Artificial Intelligence in Skin Cancer Diagnosis: A Reality Check

The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic medicine. Through the analysis of large datasets, AI algorithms have the capacity to classify clinical or dermoscopic images with remarkable...

Full description

Saved in:
Bibliographic Details
Published inJournal of investigative dermatology Vol. 144; no. 3; pp. 492 - 499
Main Authors Brancaccio, Gabriella, Balato, Anna, Malvehy, Josep, Puig, Susana, Argenziano, Giuseppe, Kittler, Harald
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.03.2024
Subjects
Online AccessGet full text
ISSN0022-202X
1523-1747
1523-1747
DOI10.1016/j.jid.2023.10.004

Cover

Abstract The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic medicine. Through the analysis of large datasets, AI algorithms have the capacity to classify clinical or dermoscopic images with remarkable accuracy. Although these AI-based applications can operate both autonomously and under human supervision, the best results are achieved through a collaborative approach that leverages the expertise of both AI and human experts. However, it is important to note that most studies focus on assessing the diagnostic accuracy of AI in artificial settings rather than in real-world scenarios. Consequently, the practical utility of AI-assisted diagnosis in a clinical environment is still largely unknown. Furthermore, there exists a knowledge gap concerning the optimal use cases and deployment settings for these AI systems as well as the practical challenges that may arise from widespread implementation. This review explores the advantages and limitations of AI in a variety of real-world contexts, with a specific focus on its value to consumers, general practitioners, and dermatologists.
AbstractList The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic medicine. Through the analysis of large datasets, AI algorithms have the capacity to classify clinical or dermoscopic images with remarkable accuracy. Although these AI-based applications can operate both autonomously and under human supervision, the best results are achieved through a collaborative approach that leverages the expertise of both AI and human experts. However, it is important to note that most studies focus on assessing the diagnostic accuracy of AI in artificial settings rather than in real-world scenarios. Consequently, the practical utility of AI-assisted diagnosis in a clinical environment is still largely unknown. Furthermore, there exists a knowledge gap concerning the optimal use cases and deployment settings for these AI systems as well as the practical challenges that may arise from widespread implementation. This review explores the advantages and limitations of AI in a variety of real-world contexts, with a specific focus on its value to consumers, general practitioners, and dermatologists.The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic medicine. Through the analysis of large datasets, AI algorithms have the capacity to classify clinical or dermoscopic images with remarkable accuracy. Although these AI-based applications can operate both autonomously and under human supervision, the best results are achieved through a collaborative approach that leverages the expertise of both AI and human experts. However, it is important to note that most studies focus on assessing the diagnostic accuracy of AI in artificial settings rather than in real-world scenarios. Consequently, the practical utility of AI-assisted diagnosis in a clinical environment is still largely unknown. Furthermore, there exists a knowledge gap concerning the optimal use cases and deployment settings for these AI systems as well as the practical challenges that may arise from widespread implementation. This review explores the advantages and limitations of AI in a variety of real-world contexts, with a specific focus on its value to consumers, general practitioners, and dermatologists.
The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic medicine. Through the analysis of large datasets, AI algorithms have the capacity to classify clinical or dermoscopic images with remarkable accuracy. Although these AI-based applications can operate both autonomously and under human supervision, the best results are achieved through a collaborative approach that leverages the expertise of both AI and human experts. However, it is important to note that most studies focus on assessing the diagnostic accuracy of AI in artificial settings rather than in real-world scenarios. Consequently, the practical utility of AI-assisted diagnosis in a clinical environment is still largely unknown. Furthermore, there exists a knowledge gap concerning the optimal use cases and deployment settings for these AI systems as well as the practical challenges that may arise from widespread implementation. This review explores the advantages and limitations of AI in a variety of real-world contexts, with a specific focus on its value to consumers, general practitioners, and dermatologists.
Author Argenziano, Giuseppe
Brancaccio, Gabriella
Balato, Anna
Malvehy, Josep
Puig, Susana
Kittler, Harald
Author_xml – sequence: 1
  givenname: Gabriella
  surname: Brancaccio
  fullname: Brancaccio, Gabriella
  email: gabriella.brancaccio@unicampania.it
  organization: Dermatology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
– sequence: 2
  givenname: Anna
  surname: Balato
  fullname: Balato, Anna
  organization: Dermatology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
– sequence: 3
  givenname: Josep
  surname: Malvehy
  fullname: Malvehy, Josep
  organization: Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunye, Universitat de Barcelona, Barcelona, Spain
– sequence: 4
  givenname: Susana
  surname: Puig
  fullname: Puig, Susana
  organization: Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunye, Universitat de Barcelona, Barcelona, Spain
– sequence: 5
  givenname: Giuseppe
  surname: Argenziano
  fullname: Argenziano, Giuseppe
  organization: Dermatology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy
– sequence: 6
  givenname: Harald
  surname: Kittler
  fullname: Kittler, Harald
  organization: Department of Dermatology, Medical University of Vienna, Vienna, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37978982$$D View this record in MEDLINE/PubMed
BookMark eNqNkbtOwzAUhi0EgrbwACwoI0uKL0njwFSVq1QJiYvEZp04DpySOsV2QX17XBUYGBCL7WP_37H8uU-2bWcNIYeMDhllo5PZcIb1kFMuYj2kNNsiPZZzkbIiK7ZJj1LO03j8tEf63s9oZLJc7pI9UZSFLCXvkfHYBWxQI7TJjQ2mbfHZWG0StMn9axwmECuXnCM8286jP03GyZ2BFsMqmbwY_bpPdhpovTn4mgfk8fLiYXKdTm-vbibjaapFOQopiKwqs3zUQG0EZVJyGGkGwEA2IHnNKNWlllo3BZd1xRgYUVVxCSIXXDRiQPim79IuYPUBbasWDufgVopRtfahZir6UGsf663oI0LHG2jhurel8UHN0ev4SrCmW3rFZcmKvIhaYvToK7qs5qb-af7tKgbYJqBd570zzb_uL34xGgME7GxwgO2f5NmGNNHpOxqnvMb1z9TojA6q7vAP-hPK_KH_
CitedBy_id crossref_primary_10_1016_j_jid_2023_11_020
crossref_primary_10_1097_MAO_0000000000004267
crossref_primary_10_1016_j_hoc_2024_05_011
crossref_primary_10_1016_j_bios_2024_116982
crossref_primary_10_1111_jdv_20354
crossref_primary_10_4103_DS_V42_2_Editorial
crossref_primary_10_3390_cancers16213586
crossref_primary_10_1016_j_jid_2024_07_027
crossref_primary_10_1111_ajr_13172
crossref_primary_10_3389_fmicb_2024_1467113
crossref_primary_10_3390_diagnostics14212414
crossref_primary_10_1097_JDN_0000000000000822
crossref_primary_10_1093_bjd_ljae467
crossref_primary_10_1016_j_jpra_2024_09_003
crossref_primary_10_69719_ros_v7iesp__820
crossref_primary_10_1038_s43856_024_00598_5
crossref_primary_10_3390_bioengineering11080758
crossref_primary_10_1016_j_intonc_2025_03_002
crossref_primary_10_3390_computation13030078
crossref_primary_10_1016_S2667_0623_24_00948_6
crossref_primary_10_1177_22925503251315489
crossref_primary_10_1007_s13721_024_00478_x
crossref_primary_10_2196_63923
Cites_doi 10.1001/jamadermatol.2013.2382
10.1159/000517218
10.1016/j.jid.2022.02.003
10.1038/s41591-020-0942-0
10.1016/j.compmedimag.2020.101833
10.1371/journal.pone.0280670
10.1097/DSS.0000000000000916
10.1038/s41598-023-31340-1
10.1111/ajd.12599
10.1016/S2589-7500(20)30219-3
10.1016/S2589-7500(22)00023-1
10.1111/bjd.20903
10.1016/S1470-2045(02)00679-4
10.1684/ejd.2019.3538
10.1038/s41591-020-1034-x
10.1001/jamadermatol.2021.4915
10.1684/ejd.2021.4090
10.1016/S2589-7500(22)00021-8
10.3390/cancers14153829
10.1038/s41598-021-04395-1
10.1016/S1470-2045(19)30333-X
10.1136/bmj.m127
10.1111/bjd.15443
10.1016/j.ejca.2021.06.049
10.1016/j.ejca.2022.02.025
10.3390/cancers14235886
10.1016/j.jaad.2011.04.008
10.1001/jamadermatol.2023.0905
10.1111/j.1365-2133.2012.11046.x
10.1038/nature21056
10.1016/j.ejca.2019.06.013
10.1001/jamadermatol.2018.4378
10.1111/jdv.12648
10.1093/annonc/mdy166
10.1109/HICSS.2014.337
10.1001/jamadermatol.2019.1375
10.1089/tmj.2016.0259
10.1038/s42256-020-00257-z
10.1038/538020a
10.1126/sciadv.abq6147
10.1111/bjd.13148
10.1016/S2589-7500(23)00130-9
10.1016/j.ejca.2023.112954
10.1111/jdv.18963
10.1038/s41591-023-02475-5
10.1016/j.annonc.2019.10.013
ContentType Journal Article
Copyright 2023 The Authors
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 The Authors
– notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1016/j.jid.2023.10.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1523-1747
EndPage 499
ExternalDocumentID 10.1016/j.jid.2023.10.004
37978982
10_1016_j_jid_2023_10_004
S0022202X23029640
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID ---
--K
.55
.GJ
0R~
0SF
1B1
29K
2WC
36B
3O-
3V.
4.4
457
53G
5GY
5RE
5VS
6I.
7X7
88E
8AO
8FI
8FJ
8R4
8R5
AACTN
AAEDW
AAFTH
AAIAV
AALRI
AAXUO
ABAWZ
ABJNI
ABLJU
ABMAC
ABUWG
ABVKL
ACGFO
ACGFS
ACPRK
ADBBV
ADEZE
ADFRT
AENEX
AEXQZ
AFEBI
AFFNX
AFKRA
AFTJW
AGHFR
AHMBA
AI.
AITUG
AKRWK
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BAWUL
BENPR
BFHJK
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
D-I
DIK
E3Z
EBS
EJD
F5P
FDB
FRP
FYUFA
GX1
HMCUK
HZ~
IH2
IHE
J5H
JSO
KQ8
L7B
LH4
LW6
M1P
M41
MVM
NCXOZ
NQ-
O9-
OK1
P2P
PQQKQ
PROAC
PSQYO
Q2X
R9-
RIG
RNS
ROL
RPZ
SSZ
TR2
UKHRP
VH1
W2D
X7M
Y6R
YFH
YOC
YUY
ZGI
AAFWJ
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EFKBS
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
AFETI
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c396t-a34b9456fade301882a6c1aa1a8fa82d100c9c8ccf728db11ae3bb28da35323f3
IEDL.DBID UNPAY
ISSN 0022-202X
1523-1747
IngestDate Tue Aug 19 08:50:39 EDT 2025
Thu Oct 02 06:27:26 EDT 2025
Mon Jul 21 05:26:37 EDT 2025
Wed Oct 01 04:19:39 EDT 2025
Thu Apr 24 23:08:49 EDT 2025
Tue Jun 18 08:51:43 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords OCT
CNN
BCC
TBP
CI
Melanoma
AI
DEJ
Dermoscopy
GP
Mobile apps
Primary care
3D
SCC
LC-OCT
Convoluted neural network
RCM
Language English
License This is an open access article under the CC BY license.
Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c396t-a34b9456fade301882a6c1aa1a8fa82d100c9c8ccf728db11ae3bb28da35323f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jid.2023.10.004
PMID 37978982
PQID 2891757645
PQPubID 23479
PageCount 8
ParticipantIDs unpaywall_primary_10_1016_j_jid_2023_10_004
proquest_miscellaneous_2891757645
pubmed_primary_37978982
crossref_primary_10_1016_j_jid_2023_10_004
crossref_citationtrail_10_1016_j_jid_2023_10_004
elsevier_sciencedirect_doi_10_1016_j_jid_2023_10_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of investigative dermatology
PublicationTitleAlternate J Invest Dermatol
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Freeman, Dinnes, Chuchu, Takwoingi, Bayliss, Matin (bib20) 2020; 368
Kränke, Tripolt-Droschl, Röd, Hofmann-Wellenhof, Koppitz, Tripolt (bib57) 2023; 18
Nabil, Bergman, Kukutsch (bib37) 2017; 177
Aractingi, Pellacani (bib1) 2019; 29
Cerminara, Cheng, Kostner, Huber, Kunz, Maul (bib5) 2023; 190
Dorairaj, Healy, McInerney, Hussey (bib15) 2017; 43
Thissen, Udrea, Hacking, von Braunmuehl, Ruzicka (bib48) 2017; 23
Haenssle, Fink, Toberer, Winkler, Stolz, Deinlein (bib23) 2020; 31
Combalia, Codella, Rotemberg, Carrera, Dusza, Gutman (bib10) 2022; 4
Hauser, Kurz, Haggenmüller, Maron, von Kalle, Utikal (bib26) 2022; 167
Geirhos, Jacobsen, Michaelis, Zemel, Brendel, Bethge (bib21) 2020; 2
Widaatalla, Wolswijk, Adan, Hillen, Woodruff, Halilaj (bib53) 2023; 37
Robson, Blackford, Roberts (bib40) 2012; 167
Maier, Kulichova, Schotten, Astrid, Ruzicka, Berking (bib32) 2015; 29
Vestergaard, Macaskill, Holt, Menzies (bib52) 2008; 159
Salerni, Carrera, Lovatto, Puig-Butille, Badenas, Plana (bib43) 2012; 67
Samaran, L'Orphelin, Dreno, Rat, Dompmartin (bib44) 2021; 31
Castelvecchi (bib4) 2016; 538
Maron, Weichenthal, Utikal, Hekler, Berking, Hauschild (bib35) 2019; 119
Tschandl, Codella, Akay, Argenziano, Braun, Cabo (bib49) 2019; 20
Salahuddin, Woodruff, Chatterjee, Lambin (bib42) 2021; 140
Chou, Huang, Tjiu, CH (bib7) 2021; 87
Sun, Kentley, Mehta, Dusza, Halpern, Rotemberg (bib47) 2022; 186
Sangers, Wakkee, Moolenburgh, Nijsten, Lugtenberg (bib45) 2023; 315
Soglia, Pérez-Anker, Lobos Guede, Giavedoni, Puig, Malvehy (bib46) 2022; 14
Lagrandeur (bib30) 2020
Daneshjou, Vodrahalli, Novoa, Jenkins, Liang, Rotemberg (bib13) 2022; 8
Jones, Matin, van der Schaar, Prathivadi Bhayankaram, Ranmuthu, Islam (bib28) 2022; 4
Chadwick X, Loescher LJ, Janda M, Soyer HP. Mobile medical applications for melanoma risk assessment: false assurance or valuable tool? Paper presented at:47th Hawaii International Conference on System Sciences. 6–9 January 2014. Waikoloa, HI.
Esteva, Kuprel, Novoa, Ko, Swetter, Blau (bib56) 2017; 542
Barata, Rotemberg, Codella, Tschandl, Rinner, Akay (bib2) 2023; 29
Winkler, Blum, Kommoss, Enk, Toberer, Rosenberger (bib54) 2023; 159
Chuchu, Takwoingi, Dinnes, Matin, Bassett, Moreau (bib8) 2018; 12
Daneshjou, Barata, Betz-Stablein, Celebi, Codella, Combalia (bib12) 2022; 158
Ngoo, Finnane, McMeniman, Tan, Janda, Soyer (bib38) 2018; 59
Malciu, Lupu, Voiculescu (bib33) 2022; 11
Menzies, Sinz, Menzies, Lo, Yolland, Lingohr (bib36) 2023; 5
Fischman, Pérez-Anker, Tognetti, Di Naro, Suppa, Cinotti (bib19) 2022; 12
Dick, Sinz, Mittlböck, Kittler, Tschandl (bib14) 2019; 155
Escalé-Besa, Yélamos, Vidal-Alaball, Fuster-Casanovas, Miró Catalina, Börve (bib16) 2023; 13
Tschandl, Rosendahl, Akay, Argenziano, Blum, Braun (bib51) 2019; 155
Pellacani, Pepe, Casari, Longo (bib39) 2014; 171
Han, Kim, Moon, Jung, Lee, Lee (bib25) 2022; 142
Jahn, Navarini, Cerminara, Kostner, Huber, Kunz (bib27) 2022; 14
Kittler, Pehamberger, Wolff, Binder (bib29) 2002; 3
Haenssle, Fink, Schneiderbauer, Toberer, Buhl, Blum (bib22) 2018; 29
Haggenmüller, Maron, Hekler, Utikal, Barata, Barnhill (bib24) 2021; 156
Wolf, Moreau, Akilov, Patton, English, Ho (bib55) 2013; 149
Liu, Cruz Rivera, Moher, Calvert, Denniston (bib31) 2020; 26
Chung, van der Sande, de Roos, Bekkenk, de Haas, Kelleners-Smeets (bib9) 2018; 28
Betz-Stablein, D'Alessandro, Koh, Plasmeijer, Janda, Menzies (bib3) 2022; 238
Ferrante di Ruffano, Takwoingi, Dinnes, Chuchu, Bayliss, Davenport (bib17) 2018; 12
Cruz Rivera, Liu, Chan, Denniston, Calvert (bib11) 2020; 2
Russo, Piccolo, Moscarella, Tschandl, Kittler, Paoli (bib41) 2022; 12
Tschandl, Rinner, Apalla, Argenziano, Codella, Halpern (bib50) 2020; 26
Barata (10.1016/j.jid.2023.10.004_bib2) 2023; 29
Malciu (10.1016/j.jid.2023.10.004_bib33) 2022; 11
Wolf (10.1016/j.jid.2023.10.004_bib55) 2013; 149
Han (10.1016/j.jid.2023.10.004_bib25) 2022; 142
Kittler (10.1016/j.jid.2023.10.004_bib29) 2002; 3
Daneshjou (10.1016/j.jid.2023.10.004_bib13) 2022; 8
Liu (10.1016/j.jid.2023.10.004_bib31) 2020; 26
Sangers (10.1016/j.jid.2023.10.004_bib45) 2023; 315
10.1016/j.jid.2023.10.004_bib6
Cruz Rivera (10.1016/j.jid.2023.10.004_bib11) 2020; 2
Geirhos (10.1016/j.jid.2023.10.004_bib21) 2020; 2
Thissen (10.1016/j.jid.2023.10.004_bib48) 2017; 23
Cerminara (10.1016/j.jid.2023.10.004_bib5) 2023; 190
Dorairaj (10.1016/j.jid.2023.10.004_bib15) 2017; 43
Freeman (10.1016/j.jid.2023.10.004_bib20) 2020; 368
Pellacani (10.1016/j.jid.2023.10.004_bib39) 2014; 171
Hauser (10.1016/j.jid.2023.10.004_bib26) 2022; 167
Salerni (10.1016/j.jid.2023.10.004_bib43) 2012; 67
Lagrandeur (10.1016/j.jid.2023.10.004_bib30) 2020
Jahn (10.1016/j.jid.2023.10.004_bib27) 2022; 14
Jones (10.1016/j.jid.2023.10.004_bib28) 2022; 4
Tschandl (10.1016/j.jid.2023.10.004_bib51) 2019; 155
Haenssle (10.1016/j.jid.2023.10.004_bib22) 2018; 29
Haenssle (10.1016/j.jid.2023.10.004_bib23) 2020; 31
Russo (10.1016/j.jid.2023.10.004_bib41) 2022; 12
Ngoo (10.1016/j.jid.2023.10.004_bib38) 2018; 59
Betz-Stablein (10.1016/j.jid.2023.10.004_bib3) 2022; 238
Menzies (10.1016/j.jid.2023.10.004_bib36) 2023; 5
Chou (10.1016/j.jid.2023.10.004_bib7) 2021; 87
Daneshjou (10.1016/j.jid.2023.10.004_bib12) 2022; 158
Chuchu (10.1016/j.jid.2023.10.004_bib8) 2018; 12
Combalia (10.1016/j.jid.2023.10.004_bib10) 2022; 4
Kränke (10.1016/j.jid.2023.10.004_bib57) 2023; 18
Sun (10.1016/j.jid.2023.10.004_bib47) 2022; 186
Nabil (10.1016/j.jid.2023.10.004_bib37) 2017; 177
Robson (10.1016/j.jid.2023.10.004_bib40) 2012; 167
Castelvecchi (10.1016/j.jid.2023.10.004_bib4) 2016; 538
Dick (10.1016/j.jid.2023.10.004_bib14) 2019; 155
Soglia (10.1016/j.jid.2023.10.004_bib46) 2022; 14
Esteva (10.1016/j.jid.2023.10.004_bib56) 2017; 542
Haggenmüller (10.1016/j.jid.2023.10.004_bib24) 2021; 156
Winkler (10.1016/j.jid.2023.10.004_bib54) 2023; 159
Vestergaard (10.1016/j.jid.2023.10.004_bib52) 2008; 159
Samaran (10.1016/j.jid.2023.10.004_bib44) 2021; 31
Fischman (10.1016/j.jid.2023.10.004_bib19) 2022; 12
Aractingi (10.1016/j.jid.2023.10.004_bib1) 2019; 29
Escalé-Besa (10.1016/j.jid.2023.10.004_bib16) 2023; 13
Salahuddin (10.1016/j.jid.2023.10.004_bib42) 2021; 140
Tschandl (10.1016/j.jid.2023.10.004_bib49) 2019; 20
Ferrante di Ruffano (10.1016/j.jid.2023.10.004_bib17) 2018; 12
Chung (10.1016/j.jid.2023.10.004_bib9) 2018; 28
Maron (10.1016/j.jid.2023.10.004_bib35) 2019; 119
Maier (10.1016/j.jid.2023.10.004_bib32) 2015; 29
Tschandl (10.1016/j.jid.2023.10.004_bib50) 2020; 26
Widaatalla (10.1016/j.jid.2023.10.004_bib53) 2023; 37
38244023 - J Invest Dermatol. 2024 Mar;144(3):444-445. doi: 10.1016/j.jid.2023.11.020.
References_xml – volume: 12
  year: 2022
  ident: bib41
  article-title: Indications for digital monitoring of patients with multiple nevi: recommendations from the international dermoscopy society
  publication-title: Dermatol Pract Concept
– volume: 155
  start-page: 1291
  year: 2019
  end-page: 1299
  ident: bib14
  article-title: Accuracy of computer-aided diagnosis of melanoma: a meta-analysis
  publication-title: JAMA Dermatol
– volume: 186
  start-page: 744
  year: 2022
  end-page: 746
  ident: bib47
  article-title: Accuracy of commercially available smartphone applications for the detection of melanoma
  publication-title: Br J Dermatol
– volume: 31
  start-page: 457
  year: 2021
  end-page: 462
  ident: bib44
  article-title: Interest in artificial intelligence for the diagnosis of non-melanoma skin cancer: a survey among French general practitioners
  publication-title: Eur J Dermatol
– volume: 159
  start-page: 621
  year: 2023
  end-page: 627
  ident: bib54
  article-title: Assessment of diagnostic performance of dermatologists cooperating with a convolutional neural network in a prospective clinical study: human with machine
  publication-title: JAMA Dermatol
– volume: 190
  year: 2023
  ident: bib5
  article-title: Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: a new era of skin cancer screening?
  publication-title: Eur J Cancer
– volume: 43
  start-page: 299
  year: 2017
  end-page: 302
  ident: bib15
  article-title: Validation of a melanoma risk assessment smartphone application
  publication-title: Dermatol Surg
– volume: 177
  start-page: 583
  year: 2017
  end-page: 584
  ident: bib37
  article-title: Conflicting results between the analysis of skin lesions using a mobile-phone application and a dermatologist's clinical diagnosis: a pilot study
  publication-title: Br J Dermatol
– volume: 167
  start-page: 703
  year: 2012
  end-page: 704
  ident: bib40
  article-title: Caution in melanoma risk analysis with smartphone application technology
  publication-title: Br J Dermatol
– volume: 87
  year: 2021
  ident: bib7
  article-title: Dermal epidermal junction detection for full-field optical coherence tomography data of human skin by deep learning
  publication-title: Comput Med Imaging Graph
– volume: 167
  start-page: 54
  year: 2022
  end-page: 69
  ident: bib26
  article-title: Explainable artificial intelligence in skin cancer recognition: a systematic review
  publication-title: Eur J Cancer
– volume: 26
  start-page: 1229
  year: 2020
  end-page: 1234
  ident: bib50
  article-title: Human-computer collaboration for skin cancer recognition
  publication-title: Nat Med
– volume: 149
  start-page: 422
  year: 2013
  end-page: 426
  ident: bib55
  article-title: Diagnostic inaccuracy of smartphone applications for melanoma detection
  publication-title: JAMA Dermatol
– year: 2020
  ident: bib30
  article-title: Artificial slaves in the renaissance and the dangers of independent innovation
  publication-title: AI narratives: a history of imaginative thinking about intelligent machines
– volume: 14
  start-page: 3829
  year: 2022
  ident: bib27
  article-title: Over-detection of melanoma-suspect lesions by a CE-certified smartphone app: performance in comparison to dermatologists, 2D and 3D convolutional neural networks in a prospective data set of 1204 pigmented skin lesions involving patients' perception
  publication-title: Cancers (Basel)
– volume: 2
  start-page: e549
  year: 2020
  end-page: e560
  ident: bib11
  article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension
  publication-title: Lancet Digit Health
– volume: 171
  start-page: 1044
  year: 2014
  end-page: 1051
  ident: bib39
  article-title: Reflectance confocal microscopy as a second-level examination in skin oncology improves diagnostic accuracy and saves unnecessary excisions: a longitudinal prospective study
  publication-title: Br J Dermatol
– volume: 3
  start-page: 159
  year: 2002
  end-page: 165
  ident: bib29
  article-title: Diagnostic accuracy of dermoscopy
  publication-title: Lancet Oncol
– volume: 4
  start-page: e466
  year: 2022
  end-page: e476
  ident: bib28
  article-title: Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review
  publication-title: Lancet Digit Health
– volume: 59
  start-page: e175
  year: 2018
  end-page: e182
  ident: bib38
  article-title: Efficacy of smartphone applications in high-risk pigmented lesions
  publication-title: Australas J Dermatol
– volume: 368
  start-page: m127
  year: 2020
  ident: bib20
  article-title: Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies [published correction appears in BMJ 2020;368:m645]
  publication-title: BMJ
– volume: 12
  start-page: CD013186
  year: 2018
  ident: bib17
  article-title: Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults
  publication-title: Cochrane Database Syst Rev
– volume: 140
  year: 2021
  ident: bib42
  article-title: Transparency of deep neural networks for medical image analysis: a review of interpretability methods
  publication-title: Comput Biol Med
– volume: 31
  start-page: 137
  year: 2020
  end-page: 143
  ident: bib23
  article-title: Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions
  publication-title: Ann Oncol
– volume: 23
  start-page: 948
  year: 2017
  end-page: 954
  ident: bib48
  article-title: Mhealth app for risk assessment of pigmented and nonpigmented skin lesions-a study on sensitivity and specificity in detecting malignancy
  publication-title: Telemed J E Health
– volume: 158
  start-page: 90
  year: 2022
  end-page: 96
  ident: bib12
  article-title: Checklist for evaluation of image-based artificial intelligence reports in dermatology: CLEAR derm consensus guidelines from the International Skin Imaging Collaboration Artificial Intelligence Working Group
  publication-title: JAMA Dermatol
– volume: 20
  start-page: 938
  year: 2019
  end-page: 947
  ident: bib49
  article-title: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study
  publication-title: Lancet Oncol
– reference: Chadwick X, Loescher LJ, Janda M, Soyer HP. Mobile medical applications for melanoma risk assessment: false assurance or valuable tool? Paper presented at:47th Hawaii International Conference on System Sciences. 6–9 January 2014. Waikoloa, HI.
– volume: 8
  year: 2022
  ident: bib13
  article-title: Disparities in dermatology AI performance on a diverse, curated clinical image set
  publication-title: Sci Adv
– volume: 12
  start-page: 481
  year: 2022
  ident: bib19
  article-title: Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using deep learning
  publication-title: Sci Rep
– volume: 4
  start-page: e330
  year: 2022
  end-page: e339
  ident: bib10
  article-title: Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge
  publication-title: Lancet Digit Health
– volume: 18
  year: 2023
  ident: bib57
  article-title: New AI-algorithms on smartphones to detect skin cancer in a clinical setting-a validation study
  publication-title: PLoS One
– volume: 29
  start-page: 4
  year: 2019
  end-page: 7
  ident: bib1
  article-title: Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology?
  publication-title: Eur J Dermatol
– volume: 2
  start-page: 665
  year: 2020
  end-page: 673
  ident: bib21
  article-title: Shortcut learning in deep neural networks
  publication-title: Nat Mach Intell
– volume: 12
  start-page: CD013192
  year: 2018
  ident: bib8
  article-title: Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma
  publication-title: Cochrane Database Syst Rev
– volume: 315
  start-page: 1187
  year: 2023
  end-page: 1195
  ident: bib45
  article-title: Towards successful implementation of artificial intelligence in skin cancer care: a qualitative study exploring the views of dermatologists and general practitioners
  publication-title: Arch Dermatol Res
– volume: 238
  start-page: 4
  year: 2022
  end-page: 11
  ident: bib3
  article-title: Reproducible naevus counts using 3D total body photography and convolutional neural networks
  publication-title: Dermatology
– volume: 14
  start-page: 5886
  year: 2022
  ident: bib46
  article-title: Diagnostics using non-invasive technologies in dermatological oncology
  publication-title: Cancers (Basel)
– volume: 155
  start-page: 58
  year: 2019
  end-page: 65
  ident: bib51
  article-title: Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks
  publication-title: JAMA Dermatol
– volume: 538
  start-page: 20
  year: 2016
  end-page: 23
  ident: bib4
  article-title: Can we open the black box of AI?
  publication-title: Nature
– volume: 67
  start-page: e17
  year: 2012
  end-page: e27
  ident: bib43
  article-title: Benefits of total body photography and digital dermatoscopy (“two-step method of digital follow-up”) in the early diagnosis of melanoma in patients at high risk for melanoma
  publication-title: J Am Acad Dermatol
– volume: 37
  start-page: 1160
  year: 2023
  end-page: 1167
  ident: bib53
  article-title: The application of artificial intelligence in the detection of basal cell carcinoma: a systematic review
  publication-title: J Eur Acad Dermatol Venereol
– volume: 119
  start-page: 57
  year: 2019
  end-page: 65
  ident: bib35
  article-title: Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks
  publication-title: Eur J Cancer
– volume: 28
  start-page: 10
  year: 2018
  end-page: 13
  ident: bib9
  article-title: Geautomatiseerde analyse van huidkanker-app onbetrouwbaar
  publication-title: Ned Tijdschr Dermatol Venereol
– volume: 142
  start-page: 2353
  year: 2022
  end-page: 2362.e2
  ident: bib25
  article-title: Evaluation of artificial intelligence-assisted diagnosis of skin neoplasms: a single-center, paralleled, unmasked, randomized controlled trial
  publication-title: J Invest Dermatol
– volume: 29
  start-page: 1941
  year: 2023
  end-page: 1946
  ident: bib2
  article-title: A reinforcement learning model for AI-based decision support in skin cancer
  publication-title: Nat Med
– volume: 156
  start-page: 202
  year: 2021
  end-page: 216
  ident: bib24
  article-title: Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts
  publication-title: Eur J Cancer
– volume: 5
  start-page: e679
  year: 2023
  end-page: e691
  ident: bib36
  article-title: Comparison between humans and mobile phone-based artificial intelligence for the diagnosis and treatment of pigmented skin cancer in secondary care: a multinational prospective clinical diagnostic study
  publication-title: Lancet Digit Health
– volume: 29
  start-page: 1836
  year: 2018
  end-page: 1842
  ident: bib22
  article-title: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
  publication-title: Ann Oncol
– volume: 26
  start-page: 1364
  year: 2020
  end-page: 1374
  ident: bib31
  article-title: Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension
  publication-title: Nat Med
– volume: 11
  start-page: 429
  year: 2022
  ident: bib33
  article-title: Artificial intelligence-based approaches to reflectance confocal microscopy image analysis in dermatology
  publication-title: J Clin Med
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib56
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 159
  start-page: 669
  year: 2008
  end-page: 676
  ident: bib52
  article-title: Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting
  publication-title: Br J Dermatol
– volume: 29
  start-page: 663
  year: 2015
  end-page: 667
  ident: bib32
  article-title: Accuracy of a smartphone application using fractal image analysis of pigmented moles compared to clinical diagnosis and histological result
  publication-title: J Eur Acad Dermatol Venereol
– volume: 13
  start-page: 4293
  year: 2023
  ident: bib16
  article-title: Exploring the potential of artificial intelligence in improving skin lesion diagnosis in primary care
  publication-title: Sci Rep
– volume: 149
  start-page: 422
  year: 2013
  ident: 10.1016/j.jid.2023.10.004_bib55
  article-title: Diagnostic inaccuracy of smartphone applications for melanoma detection
  publication-title: JAMA Dermatol
  doi: 10.1001/jamadermatol.2013.2382
– volume: 238
  start-page: 4
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib3
  article-title: Reproducible naevus counts using 3D total body photography and convolutional neural networks
  publication-title: Dermatology
  doi: 10.1159/000517218
– volume: 142
  start-page: 2353
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib25
  article-title: Evaluation of artificial intelligence-assisted diagnosis of skin neoplasms: a single-center, paralleled, unmasked, randomized controlled trial
  publication-title: J Invest Dermatol
  doi: 10.1016/j.jid.2022.02.003
– volume: 26
  start-page: 1229
  year: 2020
  ident: 10.1016/j.jid.2023.10.004_bib50
  article-title: Human-computer collaboration for skin cancer recognition
  publication-title: Nat Med
  doi: 10.1038/s41591-020-0942-0
– volume: 87
  year: 2021
  ident: 10.1016/j.jid.2023.10.004_bib7
  article-title: Dermal epidermal junction detection for full-field optical coherence tomography data of human skin by deep learning
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/j.compmedimag.2020.101833
– volume: 18
  year: 2023
  ident: 10.1016/j.jid.2023.10.004_bib57
  article-title: New AI-algorithms on smartphones to detect skin cancer in a clinical setting-a validation study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0280670
– volume: 12
  start-page: CD013186
  year: 2018
  ident: 10.1016/j.jid.2023.10.004_bib17
  article-title: Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults
  publication-title: Cochrane Database Syst Rev
– volume: 43
  start-page: 299
  year: 2017
  ident: 10.1016/j.jid.2023.10.004_bib15
  article-title: Validation of a melanoma risk assessment smartphone application
  publication-title: Dermatol Surg
  doi: 10.1097/DSS.0000000000000916
– volume: 13
  start-page: 4293
  year: 2023
  ident: 10.1016/j.jid.2023.10.004_bib16
  article-title: Exploring the potential of artificial intelligence in improving skin lesion diagnosis in primary care
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-31340-1
– volume: 59
  start-page: e175
  year: 2018
  ident: 10.1016/j.jid.2023.10.004_bib38
  article-title: Efficacy of smartphone applications in high-risk pigmented lesions
  publication-title: Australas J Dermatol
  doi: 10.1111/ajd.12599
– volume: 2
  start-page: e549
  year: 2020
  ident: 10.1016/j.jid.2023.10.004_bib11
  article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(20)30219-3
– volume: 28
  start-page: 10
  year: 2018
  ident: 10.1016/j.jid.2023.10.004_bib9
  article-title: Geautomatiseerde analyse van huidkanker-app onbetrouwbaar
  publication-title: Ned Tijdschr Dermatol Venereol
– volume: 4
  start-page: e466
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib28
  article-title: Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(22)00023-1
– volume: 186
  start-page: 744
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib47
  article-title: Accuracy of commercially available smartphone applications for the detection of melanoma
  publication-title: Br J Dermatol
  doi: 10.1111/bjd.20903
– volume: 3
  start-page: 159
  year: 2002
  ident: 10.1016/j.jid.2023.10.004_bib29
  article-title: Diagnostic accuracy of dermoscopy
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(02)00679-4
– volume: 29
  start-page: 4
  year: 2019
  ident: 10.1016/j.jid.2023.10.004_bib1
  article-title: Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology?
  publication-title: Eur J Dermatol
  doi: 10.1684/ejd.2019.3538
– volume: 26
  start-page: 1364
  year: 2020
  ident: 10.1016/j.jid.2023.10.004_bib31
  article-title: Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension
  publication-title: Nat Med
  doi: 10.1038/s41591-020-1034-x
– volume: 158
  start-page: 90
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib12
  article-title: Checklist for evaluation of image-based artificial intelligence reports in dermatology: CLEAR derm consensus guidelines from the International Skin Imaging Collaboration Artificial Intelligence Working Group
  publication-title: JAMA Dermatol
  doi: 10.1001/jamadermatol.2021.4915
– volume: 12
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib41
  article-title: Indications for digital monitoring of patients with multiple nevi: recommendations from the international dermoscopy society
  publication-title: Dermatol Pract Concept
– volume: 31
  start-page: 457
  year: 2021
  ident: 10.1016/j.jid.2023.10.004_bib44
  article-title: Interest in artificial intelligence for the diagnosis of non-melanoma skin cancer: a survey among French general practitioners
  publication-title: Eur J Dermatol
  doi: 10.1684/ejd.2021.4090
– volume: 4
  start-page: e330
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib10
  article-title: Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(22)00021-8
– volume: 14
  start-page: 3829
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib27
  article-title: Over-detection of melanoma-suspect lesions by a CE-certified smartphone app: performance in comparison to dermatologists, 2D and 3D convolutional neural networks in a prospective data set of 1204 pigmented skin lesions involving patients' perception
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14153829
– volume: 12
  start-page: 481
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib19
  article-title: Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using deep learning
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-04395-1
– year: 2020
  ident: 10.1016/j.jid.2023.10.004_bib30
  article-title: Artificial slaves in the renaissance and the dangers of independent innovation
– volume: 20
  start-page: 938
  year: 2019
  ident: 10.1016/j.jid.2023.10.004_bib49
  article-title: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30333-X
– volume: 368
  start-page: m127
  year: 2020
  ident: 10.1016/j.jid.2023.10.004_bib20
  article-title: Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies [published correction appears in BMJ 2020;368:m645]
  publication-title: BMJ
  doi: 10.1136/bmj.m127
– volume: 140
  year: 2021
  ident: 10.1016/j.jid.2023.10.004_bib42
  article-title: Transparency of deep neural networks for medical image analysis: a review of interpretability methods
  publication-title: Comput Biol Med
– volume: 177
  start-page: 583
  year: 2017
  ident: 10.1016/j.jid.2023.10.004_bib37
  article-title: Conflicting results between the analysis of skin lesions using a mobile-phone application and a dermatologist's clinical diagnosis: a pilot study
  publication-title: Br J Dermatol
  doi: 10.1111/bjd.15443
– volume: 156
  start-page: 202
  year: 2021
  ident: 10.1016/j.jid.2023.10.004_bib24
  article-title: Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2021.06.049
– volume: 167
  start-page: 54
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib26
  article-title: Explainable artificial intelligence in skin cancer recognition: a systematic review
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2022.02.025
– volume: 14
  start-page: 5886
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib46
  article-title: Diagnostics using non-invasive technologies in dermatological oncology
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers14235886
– volume: 67
  start-page: e17
  year: 2012
  ident: 10.1016/j.jid.2023.10.004_bib43
  article-title: Benefits of total body photography and digital dermatoscopy (“two-step method of digital follow-up”) in the early diagnosis of melanoma in patients at high risk for melanoma
  publication-title: J Am Acad Dermatol
  doi: 10.1016/j.jaad.2011.04.008
– volume: 159
  start-page: 621
  year: 2023
  ident: 10.1016/j.jid.2023.10.004_bib54
  article-title: Assessment of diagnostic performance of dermatologists cooperating with a convolutional neural network in a prospective clinical study: human with machine
  publication-title: JAMA Dermatol
  doi: 10.1001/jamadermatol.2023.0905
– volume: 12
  start-page: CD013192
  year: 2018
  ident: 10.1016/j.jid.2023.10.004_bib8
  article-title: Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma
  publication-title: Cochrane Database Syst Rev
– volume: 11
  start-page: 429
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib33
  article-title: Artificial intelligence-based approaches to reflectance confocal microscopy image analysis in dermatology
  publication-title: J Clin Med
– volume: 167
  start-page: 703
  year: 2012
  ident: 10.1016/j.jid.2023.10.004_bib40
  article-title: Caution in melanoma risk analysis with smartphone application technology
  publication-title: Br J Dermatol
  doi: 10.1111/j.1365-2133.2012.11046.x
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.1016/j.jid.2023.10.004_bib56
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 119
  start-page: 57
  year: 2019
  ident: 10.1016/j.jid.2023.10.004_bib35
  article-title: Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2019.06.013
– volume: 155
  start-page: 58
  year: 2019
  ident: 10.1016/j.jid.2023.10.004_bib51
  article-title: Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks
  publication-title: JAMA Dermatol
  doi: 10.1001/jamadermatol.2018.4378
– volume: 29
  start-page: 663
  year: 2015
  ident: 10.1016/j.jid.2023.10.004_bib32
  article-title: Accuracy of a smartphone application using fractal image analysis of pigmented moles compared to clinical diagnosis and histological result
  publication-title: J Eur Acad Dermatol Venereol
  doi: 10.1111/jdv.12648
– volume: 29
  start-page: 1836
  year: 2018
  ident: 10.1016/j.jid.2023.10.004_bib22
  article-title: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
  publication-title: Ann Oncol
  doi: 10.1093/annonc/mdy166
– ident: 10.1016/j.jid.2023.10.004_bib6
  doi: 10.1109/HICSS.2014.337
– volume: 155
  start-page: 1291
  year: 2019
  ident: 10.1016/j.jid.2023.10.004_bib14
  article-title: Accuracy of computer-aided diagnosis of melanoma: a meta-analysis
  publication-title: JAMA Dermatol
  doi: 10.1001/jamadermatol.2019.1375
– volume: 23
  start-page: 948
  year: 2017
  ident: 10.1016/j.jid.2023.10.004_bib48
  article-title: Mhealth app for risk assessment of pigmented and nonpigmented skin lesions-a study on sensitivity and specificity in detecting malignancy
  publication-title: Telemed J E Health
  doi: 10.1089/tmj.2016.0259
– volume: 2
  start-page: 665
  year: 2020
  ident: 10.1016/j.jid.2023.10.004_bib21
  article-title: Shortcut learning in deep neural networks
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-020-00257-z
– volume: 538
  start-page: 20
  year: 2016
  ident: 10.1016/j.jid.2023.10.004_bib4
  article-title: Can we open the black box of AI?
  publication-title: Nature
  doi: 10.1038/538020a
– volume: 8
  year: 2022
  ident: 10.1016/j.jid.2023.10.004_bib13
  article-title: Disparities in dermatology AI performance on a diverse, curated clinical image set
  publication-title: Sci Adv
  doi: 10.1126/sciadv.abq6147
– volume: 171
  start-page: 1044
  year: 2014
  ident: 10.1016/j.jid.2023.10.004_bib39
  article-title: Reflectance confocal microscopy as a second-level examination in skin oncology improves diagnostic accuracy and saves unnecessary excisions: a longitudinal prospective study
  publication-title: Br J Dermatol
  doi: 10.1111/bjd.13148
– volume: 5
  start-page: e679
  year: 2023
  ident: 10.1016/j.jid.2023.10.004_bib36
  article-title: Comparison between humans and mobile phone-based artificial intelligence for the diagnosis and treatment of pigmented skin cancer in secondary care: a multinational prospective clinical diagnostic study
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(23)00130-9
– volume: 315
  start-page: 1187
  year: 2023
  ident: 10.1016/j.jid.2023.10.004_bib45
  article-title: Towards successful implementation of artificial intelligence in skin cancer care: a qualitative study exploring the views of dermatologists and general practitioners
  publication-title: Arch Dermatol Res
– volume: 190
  year: 2023
  ident: 10.1016/j.jid.2023.10.004_bib5
  article-title: Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: a new era of skin cancer screening?
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2023.112954
– volume: 37
  start-page: 1160
  year: 2023
  ident: 10.1016/j.jid.2023.10.004_bib53
  article-title: The application of artificial intelligence in the detection of basal cell carcinoma: a systematic review
  publication-title: J Eur Acad Dermatol Venereol
  doi: 10.1111/jdv.18963
– volume: 29
  start-page: 1941
  year: 2023
  ident: 10.1016/j.jid.2023.10.004_bib2
  article-title: A reinforcement learning model for AI-based decision support in skin cancer
  publication-title: Nat Med
  doi: 10.1038/s41591-023-02475-5
– volume: 31
  start-page: 137
  year: 2020
  ident: 10.1016/j.jid.2023.10.004_bib23
  article-title: Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions
  publication-title: Ann Oncol
  doi: 10.1016/j.annonc.2019.10.013
– volume: 159
  start-page: 669
  year: 2008
  ident: 10.1016/j.jid.2023.10.004_bib52
  article-title: Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting
  publication-title: Br J Dermatol
– reference: 38244023 - J Invest Dermatol. 2024 Mar;144(3):444-445. doi: 10.1016/j.jid.2023.11.020.
SSID ssj0016458
Score 2.5788326
SecondaryResourceType review_article
Snippet The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic...
SourceID unpaywall
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 492
SubjectTerms Algorithms
Artificial Intelligence
Convoluted neural network
Dermoscopy
Humans
Image Interpretation, Computer-Assisted
Melanoma
Mobile apps
Primary care
Skin
Skin Neoplasms - diagnosis
Title Artificial Intelligence in Skin Cancer Diagnosis: A Reality Check
URI https://dx.doi.org/10.1016/j.jid.2023.10.004
https://www.ncbi.nlm.nih.gov/pubmed/37978982
https://www.proquest.com/docview/2891757645
https://doi.org/10.1016/j.jid.2023.10.004
UnpaywallVersion publishedVersion
Volume 144
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1523-1747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016458
  issn: 0022-202X
  databaseCode: KQ8
  dateStart: 19380101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1523-1747
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0016458
  issn: 0022-202X
  databaseCode: DIK
  dateStart: 19380101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1523-1747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016458
  issn: 0022-202X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1523-1747
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016458
  issn: 0022-202X
  databaseCode: AKRWK
  dateStart: 19380201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB50BcUH72NFJYJPSpemSdvUt2W9QRFxYX0qSZri6lLF3UX01zvpsXgfb6WdhGRmQr5hpt8AbGsZUMoS40RcMocbRp1IsNTxqdRCJRhD50xMZ-fBcZufdvxOSRZt_4V5l7_P67Buu5bQ02ONvAiLj8NE4CPsrsFE-_yieV2xgaNIJ-dG9SzlJg-rDOZXc3x3B33GmNMwNcwe5POT7PXe3DuHs0XFVj-nK7TlJneN4UA19MsHMsc_bWkOZkr0SZqFu8zDmMkWYPKszK8vQtN-KTglyMkbsk7SzYht00Va1kkeyX5RoNft75EmuTQ5lietG6PvlqB9eHDVOnbKJguOZlEwcCTjKkIUlcrE4GFHwC0DTaWkUqRSeAl1XR1poXUaeiJRlErDlMJHyXzmsZQtQy27z8wqEOG7PEEbuzQJufKUkDivEgpRQSQCw-vgVmqPdclAbhth9OKq1Ow2RtXEVjX2FaqmDjujIQ8F_cZPwryyZVzihwIXxGiCn4ZtVXaP8WzZhInMzP2wH2MwiugqDLhfh5XCIUarYCHG35Hw6rA78pDfl7j2L-l1qA0eh2YDYc9AbcL4UYdulm7_Ci6I-g4
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS8MwED90guIH34-JSgQ_KR1Nk7ap38ZUVFBEHMxPJUlT3BxV3IboX--lj-H78a20l5DcXcjvuOvvAHa1DChliXEiLpnDDaNOJFjq-FRqoRKMoXMmpvOL4KTNzzp-pySLtv_CvMvf53VYva4l9PRYIy_C4pMwFfgIu2sw1b64bN5UbOAo0sm5UT1LucnDKoP51Rzf3UGfMeYszIyyB_n8JPv9N_fO8XxRsTXI6QptucldYzRUDf3ygczxT1tagLkSfZJm4S6LMGGyJZg-L_Pry9C0XwpOCXL6hqyTdDNi23SRlnWSR3JYFOh1BwekSa5MjuVJ69bouxVoHx9dt06cssmCo1kUDB3JuIoQRaUyMXjYEXDLQFMpqRSpFF5CXVdHWmidhp5IFKXSMKXwUTKfeSxlq1DL7jOzDkT4Lk_Qxi5NQq48JSTOq4RCVBCJwPA6uJXaY10ykNtGGP24KjXrxaia2KrGvkLV1GFvPOShoN_4SZhXtoxL_FDgghhN8NOwncruMZ4tmzCRmbkfDWIMRhFdhQH367BWOMR4FSzE-DsSXh32xx7y-xI3_iW9CbXh48hsIewZqu3S4V8BV6L5HQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+in+Skin+Cancer+Diagnosis%3A+A+Reality+Check&rft.jtitle=Journal+of+investigative+dermatology&rft.au=Brancaccio%2C+Gabriella&rft.au=Balato%2C+Anna&rft.au=Malvehy%2C+Josep&rft.au=Puig%2C+Susana&rft.date=2024-03-01&rft.pub=Elsevier+Inc&rft.issn=0022-202X&rft.eissn=1523-1747&rft.volume=144&rft.issue=3&rft.spage=492&rft.epage=499&rft_id=info:doi/10.1016%2Fj.jid.2023.10.004&rft.externalDocID=S0022202X23029640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-202X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-202X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-202X&client=summon