2013.09.039_br0230) 2005
Lubich (10.1016/j.jcp.2013.09.039_br0250) 1986; 17
Sanz-Serna (10.1016/j.jcp.2013.09.039_br0260) 1988; 25
Kilbass (10.1016/j.jcp.2013.09.039_br0140) 2006
Klimek (10.1016/j.jcp.2013.09.039_br0150) 2012
Henry (10.1016/j.jcp.2013.09.039_br0180) 2000; 276
Zienkiewicz (10.1016/j.jcp.2013.09.039_br0220) 2005
Huang (10.1016/j.jcp.2013.09.039_br0330) 2012; 5
Fix (10.1016/j.jcp.2013.09.039_br0410) 2004; 48
Askey (10.1016/j.jcp.2013.09.039_br0470) 1969; 26
Carella (10.1016/j.jcp.2013.09.039_br0450) 2012
Magin (10.1016/j.jcp.2013.09.039_br0060) 2006
Metzler (10.1016/j.jcp.2013.09.039_br0080) 2000; 339
Kumar (10.1016/j.jcp.2013.09.039_br0320) 2006; 86
Li (10.1016/j.jcp.2013.09.039_br0390) 2009; 47
Blank (10.1016/j.jcp.2013.09.039_br0350) 1996
Gorenflo (10.1016/j.jcp.2013.09.039_br0270) 2002; 29
Sugimoto (10.1016/j.jcp.2013.09.039_br0120) 1985; 7
Diethelm (10.1016/j.jcp.2013.09.039_br0130) 2002; 265
Gustafsson (10.1016/j.jcp.2013.09.039_br0190) 1995
Hesthaven (10.1016/j.jcp.2013.09.039_br0210) 2007
Cao (10.1016/j.jcp.2013.09.039_br0340) 2013; 238
Sugimoto (10.1016/j.jcp.2013.09.039_br0170) 1991; 225
Rawashdeh (10.1016/j.jcp.2013.09.039_br0360) 2006; 176
Barkai (10.1016/j.jcp.2013.09.039_br0160) 2000; 61
Langlands (10.1016/j.jcp.2013.09.039_br0290) 2005; 205
Hanert (10.1016/j.jcp.2013.09.039_br0440) 2010; 10
Benson (10.1016/j.jcp.2013.09.039_br0030) 2000; 36
Diethelm (10.1016/j.jcp.2013.09.039_br0280) 2004; 36
Khader (10.1016/j.jcp.2013.09.039_br0380) 2012; 74
Sun (10.1016/j.jcp.2013.09.039_br0300) 2006; 56
Lin (10.1016/j.jcp.2013.09.039_br0310) 2007; 225
References_xml – volume: 56
  start-page: 193
  year: 2006
  end-page: 209
  ident: br0300
  article-title: A fully discrete difference scheme for a diffusion-wave system
  publication-title: Appl. Numer. Math.
– volume: 48
  start-page: 1017
  year: 2004
  end-page: 1033
  ident: br0410
  article-title: Least squares finite-element solution of a fractional order two-point boundary value problem
  publication-title: Comput. Math. Appl.
– volume: 195
  start-page: 127
  year: 1990
  end-page: 293
  ident: br0070
  article-title: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications
  publication-title: Phys. Rep.
– volume: 176
  start-page: 1
  year: 2006
  end-page: 6
  ident: br0360
  article-title: Numerical solution of fractional integro-differential equations by collocation method
  publication-title: Appl. Math. Comput.
– volume: 8
  start-page: 1016
  year: 2010
  ident: br0400
  article-title: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation
  publication-title: Commun. Comput. Phys.
– year: 2005
  ident: br0230
  article-title: Spectral/hp Element Methods for CFD
– year: 1995
  ident: br0190
  article-title: Time Dependent Problems and Difference Methods, vol. 67
– volume: 47
  start-page: 2108
  year: 2013
  end-page: 2131
  ident: br0010
  article-title: Fractional Sturm–Liouville eigen-problems: Theory and numerical approximations
  publication-title: J. Comput. Phys.
– year: 2006
  ident: br0060
  article-title: Fractional Calculus in Bioengineering
– volume: 225
  start-page: 1533
  year: 2007
  end-page: 1552
  ident: br0310
  article-title: Finite difference/spectral approximations for the time-fractional diffusion equation
  publication-title: J. Comput. Phys.
– volume: 193
  start-page: 243
  year: 2006
  end-page: 268
  ident: br0420
  article-title: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2
  publication-title: J. Comput. Appl. Math.
– volume: 26
  start-page: 411
  year: 1969
  end-page: 437
  ident: br0470
  article-title: Integral representations for Jacobi polynomials and some applications
  publication-title: J. Math. Anal. Appl.
– volume: 61
  start-page: 132
  year: 2000
  ident: br0160
  article-title: From continuous time random walks to the fractional Fokker–Planck equation
  publication-title: Phys. Rev. E
– volume: 36
  start-page: 31
  year: 2004
  end-page: 52
  ident: br0280
  article-title: Detailed error analysis for a fractional Adams method
  publication-title: Numer. Algorithms
– volume: 36
  start-page: 1403
  year: 2000
  end-page: 1412
  ident: br0030
  article-title: Application of a fractional advection–dispersion equation
  publication-title: Water Resour. Res.
– volume: 238
  start-page: 154
  year: 2013
  end-page: 168
  ident: br0340
  article-title: A high order schema for the numerical solution of the fractional ordinary differential equations
  publication-title: J. Comput. Phys.
– volume: 18
  start-page: 44
  year: 1964
  end-page: 64
  ident: br0100
  article-title: Resonant oscillations in closed tubes
  publication-title: J. Fluid Mech.
– volume: 265
  start-page: 229
  year: 2002
  end-page: 248
  ident: br0130
  article-title: Analysis of fractional differential equations
  publication-title: J. Math. Anal. Appl.
– volume: 3
  start-page: 439
  year: 1983
  end-page: 465
  ident: br0240
  article-title: On the stability of linear multistep methods for Volterra convolution equations
  publication-title: IMA J. Numer. Anal.
– year: 2007
  ident: br0210
  article-title: Spectral Methods for Time-Dependent Problems, vol. 21
– volume: 25
  start-page: 319
  year: 1988
  end-page: 327
  ident: br0260
  article-title: A numerical method for a partial integro-differential equation
  publication-title: SIAM J. Numer. Anal.
– year: 2012
  ident: br0450
  article-title: Spectral finite element methods for solving fractional differential equations with applications in anomalous transport
– volume: 32
  start-page: 170
  year: 1981
  end-page: 181
  ident: br0110
  article-title: Propagation of simple non-linear waves in gas filled tubes with friction
  publication-title: Z. Angew. Math. Phys.
– volume: 5
  start-page: 229
  year: 2012
  end-page: 241
  ident: br0330
  article-title: Convergence analysis of a block-by-block method for fractional differential equations
  publication-title: Numer. Math. Theor. Methods Appl.
– volume: 86
  start-page: 2602
  year: 2006
  end-page: 2610
  ident: br0320
  article-title: An approximate method for numerical solution of fractional differential equations
  publication-title: Signal Process.
– volume: 16
  start-page: 2535
  year: 2011
  end-page: 2542
  ident: br0370
  article-title: On the numerical solutions for the fractional diffusion equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 52
  start-page: 69
  year: 2009
  end-page: 88
  ident: br0430
  article-title: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation
  publication-title: Numer. Algorithms
– volume: 33
  start-page: 253
  year: 1971
  end-page: 265
  ident: br0020
  article-title: An analog simulation of non-integer order transfer functions for analysis of electrode processes
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
– volume: 225
  start-page: 4
  year: 1991
  ident: br0170
  article-title: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves
  publication-title: J. Fluid Mech.
– volume: 7
  start-page: 447
  year: 1985
  end-page: 458
  ident: br0120
  article-title: ‘Generalized Burgers’ equationʼ for nonlinear viscoelastic waves
  publication-title: Wave Motion
– year: 2010
  ident: br0040
  article-title: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models
– year: 1996
  ident: br0350
  article-title: Numerical Treatment of Differential Equations of Fractional Order
– volume: 10
  start-page: 7
  year: 2010
  end-page: 20
  ident: br0440
  article-title: A comparison of three Eulerian numerical methods for fractional-order transport models
  publication-title: Environ. Fluid Mech.
– volume: 47
  start-page: 2108
  year: 2009
  end-page: 2131
  ident: br0390
  article-title: A space–time spectral method for the time fractional diffusion equation
  publication-title: SIAM J. Numer. Anal.
– year: 2003
  ident: br0050
  article-title: Physics of Fractal Operators
– volume: 339
  start-page: 1
  year: 2000
  end-page: 77
  ident: br0080
  article-title: The random walkʼs guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys. Rep.
– year: July 2012
  ident: br0150
  article-title: On a regular fractional Sturm–Liouville problem with derivatives of order in
  publication-title: Proceedings of the 13th International Carpathian Control Conference (ICCC)
– year: 2005
  ident: br0220
  article-title: The Finite Element Method: Its Basis and Fundamentals
– volume: 17
  start-page: 704
  year: 1986
  end-page: 719
  ident: br0250
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
– volume: 29
  start-page: 129
  year: 2002
  end-page: 143
  ident: br0270
  article-title: Time fractional diffusion: a discrete random walk approach
  publication-title: Nonlinear Dyn.
– year: 2008
  ident: br0090
  article-title: Anomalous Transport: Foundations and Applications
– volume: 74
  start-page: 287
  year: 2012
  end-page: 297
  ident: br0380
  article-title: The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method
  publication-title: Int. J. Pure Appl. Math.
– volume: 276
  start-page: 448
  year: 2000
  end-page: 455
  ident: br0180
  article-title: Fractional reaction–diffusion
  publication-title: Physica A
– volume: 205
  start-page: 719
  year: 2005
  end-page: 736
  ident: br0290
  article-title: The accuracy and stability of an implicit solution method for the fractional diffusion equation
  publication-title: J. Comput. Phys.
– year: 2006
  ident: br0140
  article-title: Theory and Applications of Fractional Differential Equations
– year: 2002
  ident: br0200
  article-title: Finite Volume Methods for Hyperbolic Problems, vol. 31
– year: 1999
  ident: br0460
  article-title: Fractional Differential Equations
– year: 2005
  ident: 10.1016/j.jcp.2013.09.039_br0230
– volume: 32
  start-page: 170
  issue: 2
  year: 1981
  ident: 10.1016/j.jcp.2013.09.039_br0110
  article-title: Propagation of simple non-linear waves in gas filled tubes with friction
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/BF00946746
– volume: 7
  start-page: 447
  issue: 5
  year: 1985
  ident: 10.1016/j.jcp.2013.09.039_br0120
  article-title: ‘Generalized Burgers’ equationʼ for nonlinear viscoelastic waves
  publication-title: Wave Motion
  doi: 10.1016/0165-2125(85)90019-8
– volume: 17
  start-page: 704
  issue: 3
  year: 1986
  ident: 10.1016/j.jcp.2013.09.039_br0250
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0517050
– volume: 339
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.jcp.2013.09.039_br0080
  article-title: The random walkʼs guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00070-3
– volume: 276
  start-page: 448
  issue: 3
  year: 2000
  ident: 10.1016/j.jcp.2013.09.039_br0180
  article-title: Fractional reaction–diffusion
  publication-title: Physica A
  doi: 10.1016/S0378-4371(99)00469-0
– volume: 86
  start-page: 2602
  issue: 10
  year: 2006
  ident: 10.1016/j.jcp.2013.09.039_br0320
  article-title: An approximate method for numerical solution of fractional differential equations
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2006.02.007
– volume: 5
  start-page: 229
  issue: 2
  year: 2012
  ident: 10.1016/j.jcp.2013.09.039_br0330
  article-title: Convergence analysis of a block-by-block method for fractional differential equations
  publication-title: Numer. Math. Theor. Methods Appl.
  doi: 10.4208/nmtma.2012.m1038
– volume: 47
  start-page: 2108
  issue: 3
  year: 2013
  ident: 10.1016/j.jcp.2013.09.039_br0010
  article-title: Fractional Sturm–Liouville eigen-problems: Theory and numerical approximations
  publication-title: J. Comput. Phys.
– year: 1996
  ident: 10.1016/j.jcp.2013.09.039_br0350
– volume: 18
  start-page: 44
  issue: 1
  year: 1964
  ident: 10.1016/j.jcp.2013.09.039_br0100
  article-title: Resonant oscillations in closed tubes
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112064000040
– year: 2006
  ident: 10.1016/j.jcp.2013.09.039_br0140
– year: 1999
  ident: 10.1016/j.jcp.2013.09.039_br0460
– year: 2012
  ident: 10.1016/j.jcp.2013.09.039_br0150
  article-title: On a regular fractional Sturm–Liouville problem with derivatives of order in (0,1)
– volume: 29
  start-page: 129
  issue: 1–4
  year: 2002
  ident: 10.1016/j.jcp.2013.09.039_br0270
  article-title: Time fractional diffusion: a discrete random walk approach
  publication-title: Nonlinear Dyn.
  doi: 10.1023/A:1016547232119
– volume: 225
  start-page: 1533
  issue: 2
  year: 2007
  ident: 10.1016/j.jcp.2013.09.039_br0310
  article-title: Finite difference/spectral approximations for the time-fractional diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.02.001
– volume: 48
  start-page: 1017
  issue: 7
  year: 2004
  ident: 10.1016/j.jcp.2013.09.039_br0410
  article-title: Least squares finite-element solution of a fractional order two-point boundary value problem
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2004.10.003
– volume: 3
  start-page: 439
  issue: 4
  year: 1983
  ident: 10.1016/j.jcp.2013.09.039_br0240
  article-title: On the stability of linear multistep methods for Volterra convolution equations
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/3.4.439
– volume: 195
  start-page: 127
  issue: 4
  year: 1990
  ident: 10.1016/j.jcp.2013.09.039_br0070
  article-title: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications
  publication-title: Phys. Rep.
  doi: 10.1016/0370-1573(90)90099-N
– volume: 56
  start-page: 193
  issue: 2
  year: 2006
  ident: 10.1016/j.jcp.2013.09.039_br0300
  article-title: A fully discrete difference scheme for a diffusion-wave system
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.03.003
– year: 2010
  ident: 10.1016/j.jcp.2013.09.039_br0040
– year: 2002
  ident: 10.1016/j.jcp.2013.09.039_br0200
– volume: 238
  start-page: 154
  issue: 1
  year: 2013
  ident: 10.1016/j.jcp.2013.09.039_br0340
  article-title: A high order schema for the numerical solution of the fractional ordinary differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.12.013
– volume: 193
  start-page: 243
  issue: 1
  year: 2006
  ident: 10.1016/j.jcp.2013.09.039_br0420
  article-title: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2005.06.005
– year: 2008
  ident: 10.1016/j.jcp.2013.09.039_br0090
– volume: 25
  start-page: 319
  issue: 2
  year: 1988
  ident: 10.1016/j.jcp.2013.09.039_br0260
  article-title: A numerical method for a partial integro-differential equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0725022
– volume: 225
  start-page: 4
  issue: 631–653
  year: 1991
  ident: 10.1016/j.jcp.2013.09.039_br0170
  article-title: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves
  publication-title: J. Fluid Mech.
– volume: 8
  start-page: 1016
  issue: 5
  year: 2010
  ident: 10.1016/j.jcp.2013.09.039_br0400
  article-title: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation
  publication-title: Commun. Comput. Phys.
  doi: 10.4208/cicp.020709.221209a
– volume: 265
  start-page: 229
  issue: 2
  year: 2002
  ident: 10.1016/j.jcp.2013.09.039_br0130
  article-title: Analysis of fractional differential equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.2000.7194
– year: 2007
  ident: 10.1016/j.jcp.2013.09.039_br0210
– volume: 47
  start-page: 2108
  issue: 3
  year: 2009
  ident: 10.1016/j.jcp.2013.09.039_br0390
  article-title: A space–time spectral method for the time fractional diffusion equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080718942
– year: 1995
  ident: 10.1016/j.jcp.2013.09.039_br0190
– year: 2012
  ident: 10.1016/j.jcp.2013.09.039_br0450
– year: 2005
  ident: 10.1016/j.jcp.2013.09.039_br0220
– volume: 36
  start-page: 1403
  issue: 6
  year: 2000
  ident: 10.1016/j.jcp.2013.09.039_br0030
  article-title: Application of a fractional advection–dispersion equation
  publication-title: Water Resour. Res.
  doi: 10.1029/2000WR900031
– year: 2003
  ident: 10.1016/j.jcp.2013.09.039_br0050
– volume: 61
  start-page: 132
  issue: 1
  year: 2000
  ident: 10.1016/j.jcp.2013.09.039_br0160
  article-title: From continuous time random walks to the fractional Fokker–Planck equation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.61.132
– volume: 176
  start-page: 1
  issue: 1
  year: 2006
  ident: 10.1016/j.jcp.2013.09.039_br0360
  article-title: Numerical solution of fractional integro-differential equations by collocation method
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.09.059
– volume: 74
  start-page: 287
  issue: 3
  year: 2012
  ident: 10.1016/j.jcp.2013.09.039_br0380
  article-title: The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method
  publication-title: Int. J. Pure Appl. Math.
– volume: 33
  start-page: 253
  issue: 2
  year: 1971
  ident: 10.1016/j.jcp.2013.09.039_br0020
  article-title: An analog simulation of non-integer order transfer functions for analysis of electrode processes
  publication-title: J. Electroanal. Chem. Interfacial Electrochem.
  doi: 10.1016/S0022-0728(71)80115-8
– volume: 36
  start-page: 31
  issue: 1
  year: 2004
  ident: 10.1016/j.jcp.2013.09.039_br0280
  article-title: Detailed error analysis for a fractional Adams method
  publication-title: Numer. Algorithms
  doi: 10.1023/B:NUMA.0000027736.85078.be
– volume: 10
  start-page: 7
  issue: 1–2
  year: 2010
  ident: 10.1016/j.jcp.2013.09.039_br0440
  article-title: A comparison of three Eulerian numerical methods for fractional-order transport models
  publication-title: Environ. Fluid Mech.
  doi: 10.1007/s10652-009-9145-4
– volume: 26
  start-page: 411
  year: 1969
  ident: 10.1016/j.jcp.2013.09.039_br0470
  article-title: Integral representations for Jacobi polynomials and some applications
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(69)90165-6
– volume: 205
  start-page: 719
  issue: 2
  year: 2005
  ident: 10.1016/j.jcp.2013.09.039_br0290
  article-title: The accuracy and stability of an implicit solution method for the fractional diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2004.11.025
– volume: 16
  start-page: 2535
  issue: 6
  year: 2011
  ident: 10.1016/j.jcp.2013.09.039_br0370
  article-title: On the numerical solutions for the fractional diffusion equation
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.09.007
– year: 2006
  ident: 10.1016/j.jcp.2013.09.039_br0060
– volume: 52
  start-page: 69
  issue: 1
  year: 2009
  ident: 10.1016/j.jcp.2013.09.039_br0430
  article-title: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-008-9258-8
SSID ssj0008548
Score 2.5054219
Snippet Current discretizations of fractional differential equations lead to numerical solutions of low order of accuracy. Here, we present different methods for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 460
SubjectTerms Asymptotic properties
Basis functions
Dirichlet problem
Discontinuous spectral element method
Distributed memory
Eigenfunctions
Exponential convergence
Jacobi polyfractonomials
Mathematical analysis
Mathematical models
Petrov–Galerkin spectral methods
Spectral methods
Texts
Title Exponentially accurate spectral and spectral element methods for fractional ODEs
URI https://dx.doi.org/10.1016/j.jcp.2013.09.039
https://www.proquest.com/docview/1531034577
https://www.proquest.com/docview/1551043874
https://www.proquest.com/docview/1677977723
Volume 257
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier E-journals (Freedom Collection)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AKRWK
  dateStart: 19660801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXrz4Ft9U8CRU22aaNEfRXVYF9eCCt5BXYWWpyz5AL_52J02rKLgHj2knbTpJvkyab2YIOS0sz0uXQOwKrmPIEhprbYu4sKn3A1XO2prle8_6A7h9zp-XyFXrC-NplQ32B0yv0bq5ctFo82I8HHof38z70Kf-QIbl1O_bAbjPYnD-8U3zKHIIaOypCCjdnmzWHK8X40NWpjSEOhV_rU2_ULpeenrrZLWxGaPL0KwNsuSqTbLW2I9RMzunW-Sx-zZ-rTz9R41G75EyZu4DQUS1N-UEn6Aq-11wgTgehRzS0wit16icBD8HvP1w3Z1uk0Gv-3TVj5uMCbGhgs1iy3CjLKigpTZFSo1gusxAq5QqtNsEqssBNcqBzXLlk4-lGj-b-ThdSgu0xnZIp8KG7pKIW85ZKRSjFMA6U2QCcot7WKco4B5njyStrqRpwon7rBYj2fLGXiSqV3r1ykRIfM8eOfuqMg6xNBYJQ9sB8seAkIj1i6qdtJ0lcaL40w9Vudf5VCK0pwmFnPNFMghRQAsOC2QY52g084zu_6-JB2QFSxD-4xySzmwyd0do2cz0cT10j8ny5c1d__4TMYb29A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB734Ft9W8CRU22aaNEfRlfXtQcFbyKugLHXZB-jF3-6kaRUF9-CxzaRNJ8mXmeabCSEHheV56RKIXcF1DFlCY61tERc29XGgyllbs3xvWfcRLp_ypyly2sbCeFplg_0B02u0bu4cN9o87j8_-xjfzMfQp35DhuUU_fYZyDPuPbCjj2-eR5FDgGPPRUDxdmuzJnm9GJ-zMqUh16n4a3H6BdP12nO-SOYbozE6Ce1aIlOuWiYLjQEZNdNzuELuO2_918rzf1Sv9x4pY8Y-E0RUh1MO8Amqst8XLjDHo3CI9DBC8zUqByHQAYvvzjrDVfJ43nk47cbNkQmxoYKNYsvQUxZU0FKbIqVGMF1moFVKFRpuAvXlgBrlwGa58qePpRo_m_lEXUoLNMfWyHSFDV0nEbecs1IoRimAdabIBOQWnVinKKCTs0GSVlfSNPnE_bEWPdkSx14kqld69cpESHzPBjn8qtIPyTQmCUPbAfLHiJAI9pOq7bedJXGm-O0PVbnX8VAitqcJhZzzSTKIUUALDhNkGOdoNfOMbv6viXtktvtwcy2vL26vtsgclkD4qbNNpkeDsdtBM2ekd-th_AnnUfiJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponentially+accurate+spectral+and+spectral+element+methods+for+fractional+ODEs&rft.jtitle=Journal+of+computational+physics&rft.au=Zayernouri%2C+Mohsen&rft.au=Karniadakis%2C+George+Em&rft.date=2014-01-01&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=257&rft.spage=460&rft.epage=480&rft_id=info:doi/10.1016%2Fj.jcp.2013.09.039&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon