Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm

•We review the recent published segmentation and classification techniques for the brain magnetic resonance images (MRI).•We proposed a hybrid intelligent technique for automatic detection of brain tumor through MR Images.•The technique has three stages: segmentation, features extraction/reduction a...

Full description

Saved in:
Bibliographic Details
Published inExpert systems with applications Vol. 41; no. 11; pp. 5526 - 5545
Main Authors El-Dahshan, El-Sayed A., Mohsen, Heba M., Revett, Kenneth, Salem, Abdel-Badeeh M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 01.09.2014
Elsevier
Subjects
Online AccessGet full text
ISSN0957-4174
1873-6793
DOI10.1016/j.eswa.2014.01.021

Cover

Abstract •We review the recent published segmentation and classification techniques for the brain magnetic resonance images (MRI).•We proposed a hybrid intelligent technique for automatic detection of brain tumor through MR Images.•The technique has three stages: segmentation, features extraction/reduction and classification of MR images into normal or abnormal.•The experiments were carried out on 101 images (14 normal and 87 abnormal) from a real human brain MRI dataset.•The classification accuracy on both training and test images is 99%. Computer-aided detection/diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. The objective of this paper is to review the recent published segmentation and classification techniques and their state-of-the-art for the human brain magnetic resonance images (MRI). The review reveals the CAD systems of human brain MRI images are still an open problem. In the light of this review we proposed a hybrid intelligent machine learning technique for computer-aided detection system for automatic detection of brain tumor through magnetic resonance images. The proposed technique is based on the following computational methods; the feedback pulse-coupled neural network for image segmentation, the discrete wavelet transform for features extraction, the principal component analysis for reducing the dimensionality of the wavelet coefficients, and the feed forward back-propagation neural network to classify inputs into normal or abnormal. The experiments were carried out on 101 images consisting of 14 normal and 87 abnormal (malignant and benign tumors) from a real human brain MRI dataset. The classification accuracy on both training and test images is 99% which was significantly good. Moreover, the proposed technique demonstrates its effectiveness compared with the other machine learning recently published techniques. The results revealed that the proposed hybrid approach is accurate and fast and robust. Finally, possible future directions are suggested.
AbstractList Computer-aided detection/diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. The objective of this paper is to review the recent published segmentation and classification techniques and their state-of-the-art for the human brain magnetic resonance images (MRI). The review reveals the CAD systems of human brain MRI images are still an open problem. In the light of this review we proposed a hybrid intelligent machine learning technique for computer-aided detection system for automatic detection of brain tumor through magnetic resonance images. The proposed technique is based on the following computational methods; the feedback pulse-coupled neural network for image segmentation, the discrete wavelet transform for features extraction, the principal component analysis for reducing the dimensionality of the wavelet coefficients, and the feed forward back-propagation neural network to classify inputs into normal or abnormal. The experiments were carried out on 101 images consisting of 14 normal and 87 abnormal (malignant and benign tumors) from a real human brain MRI dataset. The classification accuracy on both training and test images is 99% which was significantly good. Moreover, the proposed technique demonstrates its effectiveness compared with the other machine learning recently published techniques. The results revealed that the proposed hybrid approach is accurate and fast and robust. Finally, possible future directions are suggested.
•We review the recent published segmentation and classification techniques for the brain magnetic resonance images (MRI).•We proposed a hybrid intelligent technique for automatic detection of brain tumor through MR Images.•The technique has three stages: segmentation, features extraction/reduction and classification of MR images into normal or abnormal.•The experiments were carried out on 101 images (14 normal and 87 abnormal) from a real human brain MRI dataset.•The classification accuracy on both training and test images is 99%. Computer-aided detection/diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. The objective of this paper is to review the recent published segmentation and classification techniques and their state-of-the-art for the human brain magnetic resonance images (MRI). The review reveals the CAD systems of human brain MRI images are still an open problem. In the light of this review we proposed a hybrid intelligent machine learning technique for computer-aided detection system for automatic detection of brain tumor through magnetic resonance images. The proposed technique is based on the following computational methods; the feedback pulse-coupled neural network for image segmentation, the discrete wavelet transform for features extraction, the principal component analysis for reducing the dimensionality of the wavelet coefficients, and the feed forward back-propagation neural network to classify inputs into normal or abnormal. The experiments were carried out on 101 images consisting of 14 normal and 87 abnormal (malignant and benign tumors) from a real human brain MRI dataset. The classification accuracy on both training and test images is 99% which was significantly good. Moreover, the proposed technique demonstrates its effectiveness compared with the other machine learning recently published techniques. The results revealed that the proposed hybrid approach is accurate and fast and robust. Finally, possible future directions are suggested.
Author Revett, Kenneth
Mohsen, Heba M.
El-Dahshan, El-Sayed A.
Salem, Abdel-Badeeh M.
Author_xml – sequence: 1
  givenname: El-Sayed A.
  surname: El-Dahshan
  fullname: El-Dahshan, El-Sayed A.
  email: esldahshan@eelu.edu.eg
  organization: Faculty of Science, Ain Shams University, Postal code 11566 Cairo, Egypt
– sequence: 2
  givenname: Heba M.
  surname: Mohsen
  fullname: Mohsen, Heba M.
  email: hmohsen@fue.edu.eg
  organization: Faculty of Computers and Information Technology, Future University, Cairo, Egypt
– sequence: 3
  givenname: Kenneth
  surname: Revett
  fullname: Revett, Kenneth
  email: revettk@westminster.ac.uk
  organization: The School of Computer Science, University of Westminster, London HA1 3TP, UK
– sequence: 4
  givenname: Abdel-Badeeh M.
  surname: Salem
  fullname: Salem, Abdel-Badeeh M.
  email: abmsalem@yahoo.com
  organization: Faculty of Computer and Information Science, Ain Shams University, Cairo, Egypt
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28438278$$DView record in Pascal Francis
BookMark eNqFkUuLFDEUhYOMYM_oH3CVjeCmyiSV5FaJm6HxMTAiiOIypPLoTlOVtElqhvn3VtPjxsW4upvvO1zOuUQXMUWH0GtKWkqofHdoXbnXLSOUt4S2hNFnaEN76BoJQ3eBNmQQ0HAK_AW6LOVACAVCYIN-bdN8XKrLjQ7WWWyD3sVUQsHJ4_0y64jHrEPEdZlTxnWf07Lb46_fb97ja1yWfOcesI4WaxzdPdbTLuVQ9_NL9NzrqbhXj_cK_fz08cf2S3P77fPN9vq2Md0gazN6Ibzw0vrOAR897zUBR_X6G_QDcEu5FXI0bGSGD-AJAysZeDEKb0Y5dFfo7Tn3mNPvxZWq5lCMmyYdXVqKohJgGKDn4v-okEAkkYKs6JtHVBejJ591NKGoYw6zzg-K9bzrGfQr1585k1Mp2XllQtU1pFjX0iZFiTrNow7qNI86zaMIVes8q8r-Uf-mPyl9OEturfQuuKyKCS4aZ0N2piqbwlP6H-J9qm4
CitedBy_id crossref_primary_10_1007_s13735_019_00174_x
crossref_primary_10_1080_21681163_2019_1697966
crossref_primary_10_1007_s11042_024_19683_x
crossref_primary_10_3390_s23177614
crossref_primary_10_1016_j_compbiomed_2020_103766
crossref_primary_10_1016_j_eswa_2015_08_036
crossref_primary_10_1002_ima_22897
crossref_primary_10_1016_j_bspc_2023_104675
crossref_primary_10_1038_srep35760
crossref_primary_10_3233_XST_200644
crossref_primary_10_1142_S0218001422520085
crossref_primary_10_1016_j_asoc_2018_04_031
crossref_primary_10_1016_j_compbiomed_2023_107723
crossref_primary_10_1007_s00521_019_04369_5
crossref_primary_10_1016_j_eswa_2019_112821
crossref_primary_10_1007_s11517_018_1923_z
crossref_primary_10_1109_RBME_2019_2917780
crossref_primary_10_1007_s13198_021_01221_9
crossref_primary_10_3390_biomedicines12071395
crossref_primary_10_1016_j_neucom_2020_03_097
crossref_primary_10_1007_s11042_020_10335_4
crossref_primary_10_3233_JIFS_219298
crossref_primary_10_1016_j_eswa_2023_120071
crossref_primary_10_1109_ACCESS_2023_3326447
crossref_primary_10_1080_03772063_2021_1905562
crossref_primary_10_1016_j_jocs_2018_11_008
crossref_primary_10_3174_ajnr_A6704
crossref_primary_10_1080_08839514_2018_1504500
crossref_primary_10_1016_j_patrec_2018_07_026
crossref_primary_10_1051_itmconf_20257003028
crossref_primary_10_1109_TSUSC_2018_2883822
crossref_primary_10_1007_s11227_022_04420_8
crossref_primary_10_1080_03772063_2020_1792360
crossref_primary_10_1007_s11042_020_10443_1
crossref_primary_10_3389_fonc_2022_969907
crossref_primary_10_17482_uumfd_270102
crossref_primary_10_1007_s11042_022_12162_1
crossref_primary_10_1007_s42979_023_01877_z
crossref_primary_10_1016_j_bspc_2015_05_014
crossref_primary_10_1016_j_cmpb_2017_01_006
crossref_primary_10_1016_j_future_2019_01_047
crossref_primary_10_1016_j_measurement_2019_107336
crossref_primary_10_1080_24725579_2019_1646358
crossref_primary_10_1186_s40064_015_1523_4
crossref_primary_10_1080_13682199_2023_2215031
crossref_primary_10_1016_j_mri_2019_05_043
crossref_primary_10_1142_S0219467823500122
crossref_primary_10_1049_iet_ipr_2019_1416
crossref_primary_10_1142_S0219691316500417
crossref_primary_10_3390_tomography11030024
crossref_primary_10_1016_j_acra_2017_12_027
crossref_primary_10_1002_ima_22637
crossref_primary_10_1002_ima_22638
crossref_primary_10_1007_s00138_024_01542_2
crossref_primary_10_1109_ACCESS_2016_2611530
crossref_primary_10_1016_j_compbiomed_2023_107063
crossref_primary_10_1016_j_eswa_2019_05_038
crossref_primary_10_1515_bmt_2015_0152
crossref_primary_10_1007_s10916_015_0311_6
crossref_primary_10_1109_ACCESS_2024_3442979
crossref_primary_10_3389_fpubh_2021_752509
crossref_primary_10_1007_s00521_024_10246_7
crossref_primary_10_1007_s10586_018_2044_z
crossref_primary_10_1002_ima_22983
crossref_primary_10_1007_s11042_022_12414_0
crossref_primary_10_1007_s00500_021_05748_8
crossref_primary_10_1007_s10586_018_2236_6
crossref_primary_10_1109_ACCESS_2021_3061487
crossref_primary_10_1007_s00371_023_02978_9
crossref_primary_10_1016_j_bspc_2020_102089
crossref_primary_10_1016_j_cmpb_2019_105205
crossref_primary_10_1016_j_mri_2019_05_028
crossref_primary_10_1186_s13640_018_0332_4
crossref_primary_10_1016_j_asoc_2019_105946
crossref_primary_10_4103_cmrp_cmrp_85_22
crossref_primary_10_1007_s11042_017_5281_x
crossref_primary_10_4015_S1016237219500194
crossref_primary_10_1016_j_bbe_2020_03_003
crossref_primary_10_1007_s11042_016_4171_y
crossref_primary_10_3389_fnins_2023_1120781
crossref_primary_10_3389_fonc_2021_689802
crossref_primary_10_1007_s00500_024_09830_9
crossref_primary_10_1007_s12065_020_00539_w
crossref_primary_10_1016_j_artmed_2023_102678
crossref_primary_10_1016_j_engappai_2018_04_026
crossref_primary_10_1177_21582440231214843
crossref_primary_10_1002_ima_22298
crossref_primary_10_1007_s11227_023_05581_w
crossref_primary_10_1109_RBME_2017_2715350
crossref_primary_10_1142_S0218001421570056
crossref_primary_10_1088_2057_1976_ac107b
crossref_primary_10_1016_j_cogsys_2019_10_001
crossref_primary_10_1038_s41598_021_89686_3
crossref_primary_10_1016_j_eswa_2019_113159
crossref_primary_10_1007_s11042_016_4218_0
crossref_primary_10_2174_1573394719666230816091316
crossref_primary_10_1155_2023_1224619
crossref_primary_10_2174_1573405618666220426100944
crossref_primary_10_1016_j_bspc_2015_06_004
crossref_primary_10_1007_s11042_020_08898_3
crossref_primary_10_5472_marumj_1367328
crossref_primary_10_1016_j_bspc_2018_06_003
crossref_primary_10_1016_j_compmedimag_2024_102436
crossref_primary_10_1111_jsap_13666
crossref_primary_10_3390_computers11010010
crossref_primary_10_3233_BME_191066
crossref_primary_10_1007_s40846_021_00612_4
crossref_primary_10_1016_j_neucom_2015_11_034
crossref_primary_10_1016_j_cmpb_2020_105797
crossref_primary_10_1016_j_cosrev_2018_10_003
crossref_primary_10_1049_iet_ipr_2016_1103
crossref_primary_10_1007_s11831_023_09930_z
crossref_primary_10_1088_1742_6596_1998_1_012012
crossref_primary_10_1016_j_egyr_2021_10_085
crossref_primary_10_1007_s13534_015_0208_9
crossref_primary_10_1007_s11760_017_1091_x
crossref_primary_10_1002_mp_12661
crossref_primary_10_1016_j_image_2017_05_013
crossref_primary_10_1007_s11042_023_18025_7
crossref_primary_10_1155_2022_1391340
crossref_primary_10_1109_ACCESS_2020_2993227
crossref_primary_10_1016_j_bspc_2022_103949
crossref_primary_10_1142_S2196888822500117
crossref_primary_10_1109_ACCESS_2022_3140289
crossref_primary_10_2196_15767
crossref_primary_10_3390_life11090894
crossref_primary_10_1002_ima_22391
crossref_primary_10_1016_j_bbe_2019_08_005
crossref_primary_10_1002_tee_22226
crossref_primary_10_29109_gujsc_1501181
crossref_primary_10_1002_ima_22276
crossref_primary_10_1002_cnm_2745
crossref_primary_10_1016_j_cmpb_2019_105134
crossref_primary_10_1007_s13139_024_00845_6
crossref_primary_10_1155_2017_9060124
crossref_primary_10_1080_0952813X_2018_1518997
crossref_primary_10_3390_s21227480
crossref_primary_10_1007_s11042_016_3958_1
crossref_primary_10_1016_j_mri_2019_06_010
crossref_primary_10_1007_s13748_022_00292_4
crossref_primary_10_1016_j_compbiomed_2017_02_002
crossref_primary_10_1134_S1054661821010156
crossref_primary_10_1002_ima_22144
crossref_primary_10_1002_ima_22266
crossref_primary_10_1007_s11042_018_7003_4
crossref_primary_10_1038_s12276_020_00501_x
crossref_primary_10_1142_S0218126618501086
crossref_primary_10_1002_mp_13771
crossref_primary_10_1155_2022_1830010
crossref_primary_10_1186_s12911_023_02114_6
crossref_primary_10_1016_j_bspc_2020_101860
crossref_primary_10_3390_electronics9030475
crossref_primary_10_1007_s11042_016_3401_7
crossref_primary_10_3390_biomedicines11061715
crossref_primary_10_1007_s10278_023_00828_7
crossref_primary_10_1016_j_bspc_2021_102458
crossref_primary_10_1016_j_eswa_2021_115271
crossref_primary_10_1016_j_protcy_2016_05_153
crossref_primary_10_1016_j_eswa_2018_10_023
crossref_primary_10_1007_s11277_017_5211_2
crossref_primary_10_1007_s00500_018_3565_3
crossref_primary_10_1049_iet_ipr_2020_0469
crossref_primary_10_1016_j_compbiomed_2023_107551
crossref_primary_10_1007_s11042_024_18790_z
crossref_primary_10_1007_s11045_019_00642_x
crossref_primary_10_1007_s00500_023_07943_1
crossref_primary_10_1007_s11042_018_6731_9
crossref_primary_10_1007_s12553_024_00815_0
crossref_primary_10_3390_diagnostics11091573
crossref_primary_10_1007_s13246_017_0609_4
crossref_primary_10_1002_ima_22498
crossref_primary_10_1007_s00170_018_03266_w
crossref_primary_10_1016_j_bspc_2023_105006
crossref_primary_10_1016_j_procs_2022_09_220
crossref_primary_10_1002_ima_22499
crossref_primary_10_1016_j_compeleceng_2023_108700
crossref_primary_10_3233_JAD_150848
crossref_primary_10_1016_j_bspc_2017_07_007
crossref_primary_10_1155_2019_9378014
crossref_primary_10_1016_j_promfg_2020_01_386
crossref_primary_10_1088_1742_6596_1892_1_012040
crossref_primary_10_1007_s11042_020_08760_6
crossref_primary_10_1016_j_asoc_2019_105758
crossref_primary_10_11834_jig_211197
crossref_primary_10_3390_e17127877
crossref_primary_10_1007_s13369_017_2966_4
crossref_primary_10_1109_LSP_2020_3034858
crossref_primary_10_1371_journal_pone_0291200
crossref_primary_10_1007_s10278_021_00557_9
crossref_primary_10_1080_08839514_2022_2031824
crossref_primary_10_1016_j_compmedimag_2019_101656
crossref_primary_10_1155_2020_8125392
crossref_primary_10_1002_ima_22123
crossref_primary_10_1007_s11063_020_10398_2
crossref_primary_10_3390_app6060169
crossref_primary_10_1155_2018_2512037
crossref_primary_10_3390_diagnostics11091589
crossref_primary_10_36548_jscp_2024_2_004
crossref_primary_10_1007_s00521_020_05082_4
crossref_primary_10_3389_fmed_2023_1232496
crossref_primary_10_1016_j_bspc_2018_10_010
crossref_primary_10_1080_03772063_2019_1604176
crossref_primary_10_1166_jmihi_2021_3872
crossref_primary_10_1007_s00521_023_09057_z
crossref_primary_10_1016_j_neucom_2017_12_030
crossref_primary_10_1109_ACCESS_2018_2888488
crossref_primary_10_1016_j_cmpb_2021_105945
crossref_primary_10_1016_j_compbiomed_2020_103906
crossref_primary_10_1007_s11760_017_1182_8
crossref_primary_10_1016_j_procs_2018_01_117
crossref_primary_10_1007_s11045_016_0436_x
crossref_primary_10_1016_j_cmpb_2021_106597
crossref_primary_10_1002_ima_22235
crossref_primary_10_1142_S0219691318500480
crossref_primary_10_1007_s11831_022_09758_z
crossref_primary_10_1016_j_procs_2019_12_098
crossref_primary_10_1080_00273171_2017_1340824
crossref_primary_10_3390_diagnostics12082007
crossref_primary_10_1088_1742_6596_2115_1_012039
crossref_primary_10_1007_s11831_021_09572_z
crossref_primary_10_1109_RBME_2019_2934500
crossref_primary_10_1088_2515_7639_ad5251
crossref_primary_10_2528_PIER15040602
crossref_primary_10_1109_ACCESS_2019_2901055
crossref_primary_10_3390_app10103429
crossref_primary_10_1007_s10278_024_01255_y
crossref_primary_10_1016_j_bbe_2020_05_005
crossref_primary_10_1016_j_eswa_2014_05_036
crossref_primary_10_1016_j_compmedimag_2023_102218
crossref_primary_10_1093_comjnl_bxz035
crossref_primary_10_1155_2022_1541980
crossref_primary_10_1002_cpe_6541
crossref_primary_10_3390_math9172095
crossref_primary_10_1002_cpe_5214
crossref_primary_10_3390_app8091632
crossref_primary_10_1007_s13534_019_00103_1
crossref_primary_10_1109_ACCESS_2023_3347545
crossref_primary_10_1155_2022_9015778
crossref_primary_10_1007_s00138_020_01069_2
crossref_primary_10_1016_j_eswa_2017_06_038
crossref_primary_10_1155_2018_1048164
crossref_primary_10_1007_s11042_021_10937_6
crossref_primary_10_1007_s11042_015_2649_7
crossref_primary_10_7717_peerj_1251
crossref_primary_10_1007_s11831_023_10041_y
crossref_primary_10_1007_s00521_022_07070_2
crossref_primary_10_1007_s11042_023_14857_5
crossref_primary_10_1016_j_nancom_2018_11_001
crossref_primary_10_3233_XST_180476
crossref_primary_10_3390_axioms11010015
crossref_primary_10_1038_s41598_021_98755_6
crossref_primary_10_3390_e21040401
crossref_primary_10_3390_s22197575
crossref_primary_10_3390_diagnostics14171888
crossref_primary_10_1007_s11227_018_2523_2
crossref_primary_10_1016_j_bspc_2020_101912
crossref_primary_10_1007_s11042_023_16806_8
crossref_primary_10_1002_ima_22211
crossref_primary_10_1007_s00521_016_2834_2
crossref_primary_10_1002_ima_22333
crossref_primary_10_1016_j_brainres_2023_148300
crossref_primary_10_1016_j_compmedimag_2018_03_004
crossref_primary_10_1186_s40478_022_01318_7
crossref_primary_10_1007_s11042_023_17101_2
crossref_primary_10_1007_s13246_019_00754_5
crossref_primary_10_1007_s00521_023_08281_x
crossref_primary_10_1007_s11571_021_09774_y
crossref_primary_10_1080_0952813X_2015_1132274
crossref_primary_10_1007_s00521_022_07388_x
crossref_primary_10_1007_s40747_021_00563_y
crossref_primary_10_1016_j_patrec_2020_10_017
crossref_primary_10_1016_j_procs_2017_08_318
crossref_primary_10_1016_j_bbe_2019_05_007
crossref_primary_10_3233_THC_161191
crossref_primary_10_1007_s10916_016_0525_2
crossref_primary_10_1016_j_jneumeth_2019_108520
crossref_primary_10_1007_s11042_022_11906_3
crossref_primary_10_1155_2017_4205141
crossref_primary_10_1002_ima_22202
crossref_primary_10_1016_j_asoc_2024_111284
crossref_primary_10_1016_j_bbe_2020_06_001
crossref_primary_10_1007_s11042_020_09676_x
crossref_primary_10_1155_2022_6985927
crossref_primary_10_1080_03091902_2017_1382584
crossref_primary_10_1186_s40537_022_00632_0
crossref_primary_10_1016_j_patrec_2020_04_018
crossref_primary_10_1016_j_eswa_2018_07_039
crossref_primary_10_1155_2021_5591660
crossref_primary_10_3390_s17092049
crossref_primary_10_3389_fncom_2015_00066
crossref_primary_10_1016_j_asoc_2021_107567
crossref_primary_10_1007_s11517_020_02270_1
crossref_primary_10_32604_cmc_2021_016698
crossref_primary_10_1007_s11760_020_01793_2
crossref_primary_10_1002_ima_22312
crossref_primary_10_1109_TNNLS_2020_2995800
crossref_primary_10_1016_j_irbm_2019_04_005
crossref_primary_10_1007_s11042_024_20386_6
crossref_primary_10_1093_comjnl_bxad047
crossref_primary_10_1155_2022_2056807
crossref_primary_10_1016_j_cmpb_2018_04_011
crossref_primary_10_1016_j_compeleceng_2018_04_009
crossref_primary_10_1145_3481889
crossref_primary_10_1016_j_jocs_2017_02_009
crossref_primary_10_1080_21681163_2022_2083017
crossref_primary_10_1093_noajnl_vdac081
crossref_primary_10_1016_j_asoc_2016_03_014
crossref_primary_10_1177_1971400915576637
crossref_primary_10_1016_j_procs_2017_12_017
crossref_primary_10_1007_s10916_018_1135_y
crossref_primary_10_3390_diagnostics14232710
crossref_primary_10_1002_ett_4170
crossref_primary_10_1007_s11042_023_17367_6
crossref_primary_10_1007_s13369_018_3320_1
crossref_primary_10_3390_bdcc8090097
crossref_primary_10_1016_j_eswa_2016_10_064
crossref_primary_10_3390_sym9030037
crossref_primary_10_1007_s11042_023_17760_1
crossref_primary_10_1016_j_media_2020_101692
crossref_primary_10_3389_frobt_2018_00120
Cites_doi 10.2528/PIER10090105
10.1016/j.media.2012.01.001
10.1117/1.600797
10.1016/j.compbiomed.2011.05.013
10.1016/j.compmedimag.2007.10.003
10.1016/j.asoc.2012.11.020
10.1016/j.neuroimage.2013.01.058
10.1016/j.compbiomed.2010.08.004
10.1016/S0895-6111(00)00037-9
10.1016/j.measurement.2010.03.013
10.1016/j.bspc.2006.12.001
10.1016/j.neucom.2012.08.047
10.1016/j.compmedimag.2008.10.008
10.1002/mrm.22147
10.1016/j.patrec.2005.02.011
10.1016/j.jmir.2010.03.002
10.1016/j.compmedimag.2010.02.001
10.1016/j.mri.2006.09.001
10.1016/j.compmedimag.2009.12.002
10.1109/34.824819
10.1016/j.patcog.2009.05.012
10.1016/j.medengphy.2007.06.009
10.1016/j.mri.2012.01.006
10.1016/j.asoc.2009.11.019
10.1016/j.jhydrol.2012.03.032
10.4018/jssci.2011040102
10.1007/s12194-011-0141-2
10.1016/j.zemedi.2012.03.007
10.1016/j.compbiomed.2013.07.001
10.1016/j.engappai.2010.09.008
10.1016/j.cviu.2010.09.007
10.1016/j.patrec.2005.03.019
10.1007/978-3-642-02906-6_63
10.1007/978-3-642-31298-4_28
10.1016/j.neulet.2011.07.049
10.1016/j.neuroimage.2007.05.018
10.1016/S0933-3657(98)00069-4
10.1162/neco.1990.2.3.293
10.1016/j.dsp.2009.07.002
10.1016/j.eswa.2011.02.012
10.1016/S0730-725X(03)00212-1
10.1016/j.asoc.2010.07.001
10.1016/S0730-725X(02)00477-0
10.1016/j.cmpb.2007.10.007
10.1016/j.cmpb.2011.10.010
10.1016/j.media.2008.06.014
10.1016/j.bspc.2006.05.002
10.1007/978-3-642-16687-7_13
10.3390/a2030925
10.1016/j.cmpb.2011.07.015
10.1016/j.cmpb.2008.04.003
10.1007/978-3-642-22555-0_40
10.1016/j.jneumeth.2008.08.017
10.1016/j.jneumeth.2009.05.026
ContentType Journal Article
Copyright 2014 Elsevier Ltd
2015 INIST-CNRS
Copyright_xml – notice: 2014 Elsevier Ltd
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2014.01.021
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1873-6793
EndPage 5545
ExternalDocumentID 28438278
10_1016_j_eswa_2014_01_021
S0957417414000426
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
29G
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABKBG
ABWVN
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
XPP
ZMT
~HD
BNPGV
IQODW
SSH
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c396t-bf55f5f6df3e74bf48a07e1a00778974d14d56bc2b2c497f027d627f5b5fcb693
IEDL.DBID .~1
ISSN 0957-4174
IngestDate Mon Sep 29 03:37:54 EDT 2025
Sun Sep 28 10:20:04 EDT 2025
Wed Apr 02 07:24:03 EDT 2025
Wed Oct 01 03:51:42 EDT 2025
Thu Apr 24 22:53:35 EDT 2025
Fri Feb 23 02:29:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Human brain tumors
Medical imaging
Segmentation
Magnetic resonance images
Classification
Intelligent computer-aided diagnosis systems
Feature extractions
Medical informatics
Visual cortex
Image processing
Brain cancer
Feedback regulation
Backpropagation algorithm
Fixed image
Selection criterion
Computer assisted teaching
Diagnosis
Computer aided design
Pattern extraction
Capability index
Backpropagation
Computer vision
Dimensionality
Decision support system
Pattern recognition
Neural network
Malignant tumor
Discrete wavelet transforms
Nuclear magnetic resonance imaging
Image segmentation
Wavelet transformation
Automatic measurement
Feature extraction
Artificial intelligence
Cancer
Principal component analysis
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-bf55f5f6df3e74bf48a07e1a00778974d14d56bc2b2c497f027d627f5b5fcb693
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PQID 1567060650
PQPubID 23500
PageCount 20
ParticipantIDs proquest_miscellaneous_1677997845
proquest_miscellaneous_1567060650
pascalfrancis_primary_28438278
crossref_citationtrail_10_1016_j_eswa_2014_01_021
crossref_primary_10_1016_j_eswa_2014_01_021
elsevier_sciencedirect_doi_10_1016_j_eswa_2014_01_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-09-01
PublicationDateYYYYMMDD 2014-09-01
PublicationDate_xml – month: 09
  year: 2014
  text: 2014-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Expert systems with applications
PublicationYear 2014
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhang, Ruan, Lebonvallet, Liao, Zhu (b0135) 2011; 115
Jolliffe (b0440) 2002
Ortiz, Gorriz, Ramırez, Salas-Gonzalez (b0290) 2013; 114
Gasmi, Kharrat, Messaoud, Abid (b0220) 2012; 7325
Georgiadis, Cavouras, Kalatzis, Daskalakis, Kagadis, Sifaki (b0070) 2008; 89
Hiremath, Shivashankar, Pujari (b0425) 2006; 6
Juang, Wu (b0150) 2010; 43
El-Dahshan, Hosny, Salem (b0060) 2010; 20
Maitra, Chatterjee (b0340) 2008; 30
Gonzalez, Woods (b0460) 2008
Jaffar, MirzaA, Mahmud (b0320) 2011; 6
Harvard medical school (2014). Web
LONI (2014).
.
Masulli, Schenone (b0120) 1999; 16
Marshkole, Singh, Thoke (b0015) 2011; 30
Kuwazuru, Arimura, Kakeda, Yamamoto, Magome, Yamashita (b0180) 2012; 5
Zöllner, Emblem, Schad (b0380) 2012; 22
Logeswari, Karnan (b0010) 2010; 2
<
Shanthi, Sasikumar, Kesavadas (b0275) 2010; 41
Zexuan, Sun, Xia, Chen, Xia, Feng (b0250) 2012; 108
Herlidou-Meme, Constans, Carsin, Olivie, Eliat, Nadal-Desbarats (b0335) 2003; 21
(pp. 177–184). Berlin: Springer-Verlag.
Zarandi, Zarinbal, Izadi (b0130) 2011; 11
2012).
Demirhan, Güler (b0125) 2011; 24
Laboratory of neuro imaging: L NI.
Jafarpour, Sedghi, Amirani (b0475) 2012; 37
Somasundaram, Kalaiselvi (b0230) 2010; 40
Zhang, Dong, Wu, Wang (b0375) 2011; 38
Yousefi, Azmi, Zahedi (b0310) 2012; 16
Brainweb (2014). Brain web: Simulated brain database.
Ramasamy, Anandhakumar (b0190) 2011; 198
Noreen, Hayat, Madani (b0465) 2011; 13
Latif, G., Kazmi, S. B., Jaffar, M. A., & Mirza, A. M. (2010). Classification and segmentation of brain tumor using texture analysis. In
Chang, Chung (b0410) 2012; 440–441
Ratan, Sharma, Sharma (b0155) 2009; 9
Vol. 30, pp. 327–333). (In
Cherkassky, Mulier (b0455) 2007
Selvaraj, Dhanasekaran (b0470) 2013; 4
Daubechies (b0480) 1991
Fu, Chen, Chai, Wong, Li (b0185) 2010; 34
Duda, Hart, Stork (b0040) 2001
Jain, Duin, Mao (b0435) 2000; 22
Fujita, Uchiyama, Nakagawa, Fukuoka, Hatanaka, Hara (b0020) 2008; 92
Indian Devaki Cancer Institute, 2014. Devaki Cancer Hospita Madurai
Mohsen, H., El-Dahshan, E., & Salem, A. (2012). A machine learning technique for MRI brain images. In
Mehmood, Ejaz, Sajjad, Baik (b0285) 2013; 43
Kharrat, Gasmi, Messaoud, Benamrane, Abid (b0355) 2010; 9
Department of radiology (2014). Pakistan institute of medical sciences, Islamabad, Pakistan, Online
(pp. 147–155).
Weili, S., Yu, M., Zhanfang, C., & Hongbiao, Z. (2009). Research of automatic medical image segmentation algorithm based on Tsallis entropy and improved PCNN. In
Ayachi, Ben Amor (b0225) 2009; 5590
Tanoori, Azimifar, Shakibafar, Katebi (b0240) 2011; 41
XueY., Simon X., & Yang, S. X. (2005). Image segmentation using watershed transform and feed-back pulse coupled neural network. In W. Duch (Ed.)
Yamamoto, Arimura, Kakeda, Magome, Yamashita, Toyofuku (b0045) 2010; 34
Parizel, van den Hauwe, De Belder, Van Goethem, Venstermans, Salgado (b0495) 2010
Marx, S. D., & Brown, C. M. (2000). Progressive livewire for automatic contour extraction. In
Selvanayaki, Karnan (b0005) 2010; 2
Balafar, M. A., Ramli, A. R., Saripan1, M. I., Mahmud, R., & Mashohor, S. (2008). Medical image segmentation using fuzzy c-mean (FCM), learning vector quantization (LVQ) and user interaction. In D. -S. Huang, et al. (Eds.)
Zacharaki, Wang, Chawla, SooYoo, Wolf, Melhem (b0350) 2009
Ortiza, Górriz, Ramírez, Salas-González, Llamas-Elvirac (b0215) 2013; 13
Zhang, Wang, Wu (b0360) 2010; 109
Merisaari, Parkkola, Alhoniemi, Teräs, Lehtonen, Haataja (b0260) 2009; 182
Chaplot, Patnaik, Jagannathan (b0370) 2006; 1
Donoso, R., Veloz, A., & Allende, H. (2010). Modified expectation maximization algorithm for MRI segmentation; I. Bloch, & R. M. Cesar, Jr. (Eds.), CIARP 2010, LNCS 6419 (pp. 63–70).
Maitra, Chatterjee (b0345) 2006; 1
Maitra, Chatterjee (b0175) 2008; 30
(Vol. 3696, pp. 531–536). Berlin: Springer-Verlag.
Kinser, Johnson (b0400) 1996; 35
Cheng, Shan, Ju, Guo, Zhang (b0325) 2010; 43
Arimura, Magome, Yamashita, Yamamoto (b0025) 2009; 2
Kharrat, Gasmi, Messaoud, Benamrane, Abid (b0490) 2011; 3
(pp. 1004–1008). IEEE.
Canales-Rodríguez, Radua, Pomarol-Clotet, Sarró, Alemán-Gómez, Iturria-Medina (b0315) 2013; 72
IEEE.
Rajendran, A., & Dhanasekaran, R. (2012). Fuzzy clustering and deformable model for tumor segmentation on MRI brain image: A combined approach.
Vrooman, Cocosco, Lijn, Stokking, Ikram, Vernooij (b0280) 2007; 37
Yang, Hu, Lin, Lin (b0145) 2002; 20
Tanga, Wua, Mab, Gallagherc, Pereraa, Zhuang (b0205) 2000; 24
Kang (b0165) 2005; 26
Lindblad, Kinser (b0405) 2005
Siyal, Yu (b0210) 2005; 26
Dubey, Hanmandlu, Gupta (b0140) 2009; 9
Wang, Fei (b0330) 2009; 13
Arimura, Tokunaga, Yamashita, Kuwazuru (b0035) 2012
(2014).
Chao, Chen, Cho, Lin, Shih, Tsang (b0200) 2008; 175
Sachdeva, Kumar, Gupta, Khandelwal, Ahuja (b0235) 2012; 30
Cabezas, Oliver, Lladó, Freixenet, Cuadra (b0305) 2011; 104
Eckhorn, Reitboeck, Arndt, Dicke (b0395) 1990; 2
Graña, Termenon, Savio, Gonzalez-Pinto, Echeveste, Pérez (b0050) 2011; 502
Jafari, Kasaei (b0080) 2011; 5
Selvaraj, ThamaraiSelvi, Selvathi, Gewali (b0365) 2007; 1
Danciu, Gordan, Florea, Orghidan, Sorantin, Vlaicu (b0450) 2013; 22
Chao, Chen, Lin, Shih, Tsang (b0195) 2009; 33
Haykin (b0485) 2008
Siyal (10.1016/j.eswa.2014.01.021_b0210) 2005; 26
Fu (10.1016/j.eswa.2014.01.021_b0185) 2010; 34
Logeswari (10.1016/j.eswa.2014.01.021_b0010) 2010; 2
Graña (10.1016/j.eswa.2014.01.021_b0050) 2011; 502
Yang (10.1016/j.eswa.2014.01.021_b0145) 2002; 20
Selvaraj (10.1016/j.eswa.2014.01.021_b0365) 2007; 1
Tanga (10.1016/j.eswa.2014.01.021_b0205) 2000; 24
Cabezas (10.1016/j.eswa.2014.01.021_b0305) 2011; 104
Kinser (10.1016/j.eswa.2014.01.021_b0400) 1996; 35
Cherkassky (10.1016/j.eswa.2014.01.021_b0455) 2007
10.1016/j.eswa.2014.01.021_b0170
Parizel (10.1016/j.eswa.2014.01.021_b0495) 2010
Zhang (10.1016/j.eswa.2014.01.021_b0360) 2010; 109
Georgiadis (10.1016/j.eswa.2014.01.021_b0070) 2008; 89
10.1016/j.eswa.2014.01.021_b0090
Jaffar (10.1016/j.eswa.2014.01.021_b0320) 2011; 6
Kang (10.1016/j.eswa.2014.01.021_b0165) 2005; 26
Zacharaki (10.1016/j.eswa.2014.01.021_b0350) 2009
Zhang (10.1016/j.eswa.2014.01.021_b0135) 2011; 115
10.1016/j.eswa.2014.01.021_b0055
10.1016/j.eswa.2014.01.021_b0255
Merisaari (10.1016/j.eswa.2014.01.021_b0260) 2009; 182
10.1016/j.eswa.2014.01.021_b0095
Ayachi (10.1016/j.eswa.2014.01.021_b0225) 2009; 5590
Kuwazuru (10.1016/j.eswa.2014.01.021_b0180) 2012; 5
Eckhorn (10.1016/j.eswa.2014.01.021_b0395) 1990; 2
Duda (10.1016/j.eswa.2014.01.021_b0040) 2001
Ratan (10.1016/j.eswa.2014.01.021_b0155) 2009; 9
Vrooman (10.1016/j.eswa.2014.01.021_b0280) 2007; 37
Sachdeva (10.1016/j.eswa.2014.01.021_b0235) 2012; 30
Tanoori (10.1016/j.eswa.2014.01.021_b0240) 2011; 41
Kharrat (10.1016/j.eswa.2014.01.021_b0490) 2011; 3
Jafarpour (10.1016/j.eswa.2014.01.021_b0475) 2012; 37
Demirhan (10.1016/j.eswa.2014.01.021_b0125) 2011; 24
Marshkole (10.1016/j.eswa.2014.01.021_b0015) 2011; 30
Kharrat (10.1016/j.eswa.2014.01.021_b0355) 2010; 9
Chaplot (10.1016/j.eswa.2014.01.021_b0370) 2006; 1
10.1016/j.eswa.2014.01.021_b0100
Noreen (10.1016/j.eswa.2014.01.021_b0465) 2011; 13
Ortiza (10.1016/j.eswa.2014.01.021_b0215) 2013; 13
Maitra (10.1016/j.eswa.2014.01.021_b0340) 2008; 30
10.1016/j.eswa.2014.01.021_b0420
Ramasamy (10.1016/j.eswa.2014.01.021_b0190) 2011; 198
Wang (10.1016/j.eswa.2014.01.021_b0330) 2009; 13
10.1016/j.eswa.2014.01.021_b0065
Maitra (10.1016/j.eswa.2014.01.021_b0175) 2008; 30
Hassanien (10.1016/j.eswa.2014.01.021_b0415) 2011; 11
Zöllner (10.1016/j.eswa.2014.01.021_b0380) 2012; 22
10.1016/j.eswa.2014.01.021_b0105
Fujita (10.1016/j.eswa.2014.01.021_b0020) 2008; 92
Dubey (10.1016/j.eswa.2014.01.021_b0140) 2009; 9
Hiremath (10.1016/j.eswa.2014.01.021_b0425) 2006; 6
10.1016/j.eswa.2014.01.021_b0270
Masulli (10.1016/j.eswa.2014.01.021_b0120) 1999; 16
Yousefi (10.1016/j.eswa.2014.01.021_b0310) 2012; 16
Lindblad (10.1016/j.eswa.2014.01.021_b0405) 2005
Chao (10.1016/j.eswa.2014.01.021_b0195) 2009; 33
Danciu (10.1016/j.eswa.2014.01.021_b0450) 2013; 22
Chao (10.1016/j.eswa.2014.01.021_b0200) 2008; 175
Ortiz (10.1016/j.eswa.2014.01.021_b0290) 2013; 114
Canales-Rodríguez (10.1016/j.eswa.2014.01.021_b0315) 2013; 72
Gasmi (10.1016/j.eswa.2014.01.021_b0220) 2012; 7325
Somasundaram (10.1016/j.eswa.2014.01.021_b0230) 2010; 40
10.1016/j.eswa.2014.01.021_b0110
Zhang (10.1016/j.eswa.2014.01.021_b0375) 2011; 38
Chang (10.1016/j.eswa.2014.01.021_b0410) 2012; 440–441
Zarandi (10.1016/j.eswa.2014.01.021_b0130) 2011; 11
Selvanayaki (10.1016/j.eswa.2014.01.021_b0005) 2010; 2
Herlidou-Meme (10.1016/j.eswa.2014.01.021_b0335) 2003; 21
Zhou (10.1016/j.eswa.2014.01.021_b0300) 2007; 25
Selvaraj (10.1016/j.eswa.2014.01.021_b0470) 2013; 4
Zexuan (10.1016/j.eswa.2014.01.021_b0250) 2012; 108
Shanthi (10.1016/j.eswa.2014.01.021_b0275) 2010; 41
Juang (10.1016/j.eswa.2014.01.021_b0150) 2010; 43
Yamamoto (10.1016/j.eswa.2014.01.021_b0045) 2010; 34
Maitra (10.1016/j.eswa.2014.01.021_b0345) 2006; 1
Haykin (10.1016/j.eswa.2014.01.021_b0485) 2008
Jafari (10.1016/j.eswa.2014.01.021_b0080) 2011; 5
Jain (10.1016/j.eswa.2014.01.021_b0435) 2000; 22
10.1016/j.eswa.2014.01.021_b0160
Gonzalez (10.1016/j.eswa.2014.01.021_b0460) 2008
Cheng (10.1016/j.eswa.2014.01.021_b0325) 2010; 43
El-Dahshan (10.1016/j.eswa.2014.01.021_b0060) 2010; 20
Khayati (10.1016/j.eswa.2014.01.021_b0390) 2008; 32
Daubechies (10.1016/j.eswa.2014.01.021_b0480) 1991
Arimura (10.1016/j.eswa.2014.01.021_b0025) 2009; 2
10.1016/j.eswa.2014.01.021_b0245
Arimura (10.1016/j.eswa.2014.01.021_b0035) 2012
10.1016/j.eswa.2014.01.021_b0085
Mehmood (10.1016/j.eswa.2014.01.021_b0285) 2013; 43
Jolliffe (10.1016/j.eswa.2014.01.021_b0440) 2002
References_xml – volume: 1
  start-page: 21
  year: 2007
  end-page: 33
  ident: b0365
  article-title: Brain MRI slices classification using least squares support vector machine
  publication-title: IC-MED
– reference: Rajendran, A., & Dhanasekaran, R. (2012). Fuzzy clustering and deformable model for tumor segmentation on MRI brain image: A combined approach.
– volume: 5
  start-page: 1066
  year: 2011
  end-page: 1079
  ident: b0080
  article-title: Automatic brain tissue detection in MRI images using seeded region growing segmentation and neural network classification
  publication-title: Australian Journal of Basic and Applied Sciences
– volume: 30
  start-page: 21
  year: 2011
  end-page: 23
  ident: b0015
  article-title: Texture and shape based classification of brain tumors using linear vector quantization
  publication-title: International Journal of Computer Applications
– reference: XueY., Simon X., & Yang, S. X. (2005). Image segmentation using watershed transform and feed-back pulse coupled neural network. In W. Duch (Ed.),
– reference: Latif, G., Kazmi, S. B., Jaffar, M. A., & Mirza, A. M. (2010). Classification and segmentation of brain tumor using texture analysis. In
– volume: 109
  start-page: 325
  year: 2010
  end-page: 343
  ident: b0360
  article-title: A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO
  publication-title: Progress in Electromagnetics Research
– volume: 20
  start-page: 173
  year: 2002
  end-page: 179
  ident: b0145
  article-title: Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms
  publication-title: Magnetic Resonance Imaging
– volume: 9
  start-page: 1
  year: 2009
  end-page: 8
  ident: b0140
  article-title: Semi-automatic segmentation of MRI brain tumor
  publication-title: ICGSTGVIP Journal
– reference: Indian Devaki Cancer Institute, 2014. Devaki Cancer Hospita Madurai, <
– volume: 175
  start-page: 206
  year: 2008
  end-page: 217
  ident: b0200
  article-title: Improving segmentation accuracy for magnetic resonance imaging using a boosted decision tree
  publication-title: Journal of Neuroscience Methods
– volume: 6
  start-page: 7242
  year: 2011
  end-page: 7246
  ident: b0320
  article-title: MR imaging enhancement and segmentation of tumor using fuzzy curvelet
  publication-title: International Journal of the Physical Sciences
– reference: Balafar, M. A., Ramli, A. R., Saripan1, M. I., Mahmud, R., & Mashohor, S. (2008). Medical image segmentation using fuzzy c-mean (FCM), learning vector quantization (LVQ) and user interaction. In D. -S. Huang, et al. (Eds.),
– reference: Donoso, R., Veloz, A., & Allende, H. (2010). Modified expectation maximization algorithm for MRI segmentation; I. Bloch, & R. M. Cesar, Jr. (Eds.), CIARP 2010, LNCS 6419 (pp. 63–70).
– volume: 30
  start-page: 615
  year: 2008
  end-page: 623
  ident: b0340
  article-title: Hybrid multi-resolution Slantlet transform and fuzzy c-means clustering approach for normal–pathological brain MR image segregation
  publication-title: Medical Engineering and Physics
– volume: 37
  year: 2012
  ident: b0475
  article-title: A robust brain MRI classification with GLCM features
  publication-title: International Journal of Computer Applications
– volume: 3
  start-page: 19
  year: 2011
  end-page: 33
  ident: b0490
  article-title: Medical image classification using an optimal feature extraction algorithm and a supervised classifier technique
  publication-title: International Journal of Software Science and Computational Intelligence
– volume: 16
  start-page: 840
  year: 2012
  end-page: 848
  ident: b0310
  article-title: Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms
  publication-title: Medical Image Analysis
– year: 2002
  ident: b0440
  article-title: Principal component analysis
– volume: 13
  start-page: 34
  year: 2011
  end-page: 39
  ident: b0465
  article-title: MRI segmentation through wavelets and fuzzy c-means
  publication-title: World Applied Sciences Journal
– reference: Harvard medical school (2014). Web: <
– volume: 41
  start-page: 66
  year: 2010
  end-page: 71
  ident: b0275
  article-title: Neuro-fuzzy approach toward segmentation of brain MRI based on intensity and spatial distribution
  publication-title: Journal of Medical Imaging and Radiation Sciences
– reference: (Vol. 3696, pp. 531–536). Berlin: Springer-Verlag.
– volume: 34
  start-page: 308
  year: 2010
  end-page: 320
  ident: b0185
  article-title: Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging
  publication-title: Computerized Medical Imaging and Graphics
– volume: 22
  start-page: 205
  year: 2012
  end-page: 214
  ident: b0380
  article-title: SVM-based glioma grading: Optimization by feature reduction analysis
  publication-title: Zeitschrift für Medizinische Physik
– volume: 22
  start-page: 100
  year: 2013
  end-page: 113
  ident: b0450
  article-title: A hybrid 3D learning-and-interaction-based segmentation approach applied on CT liver volumes
  publication-title: Radio Engineering
– volume: 33
  start-page: 111
  year: 2009
  end-page: 121
  ident: b0195
  article-title: Automatic segmentation of magnetic resonance images using a decision tree with spatial information
  publication-title: Computerized Medical Imaging and Graphics
– volume: 2
  start-page: 1793
  year: 2010
  end-page: 8201
  ident: b0010
  article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map
  publication-title: International Journal of Computer Theory and Engineering
– volume: 43
  start-page: 299
  year: 2010
  end-page: 317
  ident: b0325
  article-title: Automated breast cancer detection and classification using ultrasound images: A survey
  publication-title: Pattern Recognition
– volume: 5590
  start-page: 736
  year: 2009
  end-page: 747
  ident: b0225
  article-title: Brain tumor segmentation using support vector machines; symbolic and quantitative approaches to reasoning with uncertainty
  publication-title: Lecture Notes in Computer Science
– volume: 41
  start-page: 619
  year: 2011
  end-page: 632
  ident: b0240
  article-title: Brain volumetry: An active contour model-based segmentation followed by SVM-based classification
  publication-title: Computers in Biology and Medicine
– reference: (pp. 177–184). Berlin: Springer-Verlag.
– year: 2008
  ident: b0460
  article-title: Digital image processing
– year: 2001
  ident: b0040
  article-title: Pattern classification
– volume: 6
  start-page: 124
  year: 2006
  end-page: 133
  ident: b0425
  article-title: Wavelet based features for color texture classification with application to CBIR
  publication-title: International Journal of Computer Science and Network Security
– volume: 2
  start-page: 5890
  year: 2010
  end-page: 5901
  ident: b0005
  article-title: CAD system for automatic detection of brain tumor through magnetic resonance image-a review
  publication-title: International Journal of Engineering Science and Technology
– volume: 104
  start-page: 158
  year: 2011
  end-page: 177
  ident: b0305
  article-title: A review of atlas-based segmentation for magnetic resonance brain images
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 4
  start-page: 1313
  year: 2013
  end-page: 1332
  ident: b0470
  article-title: A review on tissue segmentation and feature extraction of MRI brain images
  publication-title: International Journal of Computer Science and Engineering Technology (IJCSET)
– start-page: 1609
  year: 2009
  end-page: 1618
  ident: b0350
  article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
  publication-title: Magnetic Resonance Medicine
– year: 2010
  ident: b0495
  article-title: Magnetic resonance imaging of the brain
– reference: . IEEE.
– volume: 37
  start-page: 71
  year: 2007
  end-page: 81
  ident: b0280
  article-title: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification
  publication-title: NeuroImage
– volume: 38
  start-page: 10049
  year: 2011
  end-page: 10053
  ident: b0375
  article-title: A hybrid method for MRI brain image classification
  publication-title: Expert Systems with Applications
– volume: 26
  start-page: 2042
  year: 2005
  end-page: 2051
  ident: b0165
  article-title: G-wire: A livewire segmentation algorithm based on a generalized graph formulation
  publication-title: Pattern Recognition Letters
– reference: >) Laboratory of neuro imaging: L NI.
– volume: 35
  start-page: 2158
  year: 1996
  end-page: 2161
  ident: b0400
  article-title: Stabilized input with a feedback pulse-coupled neural network
  publication-title: Optical Engineering
– volume: 502
  start-page: 225
  year: 2011
  end-page: 229
  ident: b0050
  article-title: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson’s correlation
  publication-title: Neuroscience Letters
– reference: LONI (2014). (<
– volume: 2
  start-page: 925
  year: 2009
  end-page: 952
  ident: b0025
  article-title: Computer-aided diagnosis systems for brain diseases in magnetic resonance images
  publication-title: Algorithms
– volume: 1
  start-page: 299
  year: 2006
  end-page: 306
  ident: b0345
  article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification
  publication-title: Biomedical Signal Processing and Control
– reference: > (2014).
– volume: 440–441
  start-page: 102
  year: 2012
  end-page: 112
  ident: b0410
  article-title: Estimation of riverbed grain-size distribution using image-processing techniques
  publication-title: Journal of Hydrology
– year: 2007
  ident: b0455
  article-title: Learning from data: Concepts, theory and methods
– volume: 115
  start-page: 256
  year: 2011
  end-page: 269
  ident: b0135
  article-title: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation
  publication-title: Computer Vision and Image Understanding
– volume: 22
  start-page: 4
  year: 2000
  end-page: 37
  ident: b0435
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 30
  start-page: 615
  year: 2008
  end-page: 623
  ident: b0175
  article-title: Hybrid multiresolution Slantlet transform and fuzzy c-means clustering approach for normal–pathological brain MR image segregation
  publication-title: Medical Engineering and Physics
– volume: 9
  start-page: 9
  year: 2009
  end-page: 17
  ident: b0155
  article-title: Brain tumor detection based on multi-parameter MRI image analysis
  publication-title: ICGST International Journal on Graphics, Vision and Image Processing GVIP
– volume: 72
  start-page: 214
  year: 2013
  end-page: 226
  ident: b0315
  article-title: Statistical analysis of brain tissue images in the wavelet domain: Wavelet-based morphometry
  publication-title: NeuroImage
– volume: 13
  start-page: 2668
  year: 2013
  end-page: 2682
  ident: b0215
  article-title: Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies
  publication-title: Applied Soft Computing
– volume: 40
  start-page: 811
  year: 2010
  end-page: 822
  ident: b0230
  article-title: Fully automatic brain extraction algorithm for axial T2-weighted magnetic resonance images
  publication-title: Computers in Biology and Medicine
– volume: 21
  start-page: 989
  year: 2003
  end-page: 993
  ident: b0335
  article-title: MRI texture analysis on texture test objects, normal brain and intracranial tumors
  publication-title: Magnetic Resonance Imaging
– volume: 108
  start-page: 644
  year: 2012
  end-page: 655
  ident: b0250
  article-title: Generalized rough fuzzy c-means algorithm for brain MR image segmentation
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 11
  start-page: 285
  year: 2011
  end-page: 294
  ident: b0130
  article-title: Systematic image processing for diagnosing brain tumors: A type-II fuzzy expert system approach
  publication-title: Applied Soft Computing
– volume: 26
  start-page: 2052
  year: 2005
  end-page: 2062
  ident: b0210
  article-title: An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI
  publication-title: Pattern Recognition Letters
– year: 1991
  ident: b0480
  article-title: Ten lectures on wavelets
  publication-title: CBMS-NSF Series in Applied Mathematics (SIAM)
– year: 2005
  ident: b0405
  article-title: Image processing using pulse-coupled neural networks
– reference: (pp. 1004–1008). IEEE.
– reference: Brainweb (2014). Brain web: Simulated brain database. <
– volume: 43
  start-page: 1471
  year: 2013
  end-page: 1483
  ident: b0285
  article-title: Prioritization of brain MRI volumes using medical image perception model and tumor region segmentation
  publication-title: Computers in Biology and Medicine
– start-page: 258
  year: 2012
  end-page: 296
  ident: b0035
  article-title: Magnetic resonance image analysis for brain CAD systems with machine learning
  publication-title: Machine learning. Computer-aided diagnosis: Medical imaging intelligence and analysis
– volume: 89
  start-page: 24
  year: 2008
  end-page: 32
  ident: b0070
  article-title: Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features
  publication-title: Computer Methods Programs Biomedicine
– volume: 5
  start-page: 105
  year: 2012
  end-page: 113
  ident: b0180
  article-title: Automated detection of multiple sclerosis candidate regions in MR images: False-positive removal with use of an ANN-controlled level-set method
  publication-title: Radiological Physics and Technology January
– year: 2008
  ident: b0485
  article-title: Neural networks and learning machines
– reference: Marx, S. D., & Brown, C. M. (2000). Progressive livewire for automatic contour extraction. In
– reference: Mohsen, H., El-Dahshan, E., & Salem, A. (2012). A machine learning technique for MRI brain images. In
– volume: 1
  start-page: 86
  year: 2006
  end-page: 92
  ident: b0370
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title: Biomedical Signal Processing and Control
– volume: 16
  start-page: 129
  year: 1999
  end-page: 147
  ident: b0120
  article-title: A fuzzy clustering based segmentation system as support to diagnosis in medical imaging
  publication-title: Artificial Intelligence in Medicine
– reference: (Vol. 30, pp. 327–333). (In
– reference: Department of radiology (2014). Pakistan institute of medical sciences, Islamabad, Pakistan, Online: <
– volume: 30
  start-page: 694
  year: 2012
  end-page: 715
  ident: b0235
  article-title: A novel content-based active contour model for brain tumor segmentation
  publication-title: Magnetic Resonance Imaging
– reference: <
– reference: (pp. 147–155).
– volume: 182
  start-page: 110
  year: 2009
  end-page: 122
  ident: b0260
  article-title: Gaussian mixture model-based segmentation of MR images taken from premature infant brains
  publication-title: Journal of Neuroscience Methods
– volume: 7325
  start-page: 230
  year: 2012
  end-page: 239
  ident: b0220
  article-title: Automated segmentation of brain tumor using optimal texture features and support vector machine classifier; image analysis and recognition
  publication-title: Lecture Notes in Computer Science
– volume: 43
  start-page: 941
  year: 2010
  end-page: 949
  ident: b0150
  article-title: MRI brain lesion image detection based on color-converted K-means clustering segmentation
  publication-title: Measurement
– volume: 24
  start-page: 349
  year: 2000
  end-page: 357
  ident: b0205
  article-title: MRI brain image segmentation by multi-resolution edge detection and region selection
  publication-title: Computerized Medical Imaging and Graphics
– volume: 20
  start-page: 433
  year: 2010
  end-page: 441
  ident: b0060
  article-title: Hybrid intelligent techniques for MRI brain images classification
  publication-title: Digital Signal Processing
– volume: 2
  start-page: 293
  year: 1990
  end-page: 307
  ident: b0395
  article-title: Feature linking via synchronization among distributed assemblies: Simulation of results from cat cortex
  publication-title: Neural Computation
– reference: >.
– reference: .
– volume: 9
  start-page: 71
  year: 2010
  end-page: 82
  ident: b0355
  article-title: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine
  publication-title: Leonardo Journal of Sciences
– volume: 92
  start-page: 238
  year: 2008
  end-page: 248
  ident: b0020
  article-title: Computer-aided diagnosis: The emerging of three CAD systems induced by Japanese health care needs
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 34
  start-page: 404
  year: 2010
  end-page: 413
  ident: b0045
  article-title: Computer-aided detection of multiple sclerosis lesions in brain magnetic resonance images: False positive reduction scheme consisted of rule-based, level set method, and support vector machine
  publication-title: Computerized Medical Imaging and Graphics
– volume: 114
  start-page: 118
  year: 2013
  end-page: 131
  ident: b0290
  article-title: Improving MRI segmentation with probabilistic GHSOM and multi-objective optimization
  publication-title: Neurocomputing
– volume: 198
  start-page: 387
  year: 2011
  end-page: 398
  ident: b0190
  article-title: Brain tissue classification of MR images using fast Fourier transform based expectation–maximization Gaussian mixture model
  publication-title: Advances in Computing and Information Technology Communications in Computer and Information Science
– reference: Weili, S., Yu, M., Zhanfang, C., & Hongbiao, Z. (2009). Research of automatic medical image segmentation algorithm based on Tsallis entropy and improved PCNN. In
– reference: 2012).
– volume: 13
  start-page: 193
  year: 2009
  end-page: 202
  ident: b0330
  article-title: A modified fuzzy c-means classification method using a multiscale diffusion filtering scheme
  publication-title: Medical Image Analysis
– volume: 24
  start-page: 358
  year: 2011
  end-page: 367
  ident: b0125
  article-title: Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 109
  start-page: 325
  year: 2010
  ident: 10.1016/j.eswa.2014.01.021_b0360
  article-title: A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO
  publication-title: Progress in Electromagnetics Research
  doi: 10.2528/PIER10090105
– ident: 10.1016/j.eswa.2014.01.021_b0090
– ident: 10.1016/j.eswa.2014.01.021_b0065
– volume: 16
  start-page: 840
  issue: 4
  year: 2012
  ident: 10.1016/j.eswa.2014.01.021_b0310
  article-title: Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2012.01.001
– ident: 10.1016/j.eswa.2014.01.021_b0170
– ident: 10.1016/j.eswa.2014.01.021_b0420
– volume: 35
  start-page: 2158
  issue: 8
  year: 1996
  ident: 10.1016/j.eswa.2014.01.021_b0400
  article-title: Stabilized input with a feedback pulse-coupled neural network
  publication-title: Optical Engineering
  doi: 10.1117/1.600797
– volume: 41
  start-page: 619
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0240
  article-title: Brain volumetry: An active contour model-based segmentation followed by SVM-based classification
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2011.05.013
– volume: 32
  start-page: 124
  year: 2008
  ident: 10.1016/j.eswa.2014.01.021_b0390
  article-title: A novel method for automatic determination of different stages of multiple sclerosis lesions in brain MR FLAIR images
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2007.10.003
– year: 2008
  ident: 10.1016/j.eswa.2014.01.021_b0485
– volume: 13
  start-page: 2668
  issue: 5
  year: 2013
  ident: 10.1016/j.eswa.2014.01.021_b0215
  article-title: Two fully-unsupervised methods for MR brain image segmentation using SOM-based strategies
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2012.11.020
– volume: 72
  start-page: 214
  issue: 15
  year: 2013
  ident: 10.1016/j.eswa.2014.01.021_b0315
  article-title: Statistical analysis of brain tissue images in the wavelet domain: Wavelet-based morphometry
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.01.058
– ident: 10.1016/j.eswa.2014.01.021_b0160
– volume: 9
  start-page: 9
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2014.01.021_b0155
  article-title: Brain tumor detection based on multi-parameter MRI image analysis
  publication-title: ICGST International Journal on Graphics, Vision and Image Processing GVIP
– ident: 10.1016/j.eswa.2014.01.021_b0055
– volume: 40
  start-page: 811
  issue: 10
  year: 2010
  ident: 10.1016/j.eswa.2014.01.021_b0230
  article-title: Fully automatic brain extraction algorithm for axial T2-weighted magnetic resonance images
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2010.08.004
– volume: 24
  start-page: 349
  issue: 6
  year: 2000
  ident: 10.1016/j.eswa.2014.01.021_b0205
  article-title: MRI brain image segmentation by multi-resolution edge detection and region selection
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/S0895-6111(00)00037-9
– volume: 9
  start-page: 71
  issue: 17
  year: 2010
  ident: 10.1016/j.eswa.2014.01.021_b0355
  article-title: A hybrid approach for automatic classification of brain MRI using genetic algorithm and support vector machine
  publication-title: Leonardo Journal of Sciences
– volume: 43
  start-page: 941
  issue: 7
  year: 2010
  ident: 10.1016/j.eswa.2014.01.021_b0150
  article-title: MRI brain lesion image detection based on color-converted K-means clustering segmentation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2010.03.013
– volume: 1
  start-page: 299
  issue: 4
  year: 2006
  ident: 10.1016/j.eswa.2014.01.021_b0345
  article-title: A Slantlet transform based intelligent system for magnetic resonance brain image classification
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2006.12.001
– volume: 114
  start-page: 118
  year: 2013
  ident: 10.1016/j.eswa.2014.01.021_b0290
  article-title: Improving MRI segmentation with probabilistic GHSOM and multi-objective optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.08.047
– volume: 33
  start-page: 111
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2014.01.021_b0195
  article-title: Automatic segmentation of magnetic resonance images using a decision tree with spatial information
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2008.10.008
– start-page: 1609
  issue: 62
  year: 2009
  ident: 10.1016/j.eswa.2014.01.021_b0350
  article-title: Classification of brain tumor type and grade using MRI texture and shape in a machine learning scheme
  publication-title: Magnetic Resonance Medicine
  doi: 10.1002/mrm.22147
– volume: 26
  start-page: 2042
  issue: 13
  year: 2005
  ident: 10.1016/j.eswa.2014.01.021_b0165
  article-title: G-wire: A livewire segmentation algorithm based on a generalized graph formulation
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.02.011
– ident: 10.1016/j.eswa.2014.01.021_b0100
– volume: 41
  start-page: 66
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2014.01.021_b0275
  article-title: Neuro-fuzzy approach toward segmentation of brain MRI based on intensity and spatial distribution
  publication-title: Journal of Medical Imaging and Radiation Sciences
  doi: 10.1016/j.jmir.2010.03.002
– volume: 22
  start-page: 100
  issue: 1
  year: 2013
  ident: 10.1016/j.eswa.2014.01.021_b0450
  article-title: A hybrid 3D learning-and-interaction-based segmentation approach applied on CT liver volumes
  publication-title: Radio Engineering
– volume: 6
  start-page: 124
  issue: 9A
  year: 2006
  ident: 10.1016/j.eswa.2014.01.021_b0425
  article-title: Wavelet based features for color texture classification with application to CBIR
  publication-title: International Journal of Computer Science and Network Security
– volume: 34
  start-page: 404
  issue: 5
  year: 2010
  ident: 10.1016/j.eswa.2014.01.021_b0045
  article-title: Computer-aided detection of multiple sclerosis lesions in brain magnetic resonance images: False positive reduction scheme consisted of rule-based, level set method, and support vector machine
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2010.02.001
– volume: 2
  start-page: 5890
  issue: 10
  year: 2010
  ident: 10.1016/j.eswa.2014.01.021_b0005
  article-title: CAD system for automatic detection of brain tumor through magnetic resonance image-a review
  publication-title: International Journal of Engineering Science and Technology
– volume: 25
  start-page: 381
  issue: 3
  year: 2007
  ident: 10.1016/j.eswa.2014.01.021_b0300
  article-title: Multicontext wavelet-based thresholding segmentation of brain tissues in magnetic resonance images
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/j.mri.2006.09.001
– ident: 10.1016/j.eswa.2014.01.021_b0095
– volume: 37
  issue: 12
  year: 2012
  ident: 10.1016/j.eswa.2014.01.021_b0475
  article-title: A robust brain MRI classification with GLCM features
  publication-title: International Journal of Computer Applications
– volume: 34
  start-page: 308
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2014.01.021_b0185
  article-title: Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2009.12.002
– ident: 10.1016/j.eswa.2014.01.021_b0110
– volume: 22
  start-page: 4
  year: 2000
  ident: 10.1016/j.eswa.2014.01.021_b0435
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.824819
– ident: 10.1016/j.eswa.2014.01.021_b0245
– year: 2007
  ident: 10.1016/j.eswa.2014.01.021_b0455
– volume: 43
  start-page: 299
  issue: 1
  year: 2010
  ident: 10.1016/j.eswa.2014.01.021_b0325
  article-title: Automated breast cancer detection and classification using ultrasound images: A survey
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2009.05.012
– start-page: 258
  year: 2012
  ident: 10.1016/j.eswa.2014.01.021_b0035
  article-title: Magnetic resonance image analysis for brain CAD systems with machine learning
– volume: 30
  start-page: 615
  issue: 5
  year: 2008
  ident: 10.1016/j.eswa.2014.01.021_b0175
  article-title: Hybrid multiresolution Slantlet transform and fuzzy c-means clustering approach for normal–pathological brain MR image segregation
  publication-title: Medical Engineering and Physics
  doi: 10.1016/j.medengphy.2007.06.009
– ident: 10.1016/j.eswa.2014.01.021_b0085
– volume: 30
  start-page: 694
  issue: 5
  year: 2012
  ident: 10.1016/j.eswa.2014.01.021_b0235
  article-title: A novel content-based active contour model for brain tumor segmentation
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/j.mri.2012.01.006
– volume: 11
  start-page: 285
  issue: 1
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0130
  article-title: Systematic image processing for diagnosing brain tumors: A type-II fuzzy expert system approach
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2009.11.019
– volume: 2
  start-page: 1793
  issue: 4
  year: 2010
  ident: 10.1016/j.eswa.2014.01.021_b0010
  article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map
  publication-title: International Journal of Computer Theory and Engineering
– volume: 440–441
  start-page: 102
  year: 2012
  ident: 10.1016/j.eswa.2014.01.021_b0410
  article-title: Estimation of riverbed grain-size distribution using image-processing techniques
  publication-title: Journal of Hydrology
  doi: 10.1016/j.jhydrol.2012.03.032
– volume: 3
  start-page: 19
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0490
  article-title: Medical image classification using an optimal feature extraction algorithm and a supervised classifier technique
  publication-title: International Journal of Software Science and Computational Intelligence
  doi: 10.4018/jssci.2011040102
– volume: 5
  start-page: 105
  issue: 1
  year: 2012
  ident: 10.1016/j.eswa.2014.01.021_b0180
  article-title: Automated detection of multiple sclerosis candidate regions in MR images: False-positive removal with use of an ANN-controlled level-set method
  publication-title: Radiological Physics and Technology January
  doi: 10.1007/s12194-011-0141-2
– volume: 4
  start-page: 1313
  issue: 10
  year: 2013
  ident: 10.1016/j.eswa.2014.01.021_b0470
  article-title: A review on tissue segmentation and feature extraction of MRI brain images
  publication-title: International Journal of Computer Science and Engineering Technology (IJCSET)
– volume: 22
  start-page: 205
  issue: 3
  year: 2012
  ident: 10.1016/j.eswa.2014.01.021_b0380
  article-title: SVM-based glioma grading: Optimization by feature reduction analysis
  publication-title: Zeitschrift für Medizinische Physik
  doi: 10.1016/j.zemedi.2012.03.007
– volume: 9
  start-page: 1
  issue: 4
  year: 2009
  ident: 10.1016/j.eswa.2014.01.021_b0140
  article-title: Semi-automatic segmentation of MRI brain tumor
  publication-title: ICGSTGVIP Journal
– volume: 30
  start-page: 615
  issue: 5
  year: 2008
  ident: 10.1016/j.eswa.2014.01.021_b0340
  article-title: Hybrid multi-resolution Slantlet transform and fuzzy c-means clustering approach for normal–pathological brain MR image segregation
  publication-title: Medical Engineering and Physics
  doi: 10.1016/j.medengphy.2007.06.009
– volume: 43
  start-page: 1471
  year: 2013
  ident: 10.1016/j.eswa.2014.01.021_b0285
  article-title: Prioritization of brain MRI volumes using medical image perception model and tumor region segmentation
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2013.07.001
– volume: 24
  start-page: 358
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0125
  article-title: Combining stationary wavelet transform and self-organizing maps for brain MR image segmentation
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2010.09.008
– volume: 115
  start-page: 256
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0135
  article-title: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2010.09.007
– volume: 26
  start-page: 2052
  issue: 13
  year: 2005
  ident: 10.1016/j.eswa.2014.01.021_b0210
  article-title: An intelligent modified fuzzy c-means based algorithm for bias estimation and segmentation of brain MRI
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.03.019
– volume: 5590
  start-page: 736
  year: 2009
  ident: 10.1016/j.eswa.2014.01.021_b0225
  article-title: Brain tumor segmentation using support vector machines; symbolic and quantitative approaches to reasoning with uncertainty
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-02906-6_63
– volume: 7325
  start-page: 230
  year: 2012
  ident: 10.1016/j.eswa.2014.01.021_b0220
  article-title: Automated segmentation of brain tumor using optimal texture features and support vector machine classifier; image analysis and recognition
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/978-3-642-31298-4_28
– year: 2008
  ident: 10.1016/j.eswa.2014.01.021_b0460
– volume: 502
  start-page: 225
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0050
  article-title: Computer aided diagnosis system for Alzheimer disease using brain diffusion tensor imaging features selected by Pearson’s correlation
  publication-title: Neuroscience Letters
  doi: 10.1016/j.neulet.2011.07.049
– volume: 37
  start-page: 71
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2014.01.021_b0280
  article-title: Multi-spectral brain tissue segmentation using automatically trained k-nearest-neighbor classification
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.05.018
– year: 2002
  ident: 10.1016/j.eswa.2014.01.021_b0440
– volume: 16
  start-page: 129
  issue: 2
  year: 1999
  ident: 10.1016/j.eswa.2014.01.021_b0120
  article-title: A fuzzy clustering based segmentation system as support to diagnosis in medical imaging
  publication-title: Artificial Intelligence in Medicine
  doi: 10.1016/S0933-3657(98)00069-4
– ident: 10.1016/j.eswa.2014.01.021_b0105
– volume: 2
  start-page: 293
  issue: 3
  year: 1990
  ident: 10.1016/j.eswa.2014.01.021_b0395
  article-title: Feature linking via synchronization among distributed assemblies: Simulation of results from cat cortex
  publication-title: Neural Computation
  doi: 10.1162/neco.1990.2.3.293
– year: 1991
  ident: 10.1016/j.eswa.2014.01.021_b0480
  article-title: Ten lectures on wavelets
  publication-title: CBMS-NSF Series in Applied Mathematics (SIAM)
– volume: 6
  start-page: 7242
  issue: 31
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0320
  article-title: MR imaging enhancement and segmentation of tumor using fuzzy curvelet
  publication-title: International Journal of the Physical Sciences
– volume: 20
  start-page: 433
  issue: 2
  year: 2010
  ident: 10.1016/j.eswa.2014.01.021_b0060
  article-title: Hybrid intelligent techniques for MRI brain images classification
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2009.07.002
– year: 2001
  ident: 10.1016/j.eswa.2014.01.021_b0040
– volume: 13
  start-page: 34
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0465
  article-title: MRI segmentation through wavelets and fuzzy c-means
  publication-title: World Applied Sciences Journal
– year: 2010
  ident: 10.1016/j.eswa.2014.01.021_b0495
– volume: 38
  start-page: 10049
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0375
  article-title: A hybrid method for MRI brain image classification
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2011.02.012
– volume: 21
  start-page: 989
  issue: 9
  year: 2003
  ident: 10.1016/j.eswa.2014.01.021_b0335
  article-title: MRI texture analysis on texture test objects, normal brain and intracranial tumors
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/S0730-725X(03)00212-1
– volume: 11
  start-page: 2035
  issue: 2
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0415
  article-title: Prostate boundary detection in ultrasound images using biologically-inspired spiking neural network
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2010.07.001
– volume: 1
  start-page: 21
  issue: 1
  year: 2007
  ident: 10.1016/j.eswa.2014.01.021_b0365
  article-title: Brain MRI slices classification using least squares support vector machine
  publication-title: IC-MED
– volume: 20
  start-page: 173
  issue: 2
  year: 2002
  ident: 10.1016/j.eswa.2014.01.021_b0145
  article-title: Segmentation techniques for tissue differentiation in MRI of ophthalmology using fuzzy clustering algorithms
  publication-title: Magnetic Resonance Imaging
  doi: 10.1016/S0730-725X(02)00477-0
– volume: 89
  start-page: 24
  issue: 1
  year: 2008
  ident: 10.1016/j.eswa.2014.01.021_b0070
  article-title: Improving brain tumor characterization on MRI by probabilistic neural networks and non-linear transformation of textural features
  publication-title: Computer Methods Programs Biomedicine
  doi: 10.1016/j.cmpb.2007.10.007
– volume: 108
  start-page: 644
  issue: 2
  year: 2012
  ident: 10.1016/j.eswa.2014.01.021_b0250
  article-title: Generalized rough fuzzy c-means algorithm for brain MR image segmentation
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2011.10.010
– volume: 13
  start-page: 193
  issue: 2
  year: 2009
  ident: 10.1016/j.eswa.2014.01.021_b0330
  article-title: A modified fuzzy c-means classification method using a multiscale diffusion filtering scheme
  publication-title: Medical Image Analysis
  doi: 10.1016/j.media.2008.06.014
– volume: 1
  start-page: 86
  issue: 1
  year: 2006
  ident: 10.1016/j.eswa.2014.01.021_b0370
  article-title: Classification of magnetic resonance brain images using wavelets as input to support vector machine and neural network
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2006.05.002
– volume: 5
  start-page: 1066
  issue: 8
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0080
  article-title: Automatic brain tissue detection in MRI images using seeded region growing segmentation and neural network classification
  publication-title: Australian Journal of Basic and Applied Sciences
– ident: 10.1016/j.eswa.2014.01.021_b0255
  doi: 10.1007/978-3-642-16687-7_13
– volume: 2
  start-page: 925
  issue: 3
  year: 2009
  ident: 10.1016/j.eswa.2014.01.021_b0025
  article-title: Computer-aided diagnosis systems for brain diseases in magnetic resonance images
  publication-title: Algorithms
  doi: 10.3390/a2030925
– volume: 104
  start-page: 158
  issue: 3
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0305
  article-title: A review of atlas-based segmentation for magnetic resonance brain images
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2011.07.015
– volume: 92
  start-page: 238
  issue: 3
  year: 2008
  ident: 10.1016/j.eswa.2014.01.021_b0020
  article-title: Computer-aided diagnosis: The emerging of three CAD systems induced by Japanese health care needs
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2008.04.003
– volume: 198
  start-page: 387
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0190
  article-title: Brain tissue classification of MR images using fast Fourier transform based expectation–maximization Gaussian mixture model
  publication-title: Advances in Computing and Information Technology Communications in Computer and Information Science
  doi: 10.1007/978-3-642-22555-0_40
– year: 2005
  ident: 10.1016/j.eswa.2014.01.021_b0405
– volume: 30
  start-page: 21
  issue: 11
  year: 2011
  ident: 10.1016/j.eswa.2014.01.021_b0015
  article-title: Texture and shape based classification of brain tumors using linear vector quantization
  publication-title: International Journal of Computer Applications
– ident: 10.1016/j.eswa.2014.01.021_b0270
– volume: 175
  start-page: 206
  issue: 2
  year: 2008
  ident: 10.1016/j.eswa.2014.01.021_b0200
  article-title: Improving segmentation accuracy for magnetic resonance imaging using a boosted decision tree
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2008.08.017
– volume: 182
  start-page: 110
  issue: 1
  year: 2009
  ident: 10.1016/j.eswa.2014.01.021_b0260
  article-title: Gaussian mixture model-based segmentation of MR images taken from premature infant brains
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2009.05.026
SSID ssj0017007
Score 2.6198761
Snippet •We review the recent published segmentation and classification techniques for the brain magnetic resonance images (MRI).•We proposed a hybrid intelligent...
Computer-aided detection/diagnosis (CAD) systems can enhance the diagnostic capabilities of physicians and reduce the time required for accurate diagnosis. The...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5526
SubjectTerms Applied sciences
Artificial intelligence
Biological and medical sciences
Brain
Classification
Computer science; control theory; systems
Computerized, statistical medical data processing and models in biomedicine
Connectionism. Neural networks
Diagnosis
Exact sciences and technology
Feature extractions
Human
Human brain tumors
Intelligent computer-aided diagnosis systems
Investigative techniques, diagnostic techniques (general aspects)
Magnetic resonance
Magnetic resonance images
Magnetic resonance imaging
Medical imaging
Medical informatics
Medical management aid. Diagnosis aid
Medical sciences
Nervous system
Neural networks
Pattern recognition. Digital image processing. Computational geometry
Radiodiagnosis. Nmr imagery. Nmr spectrometry
Segmentation
Tumors
Title Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm
URI https://dx.doi.org/10.1016/j.eswa.2014.01.021
https://www.proquest.com/docview/1567060650
https://www.proquest.com/docview/1677997845
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AKRWK
  dateStart: 19900101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEF9K-yKI1i88tccKvkm8fOxH4ttRLFelfVCLfVuyX_akTY5LTvHFv70z2c1BEe9ByEuWXRJmduc3k8z8hpA3hqeF1DJLBGBDAjtEJPi9LAGsYJkVAMkpFiefnYvFBft4yS_3yPFYC4NpldH2B5s-WOs4MovSnK2Wy9kXcA4ADuFi6RAJYAU7k9jF4N2fbZoH0s_JwLcnE5wdC2dCjpfrfiH3UMYCdWf2L3C6v6o7EJkPvS7-MtsDFp0ckgfRiaTz8J6PyJ5rHpOHY4MGGs_rE_JtHEqQCNJSG_Lqlh1tPR2681GNLSJov7lp1zT27KFnn0_f0zntNuuf7jetG0trCt43ra-_t-tlf3XzlFycfPh6vEhiJ4XEFJXoE-0599wL6wsnmfasrFPpshrJfEqIKGzGLBfa5Do3rJIeYlUrcum55t5oURXPyH7TNu45oaK0ReWKtDQGPCmG-dbgs-SgcFcZZs2EZKMIlYk049jt4lqN-WQ_FIpdodhVmikQ-4S83a5ZBZKNnbP5qBl1Z6soQIGd66Z31Lh9FCB0UeaynJDXo14VHDL8c1I3rt10CoJcZBkCb3bHHCFlBTE54y_-8wVfknt4FzLYXpH9fr1xR-Dy9Ho67OkpOZifflqc3wL4-P7F
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKewAJQXlULIViJG7IbB5-JNyqimpbuj1AK3qz4le7qE1WmyyIS38749hZqULsoVJOjq1YM_Z8M874G4Q-aJbkQomUcMAGAiuEE39eRgAraGo4QHLiLydPT_nknB5fsIsNdDDchfFpldH2B5veW-vYMo7SHM9ns_F3cA4ADuGhSR8JPEBblGXCR2Cfbld5Hp5_TgTCPUF893hzJiR52fa3Jx9KaeDuTP-HTo_nVQsyc6HYxT92uwejw230JHqReD9M9BnasPVz9HSo0IDjhn2BfgxNxDNBGmxCYt2sxY3DfXk-rHyNCNwtb5oFjkV78PTb0We8j9vl4pf9g6va4AqD-42r68tmMeuubl6i88MvZwcTEkspEJ2XvCPKMeaY48blVlDlaFElwqaVZ_MpIKQwKTWMK52pTNNSOAhWDc-EY4o5rXiZ76DNuqntK4R5YfLS5kmhNbhS1Cdcg9OSgcZtqanRI5QOIpQ68oz7chfXckgo-ym92KUXu0xSCWIfoY-rMfPAsrG2Nxs0I--sFQkwsHbc3h01rj4FEJ0XmShG6P2gVwm7zP86qWrbLFsJUa6nGQJ3dk0fLkQJQTllr-85wXfo4eRseiJPjk6_7qJH_k1IZ3uDNrvF0r4F_6dTe_36_gvRjABp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer-aided+diagnosis+of+human+brain+tumor+through+MRI%3A+A+survey+and+a+new+algorithm&rft.jtitle=Expert+systems+with+applications&rft.au=El-Dahshan%2C+Sayed+A&rft.au=Mohsen%2C+Heba+M&rft.au=Revett%2C+Kenneth&rft.au=Salem%2C+Abdel-Badeeh+M&rft.date=2014-09-01&rft.issn=0957-4174&rft.volume=41&rft.issue=11&rft.spage=5526&rft.epage=5545&rft_id=info:doi/10.1016%2Fj.eswa.2014.01.021&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon