Sampling Signals With a Finite Rate of Innovation on the Sphere
The state of the art in sampling theory now contains several theorems for signals that are non-bandlimited. For signals on the sphere however, most theorems still require the assumptions of bandlimitedness. In this work we show that a particular class of non-bandlimited signals, which have a finite...
Saved in:
Published in | IEEE transactions on signal processing Vol. 61; no. 18; pp. 4552 - 4561 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.09.2013
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1053-587X 1941-0476 |
DOI | 10.1109/TSP.2013.2272289 |
Cover
Abstract | The state of the art in sampling theory now contains several theorems for signals that are non-bandlimited. For signals on the sphere however, most theorems still require the assumptions of bandlimitedness. In this work we show that a particular class of non-bandlimited signals, which have a finite rate of innovation, can be exactly recovered using a finite number of samples. We consider a sampling scheme where K weighted Diracs are convolved with a kernel on the rotation group. We prove that if the sampling kernel has a bandlimit L = 2K then (2K - 1)(4K - 1) + 1 equiangular samples are sufficient for exact reconstruction. If the samples are uniformly distributed on the sphere, we argue that the signal can be accurately reconstructed using 4K 2 samples and validate our claim through numerical simulations. To further reduce the number of samples required, we design an optimal sampling kernel that achieves accurate reconstruction of the signal using only 3K samples, the number of parameters of the weighted Diracs. In addition to weighted Diracs, we show that our results can be extended to sample Diracs integrated along the azimuth. Finally, we consider kernels with antipodal symmetry which are common in applications such as diffusion magnetic resonance imaging. |
---|---|
AbstractList | The state of the art in sampling theory now contains several theorems for signals that are non-bandlimited. For signals on the sphere however, most theorems still require the assumptions of bandlimitedness. In this work we show that a particular class of non-bandlimited signals, which have a finite rate of innovation, can be exactly recovered using a finite number of samples. We consider a sampling scheme where [Formula Omitted] weighted Diracs are convolved with a kernel on the rotation group. We prove that if the sampling kernel has a bandlimit [Formula Omitted] then [Formula Omitted] equiangular samples are sufficient for exact reconstruction. If the samples are uniformly distributed on the sphere, we argue that the signal can be accurately reconstructed using [Formula Omitted] samples and validate our claim through numerical simulations. To further reduce the number of samples required, we design an optimal sampling kernel that achieves accurate reconstruction of the signal using only [Formula Omitted] samples, the number of parameters of the weighted Diracs. In addition to weighted Diracs, we show that our results can be extended to sample Diracs integrated along the azimuth. Finally, we consider kernels with antipodal symmetry which are common in applications such as diffusion magnetic resonance imaging. The state of the art in sampling theory now contains several theorems for signals that are non-bandlimited. For signals on the sphere however, most theorems still require the assumptions of bandlimitedness. In this work we show that a particular class of non-bandlimited signals, which have a finite rate of innovation, can be exactly recovered using a finite number of samples. We consider a sampling scheme where K weighted Diracs are convolved with a kernel on the rotation group. We prove that if the sampling kernel has a bandlimit L = 2 K then ( 2 K - 1 ) ( 4 K - 1 ) + 1 equiangular samples are sufficient for exact reconstruction. If the samples are uniformly distributed on the sphere, we argue that the signal can be accurately reconstructed using 4 K 2 samples and validate our claim through numerical simulations. To further reduce the number of samples required, we design an optimal sampling kernel that achieves accurate reconstruction of the signal using only 3 K samples, the number of parameters of the weighted Diracs. In addition to weighted Diracs, we show that our results can be extended to sample Diracs integrated along the azimuth. Finally, we consider kernels with antipodal symmetry which are common in applications such as diffusion magnetic resonance imaging. The state of the art in sampling theory now contains several theorems for signals that are non-bandlimited. For signals on the sphere however, most theorems still require the assumptions of bandlimitedness. In this work we show that a particular class of non-bandlimited signals, which have a finite rate of innovation, can be exactly recovered using a finite number of samples. We consider a sampling scheme where K weighted Diracs are convolved with a kernel on the rotation group. We prove that if the sampling kernel has a bandlimit L = 2K then (2K - 1)(4K - 1) + 1 equiangular samples are sufficient for exact reconstruction. If the samples are uniformly distributed on the sphere, we argue that the signal can be accurately reconstructed using 4K 2 samples and validate our claim through numerical simulations. To further reduce the number of samples required, we design an optimal sampling kernel that achieves accurate reconstruction of the signal using only 3K samples, the number of parameters of the weighted Diracs. In addition to weighted Diracs, we show that our results can be extended to sample Diracs integrated along the azimuth. Finally, we consider kernels with antipodal symmetry which are common in applications such as diffusion magnetic resonance imaging. |
Author | Marziliano, Pina Deslauriers-Gauthier, Samuel |
Author_xml | – sequence: 1 givenname: Samuel surname: Deslauriers-Gauthier fullname: Deslauriers-Gauthier, Samuel email: desl0001@e.ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore – sequence: 2 givenname: Pina surname: Marziliano fullname: Marziliano, Pina email: epina@ntu.edu.sg organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27783893$$DView record in Pascal Francis |
BookMark | eNp9kEtLAzEURoMo-NwLbgZEcDM1r0kmK5FiVRAUW9FdyMQbG5lmajIV_PemtrpwIVxyszjfB_fsos3QBUDokOABIVidTcb3A4oJG1AqKa3VBtohipMScyk28x9XrKxq-byNdlN6w5hwrsQOOh-b2bz14bUY-9dg2lQ8-X5amGLkg--heDD56VxxE0L3YXrfhSJPP4ViPJ9ChH205XIKDtZ7Dz2OLifD6_L27upmeHFbWqZEXzasxqapcWMcc-bFKOKEqyvOuADRWE6FfGkot0B5JYAQJxlUtJKAra2Z5WwPna5657F7X0Dq9cwnC21rAnSLpAlnSlKpuMro8R_0rVvE5W2ZkkQJysWy8GRNmWRN66IJ1ic9j35m4qemUtasVixzYsXZ2KUUwWnr-28RfTS-1QTrpX-d_eulf732n4P4T_Cn-5_I0SriAeAXF1XFMs6-AGUWkAs |
CODEN | ITPRED |
CitedBy_id | crossref_primary_10_1109_TCI_2021_3114994 crossref_primary_10_1109_TSP_2016_2625274 crossref_primary_10_1109_TIM_2019_2895438 crossref_primary_10_1109_TSP_2018_2890064 crossref_primary_10_1109_TSP_2018_2858213 crossref_primary_10_1109_TIP_2017_2716824 crossref_primary_10_3389_fphy_2021_752208 crossref_primary_10_1109_TMI_2022_3156868 crossref_primary_10_1016_j_media_2015_10_012 crossref_primary_10_1109_TSP_2015_2478751 crossref_primary_10_1109_LSP_2015_2485281 crossref_primary_10_1016_j_media_2025_103537 crossref_primary_10_1007_s00034_019_01076_3 crossref_primary_10_1109_TSP_2015_2399861 crossref_primary_10_1016_j_media_2020_101760 crossref_primary_10_1109_TSP_2017_2669900 crossref_primary_10_1016_j_media_2016_01_002 |
Cites_doi | 10.1109/TSP.2012.2189391 10.1002/mrm.20931 10.1109/MSP.2007.914998 10.1016/j.neuroimage.2007.02.016 10.1109/TSP.2011.2166394 10.1109/TIP.2009.2035886 10.1109/TIP.2008.2009378 10.1109/TIT.2005.862083 10.1109/TASL.2009.2038821 10.1142/0270 10.1006/aama.1994.1008 10.1117/12.893481 10.1109/5.843002 10.1109/TIT.2006.871582 10.1016/j.neuroimage.2004.07.037 10.1109/TSP.2007.894259 10.1109/ICASSP.2009.4960240 10.1109/TVCG.2011.35 10.1109/TMI.2011.2142189 10.1007/s00041-003-0018-9 10.1109/TSP.2003.819984 10.1109/TSP.2002.1003065 10.1109/EMBC.2012.6346421 10.1109/TSP.2006.890907 10.1109/IROS.2006.281739 10.1002/mrm.21277 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.3.CO;2-H |
ContentType | Journal Article |
Copyright | 2014 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013 |
Copyright_xml | – notice: 2014 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013 |
DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
DOI | 10.1109/TSP.2013.2272289 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1941-0476 |
EndPage | 4561 |
ExternalDocumentID | 3169613221 27783893 10_1109_TSP_2013_2272289 6553109 |
Genre | orig-research |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AJQPL AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 3EH 53G 5VS AAYOK AAYXX ABFSI ACKIV AETIX AI. AIBXA AKJIK ALLEH CITATION H~9 ICLAB IFJZH RIG VH1 IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
ID | FETCH-LOGICAL-c396t-b380ab80baf3fada91f6f854346e6bc4267db24ce2456e11f73e5257e0cc83c43 |
IEDL.DBID | RIE |
ISSN | 1053-587X |
IngestDate | Sun Sep 28 10:56:44 EDT 2025 Mon Jun 30 10:21:49 EDT 2025 Mon Jul 21 09:13:58 EDT 2025 Thu Apr 24 23:04:21 EDT 2025 Tue Jul 01 02:53:01 EDT 2025 Wed Aug 27 06:30:01 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | State of the art Band limited signal Nuclear magnetic resonance imaging Kernel method Innovation Azimuth Convolution finite rate of innovation spherical convolution Signal processing Spherical harmonic Medical imagery Numerical simulation Sampling theorem Sampling annihilating filter |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c396t-b380ab80baf3fada91f6f854346e6bc4267db24ce2456e11f73e5257e0cc83c43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://dr.ntu.edu.sg/bitstream/10356/82375/1/Sampling%20Signals%20with%20a%20Finite%20Rate.pdf |
PQID | 1471962464 |
PQPubID | 85478 |
PageCount | 10 |
ParticipantIDs | ieee_primary_6553109 proquest_journals_1471962464 pascalfrancis_primary_27783893 crossref_citationtrail_10_1109_TSP_2013_2272289 proquest_miscellaneous_1439727949 crossref_primary_10_1109_TSP_2013_2272289 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-09-01 |
PublicationDateYYYYMMDD | 2013-09-01 |
PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: New York |
PublicationTitle | IEEE transactions on signal processing |
PublicationTitleAbbrev | TSP |
PublicationYear | 2013 |
Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref11 ref10 ref2 ref17 ref16 ref19 ref18 tournier (ref1) 2004 deslauriers-gauthier (ref30) 2012 brink (ref27) 1993 mcewen (ref14) 2012 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref22 doi: 10.1109/TSP.2012.2189391 – year: 2012 ident: ref30 article-title: Noisy finite rate of innovation beyond cadzow publication-title: Sampling Theory Signal Image Process Special Issue – ident: ref2 doi: 10.1002/mrm.20931 – ident: ref19 doi: 10.1109/MSP.2007.914998 – ident: ref4 doi: 10.1016/j.neuroimage.2007.02.016 – ident: ref10 doi: 10.1109/TSP.2011.2166394 – ident: ref15 doi: 10.1109/TIP.2009.2035886 – ident: ref21 doi: 10.1109/TIP.2008.2009378 – year: 1993 ident: ref27 publication-title: Angular Momentum – ident: ref12 doi: 10.1109/TIT.2005.862083 – ident: ref6 doi: 10.1109/TASL.2009.2038821 – ident: ref26 doi: 10.1142/0270 – ident: ref8 doi: 10.1006/aama.1994.1008 – ident: ref13 doi: 10.1117/12.893481 – ident: ref17 doi: 10.1109/5.843002 – year: 2012 ident: ref14 article-title: Sparse signal reconstruction on the sphere: Implications of a new sampling theorem publication-title: CoRR – ident: ref11 doi: 10.1109/TIT.2006.871582 – start-page: 1176 year: 2004 ident: ref1 article-title: Direct estimation of the fiber orientation density function from diffusion-weighted mri data using spherical deconvolution publication-title: NeuroImage doi: 10.1016/j.neuroimage.2004.07.037 – ident: ref24 doi: 10.1109/TSP.2007.894259 – ident: ref29 doi: 10.1109/ICASSP.2009.4960240 – ident: ref5 doi: 10.1109/TVCG.2011.35 – ident: ref16 doi: 10.1109/TMI.2011.2142189 – ident: ref9 doi: 10.1007/s00041-003-0018-9 – ident: ref23 doi: 10.1109/TSP.2003.819984 – ident: ref18 doi: 10.1109/TSP.2002.1003065 – ident: ref25 doi: 10.1109/EMBC.2012.6346421 – ident: ref20 doi: 10.1109/TSP.2006.890907 – ident: ref7 doi: 10.1109/IROS.2006.281739 – ident: ref3 doi: 10.1002/mrm.21277 – ident: ref28 doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.3.CO;2-H |
SSID | ssj0014496 |
Score | 2.2453334 |
Snippet | The state of the art in sampling theory now contains several theorems for signals that are non-bandlimited. For signals on the sphere however, most theorems... |
SourceID | proquest pascalfrancis crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4552 |
SubjectTerms | annihilating filter Applied sciences Band theory Biological and medical sciences Computerized, statistical medical data processing and models in biomedicine Convolution Detection, estimation, filtering, equalization, prediction Exact sciences and technology finite rate of innovation Fourier transforms Harmonic analysis Image reconstruction Information, signal and communications theory Kernel Kernels Mathematical analysis Mathematical models Medical management aid. Diagnosis aid Medical sciences Reconstruction Sampling Sampling theorem Sampling, quantization Signal and communications theory Signal, noise spherical convolution spherical harmonic Technological innovation Telecommunications and information theory Theorems Transaction processing |
Title | Sampling Signals With a Finite Rate of Innovation on the Sphere |
URI | https://ieeexplore.ieee.org/document/6553109 https://www.proquest.com/docview/1471962464 https://www.proquest.com/docview/1439727949 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB7aPumDVauYWssKvgjmLtkk--OxFI8qVMRr8d7C7t5seyi50uZe_OudSXKh_kCEEAK7IcnOZvfbnZnvA3ijguMcGZtmLoS0tN6m1kk6GcyzWKLRnvc7zj-ps8vy46Ja7MC7MRcGEbvgM5zwZefLX67DhrfKpqqqmMhyF3apm_W5WqPHoCw7LS6CC0VaGb3YuiQzO72Yf-YYrmIipZaSBd3vTUGdpgpHRLo7apTYq1n8MTB3s81sH86379kHmXybbFo_CT9-o3D83w95DI8G2ClO-n7yBHaweQoP75ERHhBsdxxd3lyJ-eqKWZXF11V7LZyYrRiXii-ESsU6ig-jjqqgg_CjmDM1AT6Dy9n7i9OzdJBXSENhVZv6wmTOm8y7WES3dDaPKhpONVWofKCpWy-9LAOybxTzPOoCmTsVsxBMEcriOew16wZfgLBRqyoGwla84sLcekVIw3ppvMaY2wSm2xavw8A9zhIY3-tuDZLZmmxUs43qwUYJvB3vuOl5N_5R94CbeKw3tG4Cx78YdSyXWhvGaQkcba1cD3_uHS2FNA1KslRlAq_HYvrn2JHiGlxvuA6hOEkjmT38-6NfwgPZyWZwLNoR7LW3G3xF4KX1x12v_QmAkOkz |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBVEoBQjcUEiu4nj-HFEiNUWuhVit2Jvke21y4oqi2j2wq9nJslG5SGEFEWR7CjJjGN_43l8AC-lt5QjY9LMep8K40xqLMeTDnkWRdDK0X7H7ExOz8X7Zbncg9dDLkwIoQ0-CyO6bH35q43f0lbZWJYlFbK8ATdLtCp0l601-AyEaNm4EDAUaanVcueUzMx4Mf9IUVzFiHPFOVG6X1uEWlYViom0VyiW2PFZ_DE1t-vN5C7Mdm_ahZl8HW0bN_I_fivi-L-fcg_u9MCTvelGyn3YC_UDOLhWjvAQgbul-PL6gs3XF1RXmX1eN1-YZZM1IVP2CXEp20R2MjCpMjwQQbI5FScID-F88m7xdpr2BAupL4xsUlfozDqdORuLaFfW5FFGTcmmMkjncfFWK8eFD-QdDXkeVRGoemrIvNeFF8Uj2K83dXgMzEQly-gRXZHNFXLjJGIN47h2KsTcJDDeSbzyffVxIsG4rForJDMV6qgiHVW9jhJ4Ndzxrau88Y--hyTioV8v3QSOf1Hq0M6V0oTUEjjaabnq_90rNIYUTktcSJHAi6EZ_zpypdg6bLbUB3Ecx7nMPPn7o5_Drelidlqdnpx9eAq3eUuiQZFpR7DffN-GZwhlGnfcjuCf7hHshg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling+Signals+With+a+Finite+Rate+of+Innovation+on+the+Sphere&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Deslauriers-Gauthier%2C+Samuel&rft.au=Marziliano%2C+Pina&rft.date=2013-09-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=61&rft.issue=18&rft.spage=4552&rft.epage=4561&rft_id=info:doi/10.1109%2FTSP.2013.2272289&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2013_2272289 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |