Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm
•We review the recent published segmentation and classification techniques for the brain magnetic resonance images (MRI).•We proposed a hybrid intelligent technique for automatic detection of brain tumor through MR Images.•The technique has three stages: segmentation, features extraction/reduction a...
Saved in:
| Published in | Expert systems with applications Vol. 41; no. 11; pp. 5526 - 5545 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier Ltd
01.09.2014
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0957-4174 1873-6793 |
| DOI | 10.1016/j.eswa.2014.01.021 |
Cover
| Abstract | •We review the recent published segmentation and classification techniques for the brain magnetic resonance images (MRI).•We proposed a hybrid intelligent technique for automatic detection of brain tumor through MR Images.•The technique has three stages: segmentation, features extraction/reduction and classification of MR images into normal or abnormal.•The experiments were carried out on 101 images (14 normal and 87 abnormal) from a real human brain MRI dataset.•The classification accuracy on both training and test images is 99%.
Computer-aided detection/diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. The objective of this paper is to review the recent published segmentation and classification techniques and their state-of-the-art for the human brain magnetic resonance images (MRI). The review reveals the CAD systems of human brain MRI images are still an open problem. In the light of this review we proposed a hybrid intelligent machine learning technique for computer-aided detection system for automatic detection of brain tumor through magnetic resonance images. The proposed technique is based on the following computational methods; the feedback pulse-coupled neural network for image segmentation, the discrete wavelet transform for features extraction, the principal component analysis for reducing the dimensionality of the wavelet coefficients, and the feed forward back-propagation neural network to classify inputs into normal or abnormal. The experiments were carried out on 101 images consisting of 14 normal and 87 abnormal (malignant and benign tumors) from a real human brain MRI dataset. The classification accuracy on both training and test images is 99% which was significantly good. Moreover, the proposed technique demonstrates its effectiveness compared with the other machine learning recently published techniques. The results revealed that the proposed hybrid approach is accurate and fast and robust. Finally, possible future directions are suggested. |
|---|---|
| AbstractList | Computer-aided detection/diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. The objective of this paper is to review the recent published segmentation and classification techniques and their state-of-the-art for the human brain magnetic resonance images (MRI). The review reveals the CAD systems of human brain MRI images are still an open problem. In the light of this review we proposed a hybrid intelligent machine learning technique for computer-aided detection system for automatic detection of brain tumor through magnetic resonance images. The proposed technique is based on the following computational methods; the feedback pulse-coupled neural network for image segmentation, the discrete wavelet transform for features extraction, the principal component analysis for reducing the dimensionality of the wavelet coefficients, and the feed forward back-propagation neural network to classify inputs into normal or abnormal. The experiments were carried out on 101 images consisting of 14 normal and 87 abnormal (malignant and benign tumors) from a real human brain MRI dataset. The classification accuracy on both training and test images is 99% which was significantly good. Moreover, the proposed technique demonstrates its effectiveness compared with the other machine learning recently published techniques. The results revealed that the proposed hybrid approach is accurate and fast and robust. Finally, possible future directions are suggested. •We review the recent published segmentation and classification techniques for the brain magnetic resonance images (MRI).•We proposed a hybrid intelligent technique for automatic detection of brain tumor through MR Images.•The technique has three stages: segmentation, features extraction/reduction and classification of MR images into normal or abnormal.•The experiments were carried out on 101 images (14 normal and 87 abnormal) from a real human brain MRI dataset.•The classification accuracy on both training and test images is 99%. Computer-aided detection/diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. The objective of this paper is to review the recent published segmentation and classification techniques and their state-of-the-art for the human brain magnetic resonance images (MRI). The review reveals the CAD systems of human brain MRI images are still an open problem. In the light of this review we proposed a hybrid intelligent machine learning technique for computer-aided detection system for automatic detection of brain tumor through magnetic resonance images. The proposed technique is based on the following computational methods; the feedback pulse-coupled neural network for image segmentation, the discrete wavelet transform for features extraction, the principal component analysis for reducing the dimensionality of the wavelet coefficients, and the feed forward back-propagation neural network to classify inputs into normal or abnormal. The experiments were carried out on 101 images consisting of 14 normal and 87 abnormal (malignant and benign tumors) from a real human brain MRI dataset. The classification accuracy on both training and test images is 99% which was significantly good. Moreover, the proposed technique demonstrates its effectiveness compared with the other machine learning recently published techniques. The results revealed that the proposed hybrid approach is accurate and fast and robust. Finally, possible future directions are suggested. |
| Author | Revett, Kenneth Mohsen, Heba M. El-Dahshan, El-Sayed A. Salem, Abdel-Badeeh M. |
| Author_xml | – sequence: 1 givenname: El-Sayed A. surname: El-Dahshan fullname: El-Dahshan, El-Sayed A. email: esldahshan@eelu.edu.eg organization: Faculty of Science, Ain Shams University, Postal code 11566 Cairo, Egypt – sequence: 2 givenname: Heba M. surname: Mohsen fullname: Mohsen, Heba M. email: hmohsen@fue.edu.eg organization: Faculty of Computers and Information Technology, Future University, Cairo, Egypt – sequence: 3 givenname: Kenneth surname: Revett fullname: Revett, Kenneth email: revettk@westminster.ac.uk organization: The School of Computer Science, University of Westminster, London HA1 3TP, UK – sequence: 4 givenname: Abdel-Badeeh M. surname: Salem fullname: Salem, Abdel-Badeeh M. email: abmsalem@yahoo.com organization: Faculty of Computer and Information Science, Ain Shams University, Cairo, Egypt |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28438278$$DView record in Pascal Francis |
| BookMark | eNqFkUuLFDEUhYOMYM_oH3CVjeCmyiSV5FaJm6HxMTAiiOIypPLoTlOVtElqhvn3VtPjxsW4upvvO1zOuUQXMUWH0GtKWkqofHdoXbnXLSOUt4S2hNFnaEN76BoJQ3eBNmQQ0HAK_AW6LOVACAVCYIN-bdN8XKrLjQ7WWWyD3sVUQsHJ4_0y64jHrEPEdZlTxnWf07Lb46_fb97ja1yWfOcesI4WaxzdPdbTLuVQ9_NL9NzrqbhXj_cK_fz08cf2S3P77fPN9vq2Md0gazN6Ibzw0vrOAR897zUBR_X6G_QDcEu5FXI0bGSGD-AJAysZeDEKb0Y5dFfo7Tn3mNPvxZWq5lCMmyYdXVqKohJgGKDn4v-okEAkkYKs6JtHVBejJ591NKGoYw6zzg-K9bzrGfQr1585k1Mp2XllQtU1pFjX0iZFiTrNow7qNI86zaMIVes8q8r-Uf-mPyl9OEturfQuuKyKCS4aZ0N2piqbwlP6H-J9qm4 |
| CitedBy_id | crossref_primary_10_1007_s13735_019_00174_x crossref_primary_10_1080_21681163_2019_1697966 crossref_primary_10_1007_s11042_024_19683_x crossref_primary_10_3390_s23177614 crossref_primary_10_1016_j_compbiomed_2020_103766 crossref_primary_10_1016_j_eswa_2015_08_036 crossref_primary_10_1002_ima_22897 crossref_primary_10_1016_j_bspc_2023_104675 crossref_primary_10_1038_srep35760 crossref_primary_10_3233_XST_200644 crossref_primary_10_1142_S0218001422520085 crossref_primary_10_1016_j_asoc_2018_04_031 crossref_primary_10_1016_j_compbiomed_2023_107723 crossref_primary_10_1007_s00521_019_04369_5 crossref_primary_10_1016_j_eswa_2019_112821 crossref_primary_10_1007_s11517_018_1923_z crossref_primary_10_1109_RBME_2019_2917780 crossref_primary_10_1007_s13198_021_01221_9 crossref_primary_10_3390_biomedicines12071395 crossref_primary_10_1016_j_neucom_2020_03_097 crossref_primary_10_1007_s11042_020_10335_4 crossref_primary_10_3233_JIFS_219298 crossref_primary_10_1016_j_eswa_2023_120071 crossref_primary_10_1109_ACCESS_2023_3326447 crossref_primary_10_1080_03772063_2021_1905562 crossref_primary_10_1016_j_jocs_2018_11_008 crossref_primary_10_3174_ajnr_A6704 crossref_primary_10_1080_08839514_2018_1504500 crossref_primary_10_1016_j_patrec_2018_07_026 crossref_primary_10_1051_itmconf_20257003028 crossref_primary_10_1109_TSUSC_2018_2883822 crossref_primary_10_1007_s11227_022_04420_8 crossref_primary_10_1080_03772063_2020_1792360 crossref_primary_10_1007_s11042_020_10443_1 crossref_primary_10_3389_fonc_2022_969907 crossref_primary_10_17482_uumfd_270102 crossref_primary_10_1007_s11042_022_12162_1 crossref_primary_10_1007_s42979_023_01877_z crossref_primary_10_1016_j_bspc_2015_05_014 crossref_primary_10_1016_j_cmpb_2017_01_006 crossref_primary_10_1016_j_future_2019_01_047 crossref_primary_10_1016_j_measurement_2019_107336 crossref_primary_10_1080_24725579_2019_1646358 crossref_primary_10_1186_s40064_015_1523_4 crossref_primary_10_1080_13682199_2023_2215031 crossref_primary_10_1016_j_mri_2019_05_043 crossref_primary_10_1142_S0219467823500122 crossref_primary_10_1049_iet_ipr_2019_1416 crossref_primary_10_1142_S0219691316500417 crossref_primary_10_3390_tomography11030024 crossref_primary_10_1016_j_acra_2017_12_027 crossref_primary_10_1002_ima_22637 crossref_primary_10_1002_ima_22638 crossref_primary_10_1007_s00138_024_01542_2 crossref_primary_10_1109_ACCESS_2016_2611530 crossref_primary_10_1016_j_compbiomed_2023_107063 crossref_primary_10_1016_j_eswa_2019_05_038 crossref_primary_10_1515_bmt_2015_0152 crossref_primary_10_1007_s10916_015_0311_6 crossref_primary_10_1109_ACCESS_2024_3442979 crossref_primary_10_3389_fpubh_2021_752509 crossref_primary_10_1007_s00521_024_10246_7 crossref_primary_10_1007_s10586_018_2044_z crossref_primary_10_1002_ima_22983 crossref_primary_10_1007_s11042_022_12414_0 crossref_primary_10_1007_s00500_021_05748_8 crossref_primary_10_1007_s10586_018_2236_6 crossref_primary_10_1109_ACCESS_2021_3061487 crossref_primary_10_1007_s00371_023_02978_9 crossref_primary_10_1016_j_bspc_2020_102089 crossref_primary_10_1016_j_cmpb_2019_105205 crossref_primary_10_1016_j_mri_2019_05_028 crossref_primary_10_1186_s13640_018_0332_4 crossref_primary_10_1016_j_asoc_2019_105946 crossref_primary_10_4103_cmrp_cmrp_85_22 crossref_primary_10_1007_s11042_017_5281_x crossref_primary_10_4015_S1016237219500194 crossref_primary_10_1016_j_bbe_2020_03_003 crossref_primary_10_1007_s11042_016_4171_y crossref_primary_10_3389_fnins_2023_1120781 crossref_primary_10_3389_fonc_2021_689802 crossref_primary_10_1007_s00500_024_09830_9 crossref_primary_10_1007_s12065_020_00539_w crossref_primary_10_1016_j_artmed_2023_102678 crossref_primary_10_1016_j_engappai_2018_04_026 crossref_primary_10_1177_21582440231214843 crossref_primary_10_1002_ima_22298 crossref_primary_10_1007_s11227_023_05581_w crossref_primary_10_1109_RBME_2017_2715350 crossref_primary_10_1142_S0218001421570056 crossref_primary_10_1088_2057_1976_ac107b crossref_primary_10_1016_j_cogsys_2019_10_001 crossref_primary_10_1038_s41598_021_89686_3 crossref_primary_10_1016_j_eswa_2019_113159 crossref_primary_10_1007_s11042_016_4218_0 crossref_primary_10_2174_1573394719666230816091316 crossref_primary_10_1155_2023_1224619 crossref_primary_10_2174_1573405618666220426100944 crossref_primary_10_1016_j_bspc_2015_06_004 crossref_primary_10_1007_s11042_020_08898_3 crossref_primary_10_5472_marumj_1367328 crossref_primary_10_1016_j_bspc_2018_06_003 crossref_primary_10_1016_j_compmedimag_2024_102436 crossref_primary_10_1111_jsap_13666 crossref_primary_10_3390_computers11010010 crossref_primary_10_3233_BME_191066 crossref_primary_10_1007_s40846_021_00612_4 crossref_primary_10_1016_j_neucom_2015_11_034 crossref_primary_10_1016_j_cmpb_2020_105797 crossref_primary_10_1016_j_cosrev_2018_10_003 crossref_primary_10_1049_iet_ipr_2016_1103 crossref_primary_10_1007_s11831_023_09930_z crossref_primary_10_1088_1742_6596_1998_1_012012 crossref_primary_10_1016_j_egyr_2021_10_085 crossref_primary_10_1007_s13534_015_0208_9 crossref_primary_10_1007_s11760_017_1091_x crossref_primary_10_1002_mp_12661 crossref_primary_10_1016_j_image_2017_05_013 crossref_primary_10_1007_s11042_023_18025_7 crossref_primary_10_1155_2022_1391340 crossref_primary_10_1109_ACCESS_2020_2993227 crossref_primary_10_1016_j_bspc_2022_103949 crossref_primary_10_1142_S2196888822500117 crossref_primary_10_1109_ACCESS_2022_3140289 crossref_primary_10_2196_15767 crossref_primary_10_3390_life11090894 crossref_primary_10_1002_ima_22391 crossref_primary_10_1016_j_bbe_2019_08_005 crossref_primary_10_1002_tee_22226 crossref_primary_10_29109_gujsc_1501181 crossref_primary_10_1002_ima_22276 crossref_primary_10_1002_cnm_2745 crossref_primary_10_1016_j_cmpb_2019_105134 crossref_primary_10_1007_s13139_024_00845_6 crossref_primary_10_1155_2017_9060124 crossref_primary_10_1080_0952813X_2018_1518997 crossref_primary_10_3390_s21227480 crossref_primary_10_1007_s11042_016_3958_1 crossref_primary_10_1016_j_mri_2019_06_010 crossref_primary_10_1007_s13748_022_00292_4 crossref_primary_10_1016_j_compbiomed_2017_02_002 crossref_primary_10_1134_S1054661821010156 crossref_primary_10_1002_ima_22144 crossref_primary_10_1002_ima_22266 crossref_primary_10_1007_s11042_018_7003_4 crossref_primary_10_1038_s12276_020_00501_x crossref_primary_10_1142_S0218126618501086 crossref_primary_10_1002_mp_13771 crossref_primary_10_1155_2022_1830010 crossref_primary_10_1186_s12911_023_02114_6 crossref_primary_10_1016_j_bspc_2020_101860 crossref_primary_10_3390_electronics9030475 crossref_primary_10_1007_s11042_016_3401_7 crossref_primary_10_3390_biomedicines11061715 crossref_primary_10_1007_s10278_023_00828_7 crossref_primary_10_1016_j_bspc_2021_102458 crossref_primary_10_1016_j_eswa_2021_115271 crossref_primary_10_1016_j_protcy_2016_05_153 crossref_primary_10_1016_j_eswa_2018_10_023 crossref_primary_10_1007_s11277_017_5211_2 crossref_primary_10_1007_s00500_018_3565_3 crossref_primary_10_1049_iet_ipr_2020_0469 crossref_primary_10_1016_j_compbiomed_2023_107551 crossref_primary_10_1007_s11042_024_18790_z crossref_primary_10_1007_s11045_019_00642_x crossref_primary_10_1007_s00500_023_07943_1 crossref_primary_10_1007_s11042_018_6731_9 crossref_primary_10_1007_s12553_024_00815_0 crossref_primary_10_3390_diagnostics11091573 crossref_primary_10_1007_s13246_017_0609_4 crossref_primary_10_1002_ima_22498 crossref_primary_10_1007_s00170_018_03266_w crossref_primary_10_1016_j_bspc_2023_105006 crossref_primary_10_1016_j_procs_2022_09_220 crossref_primary_10_1002_ima_22499 crossref_primary_10_1016_j_compeleceng_2023_108700 crossref_primary_10_3233_JAD_150848 crossref_primary_10_1016_j_bspc_2017_07_007 crossref_primary_10_1155_2019_9378014 crossref_primary_10_1016_j_promfg_2020_01_386 crossref_primary_10_1088_1742_6596_1892_1_012040 crossref_primary_10_1007_s11042_020_08760_6 crossref_primary_10_1016_j_asoc_2019_105758 crossref_primary_10_11834_jig_211197 crossref_primary_10_3390_e17127877 crossref_primary_10_1007_s13369_017_2966_4 crossref_primary_10_1109_LSP_2020_3034858 crossref_primary_10_1371_journal_pone_0291200 crossref_primary_10_1007_s10278_021_00557_9 crossref_primary_10_1080_08839514_2022_2031824 crossref_primary_10_1016_j_compmedimag_2019_101656 crossref_primary_10_1155_2020_8125392 crossref_primary_10_1002_ima_22123 crossref_primary_10_1007_s11063_020_10398_2 crossref_primary_10_3390_app6060169 crossref_primary_10_1155_2018_2512037 crossref_primary_10_3390_diagnostics11091589 crossref_primary_10_36548_jscp_2024_2_004 crossref_primary_10_1007_s00521_020_05082_4 crossref_primary_10_3389_fmed_2023_1232496 crossref_primary_10_1016_j_bspc_2018_10_010 crossref_primary_10_1080_03772063_2019_1604176 crossref_primary_10_1166_jmihi_2021_3872 crossref_primary_10_1007_s00521_023_09057_z crossref_primary_10_1016_j_neucom_2017_12_030 crossref_primary_10_1109_ACCESS_2018_2888488 crossref_primary_10_1016_j_cmpb_2021_105945 crossref_primary_10_1016_j_compbiomed_2020_103906 crossref_primary_10_1007_s11760_017_1182_8 crossref_primary_10_1016_j_procs_2018_01_117 crossref_primary_10_1007_s11045_016_0436_x crossref_primary_10_1016_j_cmpb_2021_106597 crossref_primary_10_1002_ima_22235 crossref_primary_10_1142_S0219691318500480 crossref_primary_10_1007_s11831_022_09758_z crossref_primary_10_1016_j_procs_2019_12_098 crossref_primary_10_1080_00273171_2017_1340824 crossref_primary_10_3390_diagnostics12082007 crossref_primary_10_1088_1742_6596_2115_1_012039 crossref_primary_10_1007_s11831_021_09572_z crossref_primary_10_1109_RBME_2019_2934500 crossref_primary_10_1088_2515_7639_ad5251 crossref_primary_10_2528_PIER15040602 crossref_primary_10_1109_ACCESS_2019_2901055 crossref_primary_10_3390_app10103429 crossref_primary_10_1007_s10278_024_01255_y crossref_primary_10_1016_j_bbe_2020_05_005 crossref_primary_10_1016_j_eswa_2014_05_036 crossref_primary_10_1016_j_compmedimag_2023_102218 crossref_primary_10_1093_comjnl_bxz035 crossref_primary_10_1155_2022_1541980 crossref_primary_10_1002_cpe_6541 crossref_primary_10_3390_math9172095 crossref_primary_10_1002_cpe_5214 crossref_primary_10_3390_app8091632 crossref_primary_10_1007_s13534_019_00103_1 crossref_primary_10_1109_ACCESS_2023_3347545 crossref_primary_10_1155_2022_9015778 crossref_primary_10_1007_s00138_020_01069_2 crossref_primary_10_1016_j_eswa_2017_06_038 crossref_primary_10_1155_2018_1048164 crossref_primary_10_1007_s11042_021_10937_6 crossref_primary_10_1007_s11042_015_2649_7 crossref_primary_10_7717_peerj_1251 crossref_primary_10_1007_s11831_023_10041_y crossref_primary_10_1007_s00521_022_07070_2 crossref_primary_10_1007_s11042_023_14857_5 crossref_primary_10_1016_j_nancom_2018_11_001 crossref_primary_10_3233_XST_180476 crossref_primary_10_3390_axioms11010015 crossref_primary_10_1038_s41598_021_98755_6 crossref_primary_10_3390_e21040401 crossref_primary_10_3390_s22197575 crossref_primary_10_3390_diagnostics14171888 crossref_primary_10_1007_s11227_018_2523_2 crossref_primary_10_1016_j_bspc_2020_101912 crossref_primary_10_1007_s11042_023_16806_8 crossref_primary_10_1002_ima_22211 crossref_primary_10_1007_s00521_016_2834_2 crossref_primary_10_1002_ima_22333 crossref_primary_10_1016_j_brainres_2023_148300 crossref_primary_10_1016_j_compmedimag_2018_03_004 crossref_primary_10_1186_s40478_022_01318_7 crossref_primary_10_1007_s11042_023_17101_2 crossref_primary_10_1007_s13246_019_00754_5 crossref_primary_10_1007_s00521_023_08281_x crossref_primary_10_1007_s11571_021_09774_y crossref_primary_10_1080_0952813X_2015_1132274 crossref_primary_10_1007_s00521_022_07388_x crossref_primary_10_1007_s40747_021_00563_y crossref_primary_10_1016_j_patrec_2020_10_017 crossref_primary_10_1016_j_procs_2017_08_318 crossref_primary_10_1016_j_bbe_2019_05_007 crossref_primary_10_3233_THC_161191 crossref_primary_10_1007_s10916_016_0525_2 crossref_primary_10_1016_j_jneumeth_2019_108520 crossref_primary_10_1007_s11042_022_11906_3 crossref_primary_10_1155_2017_4205141 crossref_primary_10_1002_ima_22202 crossref_primary_10_1016_j_asoc_2024_111284 crossref_primary_10_1016_j_bbe_2020_06_001 crossref_primary_10_1007_s11042_020_09676_x crossref_primary_10_1155_2022_6985927 crossref_primary_10_1080_03091902_2017_1382584 crossref_primary_10_1186_s40537_022_00632_0 crossref_primary_10_1016_j_patrec_2020_04_018 crossref_primary_10_1016_j_eswa_2018_07_039 crossref_primary_10_1155_2021_5591660 crossref_primary_10_3390_s17092049 crossref_primary_10_3389_fncom_2015_00066 crossref_primary_10_1016_j_asoc_2021_107567 crossref_primary_10_1007_s11517_020_02270_1 crossref_primary_10_32604_cmc_2021_016698 crossref_primary_10_1007_s11760_020_01793_2 crossref_primary_10_1002_ima_22312 crossref_primary_10_1109_TNNLS_2020_2995800 crossref_primary_10_1016_j_irbm_2019_04_005 crossref_primary_10_1007_s11042_024_20386_6 crossref_primary_10_1093_comjnl_bxad047 crossref_primary_10_1155_2022_2056807 crossref_primary_10_1016_j_cmpb_2018_04_011 crossref_primary_10_1016_j_compeleceng_2018_04_009 crossref_primary_10_1145_3481889 crossref_primary_10_1016_j_jocs_2017_02_009 crossref_primary_10_1080_21681163_2022_2083017 crossref_primary_10_1093_noajnl_vdac081 crossref_primary_10_1016_j_asoc_2016_03_014 crossref_primary_10_1177_1971400915576637 crossref_primary_10_1016_j_procs_2017_12_017 crossref_primary_10_1007_s10916_018_1135_y crossref_primary_10_3390_diagnostics14232710 crossref_primary_10_1002_ett_4170 crossref_primary_10_1007_s11042_023_17367_6 crossref_primary_10_1007_s13369_018_3320_1 crossref_primary_10_3390_bdcc8090097 crossref_primary_10_1016_j_eswa_2016_10_064 crossref_primary_10_3390_sym9030037 crossref_primary_10_1007_s11042_023_17760_1 crossref_primary_10_1016_j_media_2020_101692 crossref_primary_10_3389_frobt_2018_00120 |
| Cites_doi | 10.2528/PIER10090105 10.1016/j.media.2012.01.001 10.1117/1.600797 10.1016/j.compbiomed.2011.05.013 10.1016/j.compmedimag.2007.10.003 10.1016/j.asoc.2012.11.020 10.1016/j.neuroimage.2013.01.058 10.1016/j.compbiomed.2010.08.004 10.1016/S0895-6111(00)00037-9 10.1016/j.measurement.2010.03.013 10.1016/j.bspc.2006.12.001 10.1016/j.neucom.2012.08.047 10.1016/j.compmedimag.2008.10.008 10.1002/mrm.22147 10.1016/j.patrec.2005.02.011 10.1016/j.jmir.2010.03.002 10.1016/j.compmedimag.2010.02.001 10.1016/j.mri.2006.09.001 10.1016/j.compmedimag.2009.12.002 10.1109/34.824819 10.1016/j.patcog.2009.05.012 10.1016/j.medengphy.2007.06.009 10.1016/j.mri.2012.01.006 10.1016/j.asoc.2009.11.019 10.1016/j.jhydrol.2012.03.032 10.4018/jssci.2011040102 10.1007/s12194-011-0141-2 10.1016/j.zemedi.2012.03.007 10.1016/j.compbiomed.2013.07.001 10.1016/j.engappai.2010.09.008 10.1016/j.cviu.2010.09.007 10.1016/j.patrec.2005.03.019 10.1007/978-3-642-02906-6_63 10.1007/978-3-642-31298-4_28 10.1016/j.neulet.2011.07.049 10.1016/j.neuroimage.2007.05.018 10.1016/S0933-3657(98)00069-4 10.1162/neco.1990.2.3.293 10.1016/j.dsp.2009.07.002 10.1016/j.eswa.2011.02.012 10.1016/S0730-725X(03)00212-1 10.1016/j.asoc.2010.07.001 10.1016/S0730-725X(02)00477-0 10.1016/j.cmpb.2007.10.007 10.1016/j.cmpb.2011.10.010 10.1016/j.media.2008.06.014 10.1016/j.bspc.2006.05.002 10.1007/978-3-642-16687-7_13 10.3390/a2030925 10.1016/j.cmpb.2011.07.015 10.1016/j.cmpb.2008.04.003 10.1007/978-3-642-22555-0_40 10.1016/j.jneumeth.2008.08.017 10.1016/j.jneumeth.2009.05.026 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd 2015 INIST-CNRS |
| Copyright_xml | – notice: 2014 Elsevier Ltd – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2014.01.021 |
| DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1873-6793 |
| EndPage | 5545 |
| ExternalDocumentID | 28438278 10_1016_j_eswa_2014_01_021 S0957417414000426 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABBOA ABFNM ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNTT ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- 29G AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABKBG ABWVN ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW WUQ XPP ZMT ~HD BNPGV IQODW SSH 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c396t-bf55f5f6df3e74bf48a07e1a00778974d14d56bc2b2c497f027d627f5b5fcb693 |
| IEDL.DBID | .~1 |
| ISSN | 0957-4174 |
| IngestDate | Mon Sep 29 03:37:54 EDT 2025 Sun Sep 28 10:20:04 EDT 2025 Wed Apr 02 07:24:03 EDT 2025 Wed Oct 01 03:51:42 EDT 2025 Thu Apr 24 22:53:35 EDT 2025 Fri Feb 23 02:29:06 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Human brain tumors Medical imaging Segmentation Magnetic resonance images Classification Intelligent computer-aided diagnosis systems Feature extractions Medical informatics Visual cortex Image processing Brain cancer Feedback regulation Backpropagation algorithm Fixed image Selection criterion Computer assisted teaching Diagnosis Computer aided design Pattern extraction Capability index Backpropagation Computer vision Dimensionality Decision support system Pattern recognition Neural network Malignant tumor Discrete wavelet transforms Nuclear magnetic resonance imaging Image segmentation Wavelet transformation Automatic measurement Feature extraction Artificial intelligence Cancer Principal component analysis |
| Language | English |
| License | CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-bf55f5f6df3e74bf48a07e1a00778974d14d56bc2b2c497f027d627f5b5fcb693 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| PQID | 1567060650 |
| PQPubID | 23500 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_1677997845 proquest_miscellaneous_1567060650 pascalfrancis_primary_28438278 crossref_citationtrail_10_1016_j_eswa_2014_01_021 crossref_primary_10_1016_j_eswa_2014_01_021 elsevier_sciencedirect_doi_10_1016_j_eswa_2014_01_021 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-09-01 |
| PublicationDateYYYYMMDD | 2014-09-01 |
| PublicationDate_xml | – month: 09 year: 2014 text: 2014-09-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2014 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Zhang, Ruan, Lebonvallet, Liao, Zhu (b0135) 2011; 115 Jolliffe (b0440) 2002 Ortiz, Gorriz, Ramırez, Salas-Gonzalez (b0290) 2013; 114 Gasmi, Kharrat, Messaoud, Abid (b0220) 2012; 7325 Georgiadis, Cavouras, Kalatzis, Daskalakis, Kagadis, Sifaki (b0070) 2008; 89 Hiremath, Shivashankar, Pujari (b0425) 2006; 6 Juang, Wu (b0150) 2010; 43 El-Dahshan, Hosny, Salem (b0060) 2010; 20 Maitra, Chatterjee (b0340) 2008; 30 Gonzalez, Woods (b0460) 2008 Jaffar, MirzaA, Mahmud (b0320) 2011; 6 Harvard medical school (2014). Web LONI (2014). . Masulli, Schenone (b0120) 1999; 16 Marshkole, Singh, Thoke (b0015) 2011; 30 Kuwazuru, Arimura, Kakeda, Yamamoto, Magome, Yamashita (b0180) 2012; 5 Zöllner, Emblem, Schad (b0380) 2012; 22 Logeswari, Karnan (b0010) 2010; 2 < Shanthi, Sasikumar, Kesavadas (b0275) 2010; 41 Zexuan, Sun, Xia, Chen, Xia, Feng (b0250) 2012; 108 Herlidou-Meme, Constans, Carsin, Olivie, Eliat, Nadal-Desbarats (b0335) 2003; 21 (pp. 177–184). Berlin: Springer-Verlag. Zarandi, Zarinbal, Izadi (b0130) 2011; 11 2012). Demirhan, Güler (b0125) 2011; 24 Laboratory of neuro imaging: L NI. Jafarpour, Sedghi, Amirani (b0475) 2012; 37 Somasundaram, Kalaiselvi (b0230) 2010; 40 Zhang, Dong, Wu, Wang (b0375) 2011; 38 Yousefi, Azmi, Zahedi (b0310) 2012; 16 Brainweb (2014). Brain web: Simulated brain database. Ramasamy, Anandhakumar (b0190) 2011; 198 Noreen, Hayat, Madani (b0465) 2011; 13 Latif, G., Kazmi, S. B., Jaffar, M. A., & Mirza, A. M. (2010). Classification and segmentation of brain tumor using texture analysis. In Chang, Chung (b0410) 2012; 440–441 Ratan, Sharma, Sharma (b0155) 2009; 9 Vol. 30, pp. 327–333). (In Cherkassky, Mulier (b0455) 2007 Selvaraj, Dhanasekaran (b0470) 2013; 4 Daubechies (b0480) 1991 Fu, Chen, Chai, Wong, Li (b0185) 2010; 34 Duda, Hart, Stork (b0040) 2001 Jain, Duin, Mao (b0435) 2000; 22 Fujita, Uchiyama, Nakagawa, Fukuoka, Hatanaka, Hara (b0020) 2008; 92 Indian Devaki Cancer Institute, 2014. Devaki Cancer Hospita Madurai Mohsen, H., El-Dahshan, E., & Salem, A. (2012). A machine learning technique for MRI brain images. In Mehmood, Ejaz, Sajjad, Baik (b0285) 2013; 43 Kharrat, Gasmi, Messaoud, Benamrane, Abid (b0355) 2010; 9 Department of radiology (2014). Pakistan institute of medical sciences, Islamabad, Pakistan, Online (pp. 147–155). Weili, S., Yu, M., Zhanfang, C., & Hongbiao, Z. (2009). Research of automatic medical image segmentation algorithm based on Tsallis entropy and improved PCNN. In Ayachi, Ben Amor (b0225) 2009; 5590 Tanoori, Azimifar, Shakibafar, Katebi (b0240) 2011; 41 XueY., Simon X., & Yang, S. X. (2005). Image segmentation using watershed transform and feed-back pulse coupled neural network. In W. Duch (Ed.) Yamamoto, Arimura, Kakeda, Magome, Yamashita, Toyofuku (b0045) 2010; 34 Parizel, van den Hauwe, De Belder, Van Goethem, Venstermans, Salgado (b0495) 2010 Marx, S. D., & Brown, C. M. (2000). Progressive livewire for automatic contour extraction. In Selvanayaki, Karnan (b0005) 2010; 2 Balafar, M. A., Ramli, A. R., Saripan1, M. I., Mahmud, R., & Mashohor, S. (2008). Medical image segmentation using fuzzy c-mean (FCM), learning vector quantization (LVQ) and user interaction. In D. -S. Huang, et al. (Eds.) Zacharaki, Wang, Chawla, SooYoo, Wolf, Melhem (b0350) 2009 Ortiza, Górriz, Ramírez, Salas-González, Llamas-Elvirac (b0215) 2013; 13 Zhang, Wang, Wu (b0360) 2010; 109 Merisaari, Parkkola, Alhoniemi, Teräs, Lehtonen, Haataja (b0260) 2009; 182 Chaplot, Patnaik, Jagannathan (b0370) 2006; 1 Donoso, R., Veloz, A., & Allende, H. (2010). Modified expectation maximization algorithm for MRI segmentation; I. Bloch, & R. M. Cesar, Jr. (Eds.), CIARP 2010, LNCS 6419 (pp. 63–70). Maitra, Chatterjee (b0345) 2006; 1 Maitra, Chatterjee (b0175) 2008; 30 (Vol. 3696, pp. 531–536). Berlin: Springer-Verlag. Kinser, Johnson (b0400) 1996; 35 Cheng, Shan, Ju, Guo, Zhang (b0325) 2010; 43 Arimura, Magome, Yamashita, Yamamoto (b0025) 2009; 2 Kharrat, Gasmi, Messaoud, Benamrane, Abid (b0490) 2011; 3 (pp. 1004–1008). IEEE. Canales-Rodríguez, Radua, Pomarol-Clotet, Sarró, Alemán-Gómez, Iturria-Medina (b0315) 2013; 72 IEEE. Rajendran, A., & Dhanasekaran, R. (2012). Fuzzy clustering and deformable model for tumor segmentation on MRI brain image: A combined approach. Vrooman, Cocosco, Lijn, Stokking, Ikram, Vernooij (b0280) 2007; 37 Yang, Hu, Lin, Lin (b0145) 2002; 20 Tanga, Wua, Mab, Gallagherc, Pereraa, Zhuang (b0205) 2000; 24 Kang (b0165) 2005; 26 Lindblad, Kinser (b0405) 2005 Siyal, Yu (b0210) 2005; 26 Dubey, Hanmandlu, Gupta (b0140) 2009; 9 Wang, Fei (b0330) 2009; 13 Arimura, Tokunaga, Yamashita, Kuwazuru (b0035) 2012 (2014). Chao, Chen, Cho, Lin, Shih, Tsang (b0200) 2008; 175 Sachdeva, Kumar, Gupta, Khandelwal, Ahuja (b0235) 2012; 30 Cabezas, Oliver, Lladó, Freixenet, Cuadra (b0305) 2011; 104 Eckhorn, Reitboeck, Arndt, Dicke (b0395) 1990; 2 Graña, Termenon, Savio, Gonzalez-Pinto, Echeveste, Pérez (b0050) 2011; 502 Jafari, Kasaei (b0080) 2011; 5 Selvaraj, ThamaraiSelvi, Selvathi, Gewali (b0365) 2007; 1 Danciu, Gordan, Florea, Orghidan, Sorantin, Vlaicu (b0450) 2013; 22 Chao, Chen, Lin, Shih, Tsang (b0195) 2009; 33 Haykin (b0485) 2008 Siyal (10.1016/j.eswa.2014.01.021_b0210) 2005; 26 Fu (10.1016/j.eswa.2014.01.021_b0185) 2010; 34 Logeswari (10.1016/j.eswa.2014.01.021_b0010) 2010; 2 Graña (10.1016/j.eswa.2014.01.021_b0050) 2011; 502 Yang (10.1016/j.eswa.2014.01.021_b0145) 2002; 20 Selvaraj (10.1016/j.eswa.2014.01.021_b0365) 2007; 1 Tanga (10.1016/j.eswa.2014.01.021_b0205) 2000; 24 Cabezas (10.1016/j.eswa.2014.01.021_b0305) 2011; 104 Kinser (10.1016/j.eswa.2014.01.021_b0400) 1996; 35 Cherkassky (10.1016/j.eswa.2014.01.021_b0455) 2007 10.1016/j.eswa.2014.01.021_b0170 Parizel (10.1016/j.eswa.2014.01.021_b0495) 2010 Zhang (10.1016/j.eswa.2014.01.021_b0360) 2010; 109 Georgiadis (10.1016/j.eswa.2014.01.021_b0070) 2008; 89 10.1016/j.eswa.2014.01.021_b0090 Jaffar (10.1016/j.eswa.2014.01.021_b0320) 2011; 6 Kang (10.1016/j.eswa.2014.01.021_b0165) 2005; 26 Zacharaki (10.1016/j.eswa.2014.01.021_b0350) 2009 Zhang (10.1016/j.eswa.2014.01.021_b0135) 2011; 115 10.1016/j.eswa.2014.01.021_b0055 10.1016/j.eswa.2014.01.021_b0255 Merisaari (10.1016/j.eswa.2014.01.021_b0260) 2009; 182 10.1016/j.eswa.2014.01.021_b0095 Ayachi (10.1016/j.eswa.2014.01.021_b0225) 2009; 5590 Kuwazuru (10.1016/j.eswa.2014.01.021_b0180) 2012; 5 Eckhorn (10.1016/j.eswa.2014.01.021_b0395) 1990; 2 Duda (10.1016/j.eswa.2014.01.021_b0040) 2001 Ratan (10.1016/j.eswa.2014.01.021_b0155) 2009; 9 Vrooman (10.1016/j.eswa.2014.01.021_b0280) 2007; 37 Sachdeva (10.1016/j.eswa.2014.01.021_b0235) 2012; 30 Tanoori (10.1016/j.eswa.2014.01.021_b0240) 2011; 41 Kharrat (10.1016/j.eswa.2014.01.021_b0490) 2011; 3 Jafarpour (10.1016/j.eswa.2014.01.021_b0475) 2012; 37 Demirhan (10.1016/j.eswa.2014.01.021_b0125) 2011; 24 Marshkole (10.1016/j.eswa.2014.01.021_b0015) 2011; 30 Kharrat (10.1016/j.eswa.2014.01.021_b0355) 2010; 9 Chaplot (10.1016/j.eswa.2014.01.021_b0370) 2006; 1 10.1016/j.eswa.2014.01.021_b0100 Noreen (10.1016/j.eswa.2014.01.021_b0465) 2011; 13 Ortiza (10.1016/j.eswa.2014.01.021_b0215) 2013; 13 Maitra (10.1016/j.eswa.2014.01.021_b0340) 2008; 30 10.1016/j.eswa.2014.01.021_b0420 Ramasamy (10.1016/j.eswa.2014.01.021_b0190) 2011; 198 Wang (10.1016/j.eswa.2014.01.021_b0330) 2009; 13 10.1016/j.eswa.2014.01.021_b0065 Maitra (10.1016/j.eswa.2014.01.021_b0175) 2008; 30 Hassanien (10.1016/j.eswa.2014.01.021_b0415) 2011; 11 Zöllner (10.1016/j.eswa.2014.01.021_b0380) 2012; 22 10.1016/j.eswa.2014.01.021_b0105 Fujita (10.1016/j.eswa.2014.01.021_b0020) 2008; 92 Dubey (10.1016/j.eswa.2014.01.021_b0140) 2009; 9 Hiremath (10.1016/j.eswa.2014.01.021_b0425) 2006; 6 10.1016/j.eswa.2014.01.021_b0270 Masulli (10.1016/j.eswa.2014.01.021_b0120) 1999; 16 Yousefi (10.1016/j.eswa.2014.01.021_b0310) 2012; 16 Lindblad (10.1016/j.eswa.2014.01.021_b0405) 2005 Chao (10.1016/j.eswa.2014.01.021_b0195) 2009; 33 Danciu (10.1016/j.eswa.2014.01.021_b0450) 2013; 22 Chao (10.1016/j.eswa.2014.01.021_b0200) 2008; 175 Ortiz (10.1016/j.eswa.2014.01.021_b0290) 2013; 114 Canales-Rodríguez (10.1016/j.eswa.2014.01.021_b0315) 2013; 72 Gasmi (10.1016/j.eswa.2014.01.021_b0220) 2012; 7325 Somasundaram (10.1016/j.eswa.2014.01.021_b0230) 2010; 40 10.1016/j.eswa.2014.01.021_b0110 Zhang (10.1016/j.eswa.2014.01.021_b0375) 2011; 38 Chang (10.1016/j.eswa.2014.01.021_b0410) 2012; 440–441 Zarandi (10.1016/j.eswa.2014.01.021_b0130) 2011; 11 Selvanayaki (10.1016/j.eswa.2014.01.021_b0005) 2010; 2 Herlidou-Meme (10.1016/j.eswa.2014.01.021_b0335) 2003; 21 Zhou (10.1016/j.eswa.2014.01.021_b0300) 2007; 25 Selvaraj (10.1016/j.eswa.2014.01.021_b0470) 2013; 4 Zexuan (10.1016/j.eswa.2014.01.021_b0250) 2012; 108 Shanthi (10.1016/j.eswa.2014.01.021_b0275) 2010; 41 Juang (10.1016/j.eswa.2014.01.021_b0150) 2010; 43 Yamamoto (10.1016/j.eswa.2014.01.021_b0045) 2010; 34 Maitra (10.1016/j.eswa.2014.01.021_b0345) 2006; 1 Haykin (10.1016/j.eswa.2014.01.021_b0485) 2008 Jafari (10.1016/j.eswa.2014.01.021_b0080) 2011; 5 Jain (10.1016/j.eswa.2014.01.021_b0435) 2000; 22 10.1016/j.eswa.2014.01.021_b0160 Gonzalez (10.1016/j.eswa.2014.01.021_b0460) 2008 Cheng (10.1016/j.eswa.2014.01.021_b0325) 2010; 43 El-Dahshan (10.1016/j.eswa.2014.01.021_b0060) 2010; 20 Khayati (10.1016/j.eswa.2014.01.021_b0390) 2008; 32 Daubechies (10.1016/j.eswa.2014.01.021_b0480) 1991 Arimura (10.1016/j.eswa.2014.01.021_b0025) 2009; 2 10.1016/j.eswa.2014.01.021_b0245 Arimura (10.1016/j.eswa.2014.01.021_b0035) 2012 10.1016/j.eswa.2014.01.021_b0085 Mehmood (10.1016/j.eswa.2014.01.021_b0285) 2013; 43 Jolliffe (10.1016/j.eswa.2014.01.021_b0440) 2002 |
| References_xml | – volume: 1 start-page: 21 year: 2007 end-page: 33 ident: b0365 article-title: Brain MRI slices classification using least squares support vector machine publication-title: IC-MED – reference: Rajendran, A., & Dhanasekaran, R. (2012). Fuzzy clustering and deformable model for tumor segmentation on MRI brain image: A combined approach. – volume: 5 start-page: 1066 year: 2011 end-page: 1079 ident: b0080 article-title: Automatic brain tissue detection in MRI images using seeded region growing segmentation and neural network classification publication-title: Australian Journal of Basic and Applied Sciences – volume: 30 start-page: 21 year: 2011 end-page: 23 ident: b0015 article-title: Texture and shape based classification of brain tumors using linear vector quantization publication-title: International Journal of Computer Applications – reference: XueY., Simon X., & Yang, S. X. (2005). Image segmentation using watershed transform and feed-back pulse coupled neural network. In W. Duch (Ed.), – reference: Latif, G., Kazmi, S. B., Jaffar, M. A., & Mirza, A. M. (2010). Classification and segmentation of brain tumor using texture analysis. In – volume: 109 start-page: 325 year: 2010 end-page: 343 ident: b0360 article-title: A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO publication-title: Progress in Electromagnetics Research – volume: 20 start-page: 173 year: 2002 end-page: 179 ident: b0145 article-title: Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms publication-title: Magnetic Resonance Imaging – volume: 9 start-page: 1 year: 2009 end-page: 8 ident: b0140 article-title: Semi-automatic segmentation of MRI brain tumor publication-title: ICGSTGVIP Journal – reference: Indian Devaki Cancer Institute, 2014. Devaki Cancer Hospita Madurai, < – volume: 175 start-page: 206 year: 2008 end-page: 217 ident: b0200 article-title: Improving segmentation accuracy for magnetic resonance imaging using a boosted decision tree publication-title: Journal of Neuroscience Methods – volume: 6 start-page: 7242 year: 2011 end-page: 7246 ident: b0320 article-title: MR imaging enhancement and segmentation of tumor using fuzzy curvelet publication-title: International Journal of the Physical Sciences – reference: Balafar, M. A., Ramli, A. R., Saripan1, M. I., Mahmud, R., & Mashohor, S. (2008). Medical image segmentation using fuzzy c-mean (FCM), learning vector quantization (LVQ) and user interaction. In D. -S. Huang, et al. (Eds.), – reference: Donoso, R., Veloz, A., & Allende, H. (2010). Modified expectation maximization algorithm for MRI segmentation; I. Bloch, & R. M. Cesar, Jr. (Eds.), CIARP 2010, LNCS 6419 (pp. 63–70). – volume: 30 start-page: 615 year: 2008 end-page: 623 ident: b0340 article-title: Hybrid multi-resolution Slantlet transform and fuzzy c-means clustering approach for normal–pathological brain MR image segregation publication-title: Medical Engineering and Physics – volume: 37 year: 2012 ident: b0475 article-title: A robust brain MRI classification with GLCM features publication-title: International Journal of Computer Applications – volume: 3 start-page: 19 year: 2011 end-page: 33 ident: b0490 article-title: Medical image classification using an optimal feature extraction algorithm and a supervised classifier technique publication-title: International Journal of Software Science and Computational Intelligence – volume: 16 start-page: 840 year: 2012 end-page: 848 ident: b0310 article-title: Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms publication-title: Medical Image Analysis – year: 2002 ident: b0440 article-title: Principal component analysis – volume: 13 start-page: 34 year: 2011 end-page: 39 ident: b0465 article-title: MRI segmentation through wavelets and fuzzy c-means publication-title: World Applied Sciences Journal – reference: Harvard medical school (2014). Web: < – volume: 41 start-page: 66 year: 2010 end-page: 71 ident: b0275 article-title: Neuro-fuzzy approach toward segmentation of brain MRI based on intensity and spatial distribution publication-title: Journal of Medical Imaging and Radiation Sciences – reference: (Vol. 3696, pp. 531–536). Berlin: Springer-Verlag. – volume: 34 start-page: 308 year: 2010 end-page: 320 ident: b0185 article-title: Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging publication-title: Computerized Medical Imaging and Graphics – volume: 22 start-page: 205 year: 2012 end-page: 214 ident: b0380 article-title: SVM-based glioma grading: Optimization by feature reduction analysis publication-title: Zeitschrift für Medizinische Physik – volume: 22 start-page: 100 year: 2013 end-page: 113 ident: b0450 article-title: A hybrid 3D learning-and-interaction-based segmentation approach applied on CT liver volumes publication-title: Radio Engineering – volume: 33 start-page: 111 year: 2009 end-page: 121 ident: b0195 article-title: Automatic segmentation of magnetic resonance images using a decision tree with spatial information publication-title: Computerized Medical Imaging and Graphics – volume: 2 start-page: 1793 year: 2010 end-page: 8201 ident: b0010 article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map publication-title: International Journal of Computer Theory and Engineering – volume: 43 start-page: 299 year: 2010 end-page: 317 ident: b0325 article-title: Automated breast cancer detection and classification using ultrasound images: A survey publication-title: Pattern Recognition – volume: 5590 start-page: 736 year: 2009 end-page: 747 ident: b0225 article-title: Brain tumor segmentation using support vector machines; symbolic and quantitative approaches to reasoning with uncertainty publication-title: Lecture Notes in Computer Science – volume: 41 start-page: 619 year: 2011 end-page: 632 ident: b0240 article-title: Brain volumetry: An active contour model-based segmentation followed by SVM-based classification publication-title: Computers in Biology and Medicine – reference: (pp. 177–184). Berlin: Springer-Verlag. – year: 2008 ident: b0460 article-title: Digital image processing – year: 2001 ident: b0040 article-title: Pattern classification – volume: 6 start-page: 124 year: 2006 end-page: 133 ident: b0425 article-title: Wavelet based features for color texture classification with application to CBIR publication-title: International Journal of Computer Science and Network Security – volume: 2 start-page: 5890 year: 2010 end-page: 5901 ident: b0005 article-title: CAD system for automatic detection of brain tumor through magnetic resonance image-a review publication-title: International Journal of Engineering Science and Technology – volume: 104 start-page: 158 year: 2011 end-page: 177 ident: b0305 article-title: A review of atlas-based segmentation for magnetic resonance brain images publication-title: Computer Methods and Programs in Biomedicine – volume: 4 start-page: 1313 year: 2013 end-page: 1332 ident: b0470 article-title: A review on tissue segmentation and feature extraction of MRI brain images publication-title: International Journal of Computer Science and Engineering Technology (IJCSET) – start-page: 1609 year: 2009 end-page: 1618 ident: b0350 article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme publication-title: Magnetic Resonance Medicine – year: 2010 ident: b0495 article-title: Magnetic resonance imaging of the brain – reference: . IEEE. – volume: 37 start-page: 71 year: 2007 end-page: 81 ident: b0280 article-title: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification publication-title: NeuroImage – volume: 38 start-page: 10049 year: 2011 end-page: 10053 ident: b0375 article-title: A hybrid method for MRI brain image classification publication-title: Expert Systems with Applications – volume: 26 start-page: 2042 year: 2005 end-page: 2051 ident: b0165 article-title: G-wire: A livewire segmentation algorithm based on a generalized graph formulation publication-title: Pattern Recognition Letters – reference: >) Laboratory of neuro imaging: L NI. – volume: 35 start-page: 2158 year: 1996 end-page: 2161 ident: b0400 article-title: Stabilized input with a feedback pulse-coupled neural network publication-title: Optical Engineering – volume: 502 start-page: 225 year: 2011 end-page: 229 ident: b0050 article-title: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson’s correlation publication-title: Neuroscience Letters – reference: LONI (2014). (< – volume: 2 start-page: 925 year: 2009 end-page: 952 ident: b0025 article-title: Computer-aided diagnosis systems for brain diseases in magnetic resonance images publication-title: Algorithms – volume: 1 start-page: 299 year: 2006 end-page: 306 ident: b0345 article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification publication-title: Biomedical Signal Processing and Control – reference: > (2014). – volume: 440–441 start-page: 102 year: 2012 end-page: 112 ident: b0410 article-title: Estimation of riverbed grain-size distribution using image-processing techniques publication-title: Journal of Hydrology – year: 2007 ident: b0455 article-title: Learning from data: Concepts, theory and methods – volume: 115 start-page: 256 year: 2011 end-page: 269 ident: b0135 article-title: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation publication-title: Computer Vision and Image Understanding – volume: 22 start-page: 4 year: 2000 end-page: 37 ident: b0435 article-title: Statistical pattern recognition: A review publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 30 start-page: 615 year: 2008 end-page: 623 ident: b0175 article-title: Hybrid multiresolution Slantlet transform and fuzzy c-means clustering approach for normal–pathological brain MR image segregation publication-title: Medical Engineering and Physics – volume: 9 start-page: 9 year: 2009 end-page: 17 ident: b0155 article-title: Brain tumor detection based on multi-parameter MRI image analysis publication-title: ICGST International Journal on Graphics, Vision and Image Processing GVIP – volume: 72 start-page: 214 year: 2013 end-page: 226 ident: b0315 article-title: Statistical analysis of brain tissue images in the wavelet domain: Wavelet-based morphometry publication-title: NeuroImage – volume: 13 start-page: 2668 year: 2013 end-page: 2682 ident: b0215 article-title: Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies publication-title: Applied Soft Computing – volume: 40 start-page: 811 year: 2010 end-page: 822 ident: b0230 article-title: Fully automatic brain extraction algorithm for axial T2-weighted magnetic resonance images publication-title: Computers in Biology and Medicine – volume: 21 start-page: 989 year: 2003 end-page: 993 ident: b0335 article-title: MRI texture analysis on texture test objects, normal brain and intracranial tumors publication-title: Magnetic Resonance Imaging – volume: 108 start-page: 644 year: 2012 end-page: 655 ident: b0250 article-title: Generalized rough fuzzy c-means algorithm for brain MR image segmentation publication-title: Computer Methods and Programs in Biomedicine – volume: 11 start-page: 285 year: 2011 end-page: 294 ident: b0130 article-title: Systematic image processing for diagnosing brain tumors: A type-II fuzzy expert system approach publication-title: Applied Soft Computing – volume: 26 start-page: 2052 year: 2005 end-page: 2062 ident: b0210 article-title: An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI publication-title: Pattern Recognition Letters – year: 1991 ident: b0480 article-title: Ten lectures on wavelets publication-title: CBMS-NSF Series in Applied Mathematics (SIAM) – year: 2005 ident: b0405 article-title: Image processing using pulse-coupled neural networks – reference: (pp. 1004–1008). IEEE. – reference: Brainweb (2014). Brain web: Simulated brain database. < – volume: 43 start-page: 1471 year: 2013 end-page: 1483 ident: b0285 article-title: Prioritization of brain MRI volumes using medical image perception model and tumor region segmentation publication-title: Computers in Biology and Medicine – start-page: 258 year: 2012 end-page: 296 ident: b0035 article-title: Magnetic resonance image analysis for brain CAD systems with machine learning publication-title: Machine learning. Computer-aided diagnosis: Medical imaging intelligence and analysis – volume: 89 start-page: 24 year: 2008 end-page: 32 ident: b0070 article-title: Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features publication-title: Computer Methods Programs Biomedicine – volume: 5 start-page: 105 year: 2012 end-page: 113 ident: b0180 article-title: Automated detection of multiple sclerosis candidate regions in MR images: False-positive removal with use of an ANN-controlled level-set method publication-title: Radiological Physics and Technology January – year: 2008 ident: b0485 article-title: Neural networks and learning machines – reference: Marx, S. D., & Brown, C. M. (2000). Progressive livewire for automatic contour extraction. In – reference: Mohsen, H., El-Dahshan, E., & Salem, A. (2012). A machine learning technique for MRI brain images. In – volume: 1 start-page: 86 year: 2006 end-page: 92 ident: b0370 article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network publication-title: Biomedical Signal Processing and Control – volume: 16 start-page: 129 year: 1999 end-page: 147 ident: b0120 article-title: A fuzzy clustering based segmentation system as support to diagnosis in medical imaging publication-title: Artificial Intelligence in Medicine – reference: (Vol. 30, pp. 327–333). (In – reference: Department of radiology (2014). Pakistan institute of medical sciences, Islamabad, Pakistan, Online: < – volume: 30 start-page: 694 year: 2012 end-page: 715 ident: b0235 article-title: A novel content-based active contour model for brain tumor segmentation publication-title: Magnetic Resonance Imaging – reference: < – reference: (pp. 147–155). – volume: 182 start-page: 110 year: 2009 end-page: 122 ident: b0260 article-title: Gaussian mixture model-based segmentation of MR images taken from premature infant brains publication-title: Journal of Neuroscience Methods – volume: 7325 start-page: 230 year: 2012 end-page: 239 ident: b0220 article-title: Automated segmentation of brain tumor using optimal texture features and support vector machine classifier; image analysis and recognition publication-title: Lecture Notes in Computer Science – volume: 43 start-page: 941 year: 2010 end-page: 949 ident: b0150 article-title: MRI brain lesion image detection based on color-converted K-means clustering segmentation publication-title: Measurement – volume: 24 start-page: 349 year: 2000 end-page: 357 ident: b0205 article-title: MRI brain image segmentation by multi-resolution edge detection and region selection publication-title: Computerized Medical Imaging and Graphics – volume: 20 start-page: 433 year: 2010 end-page: 441 ident: b0060 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digital Signal Processing – volume: 2 start-page: 293 year: 1990 end-page: 307 ident: b0395 article-title: Feature linking via synchronization among distributed assemblies: Simulation of results from cat cortex publication-title: Neural Computation – reference: >. – reference: . – volume: 9 start-page: 71 year: 2010 end-page: 82 ident: b0355 article-title: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine publication-title: Leonardo Journal of Sciences – volume: 92 start-page: 238 year: 2008 end-page: 248 ident: b0020 article-title: Computer-aided diagnosis: The emerging of three CAD systems induced by Japanese health care needs publication-title: Computer Methods and Programs in Biomedicine – volume: 34 start-page: 404 year: 2010 end-page: 413 ident: b0045 article-title: Computer-aided detection of multiple sclerosis lesions in brain magnetic resonance images: False positive reduction scheme consisted of rule-based, level set method, and support vector machine publication-title: Computerized Medical Imaging and Graphics – volume: 114 start-page: 118 year: 2013 end-page: 131 ident: b0290 article-title: Improving MRI segmentation with probabilistic GHSOM and multi-objective optimization publication-title: Neurocomputing – volume: 198 start-page: 387 year: 2011 end-page: 398 ident: b0190 article-title: Brain tissue classification of MR images using fast Fourier transform based expectation–maximization Gaussian mixture model publication-title: Advances in Computing and Information Technology Communications in Computer and Information Science – reference: Weili, S., Yu, M., Zhanfang, C., & Hongbiao, Z. (2009). Research of automatic medical image segmentation algorithm based on Tsallis entropy and improved PCNN. In – reference: 2012). – volume: 13 start-page: 193 year: 2009 end-page: 202 ident: b0330 article-title: A modified fuzzy c-means classification method using a multiscale diffusion filtering scheme publication-title: Medical Image Analysis – volume: 24 start-page: 358 year: 2011 end-page: 367 ident: b0125 article-title: Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation publication-title: Engineering Applications of Artificial Intelligence – volume: 109 start-page: 325 year: 2010 ident: 10.1016/j.eswa.2014.01.021_b0360 article-title: A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO publication-title: Progress in Electromagnetics Research doi: 10.2528/PIER10090105 – ident: 10.1016/j.eswa.2014.01.021_b0090 – ident: 10.1016/j.eswa.2014.01.021_b0065 – volume: 16 start-page: 840 issue: 4 year: 2012 ident: 10.1016/j.eswa.2014.01.021_b0310 article-title: Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms publication-title: Medical Image Analysis doi: 10.1016/j.media.2012.01.001 – ident: 10.1016/j.eswa.2014.01.021_b0170 – ident: 10.1016/j.eswa.2014.01.021_b0420 – volume: 35 start-page: 2158 issue: 8 year: 1996 ident: 10.1016/j.eswa.2014.01.021_b0400 article-title: Stabilized input with a feedback pulse-coupled neural network publication-title: Optical Engineering doi: 10.1117/1.600797 – volume: 41 start-page: 619 issue: 8 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0240 article-title: Brain volumetry: An active contour model-based segmentation followed by SVM-based classification publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2011.05.013 – volume: 32 start-page: 124 year: 2008 ident: 10.1016/j.eswa.2014.01.021_b0390 article-title: A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2007.10.003 – year: 2008 ident: 10.1016/j.eswa.2014.01.021_b0485 – volume: 13 start-page: 2668 issue: 5 year: 2013 ident: 10.1016/j.eswa.2014.01.021_b0215 article-title: Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2012.11.020 – volume: 72 start-page: 214 issue: 15 year: 2013 ident: 10.1016/j.eswa.2014.01.021_b0315 article-title: Statistical analysis of brain tissue images in the wavelet domain: Wavelet-based morphometry publication-title: NeuroImage doi: 10.1016/j.neuroimage.2013.01.058 – ident: 10.1016/j.eswa.2014.01.021_b0160 – volume: 9 start-page: 9 issue: 3 year: 2009 ident: 10.1016/j.eswa.2014.01.021_b0155 article-title: Brain tumor detection based on multi-parameter MRI image analysis publication-title: ICGST International Journal on Graphics, Vision and Image Processing GVIP – ident: 10.1016/j.eswa.2014.01.021_b0055 – volume: 40 start-page: 811 issue: 10 year: 2010 ident: 10.1016/j.eswa.2014.01.021_b0230 article-title: Fully automatic brain extraction algorithm for axial T2-weighted magnetic resonance images publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2010.08.004 – volume: 24 start-page: 349 issue: 6 year: 2000 ident: 10.1016/j.eswa.2014.01.021_b0205 article-title: MRI brain image segmentation by multi-resolution edge detection and region selection publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/S0895-6111(00)00037-9 – volume: 9 start-page: 71 issue: 17 year: 2010 ident: 10.1016/j.eswa.2014.01.021_b0355 article-title: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine publication-title: Leonardo Journal of Sciences – volume: 43 start-page: 941 issue: 7 year: 2010 ident: 10.1016/j.eswa.2014.01.021_b0150 article-title: MRI brain lesion image detection based on color-converted K-means clustering segmentation publication-title: Measurement doi: 10.1016/j.measurement.2010.03.013 – volume: 1 start-page: 299 issue: 4 year: 2006 ident: 10.1016/j.eswa.2014.01.021_b0345 article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2006.12.001 – volume: 114 start-page: 118 year: 2013 ident: 10.1016/j.eswa.2014.01.021_b0290 article-title: Improving MRI segmentation with probabilistic GHSOM and multi-objective optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.08.047 – volume: 33 start-page: 111 issue: 2 year: 2009 ident: 10.1016/j.eswa.2014.01.021_b0195 article-title: Automatic segmentation of magnetic resonance images using a decision tree with spatial information publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2008.10.008 – start-page: 1609 issue: 62 year: 2009 ident: 10.1016/j.eswa.2014.01.021_b0350 article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme publication-title: Magnetic Resonance Medicine doi: 10.1002/mrm.22147 – volume: 26 start-page: 2042 issue: 13 year: 2005 ident: 10.1016/j.eswa.2014.01.021_b0165 article-title: G-wire: A livewire segmentation algorithm based on a generalized graph formulation publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.02.011 – ident: 10.1016/j.eswa.2014.01.021_b0100 – volume: 41 start-page: 66 issue: 2 year: 2010 ident: 10.1016/j.eswa.2014.01.021_b0275 article-title: Neuro-fuzzy approach toward segmentation of brain MRI based on intensity and spatial distribution publication-title: Journal of Medical Imaging and Radiation Sciences doi: 10.1016/j.jmir.2010.03.002 – volume: 22 start-page: 100 issue: 1 year: 2013 ident: 10.1016/j.eswa.2014.01.021_b0450 article-title: A hybrid 3D learning-and-interaction-based segmentation approach applied on CT liver volumes publication-title: Radio Engineering – volume: 6 start-page: 124 issue: 9A year: 2006 ident: 10.1016/j.eswa.2014.01.021_b0425 article-title: Wavelet based features for color texture classification with application to CBIR publication-title: International Journal of Computer Science and Network Security – volume: 34 start-page: 404 issue: 5 year: 2010 ident: 10.1016/j.eswa.2014.01.021_b0045 article-title: Computer-aided detection of multiple sclerosis lesions in brain magnetic resonance images: False positive reduction scheme consisted of rule-based, level set method, and support vector machine publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2010.02.001 – volume: 2 start-page: 5890 issue: 10 year: 2010 ident: 10.1016/j.eswa.2014.01.021_b0005 article-title: CAD system for automatic detection of brain tumor through magnetic resonance image-a review publication-title: International Journal of Engineering Science and Technology – volume: 25 start-page: 381 issue: 3 year: 2007 ident: 10.1016/j.eswa.2014.01.021_b0300 article-title: Multicontext wavelet-based thresholding segmentation of brain tissues in magnetic resonance images publication-title: Magnetic Resonance Imaging doi: 10.1016/j.mri.2006.09.001 – ident: 10.1016/j.eswa.2014.01.021_b0095 – volume: 37 issue: 12 year: 2012 ident: 10.1016/j.eswa.2014.01.021_b0475 article-title: A robust brain MRI classification with GLCM features publication-title: International Journal of Computer Applications – volume: 34 start-page: 308 issue: 4 year: 2010 ident: 10.1016/j.eswa.2014.01.021_b0185 article-title: Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2009.12.002 – ident: 10.1016/j.eswa.2014.01.021_b0110 – volume: 22 start-page: 4 year: 2000 ident: 10.1016/j.eswa.2014.01.021_b0435 article-title: Statistical pattern recognition: A review publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.824819 – ident: 10.1016/j.eswa.2014.01.021_b0245 – year: 2007 ident: 10.1016/j.eswa.2014.01.021_b0455 – volume: 43 start-page: 299 issue: 1 year: 2010 ident: 10.1016/j.eswa.2014.01.021_b0325 article-title: Automated breast cancer detection and classification using ultrasound images: A survey publication-title: Pattern Recognition doi: 10.1016/j.patcog.2009.05.012 – start-page: 258 year: 2012 ident: 10.1016/j.eswa.2014.01.021_b0035 article-title: Magnetic resonance image analysis for brain CAD systems with machine learning – volume: 30 start-page: 615 issue: 5 year: 2008 ident: 10.1016/j.eswa.2014.01.021_b0175 article-title: Hybrid multiresolution Slantlet transform and fuzzy c-means clustering approach for normal–pathological brain MR image segregation publication-title: Medical Engineering and Physics doi: 10.1016/j.medengphy.2007.06.009 – ident: 10.1016/j.eswa.2014.01.021_b0085 – volume: 30 start-page: 694 issue: 5 year: 2012 ident: 10.1016/j.eswa.2014.01.021_b0235 article-title: A novel content-based active contour model for brain tumor segmentation publication-title: Magnetic Resonance Imaging doi: 10.1016/j.mri.2012.01.006 – volume: 11 start-page: 285 issue: 1 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0130 article-title: Systematic image processing for diagnosing brain tumors: A type-II fuzzy expert system approach publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2009.11.019 – volume: 2 start-page: 1793 issue: 4 year: 2010 ident: 10.1016/j.eswa.2014.01.021_b0010 article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map publication-title: International Journal of Computer Theory and Engineering – volume: 440–441 start-page: 102 year: 2012 ident: 10.1016/j.eswa.2014.01.021_b0410 article-title: Estimation of riverbed grain-size distribution using image-processing techniques publication-title: Journal of Hydrology doi: 10.1016/j.jhydrol.2012.03.032 – volume: 3 start-page: 19 issue: 2 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0490 article-title: Medical image classification using an optimal feature extraction algorithm and a supervised classifier technique publication-title: International Journal of Software Science and Computational Intelligence doi: 10.4018/jssci.2011040102 – volume: 5 start-page: 105 issue: 1 year: 2012 ident: 10.1016/j.eswa.2014.01.021_b0180 article-title: Automated detection of multiple sclerosis candidate regions in MR images: False-positive removal with use of an ANN-controlled level-set method publication-title: Radiological Physics and Technology January doi: 10.1007/s12194-011-0141-2 – volume: 4 start-page: 1313 issue: 10 year: 2013 ident: 10.1016/j.eswa.2014.01.021_b0470 article-title: A review on tissue segmentation and feature extraction of MRI brain images publication-title: International Journal of Computer Science and Engineering Technology (IJCSET) – volume: 22 start-page: 205 issue: 3 year: 2012 ident: 10.1016/j.eswa.2014.01.021_b0380 article-title: SVM-based glioma grading: Optimization by feature reduction analysis publication-title: Zeitschrift für Medizinische Physik doi: 10.1016/j.zemedi.2012.03.007 – volume: 9 start-page: 1 issue: 4 year: 2009 ident: 10.1016/j.eswa.2014.01.021_b0140 article-title: Semi-automatic segmentation of MRI brain tumor publication-title: ICGSTGVIP Journal – volume: 30 start-page: 615 issue: 5 year: 2008 ident: 10.1016/j.eswa.2014.01.021_b0340 article-title: Hybrid multi-resolution Slantlet transform and fuzzy c-means clustering approach for normal–pathological brain MR image segregation publication-title: Medical Engineering and Physics doi: 10.1016/j.medengphy.2007.06.009 – volume: 43 start-page: 1471 year: 2013 ident: 10.1016/j.eswa.2014.01.021_b0285 article-title: Prioritization of brain MRI volumes using medical image perception model and tumor region segmentation publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2013.07.001 – volume: 24 start-page: 358 issue: 2 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0125 article-title: Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2010.09.008 – volume: 115 start-page: 256 issue: 2 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0135 article-title: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2010.09.007 – volume: 26 start-page: 2052 issue: 13 year: 2005 ident: 10.1016/j.eswa.2014.01.021_b0210 article-title: An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.03.019 – volume: 5590 start-page: 736 year: 2009 ident: 10.1016/j.eswa.2014.01.021_b0225 article-title: Brain tumor segmentation using support vector machines; symbolic and quantitative approaches to reasoning with uncertainty publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-642-02906-6_63 – volume: 7325 start-page: 230 year: 2012 ident: 10.1016/j.eswa.2014.01.021_b0220 article-title: Automated segmentation of brain tumor using optimal texture features and support vector machine classifier; image analysis and recognition publication-title: Lecture Notes in Computer Science doi: 10.1007/978-3-642-31298-4_28 – year: 2008 ident: 10.1016/j.eswa.2014.01.021_b0460 – volume: 502 start-page: 225 issue: 3 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0050 article-title: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson’s correlation publication-title: Neuroscience Letters doi: 10.1016/j.neulet.2011.07.049 – volume: 37 start-page: 71 issue: 1 year: 2007 ident: 10.1016/j.eswa.2014.01.021_b0280 article-title: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.05.018 – year: 2002 ident: 10.1016/j.eswa.2014.01.021_b0440 – volume: 16 start-page: 129 issue: 2 year: 1999 ident: 10.1016/j.eswa.2014.01.021_b0120 article-title: A fuzzy clustering based segmentation system as support to diagnosis in medical imaging publication-title: Artificial Intelligence in Medicine doi: 10.1016/S0933-3657(98)00069-4 – ident: 10.1016/j.eswa.2014.01.021_b0105 – volume: 2 start-page: 293 issue: 3 year: 1990 ident: 10.1016/j.eswa.2014.01.021_b0395 article-title: Feature linking via synchronization among distributed assemblies: Simulation of results from cat cortex publication-title: Neural Computation doi: 10.1162/neco.1990.2.3.293 – year: 1991 ident: 10.1016/j.eswa.2014.01.021_b0480 article-title: Ten lectures on wavelets publication-title: CBMS-NSF Series in Applied Mathematics (SIAM) – volume: 6 start-page: 7242 issue: 31 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0320 article-title: MR imaging enhancement and segmentation of tumor using fuzzy curvelet publication-title: International Journal of the Physical Sciences – volume: 20 start-page: 433 issue: 2 year: 2010 ident: 10.1016/j.eswa.2014.01.021_b0060 article-title: Hybrid intelligent techniques for MRI brain images classification publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2009.07.002 – year: 2001 ident: 10.1016/j.eswa.2014.01.021_b0040 – volume: 13 start-page: 34 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0465 article-title: MRI segmentation through wavelets and fuzzy c-means publication-title: World Applied Sciences Journal – year: 2010 ident: 10.1016/j.eswa.2014.01.021_b0495 – volume: 38 start-page: 10049 issue: 8 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0375 article-title: A hybrid method for MRI brain image classification publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2011.02.012 – volume: 21 start-page: 989 issue: 9 year: 2003 ident: 10.1016/j.eswa.2014.01.021_b0335 article-title: MRI texture analysis on texture test objects, normal brain and intracranial tumors publication-title: Magnetic Resonance Imaging doi: 10.1016/S0730-725X(03)00212-1 – volume: 11 start-page: 2035 issue: 2 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0415 article-title: Prostate boundary detection in ultrasound images using biologically-inspired spiking neural network publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2010.07.001 – volume: 1 start-page: 21 issue: 1 year: 2007 ident: 10.1016/j.eswa.2014.01.021_b0365 article-title: Brain MRI slices classification using least squares support vector machine publication-title: IC-MED – volume: 20 start-page: 173 issue: 2 year: 2002 ident: 10.1016/j.eswa.2014.01.021_b0145 article-title: Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms publication-title: Magnetic Resonance Imaging doi: 10.1016/S0730-725X(02)00477-0 – volume: 89 start-page: 24 issue: 1 year: 2008 ident: 10.1016/j.eswa.2014.01.021_b0070 article-title: Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features publication-title: Computer Methods Programs Biomedicine doi: 10.1016/j.cmpb.2007.10.007 – volume: 108 start-page: 644 issue: 2 year: 2012 ident: 10.1016/j.eswa.2014.01.021_b0250 article-title: Generalized rough fuzzy c-means algorithm for brain MR image segmentation publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2011.10.010 – volume: 13 start-page: 193 issue: 2 year: 2009 ident: 10.1016/j.eswa.2014.01.021_b0330 article-title: A modified fuzzy c-means classification method using a multiscale diffusion filtering scheme publication-title: Medical Image Analysis doi: 10.1016/j.media.2008.06.014 – volume: 1 start-page: 86 issue: 1 year: 2006 ident: 10.1016/j.eswa.2014.01.021_b0370 article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2006.05.002 – volume: 5 start-page: 1066 issue: 8 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0080 article-title: Automatic brain tissue detection in MRI images using seeded region growing segmentation and neural network classification publication-title: Australian Journal of Basic and Applied Sciences – ident: 10.1016/j.eswa.2014.01.021_b0255 doi: 10.1007/978-3-642-16687-7_13 – volume: 2 start-page: 925 issue: 3 year: 2009 ident: 10.1016/j.eswa.2014.01.021_b0025 article-title: Computer-aided diagnosis systems for brain diseases in magnetic resonance images publication-title: Algorithms doi: 10.3390/a2030925 – volume: 104 start-page: 158 issue: 3 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0305 article-title: A review of atlas-based segmentation for magnetic resonance brain images publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2011.07.015 – volume: 92 start-page: 238 issue: 3 year: 2008 ident: 10.1016/j.eswa.2014.01.021_b0020 article-title: Computer-aided diagnosis: The emerging of three CAD systems induced by Japanese health care needs publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2008.04.003 – volume: 198 start-page: 387 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0190 article-title: Brain tissue classification of MR images using fast Fourier transform based expectation–maximization Gaussian mixture model publication-title: Advances in Computing and Information Technology Communications in Computer and Information Science doi: 10.1007/978-3-642-22555-0_40 – year: 2005 ident: 10.1016/j.eswa.2014.01.021_b0405 – volume: 30 start-page: 21 issue: 11 year: 2011 ident: 10.1016/j.eswa.2014.01.021_b0015 article-title: Texture and shape based classification of brain tumors using linear vector quantization publication-title: International Journal of Computer Applications – ident: 10.1016/j.eswa.2014.01.021_b0270 – volume: 175 start-page: 206 issue: 2 year: 2008 ident: 10.1016/j.eswa.2014.01.021_b0200 article-title: Improving segmentation accuracy for magnetic resonance imaging using a boosted decision tree publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2008.08.017 – volume: 182 start-page: 110 issue: 1 year: 2009 ident: 10.1016/j.eswa.2014.01.021_b0260 article-title: Gaussian mixture model-based segmentation of MR images taken from premature infant brains publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2009.05.026 |
| SSID | ssj0017007 |
| Score | 2.6198761 |
| Snippet | •We review the recent published segmentation and classification techniques for the brain magnetic resonance images (MRI).•We proposed a hybrid intelligent... Computer-aided detection/diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. The... |
| SourceID | proquest pascalfrancis crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 5526 |
| SubjectTerms | Applied sciences Artificial intelligence Biological and medical sciences Brain Classification Computer science; control theory; systems Computerized, statistical medical data processing and models in biomedicine Connectionism. Neural networks Diagnosis Exact sciences and technology Feature extractions Human Human brain tumors Intelligent computer-aided diagnosis systems Investigative techniques, diagnostic techniques (general aspects) Magnetic resonance Magnetic resonance images Magnetic resonance imaging Medical imaging Medical informatics Medical management aid. Diagnosis aid Medical sciences Nervous system Neural networks Pattern recognition. Digital image processing. Computational geometry Radiodiagnosis. Nmr imagery. Nmr spectrometry Segmentation Tumors |
| Title | Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm |
| URI | https://dx.doi.org/10.1016/j.eswa.2014.01.021 https://www.proquest.com/docview/1567060650 https://www.proquest.com/docview/1677997845 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-6793 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AKRWK dateStart: 19900101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9K-yKI1i88tccKvkm8fOxH4ttRLFelfVCLfVuyX_akTY5LTvHFv70z2c1BEe9ByEuWXRJmduc3k8z8hpA3hqeF1DJLBGBDAjtEJPi9LAGsYJkVAMkpFiefnYvFBft4yS_3yPFYC4NpldH2B5s-WOs4MovSnK2Wy9kXcA4ADuFi6RAJYAU7k9jF4N2fbZoH0s_JwLcnE5wdC2dCjpfrfiH3UMYCdWf2L3C6v6o7EJkPvS7-MtsDFp0ckgfRiaTz8J6PyJ5rHpOHY4MGGs_rE_JtHEqQCNJSG_Lqlh1tPR2681GNLSJov7lp1zT27KFnn0_f0zntNuuf7jetG0trCt43ra-_t-tlf3XzlFycfPh6vEhiJ4XEFJXoE-0599wL6wsnmfasrFPpshrJfEqIKGzGLBfa5Do3rJIeYlUrcum55t5oURXPyH7TNu45oaK0ReWKtDQGPCmG-dbgs-SgcFcZZs2EZKMIlYk049jt4lqN-WQ_FIpdodhVmikQ-4S83a5ZBZKNnbP5qBl1Z6soQIGd66Z31Lh9FCB0UeaynJDXo14VHDL8c1I3rt10CoJcZBkCb3bHHCFlBTE54y_-8wVfknt4FzLYXpH9fr1xR-Dy9Ho67OkpOZifflqc3wL4-P7F |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAJQXlULIViJG7IbB5-JNyqimpbuj1AK3qz4le7qE1WmyyIS38749hZqULsoVJOjq1YM_Z8M874G4Q-aJbkQomUcMAGAiuEE39eRgAraGo4QHLiLydPT_nknB5fsIsNdDDchfFpldH2B5veW-vYMo7SHM9ns_F3cA4ADuGhSR8JPEBblGXCR2Cfbld5Hp5_TgTCPUF893hzJiR52fa3Jx9KaeDuTP-HTo_nVQsyc6HYxT92uwejw230JHqReD9M9BnasPVz9HSo0IDjhn2BfgxNxDNBGmxCYt2sxY3DfXk-rHyNCNwtb5oFjkV78PTb0We8j9vl4pf9g6va4AqD-42r68tmMeuubl6i88MvZwcTEkspEJ2XvCPKMeaY48blVlDlaFElwqaVZ_MpIKQwKTWMK52pTNNSOAhWDc-EY4o5rXiZ76DNuqntK4R5YfLS5kmhNbhS1Cdcg9OSgcZtqanRI5QOIpQ68oz7chfXckgo-ym92KUXu0xSCWIfoY-rMfPAsrG2Nxs0I--sFQkwsHbc3h01rj4FEJ0XmShG6P2gVwm7zP86qWrbLFsJUa6nGQJ3dk0fLkQJQTllr-85wXfo4eRseiJPjk6_7qJH_k1IZ3uDNrvF0r4F_6dTe_36_gvRjABp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+of+human+brain+tumor+through+MRI%3A+A+survey+and+a+new+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=El-Dahshan%2C+Sayed+A&rft.au=Mohsen%2C+Heba+M&rft.au=Revett%2C+Kenneth&rft.au=Salem%2C+Abdel-Badeeh+M&rft.date=2014-09-01&rft.issn=0957-4174&rft.volume=41&rft.issue=11&rft.spage=5526&rft.epage=5545&rft_id=info:doi/10.1016%2Fj.eswa.2014.01.021&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |