Sampling Signals With a Finite Rate of Innovation on the Sphere

The state of the art in sampling theory now contains several theorems for signals that are non-bandlimited. For signals on the sphere however, most theorems still require the assumptions of bandlimitedness. In this work we show that a particular class of non-bandlimited signals, which have a finite...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 61; no. 18; pp. 4552 - 4561
Main Authors Deslauriers-Gauthier, Samuel, Marziliano, Pina
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.09.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2013.2272289

Cover

Abstract The state of the art in sampling theory now contains several theorems for signals that are non-bandlimited. For signals on the sphere however, most theorems still require the assumptions of bandlimitedness. In this work we show that a particular class of non-bandlimited signals, which have a finite rate of innovation, can be exactly recovered using a finite number of samples. We consider a sampling scheme where K weighted Diracs are convolved with a kernel on the rotation group. We prove that if the sampling kernel has a bandlimit L = 2K then (2K - 1)(4K - 1) + 1 equiangular samples are sufficient for exact reconstruction. If the samples are uniformly distributed on the sphere, we argue that the signal can be accurately reconstructed using 4K 2 samples and validate our claim through numerical simulations. To further reduce the number of samples required, we design an optimal sampling kernel that achieves accurate reconstruction of the signal using only 3K samples, the number of parameters of the weighted Diracs. In addition to weighted Diracs, we show that our results can be extended to sample Diracs integrated along the azimuth. Finally, we consider kernels with antipodal symmetry which are common in applications such as diffusion magnetic resonance imaging.
AbstractList The state of the art in sampling theory now contains several theorems for signals that are non-bandlimited. For signals on the sphere however, most theorems still require the assumptions of bandlimitedness. In this work we show that a particular class of non-bandlimited signals, which have a finite rate of innovation, can be exactly recovered using a finite number of samples. We consider a sampling scheme where [Formula Omitted] weighted Diracs are convolved with a kernel on the rotation group. We prove that if the sampling kernel has a bandlimit [Formula Omitted] then [Formula Omitted] equiangular samples are sufficient for exact reconstruction. If the samples are uniformly distributed on the sphere, we argue that the signal can be accurately reconstructed using [Formula Omitted] samples and validate our claim through numerical simulations. To further reduce the number of samples required, we design an optimal sampling kernel that achieves accurate reconstruction of the signal using only [Formula Omitted] samples, the number of parameters of the weighted Diracs. In addition to weighted Diracs, we show that our results can be extended to sample Diracs integrated along the azimuth. Finally, we consider kernels with antipodal symmetry which are common in applications such as diffusion magnetic resonance imaging.
The state of the art in sampling theory now contains several theorems for signals that are non-bandlimited. For signals on the sphere however, most theorems still require the assumptions of bandlimitedness. In this work we show that a particular class of non-bandlimited signals, which have a finite rate of innovation, can be exactly recovered using a finite number of samples. We consider a sampling scheme where K weighted Diracs are convolved with a kernel on the rotation group. We prove that if the sampling kernel has a bandlimit L = 2 K then ( 2 K - 1 ) ( 4 K - 1 ) + 1 equiangular samples are sufficient for exact reconstruction. If the samples are uniformly distributed on the sphere, we argue that the signal can be accurately reconstructed using 4 K 2 samples and validate our claim through numerical simulations. To further reduce the number of samples required, we design an optimal sampling kernel that achieves accurate reconstruction of the signal using only 3 K samples, the number of parameters of the weighted Diracs. In addition to weighted Diracs, we show that our results can be extended to sample Diracs integrated along the azimuth. Finally, we consider kernels with antipodal symmetry which are common in applications such as diffusion magnetic resonance imaging.
The state of the art in sampling theory now contains several theorems for signals that are non-bandlimited. For signals on the sphere however, most theorems still require the assumptions of bandlimitedness. In this work we show that a particular class of non-bandlimited signals, which have a finite rate of innovation, can be exactly recovered using a finite number of samples. We consider a sampling scheme where K weighted Diracs are convolved with a kernel on the rotation group. We prove that if the sampling kernel has a bandlimit L = 2K then (2K - 1)(4K - 1) + 1 equiangular samples are sufficient for exact reconstruction. If the samples are uniformly distributed on the sphere, we argue that the signal can be accurately reconstructed using 4K 2 samples and validate our claim through numerical simulations. To further reduce the number of samples required, we design an optimal sampling kernel that achieves accurate reconstruction of the signal using only 3K samples, the number of parameters of the weighted Diracs. In addition to weighted Diracs, we show that our results can be extended to sample Diracs integrated along the azimuth. Finally, we consider kernels with antipodal symmetry which are common in applications such as diffusion magnetic resonance imaging.
Author Marziliano, Pina
Deslauriers-Gauthier, Samuel
Author_xml – sequence: 1
  givenname: Samuel
  surname: Deslauriers-Gauthier
  fullname: Deslauriers-Gauthier, Samuel
  email: desl0001@e.ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
– sequence: 2
  givenname: Pina
  surname: Marziliano
  fullname: Marziliano, Pina
  email: epina@ntu.edu.sg
  organization: School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27783893$$DView record in Pascal Francis
BookMark eNp9kEtLAzEURoMo-NwLbgZEcDM1r0kmK5FiVRAUW9FdyMQbG5lmajIV_PemtrpwIVxyszjfB_fsos3QBUDokOABIVidTcb3A4oJG1AqKa3VBtohipMScyk28x9XrKxq-byNdlN6w5hwrsQOOh-b2bz14bUY-9dg2lQ8-X5amGLkg--heDD56VxxE0L3YXrfhSJPP4ViPJ9ChH205XIKDtZ7Dz2OLifD6_L27upmeHFbWqZEXzasxqapcWMcc-bFKOKEqyvOuADRWE6FfGkot0B5JYAQJxlUtJKAra2Z5WwPna5657F7X0Dq9cwnC21rAnSLpAlnSlKpuMro8R_0rVvE5W2ZkkQJysWy8GRNmWRN66IJ1ic9j35m4qemUtasVixzYsXZ2KUUwWnr-28RfTS-1QTrpX-d_eulf732n4P4T_Cn-5_I0SriAeAXF1XFMs6-AGUWkAs
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TCI_2021_3114994
crossref_primary_10_1109_TSP_2016_2625274
crossref_primary_10_1109_TIM_2019_2895438
crossref_primary_10_1109_TSP_2018_2890064
crossref_primary_10_1109_TSP_2018_2858213
crossref_primary_10_1109_TIP_2017_2716824
crossref_primary_10_3389_fphy_2021_752208
crossref_primary_10_1109_TMI_2022_3156868
crossref_primary_10_1016_j_media_2015_10_012
crossref_primary_10_1109_TSP_2015_2478751
crossref_primary_10_1109_LSP_2015_2485281
crossref_primary_10_1016_j_media_2025_103537
crossref_primary_10_1007_s00034_019_01076_3
crossref_primary_10_1109_TSP_2015_2399861
crossref_primary_10_1016_j_media_2020_101760
crossref_primary_10_1109_TSP_2017_2669900
crossref_primary_10_1016_j_media_2016_01_002
Cites_doi 10.1109/TSP.2012.2189391
10.1002/mrm.20931
10.1109/MSP.2007.914998
10.1016/j.neuroimage.2007.02.016
10.1109/TSP.2011.2166394
10.1109/TIP.2009.2035886
10.1109/TIP.2008.2009378
10.1109/TIT.2005.862083
10.1109/TASL.2009.2038821
10.1142/0270
10.1006/aama.1994.1008
10.1117/12.893481
10.1109/5.843002
10.1109/TIT.2006.871582
10.1016/j.neuroimage.2004.07.037
10.1109/TSP.2007.894259
10.1109/ICASSP.2009.4960240
10.1109/TVCG.2011.35
10.1109/TMI.2011.2142189
10.1007/s00041-003-0018-9
10.1109/TSP.2003.819984
10.1109/TSP.2002.1003065
10.1109/EMBC.2012.6346421
10.1109/TSP.2006.890907
10.1109/IROS.2006.281739
10.1002/mrm.21277
10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.3.CO;2-H
ContentType Journal Article
Copyright 2014 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013
Copyright_xml – notice: 2014 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2013.2272289
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 4561
ExternalDocumentID 3169613221
27783893
10_1109_TSP_2013_2272289
6553109
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYOK
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
H~9
ICLAB
IFJZH
RIG
VH1
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c396t-b380ab80baf3fada91f6f854346e6bc4267db24ce2456e11f73e5257e0cc83c43
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Sun Sep 28 10:56:44 EDT 2025
Mon Jun 30 10:21:49 EDT 2025
Mon Jul 21 09:13:58 EDT 2025
Thu Apr 24 23:04:21 EDT 2025
Tue Jul 01 02:53:01 EDT 2025
Wed Aug 27 06:30:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords State of the art
Band limited signal
Nuclear magnetic resonance imaging
Kernel method
Innovation
Azimuth
Convolution
finite rate of innovation
spherical convolution
Signal processing
Spherical harmonic
Medical imagery
Numerical simulation
Sampling theorem
Sampling
annihilating filter
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-b380ab80baf3fada91f6f854346e6bc4267db24ce2456e11f73e5257e0cc83c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
OpenAccessLink https://dr.ntu.edu.sg/bitstream/10356/82375/1/Sampling%20Signals%20with%20a%20Finite%20Rate.pdf
PQID 1471962464
PQPubID 85478
PageCount 10
ParticipantIDs ieee_primary_6553109
proquest_journals_1471962464
pascalfrancis_primary_27783893
crossref_citationtrail_10_1109_TSP_2013_2272289
proquest_miscellaneous_1439727949
crossref_primary_10_1109_TSP_2013_2272289
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2013
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref2
ref17
ref16
ref19
ref18
tournier (ref1) 2004
deslauriers-gauthier (ref30) 2012
brink (ref27) 1993
mcewen (ref14) 2012
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1109/TSP.2012.2189391
– year: 2012
  ident: ref30
  article-title: Noisy finite rate of innovation beyond cadzow
  publication-title: Sampling Theory Signal Image Process Special Issue
– ident: ref2
  doi: 10.1002/mrm.20931
– ident: ref19
  doi: 10.1109/MSP.2007.914998
– ident: ref4
  doi: 10.1016/j.neuroimage.2007.02.016
– ident: ref10
  doi: 10.1109/TSP.2011.2166394
– ident: ref15
  doi: 10.1109/TIP.2009.2035886
– ident: ref21
  doi: 10.1109/TIP.2008.2009378
– year: 1993
  ident: ref27
  publication-title: Angular Momentum
– ident: ref12
  doi: 10.1109/TIT.2005.862083
– ident: ref6
  doi: 10.1109/TASL.2009.2038821
– ident: ref26
  doi: 10.1142/0270
– ident: ref8
  doi: 10.1006/aama.1994.1008
– ident: ref13
  doi: 10.1117/12.893481
– ident: ref17
  doi: 10.1109/5.843002
– year: 2012
  ident: ref14
  article-title: Sparse signal reconstruction on the sphere: Implications of a new sampling theorem
  publication-title: CoRR
– ident: ref11
  doi: 10.1109/TIT.2006.871582
– start-page: 1176
  year: 2004
  ident: ref1
  article-title: Direct estimation of the fiber orientation density function from diffusion-weighted mri data using spherical deconvolution
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2004.07.037
– ident: ref24
  doi: 10.1109/TSP.2007.894259
– ident: ref29
  doi: 10.1109/ICASSP.2009.4960240
– ident: ref5
  doi: 10.1109/TVCG.2011.35
– ident: ref16
  doi: 10.1109/TMI.2011.2142189
– ident: ref9
  doi: 10.1007/s00041-003-0018-9
– ident: ref23
  doi: 10.1109/TSP.2003.819984
– ident: ref18
  doi: 10.1109/TSP.2002.1003065
– ident: ref25
  doi: 10.1109/EMBC.2012.6346421
– ident: ref20
  doi: 10.1109/TSP.2006.890907
– ident: ref7
  doi: 10.1109/IROS.2006.281739
– ident: ref3
  doi: 10.1002/mrm.21277
– ident: ref28
  doi: 10.1002/(SICI)1522-2594(199909)42:3<515::AID-MRM14>3.3.CO;2-H
SSID ssj0014496
Score 2.2453334
Snippet The state of the art in sampling theory now contains several theorems for signals that are non-bandlimited. For signals on the sphere however, most theorems...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4552
SubjectTerms annihilating filter
Applied sciences
Band theory
Biological and medical sciences
Computerized, statistical medical data processing and models in biomedicine
Convolution
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
finite rate of innovation
Fourier transforms
Harmonic analysis
Image reconstruction
Information, signal and communications theory
Kernel
Kernels
Mathematical analysis
Mathematical models
Medical management aid. Diagnosis aid
Medical sciences
Reconstruction
Sampling
Sampling theorem
Sampling, quantization
Signal and communications theory
Signal, noise
spherical convolution
spherical harmonic
Technological innovation
Telecommunications and information theory
Theorems
Transaction processing
Title Sampling Signals With a Finite Rate of Innovation on the Sphere
URI https://ieeexplore.ieee.org/document/6553109
https://www.proquest.com/docview/1471962464
https://www.proquest.com/docview/1439727949
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9RAEB7aPumDVauYWssKvgjmLtkk--OxFI8qVMRr8d7C7t5seyi50uZe_OudSXKh_kCEEAK7IcnOZvfbnZnvA3ijguMcGZtmLoS0tN6m1kk6GcyzWKLRnvc7zj-ps8vy46Ja7MC7MRcGEbvgM5zwZefLX67DhrfKpqqqmMhyF3apm_W5WqPHoCw7LS6CC0VaGb3YuiQzO72Yf-YYrmIipZaSBd3vTUGdpgpHRLo7apTYq1n8MTB3s81sH86379kHmXybbFo_CT9-o3D83w95DI8G2ClO-n7yBHaweQoP75ERHhBsdxxd3lyJ-eqKWZXF11V7LZyYrRiXii-ESsU6ig-jjqqgg_CjmDM1AT6Dy9n7i9OzdJBXSENhVZv6wmTOm8y7WES3dDaPKhpONVWofKCpWy-9LAOybxTzPOoCmTsVsxBMEcriOew16wZfgLBRqyoGwla84sLcekVIw3ppvMaY2wSm2xavw8A9zhIY3-tuDZLZmmxUs43qwUYJvB3vuOl5N_5R94CbeKw3tG4Cx78YdSyXWhvGaQkcba1cD3_uHS2FNA1KslRlAq_HYvrn2JHiGlxvuA6hOEkjmT38-6NfwgPZyWZwLNoR7LW3G3xF4KX1x12v_QmAkOkz
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoAeeBVEoBQjcUEiu4nj-HFEiNUWuhVit2Jvke21y4oqi2j2wq9nJslG5SGEFEWR7CjJjGN_43l8AC-lt5QjY9LMep8K40xqLMeTDnkWRdDK0X7H7ExOz8X7Zbncg9dDLkwIoQ0-CyO6bH35q43f0lbZWJYlFbK8ATdLtCp0l601-AyEaNm4EDAUaanVcueUzMx4Mf9IUVzFiHPFOVG6X1uEWlYViom0VyiW2PFZ_DE1t-vN5C7Mdm_ahZl8HW0bN_I_fivi-L-fcg_u9MCTvelGyn3YC_UDOLhWjvAQgbul-PL6gs3XF1RXmX1eN1-YZZM1IVP2CXEp20R2MjCpMjwQQbI5FScID-F88m7xdpr2BAupL4xsUlfozDqdORuLaFfW5FFGTcmmMkjncfFWK8eFD-QdDXkeVRGoemrIvNeFF8Uj2K83dXgMzEQly-gRXZHNFXLjJGIN47h2KsTcJDDeSbzyffVxIsG4rForJDMV6qgiHVW9jhJ4Ndzxrau88Y--hyTioV8v3QSOf1Hq0M6V0oTUEjjaabnq_90rNIYUTktcSJHAi6EZ_zpypdg6bLbUB3Ecx7nMPPn7o5_Drelidlqdnpx9eAq3eUuiQZFpR7DffN-GZwhlGnfcjuCf7hHshg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sampling+Signals+With+a+Finite+Rate+of+Innovation+on+the+Sphere&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Deslauriers-Gauthier%2C+Samuel&rft.au=Marziliano%2C+Pina&rft.date=2013-09-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=61&rft.issue=18&rft.spage=4552&rft.epage=4561&rft_id=info:doi/10.1109%2FTSP.2013.2272289&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2013_2272289
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon