Sediment load forecasting from a biomimetic optimization perspective: Firefly and Artificial Bee Colony algorithms empowered neural network modeling in Çoruh River

The service life of downstream dams, river hydraulics, waterworks construction, and reservoir management is significantly affected by the amount of sediment load (SL). This study combined models such as the artificial neural network (ANN) algorithm with the Firefly algorithm (FA) and Artificial Bee...

Full description

Saved in:
Bibliographic Details
Published inStochastic environmental research and risk assessment Vol. 38; no. 10; pp. 3907 - 3927
Main Authors Katipoğlu, Okan Mert, Kartal, Veysi, Pande, Chaitanya Baliram
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1436-3240
1436-3259
1436-3259
DOI10.1007/s00477-024-02785-1

Cover

Abstract The service life of downstream dams, river hydraulics, waterworks construction, and reservoir management is significantly affected by the amount of sediment load (SL). This study combined models such as the artificial neural network (ANN) algorithm with the Firefly algorithm (FA) and Artificial Bee Colony (ABC) optimization techniques for the estimation of monthly SL values in the Çoruh River in Northeastern Turkey. The estimation of SL values was achieved using inputs of previous SL and streamflow values provided to the models. Various statistical metrics were used to evaluate the accuracy of the established hybrid and stand-alone models. The hybrid model is a novel approach for estimating sediment load based on various input variables. The results of the analysis determined that the ABC-ANN hybrid approach outperformed others in SL estimation. In this study, two combinations, M1 and M2, with different input variables, were used to assess the model's accuracy, and the best-performing model for monthly SL estimation was identified. Two scenarios, Q(t) and Q(t − 1), were coupled with the ABC-ANN algorithm, resulting in a highly effective hybrid approach with the best accuracy results (R 2  = 0.90, RMSE = 1406.730, MAE = 769.545, MAPE = 5.861, MBE =  − 251.090, Bias Factor =  − 4.457, and KGE = 0.737) compared to other models. Furthermore, the utilization of FA and ABC optimization techniques facilitated the optimization of the ANN model parameters. The significant results demonstrated that the optimization and hybrid techniques provided the most effective outcomes in forecasting SL for both combination scenarios. As a result, the prediction outputs achieved higher accuracy than those of a stand-alone ANN model. The findings of this study can provide essential resources to various managers and policymakers for the management of water resources.
AbstractList The service life of downstream dams, river hydraulics, waterworks construction, and reservoir management is significantly affected by the amount of sediment load (SL). This study combined models such as the artificial neural network (ANN) algorithm with the Firefly algorithm (FA) and Artificial Bee Colony (ABC) optimization techniques for the estimation of monthly SL values in the Çoruh River in Northeastern Turkey. The estimation of SL values was achieved using inputs of previous SL and streamflow values provided to the models. Various statistical metrics were used to evaluate the accuracy of the established hybrid and stand-alone models. The hybrid model is a novel approach for estimating sediment load based on various input variables. The results of the analysis determined that the ABC-ANN hybrid approach outperformed others in SL estimation. In this study, two combinations, M1 and M2, with different input variables, were used to assess the model's accuracy, and the best-performing model for monthly SL estimation was identified. Two scenarios, Q(t) and Q(t − 1), were coupled with the ABC-ANN algorithm, resulting in a highly effective hybrid approach with the best accuracy results (R2 = 0.90, RMSE = 1406.730, MAE = 769.545, MAPE = 5.861, MBE =  − 251.090, Bias Factor =  − 4.457, and KGE = 0.737) compared to other models. Furthermore, the utilization of FA and ABC optimization techniques facilitated the optimization of the ANN model parameters. The significant results demonstrated that the optimization and hybrid techniques provided the most effective outcomes in forecasting SL for both combination scenarios. As a result, the prediction outputs achieved higher accuracy than those of a stand-alone ANN model. The findings of this study can provide essential resources to various managers and policymakers for the management of water resources.
The service life of downstream dams, river hydraulics, waterworks construction, and reservoir management is significantly affected by the amount of sediment load (SL). This study combined models such as the artificial neural network (ANN) algorithm with the Firefly algorithm (FA) and Artificial Bee Colony (ABC) optimization techniques for the estimation of monthly SL values in the Çoruh River in Northeastern Turkey. The estimation of SL values was achieved using inputs of previous SL and streamflow values provided to the models. Various statistical metrics were used to evaluate the accuracy of the established hybrid and stand-alone models. The hybrid model is a novel approach for estimating sediment load based on various input variables. The results of the analysis determined that the ABC-ANN hybrid approach outperformed others in SL estimation. In this study, two combinations, M1 and M2, with different input variables, were used to assess the model's accuracy, and the best-performing model for monthly SL estimation was identified. Two scenarios, Q(t) and Q(t − 1), were coupled with the ABC-ANN algorithm, resulting in a highly effective hybrid approach with the best accuracy results (R 2  = 0.90, RMSE = 1406.730, MAE = 769.545, MAPE = 5.861, MBE =  − 251.090, Bias Factor =  − 4.457, and KGE = 0.737) compared to other models. Furthermore, the utilization of FA and ABC optimization techniques facilitated the optimization of the ANN model parameters. The significant results demonstrated that the optimization and hybrid techniques provided the most effective outcomes in forecasting SL for both combination scenarios. As a result, the prediction outputs achieved higher accuracy than those of a stand-alone ANN model. The findings of this study can provide essential resources to various managers and policymakers for the management of water resources.
Author Pande, Chaitanya Baliram
Katipoğlu, Okan Mert
Kartal, Veysi
Author_xml – sequence: 1
  givenname: Okan Mert
  surname: Katipoğlu
  fullname: Katipoğlu, Okan Mert
  email: okatipoglu@erzincan.edu.tr
  organization: Department of Civil Engineering, Erzincan Binali Yıldırım University
– sequence: 2
  givenname: Veysi
  surname: Kartal
  fullname: Kartal, Veysi
  organization: Department of Civil Engineering, Engineering Faculty, Siirt University
– sequence: 3
  givenname: Chaitanya Baliram
  surname: Pande
  fullname: Pande, Chaitanya Baliram
  organization: New Era and Development in Civil Engineering Research Group, Scientific Research Center, Al-Ayen University, Institute of Energy Infrastructure, Universiti Tenaga Nasional
BookMark eNqNkE1uFDEQhS0UJJKBC7CyxLrBHrvb3ezCiABSJCR-1pbHrp44uO2m7GY0XICLcBMuhpOJQGIRsbDKUr1Xr-o7IycxRSDkKWfPOWPqRWZMKtWwtaxP9W3DH5BTLkXXiHU7nPz5S_aInOV8zRhXqpWn5OdHcH6CWGhIxtExIViTi487OmKaqKFbn6aqKN7SNBc_-e-m-BTpDJhnsMV_g5f0wiOM4UBNdPQcix-99SbQVwB0k0KKtRN2CX25mjKFaU57QHA0woJVFqHsE36hU3IQbqJ9pL9-JFyu6Ic6Hh-Th6MJGZ7c1RX5fPH60-Ztc_n-zbvN-WVjxdCVxklVAYhe1evMdnDGCAkKHG87GAbVgxq4bZ0cRMeV7KHlttuyvrbakdnOiBURx7lLnM1hb0LQM_rJ4EFzpm9A6yNoXXP0LWjNq-vZ0TVj-rpALvo6LRjrolpwzno2yBq5Iv1RZTHlXGlp68styYLGh_sD1v9Y_2uru1tyFccd4N-t7nH9BtF8tIM
CitedBy_id crossref_primary_10_17780_ksujes_1502136
crossref_primary_10_1007_s10661_024_13390_8
Cites_doi 10.1080/23311916.2020.1855741
10.1016/j.asoc.2017.10.040
10.1029/2020wr027101
10.1061/(ASCE)IR.1943-4774.0001689
10.1080/10106049.2021.1933210
10.1080/02626667.2019.1686639
10.1007/s00500-021-06281-4
10.1016/j.engappai.2022.105311
10.3390/hydrology10030058
10.1029/93WR00341
10.1016/j.jhydrol.2012.01.026
10.1016/j.jhydrol.2009.08.003
10.1623/hysj.2005.50.4.683
10.1007/s11356-023-28678-4
10.1016/j.eswa.2021.116332
10.1007/s11600-019-00374-3
10.1007/s10668-023-03263-4
10.1002/hyp.7173
10.3390/app9132630
10.1016/j.ijsrc.2018.10.010
10.1016/j.solener.2015.03.015
10.1007/s12665-014-3125-9
10.1007/s00521-015-1952-6
10.1016/j.neucom.2013.09.030
10.3390/app112110430
10.1016/j.jfranklin.2008.11.003
10.1080/09715010.2020.1801528
10.1007/s11356-020-09876-w
10.1007/s11269-022-03256-4
10.3390/w13172319
10.1680/jdare.16.00036
10.1504/IJBIC.2010.032124
10.1016/j.scitotenv.2018.05.153
10.1007/s11269-016-1281-2
10.1016/j.advwatres.2003.10.003
10.1016/j.ijsrc.2021.10.001
10.1016/j.cageo.2012.02.007
10.1016/S0266-3538(02)00036-2
10.1080/02626667.2014.909599
10.1007/s12665-021-09625-3
10.1016/j.renene.2014.01.031
10.1002/wrcr.20452
10.1016/j.catena.2021.105142
10.1016/j.asoc.2021.107351
10.1016/j.esd.2010.09.003
10.1002/esp.3730
10.1007/978-3-642-04441-0_8
10.1002/hyp.6896
10.1007/s11356-021-14479-0
10.1007/s13201-023-01874-w
10.1016/j.agwat.2010.12.012
10.1061/(ASCE)IR.1943-4774.0001015
10.1016/j.jhydrol.2012.05.031
10.1007/s00366-022-01695-6
10.1007/s11269-018-2178-z
10.1016/j.scitotenv.2021.151760
10.2166/ws.2019.044
10.1016/j.compag.2017.04.005
10.1016/j.eswa.2023.119741
10.1016/j.still.2017.04.009
10.3390/su13094648
10.1007/s12517-022-10150-1
10.1016/j.catena.2020.105024
10.1016/j.scitotenv.2017.09.293
10.1007/978-3-642-04944-6_14
10.1007/s11269-017-1581-1
10.1016/j.ins.2022.05.065
10.1016/j.jhydrol.2022.127968
10.3390/w12051481
10.1016/0012-8252(91)90017-A
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7ST
7XB
88I
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L6V
M2P
M7S
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
S0W
SOI
ADTOC
UNPAY
DOI 10.1007/s00477-024-02785-1
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Environment Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Agricultural & Environmental Science Database
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Environment Abstracts
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Central Student

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals (Freely Accessible)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Physics
Computer Science
Environmental Sciences
EISSN 1436-3259
EndPage 3927
ExternalDocumentID 10.1007/s00477-024-02785-1
10_1007_s00477_024_02785_1
GrantInformation_xml – fundername: Erzincan Binali Yildirim University
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67M
67Z
6NX
7XC
88I
8AO
8FE
8FG
8FH
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FIL
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
L8X
LAS
LLZTM
M2P
M4Y
M7S
MA-
ML.
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9J
OAM
P19
P2P
PATMY
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z86
Z8M
Z8S
Z8T
Z8U
Z8W
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7ST
7XB
8FD
8FK
C1K
FR3
KR7
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
ADTOC
UNPAY
ID FETCH-LOGICAL-c396t-d47024387001ab9daa34e7ed156e9978e791c5d49361748e51c6b089975f0c6a3
IEDL.DBID BENPR
ISSN 1436-3240
1436-3259
IngestDate Sun Sep 07 11:19:36 EDT 2025
Mon Oct 06 16:33:21 EDT 2025
Wed Oct 01 02:18:05 EDT 2025
Thu Apr 24 22:54:58 EDT 2025
Fri Feb 21 02:41:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords ANN
Firefly optimization
Sediment load
Çoruh river
Artificial bee colony optimization
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-d47024387001ab9daa34e7ed156e9978e791c5d49361748e51c6b089975f0c6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.1007/s00477-024-02785-1
PQID 3110809449
PQPubID 31669
PageCount 21
ParticipantIDs unpaywall_primary_10_1007_s00477_024_02785_1
proquest_journals_3110809449
crossref_citationtrail_10_1007_s00477_024_02785_1
crossref_primary_10_1007_s00477_024_02785_1
springer_journals_10_1007_s00477_024_02785_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241000
2024-10-00
20241001
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 20241000
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Stochastic environmental research and risk assessment
PublicationTitleAbbrev Stoch Environ Res Risk Assess
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Khan, Tingsanchali (CR43) 2009; 23
Achite, Yaseen, Heddam, Malik, Kisi (CR1) 2021
Bisoyi, Gupta, Padhy, Chakrapani (CR11) 2019; 34
Niazkar, Zakwan (CR61) 2023
CR38
Kang, Jang, Yang, Julien (CR33) 2021; 200
Kisi, Shiri (CR45) 2012; 43
Al-Shammari, Mohammadi, Keivani, Ab Hamid, Akib, Shamshirband, Petković (CR6) 2016; 142
Shiri, Shiri, Nourani, Karimi (CR67) 2022; 28
Malik, Kumar, Piri (CR56) 2017; 138
Ghambari, Rahati (CR21) 2018; 62
Latif, Chong, Ahmed, Huang, Sherif, El-Shafe (CR53) 2023; 13
Yang (CR76) 2010; 2
Hussan, Shahzad, Seidel, Nestmann (CR32) 2020; 12
Yilmaz, Aras, Kankal, Nacar (CR79) 2019; 67
Hemalatha, ValanRajkumar, Vidhya Krishnan (CR30) 2016; 2
Karaboga (CR35) 2009; 346
Kulsoontornrat, Ongsomwang (CR50) 2021; 11
Yilmaz, Aras, Nacar, Kankal (CR78) 2018; 639
CR9
Choubin, Darabi, Rahmati, Sajedi-Hosseini, Kløve (CR16) 2018; 615
Melesse, Ahmad, McClain, Wang, Lim (CR57) 2011; 98
Kişi (CR44) 2009; 23
Lamontagne, Barber, Vogel (CR52) 2020; 56
Kisi (CR48) 2005
Akay, Karaboga, Gorkemli, Kaya (CR5) 2021; 106
Fateen, Bonilla-Petriciolet, Pandu Rangaiah (CR19) 2012; 90
Buyukyildiz, Kumcu (CR13) 2017; 31
Mohammadi (CR59) 2023; 10
Adnan, Yaseen, Heddam, Shahid, Sadeghi-Niaraki, Kisi (CR4) 2022; 37
Karaboğa, Akay (CR36) 2009; 214
Fathabadi, Seyedian, Malekian (CR20) 2022; 818
Kankal, Bayram, Uzlu, Satilmiş (CR34) 2014; 68
Samantaray, Sahoo, Paul, Ghose (CR64) 2022; 148
Vrugt, de Oliveira (CR72) 2022; 612
Vogel, Fennessey (CR71) 1993; 29
de Faran Ali, Boer (CR18) 2008; 22
Yaseen, El-Shafie, Afan, Hameed, Mohtar, Hussain (CR77) 2016; 27
Adnan, Parmar, Heddam, Shahid, Kisi (CR3) 2021; 13
Huqqani, Tay, Mohamad-Saleh (CR31) 2023; 39
Sharghi, Nourani, Najafi, Gokcekus (CR66) 2019; 19
Olatomiwa, Mekhilef, Shamshirband, Mohammadi, Petković, Sudheer (CR62) 2015; 115
Ghernaout, Remini (CR23) 2014; 72
Lukasik, Zak, Łukasik, Żak (CR55) 2009
Wisser, Frolking, Hagen, Bierkens (CR74) 2013; 49
Kaya, Gorkemli, Akay, Karaboga (CR41) 2022; 115
Kisi, Ozkan, Akay (CR47) 2012; 428
Karaman, Pacal, Basturk, Akay, Nalbantoglu, Coskun, Karaboga (CR39) 2023; 221
Karaboga, Akay, Karaboga (CR37) 2020
Tung, Yaseen (CR70) 2020; 585
Barber, Lamontagne, Vogel (CR8) 2019; 65
Ch, Sohani, Kumar, Malik, Chahar, Nema, Dhiman (CR14) 2014; 129
Parsons, Cooper, Wainwright (CR63) 2015; 40
Cigizoglu (CR17) 2004; 27
Harun, Safari, Gul, Ghani (CR28) 2021; 28
Kumar, Kumar, Singh (CR51) 2019; 33
Chen, Chau (CR15) 2016; 30
Kayarvizhy, Kanmani, Uthariaraj (CR42) 2014; 13
Yang (CR75) 2009; 5792
Kitsikoudis, Sidiropoulos, Hrissanthou (CR49) 2015; 60
Kisi, Dailr, Cimen, Shiri (CR46) 2012; 450
Banadkooki, Ehteram, Ahmed, Teo, Ebrahimi, Fai, El-Shafie (CR7) 2020; 27
Berkun (CR10) 2010; 14
Mohammadi, Guan, Moazenzadeh, Safari (CR60) 2021; 198
Ghorbani, Shamshirband, ZareHaghie, Azania, Bonakdarif, Ebtehajf (CR24) 2017; 172
Katipoğlu, Keblouti, Mohammadi (CR40) 2023
Ackers, Hieatt, Molyneux (CR2) 2016; 26
Bisoyi, Gupta, Padhy, Chakrapani (CR12) 2019; 34
Wang, Jiao, Liu, Xiao (CR73) 2022; 606
CR69
CR65
Hazarika, Gupta (CR29) 2022; 15
Stone, Krishnappan, Silins, Emelko, Williams, Collins, Spencer (CR68) 2021; 13
Zhang, Klein, Friedrich (CR81) 2002; 62
Gomez (CR25) 1991; 31
Ghanbari-Adivi, Ehteram, Farrokhi, Sheikh Khozani (CR22) 2022; 36
Gupta, Hazarika, Berlin, Sharma, Mishra (CR27) 2021; 80
Le, Nguyen, Dou, Zhou (CR54) 2019; 9
Gupta, Kling, Yilmaz, Martinez (CR26) 2009; 377
Meshram, Meshram, Pourhosseini, Hasan, Islam (CR58) 2022
Zeng, Wang, Wang, Cui, Wang, Wang, Zhao (CR80) 2021; 192
NM Khan (2785_CR43) 2009; 23
JA Vrugt (2785_CR72) 2022; 612
B Yilmaz (2785_CR78) 2018; 639
HK Cigizoglu (2785_CR17) 2004; 27
E Kaya (2785_CR41) 2022; 115
M Berkun (2785_CR10) 2010; 14
R Ghernaout (2785_CR23) 2014; 72
A Fathabadi (2785_CR20) 2022; 818
M Achite (2785_CR1) 2021
D Karaboğa (2785_CR36) 2009; 214
D Karaboga (2785_CR37) 2020
B Akay (2785_CR5) 2021; 106
M Niazkar (2785_CR61) 2023
A Karaman (2785_CR39) 2023; 221
D Gupta (2785_CR27) 2021; 80
B Mohammadi (2785_CR59) 2023; 10
N Bisoyi (2785_CR11) 2019; 34
D Wisser (2785_CR74) 2013; 49
RM Adnan (2785_CR4) 2022; 37
J Kulsoontornrat (2785_CR50) 2021; 11
FB Banadkooki (2785_CR7) 2020; 27
K de Faran Ali (2785_CR18) 2008; 22
E Ghanbari-Adivi (2785_CR22) 2022; 36
N Karaboga (2785_CR35) 2009; 346
OM Katipoğlu (2785_CR40) 2023
HV Gupta (2785_CR26) 2009; 377
O Kisi (2785_CR46) 2012; 450
BB Hazarika (2785_CR29) 2022; 15
B Choubin (2785_CR16) 2018; 615
S Samantaray (2785_CR64) 2022; 148
Ö Kişi (2785_CR44) 2009; 23
S Ch (2785_CR14) 2014; 129
ZM Yaseen (2785_CR77) 2016; 27
N Bisoyi (2785_CR12) 2019; 34
ET Al-Shammari (2785_CR6) 2016; 142
V Kitsikoudis (2785_CR49) 2015; 60
J Ackers (2785_CR2) 2016; 26
N Shiri (2785_CR67) 2022; 28
AM Melesse (2785_CR57) 2011; 98
S Ghambari (2785_CR21) 2018; 62
A Kumar (2785_CR51) 2019; 33
Z Zhang (2785_CR81) 2002; 62
O Kisi (2785_CR48) 2005
M Stone (2785_CR68) 2021; 13
C Barber (2785_CR8) 2019; 65
MA Ghorbani (2785_CR24) 2017; 172
O Kisi (2785_CR45) 2012; 43
A Malik (2785_CR56) 2017; 138
Y Wang (2785_CR73) 2022; 606
B Gomez (2785_CR25) 1991; 31
RM Vogel (2785_CR71) 1993; 29
M Buyukyildiz (2785_CR13) 2017; 31
2785_CR38
XS Yang (2785_CR75) 2009; 5792
RM Adnan (2785_CR3) 2021; 13
B Mohammadi (2785_CR60) 2021; 198
S Fateen (2785_CR19) 2012; 90
IA Huqqani (2785_CR31) 2023; 39
SD Latif (2785_CR53) 2023; 13
XY Chen (2785_CR15) 2016; 30
W Kang (2785_CR33) 2021; 200
N Kayarvizhy (2785_CR42) 2014; 13
M Kankal (2785_CR34) 2014; 68
L Olatomiwa (2785_CR62) 2015; 115
WU Hussan (2785_CR32) 2020; 12
S Lukasik (2785_CR55) 2009
2785_CR69
SG Meshram (2785_CR58) 2022
C Hemalatha (2785_CR30) 2016; 2
2785_CR65
JR Lamontagne (2785_CR52) 2020; 56
LT Le (2785_CR54) 2019; 9
E Sharghi (2785_CR66) 2019; 19
T Zeng (2785_CR80) 2021; 192
B Yilmaz (2785_CR79) 2019; 67
O Kisi (2785_CR47) 2012; 428
AJ Parsons (2785_CR63) 2015; 40
XS Yang (2785_CR76) 2010; 2
2785_CR9
TM Tung (2785_CR70) 2020; 585
MA Harun (2785_CR28) 2021; 28
References_xml – volume: 200
  year: 2021
  ident: CR33
  article-title: Geospatial analysis and model development for specific degradation in South Korea using model tree data mining
  publication-title: CATENA
– year: 2020
  ident: CR37
  article-title: (2020) A survey on the studies employing machine learning (ML) for enhancing artificial bee colony (ABC) optimization algorithm
  publication-title: Cogent Eng
  doi: 10.1080/23311916.2020.1855741
– volume: 49
  start-page: 5732
  issue: 9
  year: 2013
  end-page: 5739
  ident: CR74
  article-title: Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs
  publication-title: Water Resour Res
– volume: 62
  start-page: 736
  year: 2018
  end-page: 767
  ident: CR21
  article-title: An improved artificial bee colony algorithm and its application to reliability optimization problems
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.10.040
– volume: 28
  start-page: 53097
  year: 2021
  end-page: 53115
  ident: CR28
  article-title: Regression models for sediment transport in tropical rivers
  publication-title: Environ Sci Pollut Res
– volume: 172
  start-page: 32
  year: 2017
  end-page: 38
  ident: CR24
  article-title: Application of firefly algorithm-based support vector machines for prediction of field capacity and permanent wilting point
  publication-title: Soil till Res
– volume: 606
  start-page: 152
  year: 2022
  end-page: 172
  ident: CR73
  article-title: A labor division artificial bee colony algorithm based on behavioral development
  publication-title: Inf Sci
– volume: 36
  start-page: 4313
  issue: 11
  year: 2022
  end-page: 4342
  ident: CR22
  article-title: Combining radial basis function neural network models and inclusive multiple models for predicting suspended sediment loads
  publication-title: Water Resour Manag
– volume: 56
  start-page: 1
  issue: 9
  year: 2020
  end-page: 25
  ident: CR52
  article-title: Improved estimators of model performance efficiency for skewed hydrologic data
  publication-title: Water Resour Res
  doi: 10.1029/2020wr027101
– volume: 12
  start-page: 1481
  year: 2020
  ident: CR32
  article-title: Application of soft computing models with input vectors of snow cover area in addition to hydro-climatic data to predict the sediment loads
  publication-title: Water
– volume: 221
  start-page: 119741
  year: 2023
  ident: CR39
  article-title: Robust real-time polyp detection system design based on YOLO algorithms by optimizing activation functions and hyper-parameters with artificial bee colony (ABC)
  publication-title: Expert Syst Appl
– volume: 19
  start-page: 1726
  issue: 6
  year: 2019
  end-page: 1734
  ident: CR66
  article-title: Conjunction of a newly proposed emotional ANN (EANN) and wavelet transform for suspended sediment load modeling
  publication-title: Water Supply
– volume: 31
  start-page: 1343
  year: 2017
  end-page: 1359
  ident: CR13
  article-title: An estimation of the suspended sediment load using adaptive network based fuzzy inference system, support vector machine and artificial neural network models
  publication-title: Water Resour Manage
– volume: 129
  start-page: 279
  year: 2014
  end-page: 288
  ident: CR14
  article-title: A support vector machine-firefly algorithm based forecasting model to determine malaria transmission
  publication-title: Neurocomputing
– volume: 214
  start-page: 108
  year: 2009
  end-page: 132
  ident: CR36
  article-title: Comparative study of artificial bee colony algorithm
  publication-title: Appl Math Comput
– volume: 98
  start-page: 855
  issue: 5
  year: 2011
  end-page: 866
  ident: CR57
  article-title: Suspended sediment load prediction of river systems: An artificial neural network approach
  publication-title: Agric Water Manag
– volume: 72
  start-page: 915
  year: 2014
  end-page: 929
  ident: CR23
  article-title: Impact of suspended sediment load on the silting of SMBA reservoir (Algeria)
  publication-title: Environ Earth Sci
– volume: 26
  start-page: 68
  year: 2016
  end-page: 83
  ident: CR2
  article-title: Mangla reservoir, Pakistan—approaching 50 years of service
  publication-title: Dams Reserv
– volume: 62
  start-page: 1001
  issue: 7–8
  year: 2002
  end-page: 1009
  ident: CR81
  article-title: Dynamic mechanical properties of PTFE based short carbon fibre reinforced composites: experiment and artificial neural network prediction
  publication-title: Compos Sci Technol
– volume: 2
  start-page: 48
  issue: 11
  year: 2016
  end-page: 52
  ident: CR30
  article-title: Simulation and analysis of MPPT control with modified firefly algorithm for photovoltaic system
  publication-title: Int J Innov Stud Sci Eng Technol
– volume: 68
  start-page: 118
  year: 2014
  end-page: 133
  ident: CR34
  article-title: Assessment of hydropower and multi-dam power projects in Turkey
  publication-title: Renewable Energy
– volume: 148
  start-page: 04022034
  issue: 10
  year: 2022
  ident: CR64
  article-title: Prediction of bed-load sediment using newly developed support-vector machine techniques
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0001689
– volume: 5792
  start-page: 169
  year: 2009
  end-page: 178
  ident: CR75
  article-title: Firefly algorithms for multimodal optimization. stochastic algorithms: foundations and applications, SAGA 2009
  publication-title: Lect Notes Comput Sci
– year: 2021
  ident: CR1
  article-title: Advanced machine learning models development for suspended sediment prediction: comparative analysis study
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2021.1933210
– volume: 33
  start-page: 1217
  year: 2019
  end-page: 1231
  ident: CR51
  article-title: Evaluating diferent machine learning models for runof and suspended sediment simulation
  publication-title: Water Resour Manag
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  end-page: 84
  ident: CR76
  article-title: Firefly algorithm, stochastic test functions and design optimization
  publication-title: Int J Bio-Inspired Comput
– volume: 65
  start-page: 87
  issue: 1
  year: 2019
  end-page: 101
  ident: CR8
  article-title: Improved estimators of correlation and r2 for skewed hydrologic data
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2019.1686639
– ident: CR9
– year: 2022
  ident: CR58
  article-title: A multi-layer perceptron (MLP)-Fire fly algorithm (FFA)-based model for sediment prediction
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-06281-4
– volume: 13
  start-page: 2319
  issue: 17
  year: 2021
  ident: CR68
  article-title: A new framework for modelling fine sediment transport in rivers includes flocculation to inform reservoir management in wildfire impacted watersheds
  publication-title: Water
– volume: 115
  start-page: 105311
  year: 2022
  ident: CR41
  article-title: A review on the studies employing artificial bee colony algorithm to solve combinatorial optimization problems
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105311
– volume: 30
  start-page: 2179
  year: 2016
  end-page: 2194
  ident: CR15
  article-title: A hybrid double feedforward neural network for suspended sediment load estimation
  publication-title: Water Resour Manag
– volume: 818
  year: 2022
  ident: CR20
  article-title: Comparison of Bayesian, k-Nearest neighbor and Gaussian process regression methods for quantifying uncertainty of suspended sediment concentration prediction
  publication-title: Sci Total Environ
– volume: 39
  start-page: 867
  issue: 1
  year: 2023
  end-page: 891
  ident: CR31
  article-title: Spatial landslide susceptibility modelling using metaheuristic-based machine learning algorithms
  publication-title: Engineering with Computers
– volume: 612
  year: 2022
  ident: CR72
  article-title: Confidence intervals of the Kling-Gupta efficiency
  publication-title: J Hydrol
– volume: 80
  start-page: 1
  issue: 9
  year: 2021
  end-page: 39
  ident: CR27
  article-title: Artificial intelligence for suspended sediment load prediction: a review
  publication-title: Environ Earth Sci
– volume: 43
  start-page: 73
  year: 2012
  end-page: 82
  ident: CR45
  article-title: River suspended sediment estimation by climatic variables implication: comparative study among soft computing techniques
  publication-title: Comput Geosci
– start-page: 97
  year: 2009
  end-page: 106s
  ident: CR55
  article-title: Firefly algorithm for continuous constrained optimization tasks
  publication-title: Computational collective intelligence semantic web, social networks and multiagent systems
– volume: 15
  start-page: 966
  issue: 10
  year: 2022
  ident: CR29
  article-title: MODWT—Random vector functional link for river-suspended sediment load prediction
  publication-title: Arab J Geosci
– volume: 10
  start-page: 58
  issue: 3
  year: 2023
  ident: CR59
  article-title: Modeling various drought time scales via a merged artificial neural network with a firefly algorithm
  publication-title: Hydrology
  doi: 10.3390/hydrology10030058
– volume: 106
  year: 2021
  ident: CR5
  article-title: A survey on the artificial bee colony algorithm variants for binary, integer and mixed integer programming problems
  publication-title: Appl Soft Comput
– volume: 9
  start-page: 2630
  issue: 13
  year: 2019
  ident: CR54
  article-title: A comparative study of PSO-ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the heating load of buildings’ energy efficiency for smart city planning
  publication-title: Appl Sci
– volume: 29
  start-page: 1745
  issue: 6
  year: 1993
  end-page: 1752
  ident: CR71
  article-title: L-moment diagrams should replace productmoment diagrams
  publication-title: Water Resour Res
  doi: 10.1029/93WR00341
– volume: 31
  start-page: 89
  year: 1991
  end-page: 132
  ident: CR25
  article-title: Bedload transport
  publication-title: Earth Sci Rev
– volume: 428
  start-page: 94
  year: 2012
  end-page: 103
  ident: CR47
  article-title: Modeling discharge–sediment relationship using neural networks with artificial bee colony algorithm
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.01.026
– volume: 13
  start-page: 4648
  issue: 9
  year: 2021
  ident: CR3
  article-title: Suspended sediment modeling using a heuristic regression method hybridized with kmeans clustering
  publication-title: Sustainability
– volume: 377
  start-page: 80
  issue: 1
  year: 2009
  end-page: 91
  ident: CR26
  article-title: Decomposition of the mean squared error and nse performance criteria: implications for improving hydrological modelling
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.08.003
– volume: 346
  start-page: 328
  issue: 4
  year: 2009
  end-page: 348
  ident: CR35
  article-title: A new design method based on artificial bee colony algorithm for digital IIR filters
  publication-title: J Franklin Inst
– volume: 37
  start-page: 383
  year: 2022
  end-page: 398
  ident: CR4
  article-title: Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy system model
  publication-title: Int J Sediment Res
– volume: 27
  start-page: 185
  issue: 2
  year: 2004
  end-page: 195
  ident: CR17
  article-title: Estimation and forecasting of daily suspended sediment data by multi-layer perceptrons
  publication-title: Adv Water Resour
– ident: CR69
– volume: 90
  start-page: 2051
  issue: 12
  year: 2012
  end-page: 2071
  ident: CR19
  article-title: Evaluation of covariance matrix adaptation evolution strategy, shuffled complex evolution and firefly algorithms for phase stability
  publication-title: Phase Equilib Chem Equilib Probl
– volume: 23
  start-page: 3583
  issue: 25
  year: 2009
  end-page: 3597
  ident: CR44
  article-title: Wavelet regression model as an alternative to neural networks for monthly streamflow forecasting Hydrological
  publication-title: Process: Int J
– volume: 40
  start-page: 1417
  issue: 10
  year: 2015
  end-page: 1420
  ident: CR63
  article-title: What is suspended sediment?
  publication-title: Earth Surf Proc Land
– volume: 115
  start-page: 632
  year: 2015
  end-page: 644
  ident: CR62
  article-title: A support vector machine–firefly algorithm-based model for global solar radiation prediction
  publication-title: Sol Energy
– volume: 14
  start-page: 320
  issue: 4
  year: 2010
  end-page: 329
  ident: CR10
  article-title: Hydroelectric potential and environmental effects of multidam hydropower projects in Turkey
  publication-title: Energy Sustain Dev
– ident: CR65
– ident: CR38
– year: 2005
  ident: CR48
  article-title: Suspended sediment estimation using neuro-fuzzy and neural network approaches/Estimation des matières en suspension par des approches neurofloues et à base de réseau de neurones
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.2005.50.4.683
– volume: 34
  start-page: 125
  issue: 2
  year: 2019
  end-page: 135
  ident: CR11
  article-title: Prediction of daily sediment discharge using a back propagation neural network training algorithm: a case study of the Narmada river India
  publication-title: Int J Sed Res
– year: 2023
  ident: CR40
  article-title: Application of novel artificial bee colony optimized ANN and data preprocessing techniques for monthly streamflow estimation
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-023-28678-4
– volume: 11
  start-page: 10430
  issue: 21
  year: 2021
  ident: CR50
  article-title: Suitable land-use and land-cover allocation scenarios to minimize sediment and nutrient loads into kwan phayao, upper ing watershed
  publication-title: Thailand Appl Sci
– volume: 198
  year: 2021
  ident: CR60
  article-title: Implementation of hybrid particle swarm optimization-differential evolution algorithms coupled with multi-layer perceptron for suspended sediment load estimation
  publication-title: CATENA
– volume: 13
  start-page: 79
  year: 2023
  ident: CR53
  article-title: Sediment load prediction in Johor river: deep learning versus machine learning models
  publication-title: Appl Water Sci
– volume: 585
  year: 2020
  ident: CR70
  article-title: A survey on river water quality modelling using artificial intelligence models: 2000–2020
  publication-title: J Hydrol
– volume: 27
  start-page: 38094
  year: 2020
  end-page: 38116
  ident: CR7
  article-title: Suspended sediment load prediction using artificial neural network and ant lion optimization algorithm
  publication-title: Environ Sci Pollut Res
– volume: 34
  start-page: 125
  issue: 2
  year: 2019
  end-page: 135
  ident: CR12
  article-title: Prediction of daily sediment discharge using a back propagation neural network training algorithm: a case study of the Narmada River India
  publication-title: Int J Sediment Res
– volume: 639
  start-page: 826
  year: 2018
  end-page: 840
  ident: CR78
  article-title: Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models
  publication-title: Sci Total Environ
– volume: 22
  start-page: 3102
  year: 2008
  end-page: 3114
  ident: CR18
  article-title: Factors controlling specific sediment yield in the upper Indus river basin, Northern Pakistan
  publication-title: Hydrol Process
– volume: 13
  start-page: 501
  issue: 45
  year: 2014
  end-page: 519
  ident: CR42
  article-title: ANN models optimized using swarm intelligence algorithms
  publication-title: WSEAS Trans Comput
– volume: 450
  start-page: 48
  year: 2012
  end-page: 58
  ident: CR46
  article-title: Suspended sediment modeling using genetic programming and soft computing techniques
  publication-title: J Hydrol
– volume: 192
  start-page: 116332
  year: 2021
  ident: CR80
  article-title: Artificial bee colony based on adaptive search strategy and random grouping mechanism
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116332
– volume: 60
  start-page: 1566
  year: 2015
  end-page: 1586
  ident: CR49
  article-title: Assessment of sediment transport approaches for sand-bed rivers by means of machine learning
  publication-title: Hydrol Sci J
– volume: 67
  start-page: 1693
  year: 2019
  end-page: 1705
  ident: CR79
  article-title: Prediction of suspended sediment loading by means of hybrid artificial intelligence approaches
  publication-title: Acta Geophys
  doi: 10.1007/s11600-019-00374-3
– volume: 28
  start-page: 356
  issue: sup1
  year: 2022
  end-page: 365
  ident: CR67
  article-title: Coupling wavelet transform with multivariate adaptive regression spline for simulating suspended sediment load: independent testing approach
  publication-title: ISH J Hydraul Eng
– volume: 615
  start-page: 272
  year: 2018
  end-page: 281
  ident: CR16
  article-title: River suspended sediment modelling using the CART model: a comparative study of machine learning techniques
  publication-title: Sci Total Environ
– volume: 27
  start-page: 1533
  year: 2016
  end-page: 1542
  ident: CR77
  article-title: RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia
  publication-title: Neural Comput Appl
– volume: 138
  start-page: 20
  year: 2017
  end-page: 28
  ident: CR56
  article-title: Daily suspended sediment concentration simulation using hydrological data of Pranhita River Basin, India
  publication-title: Comput Electron Agric
– volume: 142
  start-page: 04016013
  issue: 5
  year: 2016
  ident: CR6
  article-title: Prediction of daily dewpoint temperature using a model combining the support vector machine with firefly algorithm
  publication-title: J Irrig Drain Eng
– volume: 23
  start-page: 730
  issue: 5
  year: 2009
  end-page: 747
  ident: CR43
  article-title: Optimization and simulation of reservoir operation with sediment evacuation: a case study of the Tarbela Dam Pakistan
  publication-title: Hydrol Process: Int J
– year: 2023
  ident: CR61
  article-title: Developing ensemble models for estimating sediment loads for diferent times scales
  publication-title: Environ Dev Sustain
  doi: 10.1007/s10668-023-03263-4
– volume: 23
  start-page: 730
  issue: 5
  year: 2009
  ident: 2785_CR43
  publication-title: Hydrol Process: Int J
  doi: 10.1002/hyp.7173
– volume: 9
  start-page: 2630
  issue: 13
  year: 2019
  ident: 2785_CR54
  publication-title: Appl Sci
  doi: 10.3390/app9132630
– volume: 34
  start-page: 125
  issue: 2
  year: 2019
  ident: 2785_CR11
  publication-title: Int J Sed Res
  doi: 10.1016/j.ijsrc.2018.10.010
– year: 2020
  ident: 2785_CR37
  publication-title: Cogent Eng
  doi: 10.1080/23311916.2020.1855741
– volume: 115
  start-page: 632
  year: 2015
  ident: 2785_CR62
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2015.03.015
– volume: 65
  start-page: 87
  issue: 1
  year: 2019
  ident: 2785_CR8
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2019.1686639
– year: 2022
  ident: 2785_CR58
  publication-title: Soft Comput
  doi: 10.1007/s00500-021-06281-4
– volume: 72
  start-page: 915
  year: 2014
  ident: 2785_CR23
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-014-3125-9
– volume: 27
  start-page: 1533
  year: 2016
  ident: 2785_CR77
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1952-6
– volume: 129
  start-page: 279
  year: 2014
  ident: 2785_CR14
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.030
– year: 2005
  ident: 2785_CR48
  publication-title: Hydrol Sci J
  doi: 10.1623/hysj.2005.50.4.683
– ident: 2785_CR9
– volume: 11
  start-page: 10430
  issue: 21
  year: 2021
  ident: 2785_CR50
  publication-title: Thailand Appl Sci
  doi: 10.3390/app112110430
– volume: 148
  start-page: 04022034
  issue: 10
  year: 2022
  ident: 2785_CR64
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0001689
– ident: 2785_CR38
– volume: 10
  start-page: 58
  issue: 3
  year: 2023
  ident: 2785_CR59
  publication-title: Hydrology
  doi: 10.3390/hydrology10030058
– volume: 346
  start-page: 328
  issue: 4
  year: 2009
  ident: 2785_CR35
  publication-title: J Franklin Inst
  doi: 10.1016/j.jfranklin.2008.11.003
– volume: 28
  start-page: 356
  issue: sup1
  year: 2022
  ident: 2785_CR67
  publication-title: ISH J Hydraul Eng
  doi: 10.1080/09715010.2020.1801528
– volume: 27
  start-page: 38094
  year: 2020
  ident: 2785_CR7
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-09876-w
– volume: 36
  start-page: 4313
  issue: 11
  year: 2022
  ident: 2785_CR22
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03256-4
– volume: 13
  start-page: 2319
  issue: 17
  year: 2021
  ident: 2785_CR68
  publication-title: Water
  doi: 10.3390/w13172319
– volume: 26
  start-page: 68
  year: 2016
  ident: 2785_CR2
  publication-title: Dams Reserv
  doi: 10.1680/jdare.16.00036
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 2785_CR76
  publication-title: Int J Bio-Inspired Comput
  doi: 10.1504/IJBIC.2010.032124
– volume: 377
  start-page: 80
  issue: 1
  year: 2009
  ident: 2785_CR26
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2009.08.003
– volume: 639
  start-page: 826
  year: 2018
  ident: 2785_CR78
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.05.153
– volume: 30
  start-page: 2179
  year: 2016
  ident: 2785_CR15
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-016-1281-2
– volume: 27
  start-page: 185
  issue: 2
  year: 2004
  ident: 2785_CR17
  publication-title: Adv Water Resour
  doi: 10.1016/j.advwatres.2003.10.003
– volume: 37
  start-page: 383
  year: 2022
  ident: 2785_CR4
  publication-title: Int J Sediment Res
  doi: 10.1016/j.ijsrc.2021.10.001
– volume: 43
  start-page: 73
  year: 2012
  ident: 2785_CR45
  publication-title: Comput Geosci
  doi: 10.1016/j.cageo.2012.02.007
– volume: 56
  start-page: 1
  issue: 9
  year: 2020
  ident: 2785_CR52
  publication-title: Water Resour Res
  doi: 10.1029/2020wr027101
– volume: 62
  start-page: 1001
  issue: 7–8
  year: 2002
  ident: 2785_CR81
  publication-title: Compos Sci Technol
  doi: 10.1016/S0266-3538(02)00036-2
– volume: 115
  start-page: 105311
  year: 2022
  ident: 2785_CR41
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105311
– volume: 60
  start-page: 1566
  year: 2015
  ident: 2785_CR49
  publication-title: Hydrol Sci J
  doi: 10.1080/02626667.2014.909599
– volume: 80
  start-page: 1
  issue: 9
  year: 2021
  ident: 2785_CR27
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-021-09625-3
– volume: 2
  start-page: 48
  issue: 11
  year: 2016
  ident: 2785_CR30
  publication-title: Int J Innov Stud Sci Eng Technol
– volume: 68
  start-page: 118
  year: 2014
  ident: 2785_CR34
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2014.01.031
– volume: 49
  start-page: 5732
  issue: 9
  year: 2013
  ident: 2785_CR74
  publication-title: Water Resour Res
  doi: 10.1002/wrcr.20452
– volume: 200
  year: 2021
  ident: 2785_CR33
  publication-title: CATENA
  doi: 10.1016/j.catena.2021.105142
– volume: 106
  year: 2021
  ident: 2785_CR5
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2021.107351
– volume: 14
  start-page: 320
  issue: 4
  year: 2010
  ident: 2785_CR10
  publication-title: Energy Sustain Dev
  doi: 10.1016/j.esd.2010.09.003
– volume: 23
  start-page: 3583
  issue: 25
  year: 2009
  ident: 2785_CR44
  publication-title: Process: Int J
– volume: 428
  start-page: 94
  year: 2012
  ident: 2785_CR47
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.01.026
– volume: 90
  start-page: 2051
  issue: 12
  year: 2012
  ident: 2785_CR19
  publication-title: Phase Equilib Chem Equilib Probl
– volume: 40
  start-page: 1417
  issue: 10
  year: 2015
  ident: 2785_CR63
  publication-title: Earth Surf Proc Land
  doi: 10.1002/esp.3730
– start-page: 97
  volume-title: Computational collective intelligence semantic web, social networks and multiagent systems
  year: 2009
  ident: 2785_CR55
  doi: 10.1007/978-3-642-04441-0_8
– volume: 22
  start-page: 3102
  year: 2008
  ident: 2785_CR18
  publication-title: Hydrol Process
  doi: 10.1002/hyp.6896
– volume: 192
  start-page: 116332
  year: 2021
  ident: 2785_CR80
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116332
– volume: 28
  start-page: 53097
  year: 2021
  ident: 2785_CR28
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-021-14479-0
– volume: 13
  start-page: 79
  year: 2023
  ident: 2785_CR53
  publication-title: Appl Water Sci
  doi: 10.1007/s13201-023-01874-w
– volume: 98
  start-page: 855
  issue: 5
  year: 2011
  ident: 2785_CR57
  publication-title: Agric Water Manag
  doi: 10.1016/j.agwat.2010.12.012
– year: 2023
  ident: 2785_CR40
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-023-28678-4
– volume: 142
  start-page: 04016013
  issue: 5
  year: 2016
  ident: 2785_CR6
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0001015
– volume: 450
  start-page: 48
  year: 2012
  ident: 2785_CR46
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2012.05.031
– volume: 39
  start-page: 867
  issue: 1
  year: 2023
  ident: 2785_CR31
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-022-01695-6
– volume: 13
  start-page: 501
  issue: 45
  year: 2014
  ident: 2785_CR42
  publication-title: WSEAS Trans Comput
– year: 2023
  ident: 2785_CR61
  publication-title: Environ Dev Sustain
  doi: 10.1007/s10668-023-03263-4
– year: 2021
  ident: 2785_CR1
  publication-title: Geocarto Int
  doi: 10.1080/10106049.2021.1933210
– volume: 33
  start-page: 1217
  year: 2019
  ident: 2785_CR51
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-018-2178-z
– volume: 29
  start-page: 1745
  issue: 6
  year: 1993
  ident: 2785_CR71
  publication-title: Water Resour Res
  doi: 10.1029/93WR00341
– volume: 818
  year: 2022
  ident: 2785_CR20
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2021.151760
– volume: 19
  start-page: 1726
  issue: 6
  year: 2019
  ident: 2785_CR66
  publication-title: Water Supply
  doi: 10.2166/ws.2019.044
– volume: 138
  start-page: 20
  year: 2017
  ident: 2785_CR56
  publication-title: Comput Electron Agric
  doi: 10.1016/j.compag.2017.04.005
– volume: 34
  start-page: 125
  issue: 2
  year: 2019
  ident: 2785_CR12
  publication-title: Int J Sediment Res
  doi: 10.1016/j.ijsrc.2018.10.010
– volume: 214
  start-page: 108
  year: 2009
  ident: 2785_CR36
  publication-title: Appl Math Comput
– volume: 221
  start-page: 119741
  year: 2023
  ident: 2785_CR39
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.119741
– volume: 172
  start-page: 32
  year: 2017
  ident: 2785_CR24
  publication-title: Soil till Res
  doi: 10.1016/j.still.2017.04.009
– volume: 13
  start-page: 4648
  issue: 9
  year: 2021
  ident: 2785_CR3
  publication-title: Sustainability
  doi: 10.3390/su13094648
– volume: 585
  year: 2020
  ident: 2785_CR70
  publication-title: J Hydrol
– volume: 15
  start-page: 966
  issue: 10
  year: 2022
  ident: 2785_CR29
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-10150-1
– ident: 2785_CR69
– volume: 198
  year: 2021
  ident: 2785_CR60
  publication-title: CATENA
  doi: 10.1016/j.catena.2020.105024
– volume: 615
  start-page: 272
  year: 2018
  ident: 2785_CR16
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.09.293
– volume: 5792
  start-page: 169
  year: 2009
  ident: 2785_CR75
  publication-title: Lect Notes Comput Sci
  doi: 10.1007/978-3-642-04944-6_14
– volume: 31
  start-page: 1343
  year: 2017
  ident: 2785_CR13
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-017-1581-1
– volume: 62
  start-page: 736
  year: 2018
  ident: 2785_CR21
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2017.10.040
– volume: 67
  start-page: 1693
  year: 2019
  ident: 2785_CR79
  publication-title: Acta Geophys
  doi: 10.1007/s11600-019-00374-3
– ident: 2785_CR65
– volume: 606
  start-page: 152
  year: 2022
  ident: 2785_CR73
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.05.065
– volume: 612
  year: 2022
  ident: 2785_CR72
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2022.127968
– volume: 12
  start-page: 1481
  year: 2020
  ident: 2785_CR32
  publication-title: Water
  doi: 10.3390/w12051481
– volume: 31
  start-page: 89
  year: 1991
  ident: 2785_CR25
  publication-title: Earth Sci Rev
  doi: 10.1016/0012-8252(91)90017-A
SSID ssj0017754
ssib007539910
ssib057179955
ssib001127189
Score 2.3913147
Snippet The service life of downstream dams, river hydraulics, waterworks construction, and reservoir management is significantly affected by the amount of sediment...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3907
SubjectTerms Accuracy
Algorithms
Aquatic Pollution
Artificial neural networks
Biomimetics
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Dam construction
Earth and Environmental Science
Earth Sciences
Environment
Estimation
Fluid flow
Forecasting
Heuristic methods
Hydraulics
Math. Appl. in Environmental Science
Neural networks
Optimization
Optimization techniques
Original Paper
Physics
Probability Theory and Stochastic Processes
Reservoir management
Rivers
Search algorithms
Sediment load
Sediments
Service life
Statistical analysis
Statistical models
Statistics for Engineering
Stream discharge
Stream flow
Swarm intelligence
Waste Water Technology
Water Management
Water Pollution Control
Water resources
Water resources management
Water utilities
Waterworks
SummonAdditionalLinks – databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtNAEF6hIlQ48BOoCBQ0B250pTpe79rcIGpUIcEBqNSbtd6dkEquHcWJqjwBL8Kb9MU6s9k4gFAFV3u8a2lmd2Y0830jxBufOVWhR4mkXskcUjJ3rpBkK7kZTVOVGQYKf_qsT8_Ux_PsPNLkMBbmj_p9IPs0RpIn4WpjnknKdO6Sk9KhMKvHfcWAmdwCkijVkknmIkDm72v87oR2kWVfDH0g9lfN3K6vbF3_4m8mj8XDGCjC-41mn4g72AzEo-0QBohnciAOTnZQNZKPz7uB2I_zzWfrgbgXGj1d91T8_EreimWhbq0HClnR2Y57n4GRJmCBAfkkQdtCS_fJZQRqwnwHy3wHE7opp_UabOPDL254KOADIozpOm3oTf29XVwsZ5cdMPvVFc8EBWbPJLFm03sOYQwPb33RwPWPdrGawRfuE3kmziYn38anMk5qkC4t9FJ6ZZjZMOcitq0Kb22q0KCn5BALylPRFInLvCpSCphUjlnidMUFR5NNj5226YHYa9oGnwvwOkFMR86OclQVJejHaLx2STWlwKPy2VAkW9WVLtKY8zSNuuwJmIO6S_qhMqi7TIbibf_NfEPicav04dYiyniguzJluASlwqoYiqOtlexe37baUW9J_7D5i_9b_aW4P2K7Dt2Fh2JvuVjhK4qSltXrcDxuANdJCNU
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQ9lBx4KdQsaigOXCjrppNHCfcStVVhUSFgJXKKXLsWbYiTVabrKrtC_RFeBNejJnEu4EKVeUWyRM7kcfzo_H3jRBvnLJRjg4l0vZK5pCSibWpJF1J9GgaRkozUPjjWXw6iT6cq3NPk8NYmFv1-5bsU2tJnoSrjYmSlOlsxYri7oHYmpx9OvrWwofCWDKzXP-sUo-Q-fckf3uhPrTcVEMfiu1lOTerK1MUfzic8eOuc1Hd8hTyPZMfB8smP7DXt1gc7_cvT8QjH3fCUacoT8UDLHfE7kkPc6NBf87rHbHte6PPVs_Ezy_k31gCiso4oCAXran5tjQwNgUMMISfJGhmqMgCXXpoJ8x7IOc7GJNtnRYrMKVrv6JjroD3iHBMBrikkeJ7tbhoZpc1MF_WFXcRBebbJLGyu60ObeMeXvqihF831WI5g898s-S5mIxPvh6fSt_bQdowjRvpIs1ciAmXvU2eOmPCCDU6SicxpcwWdRpY5aI0pBArSlAFNs65RKnV9NDGJtwVg7Iq8YUAFweI4ciaUYJRTin9IWoX2yCfUqiSOzUUwXqvM-uJz7n_RpFtKJvbjcnog7J2Y7JgKN5u3pl3tB93Su-tVSjzJqDOQgZYUPIcpUOxv1arfviu2fY3qnePxV_-n_ieGDSLJb6iUKrJX_sz9BvsUxXo
  priority: 102
  providerName: Unpaywall
Title Sediment load forecasting from a biomimetic optimization perspective: Firefly and Artificial Bee Colony algorithms empowered neural network modeling in Çoruh River
URI https://link.springer.com/article/10.1007/s00477-024-02785-1
https://www.proquest.com/docview/3110809449
https://doi.org/10.1007/s00477-024-02785-1
UnpaywallVersion publishedVersion
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-3259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017754
  issn: 1436-3259
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0017754
  issn: 1436-3259
  databaseCode: 8FG
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017754
  issn: 1436-3259
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017754
  issn: 1436-3259
  databaseCode: U2A
  dateStart: 19990404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1fb9MwED9t7cPgAcFgojAqP_DGLJbE-YeEUFe1m0BU06DS9hQ5tkuRsqSsraZ-Ar4I34Qvxp3rJPBS8ZKH2Imt3Pl8zt3vdwCvdahEbrThBsXLiUOKJ0qlHHUlif1ZIMKYgMKfJ9HFVHy8Dq_3YFJjYSitsraJ1lDrStE_8rcB5avjWUSkHxY_OFWNouhqXUJDutIK-r2lGNuHrk_MWB3ono0ml1dNXIH43izeKIg4UdE5GI0F0xFxYsxxz6K4ZhJy79-tqvU_m5DpQzhYlwu5uZdF8deuNH4Mj5w7yQZb-T-BPVMewtGoRa9ho1u-y0M4cCXP55un8OsLblvUgxWV1Ax9V6PkkpKgGUFOmGSEzMce-GZWoWG5dYhNtmjxme_YGE3mrNgwWWo7iy0hBTszhg3RrpbYUnzD77ia3y4Z0WDdU3FQRjSa2K3cJqEzW4-Hhv5est8_q7v1nF1RwsgzmI5HX4cX3JVs4CpIoxXXIiaKw4Si2TJPtZSBMLHReEo0KR5YTZx6KtQiDdBzEokJPRXlFHmMw9mpimRwBJ2yKs1zYDryjAl8Jf3EiBxP6qcm1pHy8hl6ILkOe-DV0smU4zOnshpF1jAxW4lmOKHMSjTzevCmeWaxZfPY2fu4FnrmVvYya_WwBye1IrTNu9520ijLfwz-YvfgL-GBT6pq0wqPobO6W5tX6B6t8j7sJ-PzPnQH5zefRn23AvDuMBrideoP8N50cjm4-QPV6BMy
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6V9hB6QFCoCBTYA5zoCmyv_5AqREuilLYRKq3Um1nvbhok1w51oihP0Bfpc3DhxZhx1jZcIi4973jX0oxnZzzzfQPwWvtKpEYbblC9nDikeKRUzNFWotAdecIPCSh8MgwG5-LLhX-xBr9qLAy1VdY-sXLUulD0j_ydR_3qmIuI-OPkJ6epUVRdrUdoSDtaQe9VFGMW2HFkFnNM4cq9w8-o7zeu2--dHQy4nTLAlRcHU65FSKx8ERVgZRprKT1hQqMxsTEx5lgmjB3laxF7eNmLyPiOClIqloX-6L0KpIf73oMN4YkYk7-N_d7w62lTxyB-uQrf5AWcqO8sbKcC7xFRY8jxbKqjRj53_r0a23i3KdFuQmeWT-RiLrPsr1uw_xAe2PCVfVra2yNYM_kWbPdatBwuWndRbkHHjlgfLx7D7Te8JkmCZYXUDGNlo2RJTdeMIC5MMmICQAncmRXoyK4sQpRNWjzoB9ZHFz3KFkzmunqLJQEG2zeGHaAfz3Elu0S9TcdXJSParTkNI2VE24li-bLpnVXzf-joHzn7fVNcz8bslBpUnsD5nShvG9bzIjdPgenAMcZzlXQjI9IQ_ZoJdaCcdIQRT6r9Lji1dhJl-dNpjEeWNMzPlUYTfKGk0mjidOFt88xkyR6yUnqnVnpiPUmZtHbfhd3aENrlVbvtNsbyH4c_W334K-gMzk6Ok-PD4dFzuO-S2VYtjTuwPr2emRcYmk3Tl9b-GXy_60_uDzyxSGI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB6VIlE4IChUbCngA5yo1ebXCRJC0Da0FCoEVOotOLbDVkqTpdnVap-AF-EpuPJizCROApcVl549sS3NeDzOzPcNwFMdKD8z2nCD6uXEIcUjpWKOthIJN_f8QBBQ-MNJeHjqvzsLzlbgV4eFobLKzic2jlpXiv6R73hUr45vET_eyW1ZxMf95NXkO6cOUpRp7dpptCZybBZzfL7VL4_2UdfPXDc5-LJ3yG2HAa68OJxy7Qti5Iso-SqzWEvp-UYYjY8aE-P7yojYUYH2Yw8vej8ygaPCjBJlIsh3VSg9nPcaXBfE4k4o9eRtn8EgZrkG2eSFnEjvLGCnge0RRaPguDJlUKOAO_9eikOk2ydnb8HarJzIxVwWxV_3X3IHbtvAlb1uLe0urJhyHTYOBpwcDlpHUa_Dmm2uPl7cg5-f8YIkCVZUUjOMko2SNZVbMwK3MMmIAwAlcGZWoQu7sNhQNhmQoC9Ygs45LxZMlrrZRUt9wd4Yw_bQg5c4UnxDLU3HFzUjwq05tSFlRNiJYmVb7s6azj-09HnJfv-oLmdj9olKU-7D6ZWobgNWy6o0D4Dp0DHGc5V0I-NnAj2aETpUTpZjrJPpYAROp51UWeZ0auBRpD3nc6PRFDeUNhpNnRE877-ZtLwhS6W3OqWn1ofU6WDxI9juDGEYXjbbdm8s_7H45vLFn8ANPGjp-6OT44dw0yWrbWoZt2B1ejkzjzAmm2aPG-Nn8PWqT9sfNJVF_A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELbQ9lBx4KdQsaigOXCjrppNHCfcStVVhUSFgJXKKXLsWbYiTVabrKrtC_RFeBNejJnEu4EKVeUWyRM7kcfzo_H3jRBvnLJRjg4l0vZK5pCSibWpJF1J9GgaRkozUPjjWXw6iT6cq3NPk8NYmFv1-5bsU2tJnoSrjYmSlOlsxYri7oHYmpx9OvrWwofCWDKzXP-sUo-Q-fckf3uhPrTcVEMfiu1lOTerK1MUfzic8eOuc1Hd8hTyPZMfB8smP7DXt1gc7_cvT8QjH3fCUacoT8UDLHfE7kkPc6NBf87rHbHte6PPVs_Ezy_k31gCiso4oCAXran5tjQwNgUMMISfJGhmqMgCXXpoJ8x7IOc7GJNtnRYrMKVrv6JjroD3iHBMBrikkeJ7tbhoZpc1MF_WFXcRBebbJLGyu60ObeMeXvqihF831WI5g898s-S5mIxPvh6fSt_bQdowjRvpIs1ciAmXvU2eOmPCCDU6SicxpcwWdRpY5aI0pBArSlAFNs65RKnV9NDGJtwVg7Iq8YUAFweI4ciaUYJRTin9IWoX2yCfUqiSOzUUwXqvM-uJz7n_RpFtKJvbjcnog7J2Y7JgKN5u3pl3tB93Su-tVSjzJqDOQgZYUPIcpUOxv1arfviu2fY3qnePxV_-n_ieGDSLJb6iUKrJX_sz9BvsUxXo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sediment+load+forecasting+from+a+biomimetic+optimization+perspective%3A+Firefly+and+Artificial+Bee+Colony+algorithms+empowered+neural+network+modeling+in+%C3%87oruh+River&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Katipo%C4%9Flu%2C+Okan+Mert&rft.au=Kartal%2C+Veysi&rft.au=Pande%2C+Chaitanya+Baliram&rft.date=2024-10-01&rft.pub=Springer+Nature+B.V&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=38&rft.issue=10&rft.spage=3907&rft.epage=3927&rft_id=info:doi/10.1007%2Fs00477-024-02785-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon