Sediment load forecasting from a biomimetic optimization perspective: Firefly and Artificial Bee Colony algorithms empowered neural network modeling in Çoruh River
The service life of downstream dams, river hydraulics, waterworks construction, and reservoir management is significantly affected by the amount of sediment load (SL). This study combined models such as the artificial neural network (ANN) algorithm with the Firefly algorithm (FA) and Artificial Bee...
Saved in:
| Published in | Stochastic environmental research and risk assessment Vol. 38; no. 10; pp. 3907 - 3927 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.10.2024
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1436-3240 1436-3259 1436-3259 |
| DOI | 10.1007/s00477-024-02785-1 |
Cover
| Abstract | The service life of downstream dams, river hydraulics, waterworks construction, and reservoir management is significantly affected by the amount of sediment load (SL). This study combined models such as the artificial neural network (ANN) algorithm with the Firefly algorithm (FA) and Artificial Bee Colony (ABC) optimization techniques for the estimation of monthly SL values in the Çoruh River in Northeastern Turkey. The estimation of SL values was achieved using inputs of previous SL and streamflow values provided to the models. Various statistical metrics were used to evaluate the accuracy of the established hybrid and stand-alone models. The hybrid model is a novel approach for estimating sediment load based on various input variables. The results of the analysis determined that the ABC-ANN hybrid approach outperformed others in SL estimation. In this study, two combinations, M1 and M2, with different input variables, were used to assess the model's accuracy, and the best-performing model for monthly SL estimation was identified. Two scenarios, Q(t) and Q(t − 1), were coupled with the ABC-ANN algorithm, resulting in a highly effective hybrid approach with the best accuracy results (R
2
= 0.90, RMSE = 1406.730, MAE = 769.545, MAPE = 5.861, MBE = − 251.090, Bias Factor = − 4.457, and KGE = 0.737) compared to other models. Furthermore, the utilization of FA and ABC optimization techniques facilitated the optimization of the ANN model parameters. The significant results demonstrated that the optimization and hybrid techniques provided the most effective outcomes in forecasting SL for both combination scenarios. As a result, the prediction outputs achieved higher accuracy than those of a stand-alone ANN model. The findings of this study can provide essential resources to various managers and policymakers for the management of water resources. |
|---|---|
| AbstractList | The service life of downstream dams, river hydraulics, waterworks construction, and reservoir management is significantly affected by the amount of sediment load (SL). This study combined models such as the artificial neural network (ANN) algorithm with the Firefly algorithm (FA) and Artificial Bee Colony (ABC) optimization techniques for the estimation of monthly SL values in the Çoruh River in Northeastern Turkey. The estimation of SL values was achieved using inputs of previous SL and streamflow values provided to the models. Various statistical metrics were used to evaluate the accuracy of the established hybrid and stand-alone models. The hybrid model is a novel approach for estimating sediment load based on various input variables. The results of the analysis determined that the ABC-ANN hybrid approach outperformed others in SL estimation. In this study, two combinations, M1 and M2, with different input variables, were used to assess the model's accuracy, and the best-performing model for monthly SL estimation was identified. Two scenarios, Q(t) and Q(t − 1), were coupled with the ABC-ANN algorithm, resulting in a highly effective hybrid approach with the best accuracy results (R2 = 0.90, RMSE = 1406.730, MAE = 769.545, MAPE = 5.861, MBE = − 251.090, Bias Factor = − 4.457, and KGE = 0.737) compared to other models. Furthermore, the utilization of FA and ABC optimization techniques facilitated the optimization of the ANN model parameters. The significant results demonstrated that the optimization and hybrid techniques provided the most effective outcomes in forecasting SL for both combination scenarios. As a result, the prediction outputs achieved higher accuracy than those of a stand-alone ANN model. The findings of this study can provide essential resources to various managers and policymakers for the management of water resources. The service life of downstream dams, river hydraulics, waterworks construction, and reservoir management is significantly affected by the amount of sediment load (SL). This study combined models such as the artificial neural network (ANN) algorithm with the Firefly algorithm (FA) and Artificial Bee Colony (ABC) optimization techniques for the estimation of monthly SL values in the Çoruh River in Northeastern Turkey. The estimation of SL values was achieved using inputs of previous SL and streamflow values provided to the models. Various statistical metrics were used to evaluate the accuracy of the established hybrid and stand-alone models. The hybrid model is a novel approach for estimating sediment load based on various input variables. The results of the analysis determined that the ABC-ANN hybrid approach outperformed others in SL estimation. In this study, two combinations, M1 and M2, with different input variables, were used to assess the model's accuracy, and the best-performing model for monthly SL estimation was identified. Two scenarios, Q(t) and Q(t − 1), were coupled with the ABC-ANN algorithm, resulting in a highly effective hybrid approach with the best accuracy results (R 2 = 0.90, RMSE = 1406.730, MAE = 769.545, MAPE = 5.861, MBE = − 251.090, Bias Factor = − 4.457, and KGE = 0.737) compared to other models. Furthermore, the utilization of FA and ABC optimization techniques facilitated the optimization of the ANN model parameters. The significant results demonstrated that the optimization and hybrid techniques provided the most effective outcomes in forecasting SL for both combination scenarios. As a result, the prediction outputs achieved higher accuracy than those of a stand-alone ANN model. The findings of this study can provide essential resources to various managers and policymakers for the management of water resources. |
| Author | Pande, Chaitanya Baliram Katipoğlu, Okan Mert Kartal, Veysi |
| Author_xml | – sequence: 1 givenname: Okan Mert surname: Katipoğlu fullname: Katipoğlu, Okan Mert email: okatipoglu@erzincan.edu.tr organization: Department of Civil Engineering, Erzincan Binali Yıldırım University – sequence: 2 givenname: Veysi surname: Kartal fullname: Kartal, Veysi organization: Department of Civil Engineering, Engineering Faculty, Siirt University – sequence: 3 givenname: Chaitanya Baliram surname: Pande fullname: Pande, Chaitanya Baliram organization: New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Institute of Energy Infrastructure, Universiti Tenaga Nasional |
| BookMark | eNqNkE1uFDEQhS0UJJKBC7CyxLrBHrvb3ezCiABSJCR-1pbHrp44uO2m7GY0XICLcBMuhpOJQGIRsbDKUr1Xr-o7IycxRSDkKWfPOWPqRWZMKtWwtaxP9W3DH5BTLkXXiHU7nPz5S_aInOV8zRhXqpWn5OdHcH6CWGhIxtExIViTi487OmKaqKFbn6aqKN7SNBc_-e-m-BTpDJhnsMV_g5f0wiOM4UBNdPQcix-99SbQVwB0k0KKtRN2CX25mjKFaU57QHA0woJVFqHsE36hU3IQbqJ9pL9-JFyu6Ic6Hh-Th6MJGZ7c1RX5fPH60-Ztc_n-zbvN-WVjxdCVxklVAYhe1evMdnDGCAkKHG87GAbVgxq4bZ0cRMeV7KHlttuyvrbakdnOiBURx7lLnM1hb0LQM_rJ4EFzpm9A6yNoXXP0LWjNq-vZ0TVj-rpALvo6LRjrolpwzno2yBq5Iv1RZTHlXGlp68styYLGh_sD1v9Y_2uru1tyFccd4N-t7nH9BtF8tIM |
| CitedBy_id | crossref_primary_10_17780_ksujes_1502136 crossref_primary_10_1007_s10661_024_13390_8 |
| Cites_doi | 10.1080/23311916.2020.1855741 10.1016/j.asoc.2017.10.040 10.1029/2020wr027101 10.1061/(ASCE)IR.1943-4774.0001689 10.1080/10106049.2021.1933210 10.1080/02626667.2019.1686639 10.1007/s00500-021-06281-4 10.1016/j.engappai.2022.105311 10.3390/hydrology10030058 10.1029/93WR00341 10.1016/j.jhydrol.2012.01.026 10.1016/j.jhydrol.2009.08.003 10.1623/hysj.2005.50.4.683 10.1007/s11356-023-28678-4 10.1016/j.eswa.2021.116332 10.1007/s11600-019-00374-3 10.1007/s10668-023-03263-4 10.1002/hyp.7173 10.3390/app9132630 10.1016/j.ijsrc.2018.10.010 10.1016/j.solener.2015.03.015 10.1007/s12665-014-3125-9 10.1007/s00521-015-1952-6 10.1016/j.neucom.2013.09.030 10.3390/app112110430 10.1016/j.jfranklin.2008.11.003 10.1080/09715010.2020.1801528 10.1007/s11356-020-09876-w 10.1007/s11269-022-03256-4 10.3390/w13172319 10.1680/jdare.16.00036 10.1504/IJBIC.2010.032124 10.1016/j.scitotenv.2018.05.153 10.1007/s11269-016-1281-2 10.1016/j.advwatres.2003.10.003 10.1016/j.ijsrc.2021.10.001 10.1016/j.cageo.2012.02.007 10.1016/S0266-3538(02)00036-2 10.1080/02626667.2014.909599 10.1007/s12665-021-09625-3 10.1016/j.renene.2014.01.031 10.1002/wrcr.20452 10.1016/j.catena.2021.105142 10.1016/j.asoc.2021.107351 10.1016/j.esd.2010.09.003 10.1002/esp.3730 10.1007/978-3-642-04441-0_8 10.1002/hyp.6896 10.1007/s11356-021-14479-0 10.1007/s13201-023-01874-w 10.1016/j.agwat.2010.12.012 10.1061/(ASCE)IR.1943-4774.0001015 10.1016/j.jhydrol.2012.05.031 10.1007/s00366-022-01695-6 10.1007/s11269-018-2178-z 10.1016/j.scitotenv.2021.151760 10.2166/ws.2019.044 10.1016/j.compag.2017.04.005 10.1016/j.eswa.2023.119741 10.1016/j.still.2017.04.009 10.3390/su13094648 10.1007/s12517-022-10150-1 10.1016/j.catena.2020.105024 10.1016/j.scitotenv.2017.09.293 10.1007/978-3-642-04944-6_14 10.1007/s11269-017-1581-1 10.1016/j.ins.2022.05.065 10.1016/j.jhydrol.2022.127968 10.3390/w12051481 10.1016/0012-8252(91)90017-A |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 3V. 7ST 7XB 88I 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L6V M2P M7S PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U S0W SOI ADTOC UNPAY |
| DOI | 10.1007/s00477-024-02785-1 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Environment Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Agricultural & Environmental Science Database ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic DELNET Engineering & Technology Collection Environment Abstracts Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student CrossRef |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals (Freely Accessible) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Physics Computer Science Environmental Sciences |
| EISSN | 1436-3259 |
| EndPage | 3927 |
| ExternalDocumentID | 10.1007/s00477-024-02785-1 10_1007_s00477_024_02785_1 |
| GrantInformation_xml | – fundername: Erzincan Binali Yildirim University |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67M 67Z 6NX 7XC 88I 8AO 8FE 8FG 8FH 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FIL FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V L8X LAS LLZTM M2P M4Y M7S MA- ML. N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9J OAM P19 P2P PATMY PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOS R89 R9I RIG RNS ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z86 Z8M Z8S Z8T Z8U Z8W ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7ST 7XB 8FD 8FK C1K FR3 KR7 PKEHL PQEST PQUKI PRINS Q9U SOI ADTOC UNPAY |
| ID | FETCH-LOGICAL-c396t-d47024387001ab9daa34e7ed156e9978e791c5d49361748e51c6b089975f0c6a3 |
| IEDL.DBID | BENPR |
| ISSN | 1436-3240 1436-3259 |
| IngestDate | Sun Sep 07 11:19:36 EDT 2025 Mon Oct 06 16:33:21 EDT 2025 Wed Oct 01 02:18:05 EDT 2025 Thu Apr 24 22:54:58 EDT 2025 Fri Feb 21 02:41:37 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | ANN Firefly optimization Sediment load Çoruh river Artificial bee colony optimization |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-d47024387001ab9daa34e7ed156e9978e791c5d49361748e51c6b089975f0c6a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doi.org/10.1007/s00477-024-02785-1 |
| PQID | 3110809449 |
| PQPubID | 31669 |
| PageCount | 21 |
| ParticipantIDs | unpaywall_primary_10_1007_s00477_024_02785_1 proquest_journals_3110809449 crossref_citationtrail_10_1007_s00477_024_02785_1 crossref_primary_10_1007_s00477_024_02785_1 springer_journals_10_1007_s00477_024_02785_1 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20241000 2024-10-00 20241001 |
| PublicationDateYYYYMMDD | 2024-10-01 |
| PublicationDate_xml | – month: 10 year: 2024 text: 20241000 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Stochastic environmental research and risk assessment |
| PublicationTitleAbbrev | Stoch Environ Res Risk Assess |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Khan, Tingsanchali (CR43) 2009; 23 Achite, Yaseen, Heddam, Malik, Kisi (CR1) 2021 Bisoyi, Gupta, Padhy, Chakrapani (CR11) 2019; 34 Niazkar, Zakwan (CR61) 2023 CR38 Kang, Jang, Yang, Julien (CR33) 2021; 200 Kisi, Shiri (CR45) 2012; 43 Al-Shammari, Mohammadi, Keivani, Ab Hamid, Akib, Shamshirband, Petković (CR6) 2016; 142 Shiri, Shiri, Nourani, Karimi (CR67) 2022; 28 Malik, Kumar, Piri (CR56) 2017; 138 Ghambari, Rahati (CR21) 2018; 62 Latif, Chong, Ahmed, Huang, Sherif, El-Shafe (CR53) 2023; 13 Yang (CR76) 2010; 2 Hussan, Shahzad, Seidel, Nestmann (CR32) 2020; 12 Yilmaz, Aras, Kankal, Nacar (CR79) 2019; 67 Hemalatha, ValanRajkumar, Vidhya Krishnan (CR30) 2016; 2 Karaboga (CR35) 2009; 346 Kulsoontornrat, Ongsomwang (CR50) 2021; 11 Yilmaz, Aras, Nacar, Kankal (CR78) 2018; 639 CR9 Choubin, Darabi, Rahmati, Sajedi-Hosseini, Kløve (CR16) 2018; 615 Melesse, Ahmad, McClain, Wang, Lim (CR57) 2011; 98 Kişi (CR44) 2009; 23 Lamontagne, Barber, Vogel (CR52) 2020; 56 Kisi (CR48) 2005 Akay, Karaboga, Gorkemli, Kaya (CR5) 2021; 106 Fateen, Bonilla-Petriciolet, Pandu Rangaiah (CR19) 2012; 90 Buyukyildiz, Kumcu (CR13) 2017; 31 Mohammadi (CR59) 2023; 10 Adnan, Yaseen, Heddam, Shahid, Sadeghi-Niaraki, Kisi (CR4) 2022; 37 Karaboğa, Akay (CR36) 2009; 214 Fathabadi, Seyedian, Malekian (CR20) 2022; 818 Kankal, Bayram, Uzlu, Satilmiş (CR34) 2014; 68 Samantaray, Sahoo, Paul, Ghose (CR64) 2022; 148 Vrugt, de Oliveira (CR72) 2022; 612 Vogel, Fennessey (CR71) 1993; 29 de Faran Ali, Boer (CR18) 2008; 22 Yaseen, El-Shafie, Afan, Hameed, Mohtar, Hussain (CR77) 2016; 27 Adnan, Parmar, Heddam, Shahid, Kisi (CR3) 2021; 13 Huqqani, Tay, Mohamad-Saleh (CR31) 2023; 39 Sharghi, Nourani, Najafi, Gokcekus (CR66) 2019; 19 Olatomiwa, Mekhilef, Shamshirband, Mohammadi, Petković, Sudheer (CR62) 2015; 115 Ghernaout, Remini (CR23) 2014; 72 Lukasik, Zak, Łukasik, Żak (CR55) 2009 Wisser, Frolking, Hagen, Bierkens (CR74) 2013; 49 Kaya, Gorkemli, Akay, Karaboga (CR41) 2022; 115 Kisi, Ozkan, Akay (CR47) 2012; 428 Karaman, Pacal, Basturk, Akay, Nalbantoglu, Coskun, Karaboga (CR39) 2023; 221 Karaboga, Akay, Karaboga (CR37) 2020 Tung, Yaseen (CR70) 2020; 585 Barber, Lamontagne, Vogel (CR8) 2019; 65 Ch, Sohani, Kumar, Malik, Chahar, Nema, Dhiman (CR14) 2014; 129 Parsons, Cooper, Wainwright (CR63) 2015; 40 Cigizoglu (CR17) 2004; 27 Harun, Safari, Gul, Ghani (CR28) 2021; 28 Kumar, Kumar, Singh (CR51) 2019; 33 Chen, Chau (CR15) 2016; 30 Kayarvizhy, Kanmani, Uthariaraj (CR42) 2014; 13 Yang (CR75) 2009; 5792 Kitsikoudis, Sidiropoulos, Hrissanthou (CR49) 2015; 60 Kisi, Dailr, Cimen, Shiri (CR46) 2012; 450 Banadkooki, Ehteram, Ahmed, Teo, Ebrahimi, Fai, El-Shafie (CR7) 2020; 27 Berkun (CR10) 2010; 14 Mohammadi, Guan, Moazenzadeh, Safari (CR60) 2021; 198 Ghorbani, Shamshirband, ZareHaghie, Azania, Bonakdarif, Ebtehajf (CR24) 2017; 172 Katipoğlu, Keblouti, Mohammadi (CR40) 2023 Ackers, Hieatt, Molyneux (CR2) 2016; 26 Bisoyi, Gupta, Padhy, Chakrapani (CR12) 2019; 34 Wang, Jiao, Liu, Xiao (CR73) 2022; 606 CR69 CR65 Hazarika, Gupta (CR29) 2022; 15 Stone, Krishnappan, Silins, Emelko, Williams, Collins, Spencer (CR68) 2021; 13 Zhang, Klein, Friedrich (CR81) 2002; 62 Gomez (CR25) 1991; 31 Ghanbari-Adivi, Ehteram, Farrokhi, Sheikh Khozani (CR22) 2022; 36 Gupta, Hazarika, Berlin, Sharma, Mishra (CR27) 2021; 80 Le, Nguyen, Dou, Zhou (CR54) 2019; 9 Gupta, Kling, Yilmaz, Martinez (CR26) 2009; 377 Meshram, Meshram, Pourhosseini, Hasan, Islam (CR58) 2022 Zeng, Wang, Wang, Cui, Wang, Wang, Zhao (CR80) 2021; 192 NM Khan (2785_CR43) 2009; 23 JA Vrugt (2785_CR72) 2022; 612 B Yilmaz (2785_CR78) 2018; 639 HK Cigizoglu (2785_CR17) 2004; 27 E Kaya (2785_CR41) 2022; 115 M Berkun (2785_CR10) 2010; 14 R Ghernaout (2785_CR23) 2014; 72 A Fathabadi (2785_CR20) 2022; 818 M Achite (2785_CR1) 2021 D Karaboğa (2785_CR36) 2009; 214 D Karaboga (2785_CR37) 2020 B Akay (2785_CR5) 2021; 106 M Niazkar (2785_CR61) 2023 A Karaman (2785_CR39) 2023; 221 D Gupta (2785_CR27) 2021; 80 B Mohammadi (2785_CR59) 2023; 10 N Bisoyi (2785_CR11) 2019; 34 D Wisser (2785_CR74) 2013; 49 RM Adnan (2785_CR4) 2022; 37 J Kulsoontornrat (2785_CR50) 2021; 11 FB Banadkooki (2785_CR7) 2020; 27 K de Faran Ali (2785_CR18) 2008; 22 E Ghanbari-Adivi (2785_CR22) 2022; 36 N Karaboga (2785_CR35) 2009; 346 OM Katipoğlu (2785_CR40) 2023 HV Gupta (2785_CR26) 2009; 377 O Kisi (2785_CR46) 2012; 450 BB Hazarika (2785_CR29) 2022; 15 B Choubin (2785_CR16) 2018; 615 S Samantaray (2785_CR64) 2022; 148 Ö Kişi (2785_CR44) 2009; 23 S Ch (2785_CR14) 2014; 129 ZM Yaseen (2785_CR77) 2016; 27 N Bisoyi (2785_CR12) 2019; 34 ET Al-Shammari (2785_CR6) 2016; 142 V Kitsikoudis (2785_CR49) 2015; 60 J Ackers (2785_CR2) 2016; 26 N Shiri (2785_CR67) 2022; 28 AM Melesse (2785_CR57) 2011; 98 S Ghambari (2785_CR21) 2018; 62 A Kumar (2785_CR51) 2019; 33 Z Zhang (2785_CR81) 2002; 62 O Kisi (2785_CR48) 2005 M Stone (2785_CR68) 2021; 13 C Barber (2785_CR8) 2019; 65 MA Ghorbani (2785_CR24) 2017; 172 O Kisi (2785_CR45) 2012; 43 A Malik (2785_CR56) 2017; 138 Y Wang (2785_CR73) 2022; 606 B Gomez (2785_CR25) 1991; 31 RM Vogel (2785_CR71) 1993; 29 M Buyukyildiz (2785_CR13) 2017; 31 2785_CR38 XS Yang (2785_CR75) 2009; 5792 RM Adnan (2785_CR3) 2021; 13 B Mohammadi (2785_CR60) 2021; 198 S Fateen (2785_CR19) 2012; 90 IA Huqqani (2785_CR31) 2023; 39 SD Latif (2785_CR53) 2023; 13 XY Chen (2785_CR15) 2016; 30 W Kang (2785_CR33) 2021; 200 N Kayarvizhy (2785_CR42) 2014; 13 M Kankal (2785_CR34) 2014; 68 L Olatomiwa (2785_CR62) 2015; 115 WU Hussan (2785_CR32) 2020; 12 S Lukasik (2785_CR55) 2009 2785_CR69 SG Meshram (2785_CR58) 2022 C Hemalatha (2785_CR30) 2016; 2 2785_CR65 JR Lamontagne (2785_CR52) 2020; 56 LT Le (2785_CR54) 2019; 9 E Sharghi (2785_CR66) 2019; 19 T Zeng (2785_CR80) 2021; 192 B Yilmaz (2785_CR79) 2019; 67 O Kisi (2785_CR47) 2012; 428 AJ Parsons (2785_CR63) 2015; 40 XS Yang (2785_CR76) 2010; 2 2785_CR9 TM Tung (2785_CR70) 2020; 585 MA Harun (2785_CR28) 2021; 28 |
| References_xml | – volume: 200 year: 2021 ident: CR33 article-title: Geospatial analysis and model development for specific degradation in South Korea using model tree data mining publication-title: CATENA – year: 2020 ident: CR37 article-title: (2020) A survey on the studies employing machine learning (ML) for enhancing artificial bee colony (ABC) optimization algorithm publication-title: Cogent Eng doi: 10.1080/23311916.2020.1855741 – volume: 49 start-page: 5732 issue: 9 year: 2013 end-page: 5739 ident: CR74 article-title: Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs publication-title: Water Resour Res – volume: 62 start-page: 736 year: 2018 end-page: 767 ident: CR21 article-title: An improved artificial bee colony algorithm and its application to reliability optimization problems publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.10.040 – volume: 28 start-page: 53097 year: 2021 end-page: 53115 ident: CR28 article-title: Regression models for sediment transport in tropical rivers publication-title: Environ Sci Pollut Res – volume: 172 start-page: 32 year: 2017 end-page: 38 ident: CR24 article-title: Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point publication-title: Soil till Res – volume: 606 start-page: 152 year: 2022 end-page: 172 ident: CR73 article-title: A labor division artificial bee colony algorithm based on behavioral development publication-title: Inf Sci – volume: 36 start-page: 4313 issue: 11 year: 2022 end-page: 4342 ident: CR22 article-title: Combining radial basis function neural network models and inclusive multiple models for predicting suspended sediment loads publication-title: Water Resour Manag – volume: 56 start-page: 1 issue: 9 year: 2020 end-page: 25 ident: CR52 article-title: Improved estimators of model performance efficiency for skewed hydrologic data publication-title: Water Resour Res doi: 10.1029/2020wr027101 – volume: 12 start-page: 1481 year: 2020 ident: CR32 article-title: Application of soft computing models with input vectors of snow cover area in addition to hydro-climatic data to predict the sediment loads publication-title: Water – volume: 221 start-page: 119741 year: 2023 ident: CR39 article-title: Robust real-time polyp detection system design based on YOLO algorithms by optimizing activation functions and hyper-parameters with artificial bee colony (ABC) publication-title: Expert Syst Appl – volume: 19 start-page: 1726 issue: 6 year: 2019 end-page: 1734 ident: CR66 article-title: Conjunction of a newly proposed emotional ANN (EANN) and wavelet transform for suspended sediment load modeling publication-title: Water Supply – volume: 31 start-page: 1343 year: 2017 end-page: 1359 ident: CR13 article-title: An estimation of the suspended sediment load using adaptive network based fuzzy inference system, support vector machine and artificial neural network models publication-title: Water Resour Manage – volume: 129 start-page: 279 year: 2014 end-page: 288 ident: CR14 article-title: A support vector machine-firefly algorithm based forecasting model to determine malaria transmission publication-title: Neurocomputing – volume: 214 start-page: 108 year: 2009 end-page: 132 ident: CR36 article-title: Comparative study of artificial bee colony algorithm publication-title: Appl Math Comput – volume: 98 start-page: 855 issue: 5 year: 2011 end-page: 866 ident: CR57 article-title: Suspended sediment load prediction of river systems: An artificial neural network approach publication-title: Agric Water Manag – volume: 72 start-page: 915 year: 2014 end-page: 929 ident: CR23 article-title: Impact of suspended sediment load on the silting of SMBA reservoir (Algeria) publication-title: Environ Earth Sci – volume: 26 start-page: 68 year: 2016 end-page: 83 ident: CR2 article-title: Mangla reservoir, Pakistan—approaching 50 years of service publication-title: Dams Reserv – volume: 62 start-page: 1001 issue: 7–8 year: 2002 end-page: 1009 ident: CR81 article-title: Dynamic mechanical properties of PTFE based short carbon fibre reinforced composites: experiment and artificial neural network prediction publication-title: Compos Sci Technol – volume: 2 start-page: 48 issue: 11 year: 2016 end-page: 52 ident: CR30 article-title: Simulation and analysis of MPPT control with modified firefly algorithm for photovoltaic system publication-title: Int J Innov Stud Sci Eng Technol – volume: 68 start-page: 118 year: 2014 end-page: 133 ident: CR34 article-title: Assessment of hydropower and multi-dam power projects in Turkey publication-title: Renewable Energy – volume: 148 start-page: 04022034 issue: 10 year: 2022 ident: CR64 article-title: Prediction of bed-load sediment using newly developed support-vector machine techniques publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0001689 – volume: 5792 start-page: 169 year: 2009 end-page: 178 ident: CR75 article-title: Firefly algorithms for multimodal optimization. stochastic algorithms: foundations and applications, SAGA 2009 publication-title: Lect Notes Comput Sci – year: 2021 ident: CR1 article-title: Advanced machine learning models development for suspended sediment prediction: comparative analysis study publication-title: Geocarto Int doi: 10.1080/10106049.2021.1933210 – volume: 33 start-page: 1217 year: 2019 end-page: 1231 ident: CR51 article-title: Evaluating diferent machine learning models for runof and suspended sediment simulation publication-title: Water Resour Manag – volume: 2 start-page: 78 issue: 2 year: 2010 end-page: 84 ident: CR76 article-title: Firefly algorithm, stochastic test functions and design optimization publication-title: Int J Bio-Inspired Comput – volume: 65 start-page: 87 issue: 1 year: 2019 end-page: 101 ident: CR8 article-title: Improved estimators of correlation and r2 for skewed hydrologic data publication-title: Hydrol Sci J doi: 10.1080/02626667.2019.1686639 – ident: CR9 – year: 2022 ident: CR58 article-title: A multi-layer perceptron (MLP)-Fire fly algorithm (FFA)-based model for sediment prediction publication-title: Soft Comput doi: 10.1007/s00500-021-06281-4 – volume: 13 start-page: 2319 issue: 17 year: 2021 ident: CR68 article-title: A new framework for modelling fine sediment transport in rivers includes flocculation to inform reservoir management in wildfire impacted watersheds publication-title: Water – volume: 115 start-page: 105311 year: 2022 ident: CR41 article-title: A review on the studies employing artificial bee colony algorithm to solve combinatorial optimization problems publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105311 – volume: 30 start-page: 2179 year: 2016 end-page: 2194 ident: CR15 article-title: A hybrid double feedforward neural network for suspended sediment load estimation publication-title: Water Resour Manag – volume: 818 year: 2022 ident: CR20 article-title: Comparison of Bayesian, k-Nearest neighbor and Gaussian process regression methods for quantifying uncertainty of suspended sediment concentration prediction publication-title: Sci Total Environ – volume: 39 start-page: 867 issue: 1 year: 2023 end-page: 891 ident: CR31 article-title: Spatial landslide susceptibility modelling using metaheuristic-based machine learning algorithms publication-title: Engineering with Computers – volume: 612 year: 2022 ident: CR72 article-title: Confidence intervals of the Kling-Gupta efficiency publication-title: J Hydrol – volume: 80 start-page: 1 issue: 9 year: 2021 end-page: 39 ident: CR27 article-title: Artificial intelligence for suspended sediment load prediction: a review publication-title: Environ Earth Sci – volume: 43 start-page: 73 year: 2012 end-page: 82 ident: CR45 article-title: River suspended sediment estimation by climatic variables implication: comparative study among soft computing techniques publication-title: Comput Geosci – start-page: 97 year: 2009 end-page: 106s ident: CR55 article-title: Firefly algorithm for continuous constrained optimization tasks publication-title: Computational collective intelligence semantic web, social networks and multiagent systems – volume: 15 start-page: 966 issue: 10 year: 2022 ident: CR29 article-title: MODWT—Random vector functional link for river-suspended sediment load prediction publication-title: Arab J Geosci – volume: 10 start-page: 58 issue: 3 year: 2023 ident: CR59 article-title: Modeling various drought time scales via a merged artificial neural network with a firefly algorithm publication-title: Hydrology doi: 10.3390/hydrology10030058 – volume: 106 year: 2021 ident: CR5 article-title: A survey on the artificial bee colony algorithm variants for binary, integer and mixed integer programming problems publication-title: Appl Soft Comput – volume: 9 start-page: 2630 issue: 13 year: 2019 ident: CR54 article-title: A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings’ energy efficiency for smart city planning publication-title: Appl Sci – volume: 29 start-page: 1745 issue: 6 year: 1993 end-page: 1752 ident: CR71 article-title: L-moment diagrams should replace productmoment diagrams publication-title: Water Resour Res doi: 10.1029/93WR00341 – volume: 31 start-page: 89 year: 1991 end-page: 132 ident: CR25 article-title: Bedload transport publication-title: Earth Sci Rev – volume: 428 start-page: 94 year: 2012 end-page: 103 ident: CR47 article-title: Modeling discharge–sediment relationship using neural networks with artificial bee colony algorithm publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.01.026 – volume: 13 start-page: 4648 issue: 9 year: 2021 ident: CR3 article-title: Suspended sediment modeling using a heuristic regression method hybridized with kmeans clustering publication-title: Sustainability – volume: 377 start-page: 80 issue: 1 year: 2009 end-page: 91 ident: CR26 article-title: Decomposition of the mean squared error and nse performance criteria: implications for improving hydrological modelling publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.08.003 – volume: 346 start-page: 328 issue: 4 year: 2009 end-page: 348 ident: CR35 article-title: A new design method based on artificial bee colony algorithm for digital IIR filters publication-title: J Franklin Inst – volume: 37 start-page: 383 year: 2022 end-page: 398 ident: CR4 article-title: Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy system model publication-title: Int J Sediment Res – volume: 27 start-page: 185 issue: 2 year: 2004 end-page: 195 ident: CR17 article-title: Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons publication-title: Adv Water Resour – ident: CR69 – volume: 90 start-page: 2051 issue: 12 year: 2012 end-page: 2071 ident: CR19 article-title: Evaluation of covariance matrix adaptation evolution strategy, shuffled complex evolution and firefly algorithms for phase stability publication-title: Phase Equilib Chem Equilib Probl – volume: 23 start-page: 3583 issue: 25 year: 2009 end-page: 3597 ident: CR44 article-title: Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting Hydrological publication-title: Process: Int J – volume: 40 start-page: 1417 issue: 10 year: 2015 end-page: 1420 ident: CR63 article-title: What is suspended sediment? publication-title: Earth Surf Proc Land – volume: 115 start-page: 632 year: 2015 end-page: 644 ident: CR62 article-title: A support vector machine–firefly algorithm-based model for global solar radiation prediction publication-title: Sol Energy – volume: 14 start-page: 320 issue: 4 year: 2010 end-page: 329 ident: CR10 article-title: Hydroelectric potential and environmental effects of multidam hydropower projects in Turkey publication-title: Energy Sustain Dev – ident: CR65 – ident: CR38 – year: 2005 ident: CR48 article-title: Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones publication-title: Hydrol Sci J doi: 10.1623/hysj.2005.50.4.683 – volume: 34 start-page: 125 issue: 2 year: 2019 end-page: 135 ident: CR11 article-title: Prediction of daily sediment discharge using a back propagation neural network training algorithm: a case study of the Narmada river India publication-title: Int J Sed Res – year: 2023 ident: CR40 article-title: Application of novel artificial bee colony optimized ANN and data preprocessing techniques for monthly streamflow estimation publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-023-28678-4 – volume: 11 start-page: 10430 issue: 21 year: 2021 ident: CR50 article-title: Suitable land-use and land-cover allocation scenarios to minimize sediment and nutrient loads into kwan phayao, upper ing watershed publication-title: Thailand Appl Sci – volume: 198 year: 2021 ident: CR60 article-title: Implementation of hybrid particle swarm optimization-differential evolution algorithms coupled with multi-layer perceptron for suspended sediment load estimation publication-title: CATENA – volume: 13 start-page: 79 year: 2023 ident: CR53 article-title: Sediment load prediction in Johor river: deep learning versus machine learning models publication-title: Appl Water Sci – volume: 585 year: 2020 ident: CR70 article-title: A survey on river water quality modelling using artificial intelligence models: 2000–2020 publication-title: J Hydrol – volume: 27 start-page: 38094 year: 2020 end-page: 38116 ident: CR7 article-title: Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm publication-title: Environ Sci Pollut Res – volume: 34 start-page: 125 issue: 2 year: 2019 end-page: 135 ident: CR12 article-title: Prediction of daily sediment discharge using a back propagation neural network training algorithm: a case study of the Narmada River India publication-title: Int J Sediment Res – volume: 639 start-page: 826 year: 2018 end-page: 840 ident: CR78 article-title: Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models publication-title: Sci Total Environ – volume: 22 start-page: 3102 year: 2008 end-page: 3114 ident: CR18 article-title: Factors controlling specific sediment yield in the upper Indus river basin, Northern Pakistan publication-title: Hydrol Process – volume: 13 start-page: 501 issue: 45 year: 2014 end-page: 519 ident: CR42 article-title: ANN models optimized using swarm intelligence algorithms publication-title: WSEAS Trans Comput – volume: 450 start-page: 48 year: 2012 end-page: 58 ident: CR46 article-title: Suspended sediment modeling using genetic programming and soft computing techniques publication-title: J Hydrol – volume: 192 start-page: 116332 year: 2021 ident: CR80 article-title: Artificial bee colony based on adaptive search strategy and random grouping mechanism publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116332 – volume: 60 start-page: 1566 year: 2015 end-page: 1586 ident: CR49 article-title: Assessment of sediment transport approaches for sand-bed rivers by means of machine learning publication-title: Hydrol Sci J – volume: 67 start-page: 1693 year: 2019 end-page: 1705 ident: CR79 article-title: Prediction of suspended sediment loading by means of hybrid artificial intelligence approaches publication-title: Acta Geophys doi: 10.1007/s11600-019-00374-3 – volume: 28 start-page: 356 issue: sup1 year: 2022 end-page: 365 ident: CR67 article-title: Coupling wavelet transform with multivariate adaptive regression spline for simulating suspended sediment load: independent testing approach publication-title: ISH J Hydraul Eng – volume: 615 start-page: 272 year: 2018 end-page: 281 ident: CR16 article-title: River suspended sediment modelling using the CART model: a comparative study of machine learning techniques publication-title: Sci Total Environ – volume: 27 start-page: 1533 year: 2016 end-page: 1542 ident: CR77 article-title: RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia publication-title: Neural Comput Appl – volume: 138 start-page: 20 year: 2017 end-page: 28 ident: CR56 article-title: Daily suspended sediment concentration simulation using hydrological data of Pranhita River Basin, India publication-title: Comput Electron Agric – volume: 142 start-page: 04016013 issue: 5 year: 2016 ident: CR6 article-title: Prediction of daily dewpoint temperature using a model combining the support vector machine with firefly algorithm publication-title: J Irrig Drain Eng – volume: 23 start-page: 730 issue: 5 year: 2009 end-page: 747 ident: CR43 article-title: Optimization and simulation of reservoir operation with sediment evacuation: a case study of the Tarbela Dam Pakistan publication-title: Hydrol Process: Int J – year: 2023 ident: CR61 article-title: Developing ensemble models for estimating sediment loads for diferent times scales publication-title: Environ Dev Sustain doi: 10.1007/s10668-023-03263-4 – volume: 23 start-page: 730 issue: 5 year: 2009 ident: 2785_CR43 publication-title: Hydrol Process: Int J doi: 10.1002/hyp.7173 – volume: 9 start-page: 2630 issue: 13 year: 2019 ident: 2785_CR54 publication-title: Appl Sci doi: 10.3390/app9132630 – volume: 34 start-page: 125 issue: 2 year: 2019 ident: 2785_CR11 publication-title: Int J Sed Res doi: 10.1016/j.ijsrc.2018.10.010 – year: 2020 ident: 2785_CR37 publication-title: Cogent Eng doi: 10.1080/23311916.2020.1855741 – volume: 115 start-page: 632 year: 2015 ident: 2785_CR62 publication-title: Sol Energy doi: 10.1016/j.solener.2015.03.015 – volume: 65 start-page: 87 issue: 1 year: 2019 ident: 2785_CR8 publication-title: Hydrol Sci J doi: 10.1080/02626667.2019.1686639 – year: 2022 ident: 2785_CR58 publication-title: Soft Comput doi: 10.1007/s00500-021-06281-4 – volume: 72 start-page: 915 year: 2014 ident: 2785_CR23 publication-title: Environ Earth Sci doi: 10.1007/s12665-014-3125-9 – volume: 27 start-page: 1533 year: 2016 ident: 2785_CR77 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1952-6 – volume: 129 start-page: 279 year: 2014 ident: 2785_CR14 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.09.030 – year: 2005 ident: 2785_CR48 publication-title: Hydrol Sci J doi: 10.1623/hysj.2005.50.4.683 – ident: 2785_CR9 – volume: 11 start-page: 10430 issue: 21 year: 2021 ident: 2785_CR50 publication-title: Thailand Appl Sci doi: 10.3390/app112110430 – volume: 148 start-page: 04022034 issue: 10 year: 2022 ident: 2785_CR64 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0001689 – ident: 2785_CR38 – volume: 10 start-page: 58 issue: 3 year: 2023 ident: 2785_CR59 publication-title: Hydrology doi: 10.3390/hydrology10030058 – volume: 346 start-page: 328 issue: 4 year: 2009 ident: 2785_CR35 publication-title: J Franklin Inst doi: 10.1016/j.jfranklin.2008.11.003 – volume: 28 start-page: 356 issue: sup1 year: 2022 ident: 2785_CR67 publication-title: ISH J Hydraul Eng doi: 10.1080/09715010.2020.1801528 – volume: 27 start-page: 38094 year: 2020 ident: 2785_CR7 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-09876-w – volume: 36 start-page: 4313 issue: 11 year: 2022 ident: 2785_CR22 publication-title: Water Resour Manag doi: 10.1007/s11269-022-03256-4 – volume: 13 start-page: 2319 issue: 17 year: 2021 ident: 2785_CR68 publication-title: Water doi: 10.3390/w13172319 – volume: 26 start-page: 68 year: 2016 ident: 2785_CR2 publication-title: Dams Reserv doi: 10.1680/jdare.16.00036 – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 2785_CR76 publication-title: Int J Bio-Inspired Comput doi: 10.1504/IJBIC.2010.032124 – volume: 377 start-page: 80 issue: 1 year: 2009 ident: 2785_CR26 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2009.08.003 – volume: 639 start-page: 826 year: 2018 ident: 2785_CR78 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.05.153 – volume: 30 start-page: 2179 year: 2016 ident: 2785_CR15 publication-title: Water Resour Manag doi: 10.1007/s11269-016-1281-2 – volume: 27 start-page: 185 issue: 2 year: 2004 ident: 2785_CR17 publication-title: Adv Water Resour doi: 10.1016/j.advwatres.2003.10.003 – volume: 37 start-page: 383 year: 2022 ident: 2785_CR4 publication-title: Int J Sediment Res doi: 10.1016/j.ijsrc.2021.10.001 – volume: 43 start-page: 73 year: 2012 ident: 2785_CR45 publication-title: Comput Geosci doi: 10.1016/j.cageo.2012.02.007 – volume: 56 start-page: 1 issue: 9 year: 2020 ident: 2785_CR52 publication-title: Water Resour Res doi: 10.1029/2020wr027101 – volume: 62 start-page: 1001 issue: 7–8 year: 2002 ident: 2785_CR81 publication-title: Compos Sci Technol doi: 10.1016/S0266-3538(02)00036-2 – volume: 115 start-page: 105311 year: 2022 ident: 2785_CR41 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105311 – volume: 60 start-page: 1566 year: 2015 ident: 2785_CR49 publication-title: Hydrol Sci J doi: 10.1080/02626667.2014.909599 – volume: 80 start-page: 1 issue: 9 year: 2021 ident: 2785_CR27 publication-title: Environ Earth Sci doi: 10.1007/s12665-021-09625-3 – volume: 2 start-page: 48 issue: 11 year: 2016 ident: 2785_CR30 publication-title: Int J Innov Stud Sci Eng Technol – volume: 68 start-page: 118 year: 2014 ident: 2785_CR34 publication-title: Renewable Energy doi: 10.1016/j.renene.2014.01.031 – volume: 49 start-page: 5732 issue: 9 year: 2013 ident: 2785_CR74 publication-title: Water Resour Res doi: 10.1002/wrcr.20452 – volume: 200 year: 2021 ident: 2785_CR33 publication-title: CATENA doi: 10.1016/j.catena.2021.105142 – volume: 106 year: 2021 ident: 2785_CR5 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107351 – volume: 14 start-page: 320 issue: 4 year: 2010 ident: 2785_CR10 publication-title: Energy Sustain Dev doi: 10.1016/j.esd.2010.09.003 – volume: 23 start-page: 3583 issue: 25 year: 2009 ident: 2785_CR44 publication-title: Process: Int J – volume: 428 start-page: 94 year: 2012 ident: 2785_CR47 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.01.026 – volume: 90 start-page: 2051 issue: 12 year: 2012 ident: 2785_CR19 publication-title: Phase Equilib Chem Equilib Probl – volume: 40 start-page: 1417 issue: 10 year: 2015 ident: 2785_CR63 publication-title: Earth Surf Proc Land doi: 10.1002/esp.3730 – start-page: 97 volume-title: Computational collective intelligence semantic web, social networks and multiagent systems year: 2009 ident: 2785_CR55 doi: 10.1007/978-3-642-04441-0_8 – volume: 22 start-page: 3102 year: 2008 ident: 2785_CR18 publication-title: Hydrol Process doi: 10.1002/hyp.6896 – volume: 192 start-page: 116332 year: 2021 ident: 2785_CR80 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116332 – volume: 28 start-page: 53097 year: 2021 ident: 2785_CR28 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-021-14479-0 – volume: 13 start-page: 79 year: 2023 ident: 2785_CR53 publication-title: Appl Water Sci doi: 10.1007/s13201-023-01874-w – volume: 98 start-page: 855 issue: 5 year: 2011 ident: 2785_CR57 publication-title: Agric Water Manag doi: 10.1016/j.agwat.2010.12.012 – year: 2023 ident: 2785_CR40 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-023-28678-4 – volume: 142 start-page: 04016013 issue: 5 year: 2016 ident: 2785_CR6 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0001015 – volume: 450 start-page: 48 year: 2012 ident: 2785_CR46 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2012.05.031 – volume: 39 start-page: 867 issue: 1 year: 2023 ident: 2785_CR31 publication-title: Engineering with Computers doi: 10.1007/s00366-022-01695-6 – volume: 13 start-page: 501 issue: 45 year: 2014 ident: 2785_CR42 publication-title: WSEAS Trans Comput – year: 2023 ident: 2785_CR61 publication-title: Environ Dev Sustain doi: 10.1007/s10668-023-03263-4 – year: 2021 ident: 2785_CR1 publication-title: Geocarto Int doi: 10.1080/10106049.2021.1933210 – volume: 33 start-page: 1217 year: 2019 ident: 2785_CR51 publication-title: Water Resour Manag doi: 10.1007/s11269-018-2178-z – volume: 29 start-page: 1745 issue: 6 year: 1993 ident: 2785_CR71 publication-title: Water Resour Res doi: 10.1029/93WR00341 – volume: 818 year: 2022 ident: 2785_CR20 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2021.151760 – volume: 19 start-page: 1726 issue: 6 year: 2019 ident: 2785_CR66 publication-title: Water Supply doi: 10.2166/ws.2019.044 – volume: 138 start-page: 20 year: 2017 ident: 2785_CR56 publication-title: Comput Electron Agric doi: 10.1016/j.compag.2017.04.005 – volume: 34 start-page: 125 issue: 2 year: 2019 ident: 2785_CR12 publication-title: Int J Sediment Res doi: 10.1016/j.ijsrc.2018.10.010 – volume: 214 start-page: 108 year: 2009 ident: 2785_CR36 publication-title: Appl Math Comput – volume: 221 start-page: 119741 year: 2023 ident: 2785_CR39 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.119741 – volume: 172 start-page: 32 year: 2017 ident: 2785_CR24 publication-title: Soil till Res doi: 10.1016/j.still.2017.04.009 – volume: 13 start-page: 4648 issue: 9 year: 2021 ident: 2785_CR3 publication-title: Sustainability doi: 10.3390/su13094648 – volume: 585 year: 2020 ident: 2785_CR70 publication-title: J Hydrol – volume: 15 start-page: 966 issue: 10 year: 2022 ident: 2785_CR29 publication-title: Arab J Geosci doi: 10.1007/s12517-022-10150-1 – ident: 2785_CR69 – volume: 198 year: 2021 ident: 2785_CR60 publication-title: CATENA doi: 10.1016/j.catena.2020.105024 – volume: 615 start-page: 272 year: 2018 ident: 2785_CR16 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.09.293 – volume: 5792 start-page: 169 year: 2009 ident: 2785_CR75 publication-title: Lect Notes Comput Sci doi: 10.1007/978-3-642-04944-6_14 – volume: 31 start-page: 1343 year: 2017 ident: 2785_CR13 publication-title: Water Resour Manage doi: 10.1007/s11269-017-1581-1 – volume: 62 start-page: 736 year: 2018 ident: 2785_CR21 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2017.10.040 – volume: 67 start-page: 1693 year: 2019 ident: 2785_CR79 publication-title: Acta Geophys doi: 10.1007/s11600-019-00374-3 – ident: 2785_CR65 – volume: 606 start-page: 152 year: 2022 ident: 2785_CR73 publication-title: Inf Sci doi: 10.1016/j.ins.2022.05.065 – volume: 612 year: 2022 ident: 2785_CR72 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2022.127968 – volume: 12 start-page: 1481 year: 2020 ident: 2785_CR32 publication-title: Water doi: 10.3390/w12051481 – volume: 31 start-page: 89 year: 1991 ident: 2785_CR25 publication-title: Earth Sci Rev doi: 10.1016/0012-8252(91)90017-A |
| SSID | ssj0017754 ssib007539910 ssib057179955 ssib001127189 |
| Score | 2.3913147 |
| Snippet | The service life of downstream dams, river hydraulics, waterworks construction, and reservoir management is significantly affected by the amount of sediment... |
| SourceID | unpaywall proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3907 |
| SubjectTerms | Accuracy Algorithms Aquatic Pollution Artificial neural networks Biomimetics Chemistry and Earth Sciences Computational Intelligence Computer Science Dam construction Earth and Environmental Science Earth Sciences Environment Estimation Fluid flow Forecasting Heuristic methods Hydraulics Math. Appl. in Environmental Science Neural networks Optimization Optimization techniques Original Paper Physics Probability Theory and Stochastic Processes Reservoir management Rivers Search algorithms Sediment load Sediments Service life Statistical analysis Statistical models Statistics for Engineering Stream discharge Stream flow Swarm intelligence Waste Water Technology Water Management Water Pollution Control Water resources Water resources management Water utilities Waterworks |
| SummonAdditionalLinks | – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF6hIlQ48BOoCBQ0B250pTpe79rcIGpUIcEBqNSbtd6dkEquHcWJqjwBL8Kb9MU6s9k4gFAFV3u8a2lmd2Y0830jxBufOVWhR4mkXskcUjJ3rpBkK7kZTVOVGQYKf_qsT8_Ux_PsPNLkMBbmj_p9IPs0RpIn4WpjnknKdO6Sk9KhMKvHfcWAmdwCkijVkknmIkDm72v87oR2kWVfDH0g9lfN3K6vbF3_4m8mj8XDGCjC-41mn4g72AzEo-0QBohnciAOTnZQNZKPz7uB2I_zzWfrgbgXGj1d91T8_EreimWhbq0HClnR2Y57n4GRJmCBAfkkQdtCS_fJZQRqwnwHy3wHE7opp_UabOPDL254KOADIozpOm3oTf29XVwsZ5cdMPvVFc8EBWbPJLFm03sOYQwPb33RwPWPdrGawRfuE3kmziYn38anMk5qkC4t9FJ6ZZjZMOcitq0Kb22q0KCn5BALylPRFInLvCpSCphUjlnidMUFR5NNj5226YHYa9oGnwvwOkFMR86OclQVJejHaLx2STWlwKPy2VAkW9WVLtKY8zSNuuwJmIO6S_qhMqi7TIbibf_NfEPicav04dYiyniguzJluASlwqoYiqOtlexe37baUW9J_7D5i_9b_aW4P2K7Dt2Fh2JvuVjhK4qSltXrcDxuANdJCNU priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQ9lBx4KdQsaigOXCjrppNHCfcStVVhUSFgJXKKXLsWbYiTVabrKrtC_RFeBNejJnEu4EKVeUWyRM7kcfzo_H3jRBvnLJRjg4l0vZK5pCSibWpJF1J9GgaRkozUPjjWXw6iT6cq3NPk8NYmFv1-5bsU2tJnoSrjYmSlOlsxYri7oHYmpx9OvrWwofCWDKzXP-sUo-Q-fckf3uhPrTcVEMfiu1lOTerK1MUfzic8eOuc1Hd8hTyPZMfB8smP7DXt1gc7_cvT8QjH3fCUacoT8UDLHfE7kkPc6NBf87rHbHte6PPVs_Ezy_k31gCiso4oCAXran5tjQwNgUMMISfJGhmqMgCXXpoJ8x7IOc7GJNtnRYrMKVrv6JjroD3iHBMBrikkeJ7tbhoZpc1MF_WFXcRBebbJLGyu60ObeMeXvqihF831WI5g898s-S5mIxPvh6fSt_bQdowjRvpIs1ciAmXvU2eOmPCCDU6SicxpcwWdRpY5aI0pBArSlAFNs65RKnV9NDGJtwVg7Iq8YUAFweI4ciaUYJRTin9IWoX2yCfUqiSOzUUwXqvM-uJz7n_RpFtKJvbjcnog7J2Y7JgKN5u3pl3tB93Su-tVSjzJqDOQgZYUPIcpUOxv1arfviu2fY3qnePxV_-n_ieGDSLJb6iUKrJX_sz9BvsUxXo priority: 102 providerName: Unpaywall |
| Title | Sediment load forecasting from a biomimetic optimization perspective: Firefly and Artificial Bee Colony algorithms empowered neural network modeling in Çoruh River |
| URI | https://link.springer.com/article/10.1007/s00477-024-02785-1 https://www.proquest.com/docview/3110809449 https://doi.org/10.1007/s00477-024-02785-1 |
| UnpaywallVersion | publishedVersion |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1436-3259 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017754 issn: 1436-3259 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1436-3259 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0017754 issn: 1436-3259 databaseCode: 8FG dateStart: 20020201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1436-3259 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017754 issn: 1436-3259 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1436-3259 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017754 issn: 1436-3259 databaseCode: U2A dateStart: 19990404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwED9t7cPgAcFgojAqP_DGLJbE-YeEUFe1m0BU06DS9hQ5tkuRsqSsraZ-Ar4I34Qvxp3rJPBS8ZKH2Imt3Pl8zt3vdwCvdahEbrThBsXLiUOKJ0qlHHUlif1ZIMKYgMKfJ9HFVHy8Dq_3YFJjYSitsraJ1lDrStE_8rcB5avjWUSkHxY_OFWNouhqXUJDutIK-r2lGNuHrk_MWB3ono0ml1dNXIH43izeKIg4UdE5GI0F0xFxYsxxz6K4ZhJy79-tqvU_m5DpQzhYlwu5uZdF8deuNH4Mj5w7yQZb-T-BPVMewtGoRa9ho1u-y0M4cCXP55un8OsLblvUgxWV1Ax9V6PkkpKgGUFOmGSEzMce-GZWoWG5dYhNtmjxme_YGE3mrNgwWWo7iy0hBTszhg3RrpbYUnzD77ia3y4Z0WDdU3FQRjSa2K3cJqEzW4-Hhv5est8_q7v1nF1RwsgzmI5HX4cX3JVs4CpIoxXXIiaKw4Si2TJPtZSBMLHReEo0KR5YTZx6KtQiDdBzEokJPRXlFHmMw9mpimRwBJ2yKs1zYDryjAl8Jf3EiBxP6qcm1pHy8hl6ILkOe-DV0smU4zOnshpF1jAxW4lmOKHMSjTzevCmeWaxZfPY2fu4FnrmVvYya_WwBye1IrTNu9520ijLfwz-YvfgL-GBT6pq0wqPobO6W5tX6B6t8j7sJ-PzPnQH5zefRn23AvDuMBrideoP8N50cjm4-QPV6BMy |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9hB6QFCoCBTYA5zoCmyv_5AqREuilLYRKq3Um1nvbhok1w51oihP0Bfpc3DhxZhx1jZcIi4973jX0oxnZzzzfQPwWvtKpEYbblC9nDikeKRUzNFWotAdecIPCSh8MgwG5-LLhX-xBr9qLAy1VdY-sXLUulD0j_ydR_3qmIuI-OPkJ6epUVRdrUdoSDtaQe9VFGMW2HFkFnNM4cq9w8-o7zeu2--dHQy4nTLAlRcHU65FSKx8ERVgZRprKT1hQqMxsTEx5lgmjB3laxF7eNmLyPiOClIqloX-6L0KpIf73oMN4YkYk7-N_d7w62lTxyB-uQrf5AWcqO8sbKcC7xFRY8jxbKqjRj53_r0a23i3KdFuQmeWT-RiLrPsr1uw_xAe2PCVfVra2yNYM_kWbPdatBwuWndRbkHHjlgfLx7D7Te8JkmCZYXUDGNlo2RJTdeMIC5MMmICQAncmRXoyK4sQpRNWjzoB9ZHFz3KFkzmunqLJQEG2zeGHaAfz3Elu0S9TcdXJSParTkNI2VE24li-bLpnVXzf-joHzn7fVNcz8bslBpUnsD5nShvG9bzIjdPgenAMcZzlXQjI9IQ_ZoJdaCcdIQRT6r9Lji1dhJl-dNpjEeWNMzPlUYTfKGk0mjidOFt88xkyR6yUnqnVnpiPUmZtHbfhd3aENrlVbvtNsbyH4c_W334K-gMzk6Ok-PD4dFzuO-S2VYtjTuwPr2emRcYmk3Tl9b-GXy_60_uDzyxSGI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlE4IChUbCngA5yo1ebXCRJC0Da0FCoEVOotOLbDVkqTpdnVap-AF-EpuPJizCROApcVl549sS3NeDzOzPcNwFMdKD8z2nCD6uXEIcUjpWKOthIJN_f8QBBQ-MNJeHjqvzsLzlbgV4eFobLKzic2jlpXiv6R73hUr45vET_eyW1ZxMf95NXkO6cOUpRp7dpptCZybBZzfL7VL4_2UdfPXDc5-LJ3yG2HAa68OJxy7Qti5Iso-SqzWEvp-UYYjY8aE-P7yojYUYH2Yw8vej8ygaPCjBJlIsh3VSg9nPcaXBfE4k4o9eRtn8EgZrkG2eSFnEjvLGCnge0RRaPguDJlUKOAO_9eikOk2ydnb8HarJzIxVwWxV_3X3IHbtvAlb1uLe0urJhyHTYOBpwcDlpHUa_Dmm2uPl7cg5-f8YIkCVZUUjOMko2SNZVbMwK3MMmIAwAlcGZWoQu7sNhQNhmQoC9Ygs45LxZMlrrZRUt9wd4Yw_bQg5c4UnxDLU3HFzUjwq05tSFlRNiJYmVb7s6azj-09HnJfv-oLmdj9olKU-7D6ZWobgNWy6o0D4Dp0DHGc5V0I-NnAj2aETpUTpZjrJPpYAROp51UWeZ0auBRpD3nc6PRFDeUNhpNnRE877-ZtLwhS6W3OqWn1ofU6WDxI9juDGEYXjbbdm8s_7H45vLFn8ANPGjp-6OT44dw0yWrbWoZt2B1ejkzjzAmm2aPG-Nn8PWqT9sfNJVF_A |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQ9lBx4KdQsaigOXCjrppNHCfcStVVhUSFgJXKKXLsWbYiTVabrKrtC_RFeBNejJnEu4EKVeUWyRM7kcfzo_H3jRBvnLJRjg4l0vZK5pCSibWpJF1J9GgaRkozUPjjWXw6iT6cq3NPk8NYmFv1-5bsU2tJnoSrjYmSlOlsxYri7oHYmpx9OvrWwofCWDKzXP-sUo-Q-fckf3uhPrTcVEMfiu1lOTerK1MUfzic8eOuc1Hd8hTyPZMfB8smP7DXt1gc7_cvT8QjH3fCUacoT8UDLHfE7kkPc6NBf87rHbHte6PPVs_Ezy_k31gCiso4oCAXran5tjQwNgUMMISfJGhmqMgCXXpoJ8x7IOc7GJNtnRYrMKVrv6JjroD3iHBMBrikkeJ7tbhoZpc1MF_WFXcRBebbJLGyu60ObeMeXvqihF831WI5g898s-S5mIxPvh6fSt_bQdowjRvpIs1ciAmXvU2eOmPCCDU6SicxpcwWdRpY5aI0pBArSlAFNs65RKnV9NDGJtwVg7Iq8YUAFweI4ciaUYJRTin9IWoX2yCfUqiSOzUUwXqvM-uJz7n_RpFtKJvbjcnog7J2Y7JgKN5u3pl3tB93Su-tVSjzJqDOQgZYUPIcpUOxv1arfviu2fY3qnePxV_-n_ieGDSLJb6iUKrJX_sz9BvsUxXo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sediment+load+forecasting+from+a+biomimetic+optimization+perspective%3A+Firefly+and+Artificial+Bee+Colony+algorithms+empowered+neural+network+modeling+in+%C3%87oruh+River&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Katipo%C4%9Flu%2C+Okan+Mert&rft.au=Kartal%2C+Veysi&rft.au=Pande%2C+Chaitanya+Baliram&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=38&rft.issue=10&rft.spage=3907&rft.epage=3927&rft_id=info:doi/10.1007%2Fs00477-024-02785-1&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon |