Exponentially accurate spectral and spectral element methods for fractional ODEs
Current discretizations of fractional differential equations lead to numerical solutions of low order of accuracy. Here, we present different methods for fractional ODEs that lead to exponentially fast decay of the error. First, we develop a Petrov–Galerkin (PG) spectral method for Fractional Initia...
Saved in:
| Published in | Journal of computational physics Vol. 257; pp. 460 - 480 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.01.2014
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9991 1090-2716 |
| DOI | 10.1016/j.jcp.2013.09.039 |
Cover
| Abstract | Current discretizations of fractional differential equations lead to numerical solutions of low order of accuracy. Here, we present different methods for fractional ODEs that lead to exponentially fast decay of the error. First, we develop a Petrov–Galerkin (PG) spectral method for Fractional Initial-Value Problems (FIVPs) of the form Dtν0u(t)=f(t) and Fractional Final-Value Problems (FFVPs) DTνtu(t)=g(t), where ν∈(0,1), subject to Dirichlet initial/final conditions. These schemes are developed based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), which has been recently developed in [1]. Specifically, we obtain solutions to FIVPs and FFVPs in terms of the new fractional (non-polynomial) basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of first kind (FSLP-I). Correspondingly, we employ another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Subsequently, we develop a Discontinuous Spectral Method (DSM) of Petrov–Galerkin sense for the aforementioned FIVPs and FFVPs, where the basis functions do not satisfy the initial/final conditions. Finally, we extend the DSM scheme to a Discontinuous Spectral Element Method (DSEM) for efficient longer time-integration and adaptive refinement. In these discontinuous schemes, we employ the asymptotic eigensolutions to FSLP-I & -II, which are of Jacobi polynomial forms, as basis and test functions. Our numerical tests confirm the exponential/algebraic convergence, respectively, in p- and h-refinements, for various test cases with integer- and fractional-order solutions. |
|---|---|
| AbstractList | Current discretizations of fractional differential equations lead to numerical solutions of low order of accuracy. Here, we present different methods for fractional ODEs that lead to exponentially fast decay of the error. First, we develop a Petrov-Galerkin (PG) spectral method for Fractional Initial-Value Problems (FIVPs) of the form (ProQuest: Formulae and/or non-USASCII text omitted) and Fractional Final-Value Problems (FFVPs) (ProQuest: Formulae and/or non-USASCII text omitted), where v [setmembership] (0.1), subject to Dirichlet initial/final conditions. These schemes are developed based on a new spectral theory for fractional Sturm-Liouville problems (FSLPs), which has been recently developed in [1]. Specifically, we obtain solutions to FIVPs and FFVPs in terms of the new fractional (non-polynomial) basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of first kind (FSLP-I). Correspondingly, we employ another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Subsequently, we develop a Discontinuous Spectral Method (DSM) of Petrov-Galerkin sense for the aforementioned FIVPs and FFVPs, where the basis functions do not satisfy the initial/final conditions. Finally, we extend the DSM scheme to a Discontinuous Spectral Element Method (DSEM) for efficient longer time-integration and adaptive refinement. In these discontinuous schemes, we employ the asymptotic eigensolutions to FSLP-I & -II, which are of Jacobi polynomial forms, as basis and test functions. Our numerical tests confirm the exponential/algebraic convergence, respectively, in p- and h-refinements, for various test cases with integer- and fractional-order solutions. Current discretizations of fractional differential equations lead to numerical solutions of low order of accuracy. Here, we present different methods for fractional ODEs that lead to exponentially fast decay of the error. First, we develop a Petrov–Galerkin (PG) spectral method for Fractional Initial-Value Problems (FIVPs) of the form Dtν0u(t)=f(t) and Fractional Final-Value Problems (FFVPs) DTνtu(t)=g(t), where ν∈(0,1), subject to Dirichlet initial/final conditions. These schemes are developed based on a new spectral theory for fractional Sturm–Liouville problems (FSLPs), which has been recently developed in [1]. Specifically, we obtain solutions to FIVPs and FFVPs in terms of the new fractional (non-polynomial) basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of first kind (FSLP-I). Correspondingly, we employ another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Subsequently, we develop a Discontinuous Spectral Method (DSM) of Petrov–Galerkin sense for the aforementioned FIVPs and FFVPs, where the basis functions do not satisfy the initial/final conditions. Finally, we extend the DSM scheme to a Discontinuous Spectral Element Method (DSEM) for efficient longer time-integration and adaptive refinement. In these discontinuous schemes, we employ the asymptotic eigensolutions to FSLP-I & -II, which are of Jacobi polynomial forms, as basis and test functions. Our numerical tests confirm the exponential/algebraic convergence, respectively, in p- and h-refinements, for various test cases with integer- and fractional-order solutions. Current discretizations of fractional differential equations lead to numerical solutions of low order of accuracy. Here, we present different methods for fractional ODEs that lead to exponentially fast decay of the error. First, we develop a Petrov-Galerkin (PG) spectral method for Fractional Initial-Value Problems (FIVPs) of the form Dt nu 0u(t)=f(t) and Fractional Final-Value Problems (FFVPs) DT nu tu(t)=g(t), where nu [isin](0,1) nu [isin](0,1), subject to Dirichlet initial/final conditions. These schemes are developed based on a new spectral theory for fractional Sturm-Liouville problems (FSLPs), which has been recently developed in [1]. Specifically, we obtain solutions to FIVPs and FFVPs in terms of the new fractional (non-polynomial) basis functions, called Jacobi polyfractonomials, which are the eigenfunctions of the FSLP of first kind (FSLP-I). Correspondingly, we employ another space of test functions as the span of polyfractonomial eigenfunctions of the FSLP of second kind (FSLP-II). Subsequently, we develop a Discontinuous Spectral Method (DSM) of Petrov-Galerkin sense for the aforementioned FIVPs and FFVPs, where the basis functions do not satisfy the initial/final conditions. Finally, we extend the DSM scheme to a Discontinuous Spectral Element Method (DSEM) for efficient longer time-integration and adaptive refinement. In these discontinuous schemes, we employ the asymptotic eigensolutions to FSLP-I & -II, which are of Jacobi polynomial forms, as basis and test functions. Our numerical tests confirm the exponential/algebraic convergence, respectively, in p- and h-refinements, for various test cases with integer- and fractional-order solutions. |
| Author | Karniadakis, George Em Zayernouri, Mohsen |
| Author_xml | – sequence: 1 givenname: Mohsen surname: Zayernouri fullname: Zayernouri, Mohsen – sequence: 2 givenname: George Em surname: Karniadakis fullname: Karniadakis, George Em email: george_karniadakis@brown.edu |
| BookMark | eNqNkU1L7DAUhoMoOH78AHddumk9p0mTBleio14QdKHrkKanmKHT1qQj-u_NMIJwF967Coc8z4HzvkdsfxgHYuwMoUBAebEqVm4qSkBegC6A6z22QNCQlwrlPlsAlJhrrfGQHcW4AoC6EvWCPS0_prRpmL3t-8_MOrcJdqYsTuTmYPvMDu3PQD2tE5utaX4d25h1Y8i6YN3sxyF9P94s4wk76Gwf6fT7PWYvt8vn6_v84fHuz_XVQ-64lnPeSmpKzTXvGlcjd1o2XSkai9zKSmrUmgR3lkRbVlYIVNikoyRUqGyjoebH7Hy3dwrj24bibNY-Oup7O9C4iQalUlopVfJ_o1WFIHitxH-gHIGLSqmEqh3qwhhjoM44P9ttEikq3xsEs23GrExqxmybMaBNOiKZ-Jc5Bb-24fNX53LnUMr03VMw0XkaHLU-pHJMO_pf7C-Bq6d7 |
| CitedBy_id | crossref_primary_10_1007_s10915_021_01573_1 crossref_primary_10_1142_S0218348X17400023 crossref_primary_10_1016_j_jcp_2018_02_014 crossref_primary_10_1140_epjp_i2016_16012_0 crossref_primary_10_1016_j_padiff_2021_100188 crossref_primary_10_1137_130940967 crossref_primary_10_11948_20180134 crossref_primary_10_32628_IJSRSET207383 crossref_primary_10_1016_j_matcom_2022_06_018 crossref_primary_10_3390_math12233654 crossref_primary_10_1016_j_cam_2020_112739 crossref_primary_10_1016_j_jcp_2015_06_030 crossref_primary_10_3390_math6020016 crossref_primary_10_1016_j_jcp_2016_01_041 crossref_primary_10_1017_S096249292000001X crossref_primary_10_1142_S0129183122501029 crossref_primary_10_1016_j_jcp_2014_10_016 crossref_primary_10_1007_s11071_021_07158_9 crossref_primary_10_1007_s11075_020_01055_9 crossref_primary_10_1016_j_camwa_2018_01_020 crossref_primary_10_23939_cds2022_01_095 crossref_primary_10_1016_j_apnum_2018_10_014 crossref_primary_10_1080_00207160_2015_1119270 crossref_primary_10_1137_130935884 crossref_primary_10_1155_2014_194249 crossref_primary_10_1016_j_jcp_2015_02_021 crossref_primary_10_1016_j_apnum_2020_07_020 crossref_primary_10_1108_AJMS_02_2021_0052 crossref_primary_10_1142_S1793962319410010 crossref_primary_10_1016_j_camwa_2020_08_020 crossref_primary_10_1002_mma_9343 crossref_primary_10_1016_j_apnum_2017_02_004 crossref_primary_10_1155_2015_871635 crossref_primary_10_1137_17M1113060 crossref_primary_10_1007_s11075_024_01884_y crossref_primary_10_1080_00207160_2020_1792453 crossref_primary_10_1080_10652469_2014_966102 crossref_primary_10_1016_j_jcp_2015_03_063 crossref_primary_10_1137_16M1059278 crossref_primary_10_3390_math12203273 crossref_primary_10_1007_s12190_024_02349_0 crossref_primary_10_1016_j_cma_2019_01_040 crossref_primary_10_1016_j_camwa_2024_01_022 crossref_primary_10_1155_2019_3734617 crossref_primary_10_1002_cmm4_1125 crossref_primary_10_1016_j_apnum_2019_05_010 crossref_primary_10_1016_j_jcp_2014_06_007 crossref_primary_10_1080_00207160_2017_1343941 crossref_primary_10_1016_j_jcp_2016_04_041 crossref_primary_10_1016_j_jcp_2015_01_025 crossref_primary_10_1137_19M1269324 crossref_primary_10_1016_j_asej_2016_03_014 crossref_primary_10_1155_2021_8817794 crossref_primary_10_1016_j_camwa_2020_09_008 crossref_primary_10_1002_mma_4839 crossref_primary_10_1002_oca_2495 crossref_primary_10_1080_17415977_2021_1988590 crossref_primary_10_1016_j_rinam_2021_100149 crossref_primary_10_1016_j_cma_2017_06_006 crossref_primary_10_1016_j_cam_2021_113468 crossref_primary_10_1137_140988218 crossref_primary_10_1016_j_jcp_2014_12_001 crossref_primary_10_3390_fractalfract6010019 crossref_primary_10_1002_oca_2649 crossref_primary_10_1137_141001299 crossref_primary_10_1016_j_jcp_2015_06_022 crossref_primary_10_1371_journal_pone_0126620 crossref_primary_10_1080_00207160_2017_1322690 crossref_primary_10_1007_s10915_017_0506_8 crossref_primary_10_1007_s10915_019_01056_4 crossref_primary_10_1007_s11831_024_10083_w crossref_primary_10_1137_140993697 crossref_primary_10_1002_mma_3600 crossref_primary_10_1007_s10915_018_0862_z crossref_primary_10_1016_j_apnum_2020_04_006 crossref_primary_10_1016_j_jcp_2014_10_051 crossref_primary_10_1007_s40314_020_1117_9 crossref_primary_10_1007_s40314_017_0551_9 crossref_primary_10_1007_s40314_018_0641_3 crossref_primary_10_1155_2017_6328438 crossref_primary_10_1016_j_cma_2014_10_051 crossref_primary_10_1007_s10543_020_00812_5 crossref_primary_10_1016_j_jcp_2013_11_017 crossref_primary_10_1016_j_camwa_2016_07_018 crossref_primary_10_1016_j_cma_2016_05_030 crossref_primary_10_1137_16M1073121 crossref_primary_10_1515_fca_2015_0082 crossref_primary_10_4208_nmtma_2017_s11 crossref_primary_10_1016_j_automatica_2016_12_022 crossref_primary_10_1016_j_jcp_2017_02_060 crossref_primary_10_1137_15M1061496 crossref_primary_10_1016_j_amc_2020_125313 crossref_primary_10_1002_num_22233 crossref_primary_10_1007_s40314_019_0826_4 crossref_primary_10_1016_j_jcp_2014_07_020 crossref_primary_10_1016_j_jocs_2019_04_007 crossref_primary_10_1007_s00366_020_00936_w crossref_primary_10_1016_j_jcp_2014_03_039 crossref_primary_10_1016_j_jcp_2017_09_060 crossref_primary_10_1007_s40819_019_0625_z crossref_primary_10_1007_s11075_023_01742_3 crossref_primary_10_1007_s00466_021_02089_z crossref_primary_10_1016_j_apnum_2019_04_003 crossref_primary_10_1137_140985536 crossref_primary_10_1016_j_apnum_2018_04_009 crossref_primary_10_1007_s11831_023_09911_2 crossref_primary_10_1016_j_apnum_2021_05_031 crossref_primary_10_1140_epjp_i2019_12498_0 crossref_primary_10_15388_NA_2019_2_2 crossref_primary_10_1007_s10409_017_0742_z crossref_primary_10_1016_j_jcp_2014_04_048 crossref_primary_10_1007_s40314_022_01954_8 crossref_primary_10_1016_j_cam_2019_05_026 crossref_primary_10_1140_epjp_i2019_12951_0 crossref_primary_10_1016_j_chaos_2018_09_032 crossref_primary_10_1016_j_jcp_2015_07_011 crossref_primary_10_1016_j_apnum_2017_03_009 crossref_primary_10_1007_s11071_015_2087_0 crossref_primary_10_3390_appliedmath4030051 crossref_primary_10_3390_math11071677 crossref_primary_10_1080_00207160_2018_1425797 crossref_primary_10_1155_2022_8655340 crossref_primary_10_3390_fractalfract6120748 crossref_primary_10_1016_j_camwa_2017_12_004 crossref_primary_10_1002_mma_4463 crossref_primary_10_1007_s42967_019_00012_1 crossref_primary_10_1137_130933216 crossref_primary_10_1007_s11075_019_00857_w crossref_primary_10_1016_j_cam_2018_12_028 crossref_primary_10_1007_s40314_017_0488_z crossref_primary_10_1016_j_aml_2017_03_010 crossref_primary_10_1080_00207160_2014_915962 crossref_primary_10_1016_j_apnum_2021_07_012 crossref_primary_10_1080_00207160_2017_1324150 |
| Cites_doi | 10.1007/BF00946746 10.1016/0165-2125(85)90019-8 10.1137/0517050 10.1016/S0370-1573(00)00070-3 10.1016/S0378-4371(99)00469-0 10.1016/j.sigpro.2006.02.007 10.4208/nmtma.2012.m1038 10.1017/S0022112064000040 10.1023/A:1016547232119 10.1016/j.jcp.2007.02.001 10.1016/j.camwa.2004.10.003 10.1093/imanum/3.4.439 10.1016/0370-1573(90)90099-N 10.1016/j.apnum.2005.03.003 10.1016/j.jcp.2012.12.013 10.1016/j.cam.2005.06.005 10.1137/0725022 10.4208/cicp.020709.221209a 10.1006/jmaa.2000.7194 10.1137/080718942 10.1029/2000WR900031 10.1103/PhysRevE.61.132 10.1016/j.amc.2005.09.059 10.1016/S0022-0728(71)80115-8 10.1023/B:NUMA.0000027736.85078.be 10.1007/s10652-009-9145-4 10.1016/0022-247X(69)90165-6 10.1016/j.jcp.2004.11.025 10.1016/j.cnsns.2010.09.007 10.1007/s11075-008-9258-8 |
| ContentType | Journal Article |
| Copyright | 2013 Elsevier Inc. |
| Copyright_xml | – notice: 2013 Elsevier Inc. |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.jcp.2013.09.039 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database Technology Research Database Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| EndPage | 480 |
| ExternalDocumentID | 10_1016_j_jcp_2013_09_039 S0021999113006530 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS EJD FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c396t-d6eb29393fbc813c96bf24ba13a6569199e43cae4d25a44171b03960517ab9083 |
| IEDL.DBID | .~1 |
| ISSN | 0021-9991 |
| IngestDate | Sat Sep 27 22:19:14 EDT 2025 Thu Oct 02 03:40:17 EDT 2025 Thu Oct 02 07:00:09 EDT 2025 Thu Apr 24 22:56:54 EDT 2025 Wed Oct 01 05:12:34 EDT 2025 Fri Feb 23 02:18:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Exponential convergence Jacobi polyfractonomials Petrov–Galerkin spectral methods Discontinuous spectral element method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-d6eb29393fbc813c96bf24ba13a6569199e43cae4d25a44171b03960517ab9083 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1531034577 |
| PQPubID | 23500 |
| PageCount | 21 |
| ParticipantIDs | proquest_miscellaneous_1677977723 proquest_miscellaneous_1551043874 proquest_miscellaneous_1531034577 crossref_citationtrail_10_1016_j_jcp_2013_09_039 crossref_primary_10_1016_j_jcp_2013_09_039 elsevier_sciencedirect_doi_10_1016_j_jcp_2013_09_039 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20140101 |
| PublicationDateYYYYMMDD | 2014-01-01 |
| PublicationDate_xml | – month: 01 year: 2014 text: 20140101 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2014 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Kumar, Agrawal (br0320) 2006; 86 Blank (br0350) 1996 Askey, Fitch (br0470) 1969; 26 Sanz-Serna (br0260) 1988; 25 Metzler, Klafter (br0080) 2000; 339 Podlubny (br0460) 1999 Rawashdeh (br0360) 2006; 176 Fix, Roop (br0410) 2004; 48 Hesthaven, Gottlieb, Gottlieb (br0210) 2007 Carella (br0450) 2012 Zayernouri, Karniadakis (br0010) 2013; 47 Karniadakis, Sherwin (br0230) 2005 Diethelm, Ford, Freed (br0280) 2004; 36 Khader (br0370) 2011; 16 Bouchaud, Georges (br0070) 1990; 195 Sugimoto (br0170) 1991; 225 McLean, Mustapha (br0430) 2009; 52 Lubich (br0240) 1983; 3 Huang, Tang, Vazquez (br0330) 2012; 5 Mainardi (br0040) 2010 Magin (br0060) 2006 Gustafsson, Kreiss, Oliger (br0190) 1995 Cao, Xu (br0340) 2013; 238 Hanert (br0440) 2010; 10 Diethelm, Ford (br0130) 2002; 265 Li, Xu (br0400) 2010; 8 Lubich (br0250) 1986; 17 Keller (br0110) 1981; 32 Barkai, Metzler, Klafter (br0160) 2000; 61 Benson, Wheatcraft, Meerschaert (br0030) 2000; 36 West, Bologna, Grigolini (br0050) 2003 Klages, Radons, Sokolov (br0090) 2008 LeVeque (br0200) 2002 Langlands, Henry (br0290) 2005; 205 Ichise, Nagayanagi, Kojima (br0020) 1971; 33 Klimek, Agrawal (br0150) July 2012 Lin, Xu (br0310) 2007; 225 Kilbass, Srivastava, Trujillo (br0140) 2006 Henry, Wearne (br0180) 2000; 276 Sun, Wu (br0300) 2006; 56 Zienkiewicz, Taylor, Zhu (br0220) 2005 Khader, Hendy (br0380) 2012; 74 Sugimoto, Kakutani (br0120) 1985; 7 Chester (br0100) 1964; 18 Li, Xu (br0390) 2009; 47 Roop (br0420) 2006; 193 Gorenflo, Mainardi, Moretti, Paradisi (br0270) 2002; 29 Zayernouri (10.1016/j.jcp.2013.09.039_br0010) 2013; 47 Khader (10.1016/j.jcp.2013.09.039_br0370) 2011; 16 Mainardi (10.1016/j.jcp.2013.09.039_br0040) 2010 Chester (10.1016/j.jcp.2013.09.039_br0100) 1964; 18 Podlubny (10.1016/j.jcp.2013.09.039_br0460) 1999 Bouchaud (10.1016/j.jcp.2013.09.039_br0070) 1990; 195 West (10.1016/j.jcp.2013.09.039_br0050) 2003 Li (10.1016/j.jcp.2013.09.039_br0400) 2010; 8 McLean (10.1016/j.jcp.2013.09.039_br0430) 2009; 52 Ichise (10.1016/j.jcp.2013.09.039_br0020) 1971; 33 Keller (10.1016/j.jcp.2013.09.039_br0110) 1981; 32 Lubich (10.1016/j.jcp.2013.09.039_br0240) 1983; 3 LeVeque (10.1016/j.jcp.2013.09.039_br0200) 2002 Roop (10.1016/j.jcp.2013.09.039_br0420) 2006; 193 Klages (10.1016/j.jcp.2013.09.039_br0090) 2008 Karniadakis (10.1016/j.jcp.2013.09.039_br0230) 2005 Lubich (10.1016/j.jcp.2013.09.039_br0250) 1986; 17 Sanz-Serna (10.1016/j.jcp.2013.09.039_br0260) 1988; 25 Kilbass (10.1016/j.jcp.2013.09.039_br0140) 2006 Klimek (10.1016/j.jcp.2013.09.039_br0150) 2012 Henry (10.1016/j.jcp.2013.09.039_br0180) 2000; 276 Zienkiewicz (10.1016/j.jcp.2013.09.039_br0220) 2005 Huang (10.1016/j.jcp.2013.09.039_br0330) 2012; 5 Fix (10.1016/j.jcp.2013.09.039_br0410) 2004; 48 Askey (10.1016/j.jcp.2013.09.039_br0470) 1969; 26 Carella (10.1016/j.jcp.2013.09.039_br0450) 2012 Magin (10.1016/j.jcp.2013.09.039_br0060) 2006 Metzler (10.1016/j.jcp.2013.09.039_br0080) 2000; 339 Kumar (10.1016/j.jcp.2013.09.039_br0320) 2006; 86 Li (10.1016/j.jcp.2013.09.039_br0390) 2009; 47 Blank (10.1016/j.jcp.2013.09.039_br0350) 1996 Gorenflo (10.1016/j.jcp.2013.09.039_br0270) 2002; 29 Sugimoto (10.1016/j.jcp.2013.09.039_br0120) 1985; 7 Diethelm (10.1016/j.jcp.2013.09.039_br0130) 2002; 265 Gustafsson (10.1016/j.jcp.2013.09.039_br0190) 1995 Hesthaven (10.1016/j.jcp.2013.09.039_br0210) 2007 Cao (10.1016/j.jcp.2013.09.039_br0340) 2013; 238 Sugimoto (10.1016/j.jcp.2013.09.039_br0170) 1991; 225 Rawashdeh (10.1016/j.jcp.2013.09.039_br0360) 2006; 176 Barkai (10.1016/j.jcp.2013.09.039_br0160) 2000; 61 Langlands (10.1016/j.jcp.2013.09.039_br0290) 2005; 205 Hanert (10.1016/j.jcp.2013.09.039_br0440) 2010; 10 Benson (10.1016/j.jcp.2013.09.039_br0030) 2000; 36 Diethelm (10.1016/j.jcp.2013.09.039_br0280) 2004; 36 Khader (10.1016/j.jcp.2013.09.039_br0380) 2012; 74 Sun (10.1016/j.jcp.2013.09.039_br0300) 2006; 56 Lin (10.1016/j.jcp.2013.09.039_br0310) 2007; 225 |
| References_xml | – volume: 56 start-page: 193 year: 2006 end-page: 209 ident: br0300 article-title: A fully discrete difference scheme for a diffusion-wave system publication-title: Appl. Numer. Math. – volume: 48 start-page: 1017 year: 2004 end-page: 1033 ident: br0410 article-title: Least squares finite-element solution of a fractional order two-point boundary value problem publication-title: Comput. Math. Appl. – volume: 195 start-page: 127 year: 1990 end-page: 293 ident: br0070 article-title: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications publication-title: Phys. Rep. – volume: 176 start-page: 1 year: 2006 end-page: 6 ident: br0360 article-title: Numerical solution of fractional integro-differential equations by collocation method publication-title: Appl. Math. Comput. – volume: 8 start-page: 1016 year: 2010 ident: br0400 article-title: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation publication-title: Commun. Comput. Phys. – year: 2005 ident: br0230 article-title: Spectral/hp Element Methods for CFD – year: 1995 ident: br0190 article-title: Time Dependent Problems and Difference Methods, vol. 67 – volume: 47 start-page: 2108 year: 2013 end-page: 2131 ident: br0010 article-title: Fractional Sturm–Liouville eigen-problems: Theory and numerical approximations publication-title: J. Comput. Phys. – year: 2006 ident: br0060 article-title: Fractional Calculus in Bioengineering – volume: 225 start-page: 1533 year: 2007 end-page: 1552 ident: br0310 article-title: Finite difference/spectral approximations for the time-fractional diffusion equation publication-title: J. Comput. Phys. – volume: 193 start-page: 243 year: 2006 end-page: 268 ident: br0420 article-title: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2 publication-title: J. Comput. Appl. Math. – volume: 26 start-page: 411 year: 1969 end-page: 437 ident: br0470 article-title: Integral representations for Jacobi polynomials and some applications publication-title: J. Math. Anal. Appl. – volume: 61 start-page: 132 year: 2000 ident: br0160 article-title: From continuous time random walks to the fractional Fokker–Planck equation publication-title: Phys. Rev. E – volume: 36 start-page: 31 year: 2004 end-page: 52 ident: br0280 article-title: Detailed error analysis for a fractional Adams method publication-title: Numer. Algorithms – volume: 36 start-page: 1403 year: 2000 end-page: 1412 ident: br0030 article-title: Application of a fractional advection–dispersion equation publication-title: Water Resour. Res. – volume: 238 start-page: 154 year: 2013 end-page: 168 ident: br0340 article-title: A high order schema for the numerical solution of the fractional ordinary differential equations publication-title: J. Comput. Phys. – volume: 18 start-page: 44 year: 1964 end-page: 64 ident: br0100 article-title: Resonant oscillations in closed tubes publication-title: J. Fluid Mech. – volume: 265 start-page: 229 year: 2002 end-page: 248 ident: br0130 article-title: Analysis of fractional differential equations publication-title: J. Math. Anal. Appl. – volume: 3 start-page: 439 year: 1983 end-page: 465 ident: br0240 article-title: On the stability of linear multistep methods for Volterra convolution equations publication-title: IMA J. Numer. Anal. – year: 2007 ident: br0210 article-title: Spectral Methods for Time-Dependent Problems, vol. 21 – volume: 25 start-page: 319 year: 1988 end-page: 327 ident: br0260 article-title: A numerical method for a partial integro-differential equation publication-title: SIAM J. Numer. Anal. – year: 2012 ident: br0450 article-title: Spectral finite element methods for solving fractional differential equations with applications in anomalous transport – volume: 32 start-page: 170 year: 1981 end-page: 181 ident: br0110 article-title: Propagation of simple non-linear waves in gas filled tubes with friction publication-title: Z. Angew. Math. Phys. – volume: 5 start-page: 229 year: 2012 end-page: 241 ident: br0330 article-title: Convergence analysis of a block-by-block method for fractional differential equations publication-title: Numer. Math. Theor. Methods Appl. – volume: 86 start-page: 2602 year: 2006 end-page: 2610 ident: br0320 article-title: An approximate method for numerical solution of fractional differential equations publication-title: Signal Process. – volume: 16 start-page: 2535 year: 2011 end-page: 2542 ident: br0370 article-title: On the numerical solutions for the fractional diffusion equation publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 52 start-page: 69 year: 2009 end-page: 88 ident: br0430 article-title: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation publication-title: Numer. Algorithms – volume: 33 start-page: 253 year: 1971 end-page: 265 ident: br0020 article-title: An analog simulation of non-integer order transfer functions for analysis of electrode processes publication-title: J. Electroanal. Chem. Interfacial Electrochem. – volume: 225 start-page: 4 year: 1991 ident: br0170 article-title: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves publication-title: J. Fluid Mech. – volume: 7 start-page: 447 year: 1985 end-page: 458 ident: br0120 article-title: ‘Generalized Burgers’ equationʼ for nonlinear viscoelastic waves publication-title: Wave Motion – year: 2010 ident: br0040 article-title: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models – year: 1996 ident: br0350 article-title: Numerical Treatment of Differential Equations of Fractional Order – volume: 10 start-page: 7 year: 2010 end-page: 20 ident: br0440 article-title: A comparison of three Eulerian numerical methods for fractional-order transport models publication-title: Environ. Fluid Mech. – volume: 47 start-page: 2108 year: 2009 end-page: 2131 ident: br0390 article-title: A space–time spectral method for the time fractional diffusion equation publication-title: SIAM J. Numer. Anal. – year: 2003 ident: br0050 article-title: Physics of Fractal Operators – volume: 339 start-page: 1 year: 2000 end-page: 77 ident: br0080 article-title: The random walkʼs guide to anomalous diffusion: a fractional dynamics approach publication-title: Phys. Rep. – year: July 2012 ident: br0150 article-title: On a regular fractional Sturm–Liouville problem with derivatives of order in publication-title: Proceedings of the 13th International Carpathian Control Conference (ICCC) – year: 2005 ident: br0220 article-title: The Finite Element Method: Its Basis and Fundamentals – volume: 17 start-page: 704 year: 1986 end-page: 719 ident: br0250 article-title: Discretized fractional calculus publication-title: SIAM J. Math. Anal. – volume: 29 start-page: 129 year: 2002 end-page: 143 ident: br0270 article-title: Time fractional diffusion: a discrete random walk approach publication-title: Nonlinear Dyn. – year: 2008 ident: br0090 article-title: Anomalous Transport: Foundations and Applications – volume: 74 start-page: 287 year: 2012 end-page: 297 ident: br0380 article-title: The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method publication-title: Int. J. Pure Appl. Math. – volume: 276 start-page: 448 year: 2000 end-page: 455 ident: br0180 article-title: Fractional reaction–diffusion publication-title: Physica A – volume: 205 start-page: 719 year: 2005 end-page: 736 ident: br0290 article-title: The accuracy and stability of an implicit solution method for the fractional diffusion equation publication-title: J. Comput. Phys. – year: 2006 ident: br0140 article-title: Theory and Applications of Fractional Differential Equations – year: 2002 ident: br0200 article-title: Finite Volume Methods for Hyperbolic Problems, vol. 31 – year: 1999 ident: br0460 article-title: Fractional Differential Equations – year: 2005 ident: 10.1016/j.jcp.2013.09.039_br0230 – volume: 32 start-page: 170 issue: 2 year: 1981 ident: 10.1016/j.jcp.2013.09.039_br0110 article-title: Propagation of simple non-linear waves in gas filled tubes with friction publication-title: Z. Angew. Math. Phys. doi: 10.1007/BF00946746 – volume: 7 start-page: 447 issue: 5 year: 1985 ident: 10.1016/j.jcp.2013.09.039_br0120 article-title: ‘Generalized Burgers’ equationʼ for nonlinear viscoelastic waves publication-title: Wave Motion doi: 10.1016/0165-2125(85)90019-8 – volume: 17 start-page: 704 issue: 3 year: 1986 ident: 10.1016/j.jcp.2013.09.039_br0250 article-title: Discretized fractional calculus publication-title: SIAM J. Math. Anal. doi: 10.1137/0517050 – volume: 339 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.jcp.2013.09.039_br0080 article-title: The random walkʼs guide to anomalous diffusion: a fractional dynamics approach publication-title: Phys. Rep. doi: 10.1016/S0370-1573(00)00070-3 – volume: 276 start-page: 448 issue: 3 year: 2000 ident: 10.1016/j.jcp.2013.09.039_br0180 article-title: Fractional reaction–diffusion publication-title: Physica A doi: 10.1016/S0378-4371(99)00469-0 – volume: 86 start-page: 2602 issue: 10 year: 2006 ident: 10.1016/j.jcp.2013.09.039_br0320 article-title: An approximate method for numerical solution of fractional differential equations publication-title: Signal Process. doi: 10.1016/j.sigpro.2006.02.007 – volume: 5 start-page: 229 issue: 2 year: 2012 ident: 10.1016/j.jcp.2013.09.039_br0330 article-title: Convergence analysis of a block-by-block method for fractional differential equations publication-title: Numer. Math. Theor. Methods Appl. doi: 10.4208/nmtma.2012.m1038 – volume: 47 start-page: 2108 issue: 3 year: 2013 ident: 10.1016/j.jcp.2013.09.039_br0010 article-title: Fractional Sturm–Liouville eigen-problems: Theory and numerical approximations publication-title: J. Comput. Phys. – year: 1996 ident: 10.1016/j.jcp.2013.09.039_br0350 – volume: 18 start-page: 44 issue: 1 year: 1964 ident: 10.1016/j.jcp.2013.09.039_br0100 article-title: Resonant oscillations in closed tubes publication-title: J. Fluid Mech. doi: 10.1017/S0022112064000040 – year: 2006 ident: 10.1016/j.jcp.2013.09.039_br0140 – year: 1999 ident: 10.1016/j.jcp.2013.09.039_br0460 – year: 2012 ident: 10.1016/j.jcp.2013.09.039_br0150 article-title: On a regular fractional Sturm–Liouville problem with derivatives of order in (0,1) – volume: 29 start-page: 129 issue: 1–4 year: 2002 ident: 10.1016/j.jcp.2013.09.039_br0270 article-title: Time fractional diffusion: a discrete random walk approach publication-title: Nonlinear Dyn. doi: 10.1023/A:1016547232119 – volume: 225 start-page: 1533 issue: 2 year: 2007 ident: 10.1016/j.jcp.2013.09.039_br0310 article-title: Finite difference/spectral approximations for the time-fractional diffusion equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.02.001 – volume: 48 start-page: 1017 issue: 7 year: 2004 ident: 10.1016/j.jcp.2013.09.039_br0410 article-title: Least squares finite-element solution of a fractional order two-point boundary value problem publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2004.10.003 – volume: 3 start-page: 439 issue: 4 year: 1983 ident: 10.1016/j.jcp.2013.09.039_br0240 article-title: On the stability of linear multistep methods for Volterra convolution equations publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/3.4.439 – volume: 195 start-page: 127 issue: 4 year: 1990 ident: 10.1016/j.jcp.2013.09.039_br0070 article-title: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications publication-title: Phys. Rep. doi: 10.1016/0370-1573(90)90099-N – volume: 56 start-page: 193 issue: 2 year: 2006 ident: 10.1016/j.jcp.2013.09.039_br0300 article-title: A fully discrete difference scheme for a diffusion-wave system publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2005.03.003 – year: 2010 ident: 10.1016/j.jcp.2013.09.039_br0040 – year: 2002 ident: 10.1016/j.jcp.2013.09.039_br0200 – volume: 238 start-page: 154 issue: 1 year: 2013 ident: 10.1016/j.jcp.2013.09.039_br0340 article-title: A high order schema for the numerical solution of the fractional ordinary differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.12.013 – volume: 193 start-page: 243 issue: 1 year: 2006 ident: 10.1016/j.jcp.2013.09.039_br0420 article-title: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2005.06.005 – year: 2008 ident: 10.1016/j.jcp.2013.09.039_br0090 – volume: 25 start-page: 319 issue: 2 year: 1988 ident: 10.1016/j.jcp.2013.09.039_br0260 article-title: A numerical method for a partial integro-differential equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/0725022 – volume: 225 start-page: 4 issue: 631–653 year: 1991 ident: 10.1016/j.jcp.2013.09.039_br0170 article-title: Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves publication-title: J. Fluid Mech. – volume: 8 start-page: 1016 issue: 5 year: 2010 ident: 10.1016/j.jcp.2013.09.039_br0400 article-title: Existence and uniqueness of the weak solution of the space–time fractional diffusion equation and a spectral method approximation publication-title: Commun. Comput. Phys. doi: 10.4208/cicp.020709.221209a – volume: 265 start-page: 229 issue: 2 year: 2002 ident: 10.1016/j.jcp.2013.09.039_br0130 article-title: Analysis of fractional differential equations publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.2000.7194 – year: 2007 ident: 10.1016/j.jcp.2013.09.039_br0210 – volume: 47 start-page: 2108 issue: 3 year: 2009 ident: 10.1016/j.jcp.2013.09.039_br0390 article-title: A space–time spectral method for the time fractional diffusion equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/080718942 – year: 1995 ident: 10.1016/j.jcp.2013.09.039_br0190 – year: 2012 ident: 10.1016/j.jcp.2013.09.039_br0450 – year: 2005 ident: 10.1016/j.jcp.2013.09.039_br0220 – volume: 36 start-page: 1403 issue: 6 year: 2000 ident: 10.1016/j.jcp.2013.09.039_br0030 article-title: Application of a fractional advection–dispersion equation publication-title: Water Resour. Res. doi: 10.1029/2000WR900031 – year: 2003 ident: 10.1016/j.jcp.2013.09.039_br0050 – volume: 61 start-page: 132 issue: 1 year: 2000 ident: 10.1016/j.jcp.2013.09.039_br0160 article-title: From continuous time random walks to the fractional Fokker–Planck equation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.61.132 – volume: 176 start-page: 1 issue: 1 year: 2006 ident: 10.1016/j.jcp.2013.09.039_br0360 article-title: Numerical solution of fractional integro-differential equations by collocation method publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.09.059 – volume: 74 start-page: 287 issue: 3 year: 2012 ident: 10.1016/j.jcp.2013.09.039_br0380 article-title: The approximate and exact solutions of the fractional-order delay differential equations using Legendre pseudospectral method publication-title: Int. J. Pure Appl. Math. – volume: 33 start-page: 253 issue: 2 year: 1971 ident: 10.1016/j.jcp.2013.09.039_br0020 article-title: An analog simulation of non-integer order transfer functions for analysis of electrode processes publication-title: J. Electroanal. Chem. Interfacial Electrochem. doi: 10.1016/S0022-0728(71)80115-8 – volume: 36 start-page: 31 issue: 1 year: 2004 ident: 10.1016/j.jcp.2013.09.039_br0280 article-title: Detailed error analysis for a fractional Adams method publication-title: Numer. Algorithms doi: 10.1023/B:NUMA.0000027736.85078.be – volume: 10 start-page: 7 issue: 1–2 year: 2010 ident: 10.1016/j.jcp.2013.09.039_br0440 article-title: A comparison of three Eulerian numerical methods for fractional-order transport models publication-title: Environ. Fluid Mech. doi: 10.1007/s10652-009-9145-4 – volume: 26 start-page: 411 year: 1969 ident: 10.1016/j.jcp.2013.09.039_br0470 article-title: Integral representations for Jacobi polynomials and some applications publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(69)90165-6 – volume: 205 start-page: 719 issue: 2 year: 2005 ident: 10.1016/j.jcp.2013.09.039_br0290 article-title: The accuracy and stability of an implicit solution method for the fractional diffusion equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2004.11.025 – volume: 16 start-page: 2535 issue: 6 year: 2011 ident: 10.1016/j.jcp.2013.09.039_br0370 article-title: On the numerical solutions for the fractional diffusion equation publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.09.007 – year: 2006 ident: 10.1016/j.jcp.2013.09.039_br0060 – volume: 52 start-page: 69 issue: 1 year: 2009 ident: 10.1016/j.jcp.2013.09.039_br0430 article-title: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation publication-title: Numer. Algorithms doi: 10.1007/s11075-008-9258-8 |
| SSID | ssj0008548 |
| Score | 2.5054219 |
| Snippet | Current discretizations of fractional differential equations lead to numerical solutions of low order of accuracy. Here, we present different methods for... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 460 |
| SubjectTerms | Asymptotic properties Basis functions Dirichlet problem Discontinuous spectral element method Distributed memory Eigenfunctions Exponential convergence Jacobi polyfractonomials Mathematical analysis Mathematical models Petrov–Galerkin spectral methods Spectral methods Texts |
| Title | Exponentially accurate spectral and spectral element methods for fractional ODEs |
| URI | https://dx.doi.org/10.1016/j.jcp.2013.09.039 https://www.proquest.com/docview/1531034577 https://www.proquest.com/docview/1551043874 https://www.proquest.com/docview/1677977723 |
| Volume | 257 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier E-journals (Freedom Collection) customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AKRWK dateStart: 19660801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXrz4Ft9U8CRU22aaNEfRXVYF9eCCt5BXYWWpyz5AL_52J02rKLgHj2knbTpJvkyab2YIOS0sz0uXQOwKrmPIEhprbYu4sKn3A1XO2prle8_6A7h9zp-XyFXrC-NplQ32B0yv0bq5ctFo82I8HHof38z70Kf-QIbl1O_bAbjPYnD-8U3zKHIIaOypCCjdnmzWHK8X40NWpjSEOhV_rU2_ULpeenrrZLWxGaPL0KwNsuSqTbLW2I9RMzunW-Sx-zZ-rTz9R41G75EyZu4DQUS1N-UEn6Aq-11wgTgehRzS0wit16icBD8HvP1w3Z1uk0Gv-3TVj5uMCbGhgs1iy3CjLKigpTZFSo1gusxAq5QqtNsEqssBNcqBzXLlk4-lGj-b-ThdSgu0xnZIp8KG7pKIW85ZKRSjFMA6U2QCcot7WKco4B5njyStrqRpwon7rBYj2fLGXiSqV3r1ykRIfM8eOfuqMg6xNBYJQ9sB8seAkIj1i6qdtJ0lcaL40w9Vudf5VCK0pwmFnPNFMghRQAsOC2QY52g084zu_6-JB2QFSxD-4xySzmwyd0do2cz0cT10j8ny5c1d__4TMYb29A |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iB734Ft9W8CRU22aaNEfRlfXtQcFbyKugLHXZB-jF3-6kaRUF9-CxzaRNJ8mXmeabCSEHheV56RKIXcF1DFlCY61tERc29XGgyllbs3xvWfcRLp_ypyly2sbCeFplg_0B02u0bu4cN9o87j8_-xjfzMfQp35DhuUU_fYZyDPuPbCjj2-eR5FDgGPPRUDxdmuzJnm9GJ-zMqUh16n4a3H6BdP12nO-SOYbozE6Ce1aIlOuWiYLjQEZNdNzuELuO2_918rzf1Sv9x4pY8Y-E0RUh1MO8Amqst8XLjDHo3CI9DBC8zUqByHQAYvvzjrDVfJ43nk47cbNkQmxoYKNYsvQUxZU0FKbIqVGMF1moFVKFRpuAvXlgBrlwGa58qePpRo_m_lEXUoLNMfWyHSFDV0nEbecs1IoRimAdabIBOQWnVinKKCTs0GSVlfSNPnE_bEWPdkSx14kqld69cpESHzPBjn8qtIPyTQmCUPbAfLHiJAI9pOq7bedJXGm-O0PVbnX8VAitqcJhZzzSTKIUUALDhNkGOdoNfOMbv6viXtktvtwcy2vL26vtsgclkD4qbNNpkeDsdtBM2ekd-th_AnnUfiJ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exponentially+accurate+spectral+and+spectral+element+methods+for+fractional+ODEs&rft.jtitle=Journal+of+computational+physics&rft.au=Zayernouri%2C+Mohsen&rft.au=Karniadakis%2C+George+Em&rft.date=2014-01-01&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=257&rft.spage=460&rft.epage=480&rft_id=info:doi/10.1016%2Fj.jcp.2013.09.039&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |