Artificial Intelligence in Skin Cancer Diagnosis: A Reality Check
The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic medicine. Through the analysis of large datasets, AI algorithms have the capacity to classify clinical or dermoscopic images with remarkable...
Saved in:
| Published in | Journal of investigative dermatology Vol. 144; no. 3; pp. 492 - 499 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.03.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-202X 1523-1747 1523-1747 |
| DOI | 10.1016/j.jid.2023.10.004 |
Cover
| Abstract | The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic medicine. Through the analysis of large datasets, AI algorithms have the capacity to classify clinical or dermoscopic images with remarkable accuracy. Although these AI-based applications can operate both autonomously and under human supervision, the best results are achieved through a collaborative approach that leverages the expertise of both AI and human experts. However, it is important to note that most studies focus on assessing the diagnostic accuracy of AI in artificial settings rather than in real-world scenarios. Consequently, the practical utility of AI-assisted diagnosis in a clinical environment is still largely unknown. Furthermore, there exists a knowledge gap concerning the optimal use cases and deployment settings for these AI systems as well as the practical challenges that may arise from widespread implementation. This review explores the advantages and limitations of AI in a variety of real-world contexts, with a specific focus on its value to consumers, general practitioners, and dermatologists. |
|---|---|
| AbstractList | The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic medicine. Through the analysis of large datasets, AI algorithms have the capacity to classify clinical or dermoscopic images with remarkable accuracy. Although these AI-based applications can operate both autonomously and under human supervision, the best results are achieved through a collaborative approach that leverages the expertise of both AI and human experts. However, it is important to note that most studies focus on assessing the diagnostic accuracy of AI in artificial settings rather than in real-world scenarios. Consequently, the practical utility of AI-assisted diagnosis in a clinical environment is still largely unknown. Furthermore, there exists a knowledge gap concerning the optimal use cases and deployment settings for these AI systems as well as the practical challenges that may arise from widespread implementation. This review explores the advantages and limitations of AI in a variety of real-world contexts, with a specific focus on its value to consumers, general practitioners, and dermatologists.The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic medicine. Through the analysis of large datasets, AI algorithms have the capacity to classify clinical or dermoscopic images with remarkable accuracy. Although these AI-based applications can operate both autonomously and under human supervision, the best results are achieved through a collaborative approach that leverages the expertise of both AI and human experts. However, it is important to note that most studies focus on assessing the diagnostic accuracy of AI in artificial settings rather than in real-world scenarios. Consequently, the practical utility of AI-assisted diagnosis in a clinical environment is still largely unknown. Furthermore, there exists a knowledge gap concerning the optimal use cases and deployment settings for these AI systems as well as the practical challenges that may arise from widespread implementation. This review explores the advantages and limitations of AI in a variety of real-world contexts, with a specific focus on its value to consumers, general practitioners, and dermatologists. The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic medicine. Through the analysis of large datasets, AI algorithms have the capacity to classify clinical or dermoscopic images with remarkable accuracy. Although these AI-based applications can operate both autonomously and under human supervision, the best results are achieved through a collaborative approach that leverages the expertise of both AI and human experts. However, it is important to note that most studies focus on assessing the diagnostic accuracy of AI in artificial settings rather than in real-world scenarios. Consequently, the practical utility of AI-assisted diagnosis in a clinical environment is still largely unknown. Furthermore, there exists a knowledge gap concerning the optimal use cases and deployment settings for these AI systems as well as the practical challenges that may arise from widespread implementation. This review explores the advantages and limitations of AI in a variety of real-world contexts, with a specific focus on its value to consumers, general practitioners, and dermatologists. |
| Author | Argenziano, Giuseppe Brancaccio, Gabriella Balato, Anna Malvehy, Josep Puig, Susana Kittler, Harald |
| Author_xml | – sequence: 1 givenname: Gabriella surname: Brancaccio fullname: Brancaccio, Gabriella email: gabriella.brancaccio@unicampania.it organization: Dermatology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy – sequence: 2 givenname: Anna surname: Balato fullname: Balato, Anna organization: Dermatology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy – sequence: 3 givenname: Josep surname: Malvehy fullname: Malvehy, Josep organization: Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunye, Universitat de Barcelona, Barcelona, Spain – sequence: 4 givenname: Susana surname: Puig fullname: Puig, Susana organization: Melanoma Unit, Dermatology Department, Hospital Clínic de Barcelona, Instituto de Investigaciones Biomédicas August Pi i Sunye, Universitat de Barcelona, Barcelona, Spain – sequence: 5 givenname: Giuseppe surname: Argenziano fullname: Argenziano, Giuseppe organization: Dermatology Unit, University of Campania "Luigi Vanvitelli", Naples, Italy – sequence: 6 givenname: Harald surname: Kittler fullname: Kittler, Harald organization: Department of Dermatology, Medical University of Vienna, Vienna, Austria |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37978982$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkbtOwzAUhi0EgrbwACwoI0uKL0njwFSVq1QJiYvEZp04DpySOsV2QX17XBUYGBCL7WP_37H8uU-2bWcNIYeMDhllo5PZcIb1kFMuYj2kNNsiPZZzkbIiK7ZJj1LO03j8tEf63s9oZLJc7pI9UZSFLCXvkfHYBWxQI7TJjQ2mbfHZWG0StMn9axwmECuXnCM8286jP03GyZ2BFsMqmbwY_bpPdhpovTn4mgfk8fLiYXKdTm-vbibjaapFOQopiKwqs3zUQG0EZVJyGGkGwEA2IHnNKNWlllo3BZd1xRgYUVVxCSIXXDRiQPim79IuYPUBbasWDufgVopRtfahZir6UGsf663oI0LHG2jhurel8UHN0ev4SrCmW3rFZcmKvIhaYvToK7qs5qb-af7tKgbYJqBd570zzb_uL34xGgME7GxwgO2f5NmGNNHpOxqnvMb1z9TojA6q7vAP-hPK_KH_ |
| CitedBy_id | crossref_primary_10_1016_j_jid_2023_11_020 crossref_primary_10_1097_MAO_0000000000004267 crossref_primary_10_1016_j_hoc_2024_05_011 crossref_primary_10_1016_j_bios_2024_116982 crossref_primary_10_1111_jdv_20354 crossref_primary_10_4103_DS_V42_2_Editorial crossref_primary_10_3390_cancers16213586 crossref_primary_10_1016_j_jid_2024_07_027 crossref_primary_10_1111_ajr_13172 crossref_primary_10_3389_fmicb_2024_1467113 crossref_primary_10_3390_diagnostics14212414 crossref_primary_10_1097_JDN_0000000000000822 crossref_primary_10_1093_bjd_ljae467 crossref_primary_10_1016_j_jpra_2024_09_003 crossref_primary_10_69719_ros_v7iesp__820 crossref_primary_10_1038_s43856_024_00598_5 crossref_primary_10_3390_bioengineering11080758 crossref_primary_10_1016_j_intonc_2025_03_002 crossref_primary_10_3390_computation13030078 crossref_primary_10_1016_S2667_0623_24_00948_6 crossref_primary_10_1177_22925503251315489 crossref_primary_10_1007_s13721_024_00478_x crossref_primary_10_2196_63923 |
| Cites_doi | 10.1001/jamadermatol.2013.2382 10.1159/000517218 10.1016/j.jid.2022.02.003 10.1038/s41591-020-0942-0 10.1016/j.compmedimag.2020.101833 10.1371/journal.pone.0280670 10.1097/DSS.0000000000000916 10.1038/s41598-023-31340-1 10.1111/ajd.12599 10.1016/S2589-7500(20)30219-3 10.1016/S2589-7500(22)00023-1 10.1111/bjd.20903 10.1016/S1470-2045(02)00679-4 10.1684/ejd.2019.3538 10.1038/s41591-020-1034-x 10.1001/jamadermatol.2021.4915 10.1684/ejd.2021.4090 10.1016/S2589-7500(22)00021-8 10.3390/cancers14153829 10.1038/s41598-021-04395-1 10.1016/S1470-2045(19)30333-X 10.1136/bmj.m127 10.1111/bjd.15443 10.1016/j.ejca.2021.06.049 10.1016/j.ejca.2022.02.025 10.3390/cancers14235886 10.1016/j.jaad.2011.04.008 10.1001/jamadermatol.2023.0905 10.1111/j.1365-2133.2012.11046.x 10.1038/nature21056 10.1016/j.ejca.2019.06.013 10.1001/jamadermatol.2018.4378 10.1111/jdv.12648 10.1093/annonc/mdy166 10.1109/HICSS.2014.337 10.1001/jamadermatol.2019.1375 10.1089/tmj.2016.0259 10.1038/s42256-020-00257-z 10.1038/538020a 10.1126/sciadv.abq6147 10.1111/bjd.13148 10.1016/S2589-7500(23)00130-9 10.1016/j.ejca.2023.112954 10.1111/jdv.18963 10.1038/s41591-023-02475-5 10.1016/j.annonc.2019.10.013 |
| ContentType | Journal Article |
| Copyright | 2023 The Authors Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2023 The Authors – notice: Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. |
| DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1016/j.jid.2023.10.004 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1523-1747 |
| EndPage | 499 |
| ExternalDocumentID | 10.1016/j.jid.2023.10.004 37978982 10_1016_j_jid_2023_10_004 S0022202X23029640 |
| Genre | Research Support, Non-U.S. Gov't Journal Article Review |
| GroupedDBID | --- --K .55 .GJ 0R~ 0SF 1B1 29K 2WC 36B 3O- 3V. 4.4 457 53G 5GY 5RE 5VS 6I. 7X7 88E 8AO 8FI 8FJ 8R4 8R5 AACTN AAEDW AAFTH AAIAV AALRI AAXUO ABAWZ ABJNI ABLJU ABMAC ABUWG ABVKL ACGFO ACGFS ACPRK ADBBV ADEZE ADFRT AENEX AEXQZ AFEBI AFFNX AFKRA AFTJW AGHFR AHMBA AI. AITUG AKRWK ALIPV ALMA_UNASSIGNED_HOLDINGS AMRAJ BAWUL BENPR BFHJK BPHCQ BVXVI CAG CCPQU COF CS3 D-I DIK E3Z EBS EJD F5P FDB FRP FYUFA GX1 HMCUK HZ~ IH2 IHE J5H JSO KQ8 L7B LH4 LW6 M1P M41 MVM NCXOZ NQ- O9- OK1 P2P PQQKQ PROAC PSQYO Q2X R9- RIG RNS ROL RPZ SSZ TR2 UKHRP VH1 W2D X7M Y6R YFH YOC YUY ZGI AAFWJ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION EFKBS PHGZM PHGZT PJZUB PPXIY PUEGO AFETI AGCQF CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c396t-a34b9456fade301882a6c1aa1a8fa82d100c9c8ccf728db11ae3bb28da35323f3 |
| IEDL.DBID | UNPAY |
| ISSN | 0022-202X 1523-1747 |
| IngestDate | Tue Aug 19 08:50:39 EDT 2025 Thu Oct 02 06:27:26 EDT 2025 Mon Jul 21 05:26:37 EDT 2025 Wed Oct 01 04:19:39 EDT 2025 Thu Apr 24 23:08:49 EDT 2025 Tue Jun 18 08:51:43 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | OCT CNN BCC TBP CI Melanoma AI DEJ Dermoscopy GP Mobile apps Primary care 3D SCC LC-OCT Convoluted neural network RCM |
| Language | English |
| License | This is an open access article under the CC BY license. Copyright © 2023 The Authors. Published by Elsevier Inc. All rights reserved. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c396t-a34b9456fade301882a6c1aa1a8fa82d100c9c8ccf728db11ae3bb28da35323f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.jid.2023.10.004 |
| PMID | 37978982 |
| PQID | 2891757645 |
| PQPubID | 23479 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_1016_j_jid_2023_10_004 proquest_miscellaneous_2891757645 pubmed_primary_37978982 crossref_primary_10_1016_j_jid_2023_10_004 crossref_citationtrail_10_1016_j_jid_2023_10_004 elsevier_sciencedirect_doi_10_1016_j_jid_2023_10_004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | March 2024 2024-03-00 20240301 |
| PublicationDateYYYYMMDD | 2024-03-01 |
| PublicationDate_xml | – month: 03 year: 2024 text: March 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of investigative dermatology |
| PublicationTitleAlternate | J Invest Dermatol |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Freeman, Dinnes, Chuchu, Takwoingi, Bayliss, Matin (bib20) 2020; 368 Kränke, Tripolt-Droschl, Röd, Hofmann-Wellenhof, Koppitz, Tripolt (bib57) 2023; 18 Nabil, Bergman, Kukutsch (bib37) 2017; 177 Aractingi, Pellacani (bib1) 2019; 29 Cerminara, Cheng, Kostner, Huber, Kunz, Maul (bib5) 2023; 190 Dorairaj, Healy, McInerney, Hussey (bib15) 2017; 43 Thissen, Udrea, Hacking, von Braunmuehl, Ruzicka (bib48) 2017; 23 Haenssle, Fink, Toberer, Winkler, Stolz, Deinlein (bib23) 2020; 31 Combalia, Codella, Rotemberg, Carrera, Dusza, Gutman (bib10) 2022; 4 Hauser, Kurz, Haggenmüller, Maron, von Kalle, Utikal (bib26) 2022; 167 Geirhos, Jacobsen, Michaelis, Zemel, Brendel, Bethge (bib21) 2020; 2 Widaatalla, Wolswijk, Adan, Hillen, Woodruff, Halilaj (bib53) 2023; 37 Robson, Blackford, Roberts (bib40) 2012; 167 Maier, Kulichova, Schotten, Astrid, Ruzicka, Berking (bib32) 2015; 29 Vestergaard, Macaskill, Holt, Menzies (bib52) 2008; 159 Salerni, Carrera, Lovatto, Puig-Butille, Badenas, Plana (bib43) 2012; 67 Samaran, L'Orphelin, Dreno, Rat, Dompmartin (bib44) 2021; 31 Castelvecchi (bib4) 2016; 538 Maron, Weichenthal, Utikal, Hekler, Berking, Hauschild (bib35) 2019; 119 Tschandl, Codella, Akay, Argenziano, Braun, Cabo (bib49) 2019; 20 Salahuddin, Woodruff, Chatterjee, Lambin (bib42) 2021; 140 Chou, Huang, Tjiu, CH (bib7) 2021; 87 Sun, Kentley, Mehta, Dusza, Halpern, Rotemberg (bib47) 2022; 186 Sangers, Wakkee, Moolenburgh, Nijsten, Lugtenberg (bib45) 2023; 315 Soglia, Pérez-Anker, Lobos Guede, Giavedoni, Puig, Malvehy (bib46) 2022; 14 Lagrandeur (bib30) 2020 Daneshjou, Vodrahalli, Novoa, Jenkins, Liang, Rotemberg (bib13) 2022; 8 Jones, Matin, van der Schaar, Prathivadi Bhayankaram, Ranmuthu, Islam (bib28) 2022; 4 Chadwick X, Loescher LJ, Janda M, Soyer HP. Mobile medical applications for melanoma risk assessment: false assurance or valuable tool? Paper presented at:47th Hawaii International Conference on System Sciences. 6–9 January 2014. Waikoloa, HI. Esteva, Kuprel, Novoa, Ko, Swetter, Blau (bib56) 2017; 542 Barata, Rotemberg, Codella, Tschandl, Rinner, Akay (bib2) 2023; 29 Winkler, Blum, Kommoss, Enk, Toberer, Rosenberger (bib54) 2023; 159 Chuchu, Takwoingi, Dinnes, Matin, Bassett, Moreau (bib8) 2018; 12 Daneshjou, Barata, Betz-Stablein, Celebi, Codella, Combalia (bib12) 2022; 158 Ngoo, Finnane, McMeniman, Tan, Janda, Soyer (bib38) 2018; 59 Malciu, Lupu, Voiculescu (bib33) 2022; 11 Menzies, Sinz, Menzies, Lo, Yolland, Lingohr (bib36) 2023; 5 Fischman, Pérez-Anker, Tognetti, Di Naro, Suppa, Cinotti (bib19) 2022; 12 Dick, Sinz, Mittlböck, Kittler, Tschandl (bib14) 2019; 155 Escalé-Besa, Yélamos, Vidal-Alaball, Fuster-Casanovas, Miró Catalina, Börve (bib16) 2023; 13 Tschandl, Rosendahl, Akay, Argenziano, Blum, Braun (bib51) 2019; 155 Pellacani, Pepe, Casari, Longo (bib39) 2014; 171 Han, Kim, Moon, Jung, Lee, Lee (bib25) 2022; 142 Jahn, Navarini, Cerminara, Kostner, Huber, Kunz (bib27) 2022; 14 Kittler, Pehamberger, Wolff, Binder (bib29) 2002; 3 Haenssle, Fink, Schneiderbauer, Toberer, Buhl, Blum (bib22) 2018; 29 Haggenmüller, Maron, Hekler, Utikal, Barata, Barnhill (bib24) 2021; 156 Wolf, Moreau, Akilov, Patton, English, Ho (bib55) 2013; 149 Liu, Cruz Rivera, Moher, Calvert, Denniston (bib31) 2020; 26 Chung, van der Sande, de Roos, Bekkenk, de Haas, Kelleners-Smeets (bib9) 2018; 28 Betz-Stablein, D'Alessandro, Koh, Plasmeijer, Janda, Menzies (bib3) 2022; 238 Ferrante di Ruffano, Takwoingi, Dinnes, Chuchu, Bayliss, Davenport (bib17) 2018; 12 Cruz Rivera, Liu, Chan, Denniston, Calvert (bib11) 2020; 2 Russo, Piccolo, Moscarella, Tschandl, Kittler, Paoli (bib41) 2022; 12 Tschandl, Rinner, Apalla, Argenziano, Codella, Halpern (bib50) 2020; 26 Barata (10.1016/j.jid.2023.10.004_bib2) 2023; 29 Malciu (10.1016/j.jid.2023.10.004_bib33) 2022; 11 Wolf (10.1016/j.jid.2023.10.004_bib55) 2013; 149 Han (10.1016/j.jid.2023.10.004_bib25) 2022; 142 Kittler (10.1016/j.jid.2023.10.004_bib29) 2002; 3 Daneshjou (10.1016/j.jid.2023.10.004_bib13) 2022; 8 Liu (10.1016/j.jid.2023.10.004_bib31) 2020; 26 Sangers (10.1016/j.jid.2023.10.004_bib45) 2023; 315 10.1016/j.jid.2023.10.004_bib6 Cruz Rivera (10.1016/j.jid.2023.10.004_bib11) 2020; 2 Geirhos (10.1016/j.jid.2023.10.004_bib21) 2020; 2 Thissen (10.1016/j.jid.2023.10.004_bib48) 2017; 23 Cerminara (10.1016/j.jid.2023.10.004_bib5) 2023; 190 Dorairaj (10.1016/j.jid.2023.10.004_bib15) 2017; 43 Freeman (10.1016/j.jid.2023.10.004_bib20) 2020; 368 Pellacani (10.1016/j.jid.2023.10.004_bib39) 2014; 171 Hauser (10.1016/j.jid.2023.10.004_bib26) 2022; 167 Salerni (10.1016/j.jid.2023.10.004_bib43) 2012; 67 Lagrandeur (10.1016/j.jid.2023.10.004_bib30) 2020 Jahn (10.1016/j.jid.2023.10.004_bib27) 2022; 14 Jones (10.1016/j.jid.2023.10.004_bib28) 2022; 4 Tschandl (10.1016/j.jid.2023.10.004_bib51) 2019; 155 Haenssle (10.1016/j.jid.2023.10.004_bib22) 2018; 29 Haenssle (10.1016/j.jid.2023.10.004_bib23) 2020; 31 Russo (10.1016/j.jid.2023.10.004_bib41) 2022; 12 Ngoo (10.1016/j.jid.2023.10.004_bib38) 2018; 59 Betz-Stablein (10.1016/j.jid.2023.10.004_bib3) 2022; 238 Menzies (10.1016/j.jid.2023.10.004_bib36) 2023; 5 Chou (10.1016/j.jid.2023.10.004_bib7) 2021; 87 Daneshjou (10.1016/j.jid.2023.10.004_bib12) 2022; 158 Chuchu (10.1016/j.jid.2023.10.004_bib8) 2018; 12 Combalia (10.1016/j.jid.2023.10.004_bib10) 2022; 4 Kränke (10.1016/j.jid.2023.10.004_bib57) 2023; 18 Sun (10.1016/j.jid.2023.10.004_bib47) 2022; 186 Nabil (10.1016/j.jid.2023.10.004_bib37) 2017; 177 Robson (10.1016/j.jid.2023.10.004_bib40) 2012; 167 Castelvecchi (10.1016/j.jid.2023.10.004_bib4) 2016; 538 Dick (10.1016/j.jid.2023.10.004_bib14) 2019; 155 Soglia (10.1016/j.jid.2023.10.004_bib46) 2022; 14 Esteva (10.1016/j.jid.2023.10.004_bib56) 2017; 542 Haggenmüller (10.1016/j.jid.2023.10.004_bib24) 2021; 156 Winkler (10.1016/j.jid.2023.10.004_bib54) 2023; 159 Vestergaard (10.1016/j.jid.2023.10.004_bib52) 2008; 159 Samaran (10.1016/j.jid.2023.10.004_bib44) 2021; 31 Fischman (10.1016/j.jid.2023.10.004_bib19) 2022; 12 Aractingi (10.1016/j.jid.2023.10.004_bib1) 2019; 29 Escalé-Besa (10.1016/j.jid.2023.10.004_bib16) 2023; 13 Salahuddin (10.1016/j.jid.2023.10.004_bib42) 2021; 140 Tschandl (10.1016/j.jid.2023.10.004_bib49) 2019; 20 Ferrante di Ruffano (10.1016/j.jid.2023.10.004_bib17) 2018; 12 Chung (10.1016/j.jid.2023.10.004_bib9) 2018; 28 Maron (10.1016/j.jid.2023.10.004_bib35) 2019; 119 Maier (10.1016/j.jid.2023.10.004_bib32) 2015; 29 Tschandl (10.1016/j.jid.2023.10.004_bib50) 2020; 26 Widaatalla (10.1016/j.jid.2023.10.004_bib53) 2023; 37 38244023 - J Invest Dermatol. 2024 Mar;144(3):444-445. doi: 10.1016/j.jid.2023.11.020. |
| References_xml | – volume: 12 year: 2022 ident: bib41 article-title: Indications for digital monitoring of patients with multiple nevi: recommendations from the international dermoscopy society publication-title: Dermatol Pract Concept – volume: 155 start-page: 1291 year: 2019 end-page: 1299 ident: bib14 article-title: Accuracy of computer-aided diagnosis of melanoma: a meta-analysis publication-title: JAMA Dermatol – volume: 186 start-page: 744 year: 2022 end-page: 746 ident: bib47 article-title: Accuracy of commercially available smartphone applications for the detection of melanoma publication-title: Br J Dermatol – volume: 31 start-page: 457 year: 2021 end-page: 462 ident: bib44 article-title: Interest in artificial intelligence for the diagnosis of non-melanoma skin cancer: a survey among French general practitioners publication-title: Eur J Dermatol – volume: 159 start-page: 621 year: 2023 end-page: 627 ident: bib54 article-title: Assessment of diagnostic performance of dermatologists cooperating with a convolutional neural network in a prospective clinical study: human with machine publication-title: JAMA Dermatol – volume: 190 year: 2023 ident: bib5 article-title: Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: a new era of skin cancer screening? publication-title: Eur J Cancer – volume: 43 start-page: 299 year: 2017 end-page: 302 ident: bib15 article-title: Validation of a melanoma risk assessment smartphone application publication-title: Dermatol Surg – volume: 177 start-page: 583 year: 2017 end-page: 584 ident: bib37 article-title: Conflicting results between the analysis of skin lesions using a mobile-phone application and a dermatologist's clinical diagnosis: a pilot study publication-title: Br J Dermatol – volume: 167 start-page: 703 year: 2012 end-page: 704 ident: bib40 article-title: Caution in melanoma risk analysis with smartphone application technology publication-title: Br J Dermatol – volume: 87 year: 2021 ident: bib7 article-title: Dermal epidermal junction detection for full-field optical coherence tomography data of human skin by deep learning publication-title: Comput Med Imaging Graph – volume: 167 start-page: 54 year: 2022 end-page: 69 ident: bib26 article-title: Explainable artificial intelligence in skin cancer recognition: a systematic review publication-title: Eur J Cancer – volume: 26 start-page: 1229 year: 2020 end-page: 1234 ident: bib50 article-title: Human-computer collaboration for skin cancer recognition publication-title: Nat Med – volume: 149 start-page: 422 year: 2013 end-page: 426 ident: bib55 article-title: Diagnostic inaccuracy of smartphone applications for melanoma detection publication-title: JAMA Dermatol – year: 2020 ident: bib30 article-title: Artificial slaves in the renaissance and the dangers of independent innovation publication-title: AI narratives: a history of imaginative thinking about intelligent machines – volume: 14 start-page: 3829 year: 2022 ident: bib27 article-title: Over-detection of melanoma-suspect lesions by a CE-certified smartphone app: performance in comparison to dermatologists, 2D and 3D convolutional neural networks in a prospective data set of 1204 pigmented skin lesions involving patients' perception publication-title: Cancers (Basel) – volume: 2 start-page: e549 year: 2020 end-page: e560 ident: bib11 article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension publication-title: Lancet Digit Health – volume: 171 start-page: 1044 year: 2014 end-page: 1051 ident: bib39 article-title: Reflectance confocal microscopy as a second-level examination in skin oncology improves diagnostic accuracy and saves unnecessary excisions: a longitudinal prospective study publication-title: Br J Dermatol – volume: 3 start-page: 159 year: 2002 end-page: 165 ident: bib29 article-title: Diagnostic accuracy of dermoscopy publication-title: Lancet Oncol – volume: 4 start-page: e466 year: 2022 end-page: e476 ident: bib28 article-title: Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review publication-title: Lancet Digit Health – volume: 59 start-page: e175 year: 2018 end-page: e182 ident: bib38 article-title: Efficacy of smartphone applications in high-risk pigmented lesions publication-title: Australas J Dermatol – volume: 368 start-page: m127 year: 2020 ident: bib20 article-title: Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies [published correction appears in BMJ 2020;368:m645] publication-title: BMJ – volume: 12 start-page: CD013186 year: 2018 ident: bib17 article-title: Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults publication-title: Cochrane Database Syst Rev – volume: 140 year: 2021 ident: bib42 article-title: Transparency of deep neural networks for medical image analysis: a review of interpretability methods publication-title: Comput Biol Med – volume: 31 start-page: 137 year: 2020 end-page: 143 ident: bib23 article-title: Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions publication-title: Ann Oncol – volume: 23 start-page: 948 year: 2017 end-page: 954 ident: bib48 article-title: Mhealth app for risk assessment of pigmented and nonpigmented skin lesions-a study on sensitivity and specificity in detecting malignancy publication-title: Telemed J E Health – volume: 158 start-page: 90 year: 2022 end-page: 96 ident: bib12 article-title: Checklist for evaluation of image-based artificial intelligence reports in dermatology: CLEAR derm consensus guidelines from the International Skin Imaging Collaboration Artificial Intelligence Working Group publication-title: JAMA Dermatol – volume: 20 start-page: 938 year: 2019 end-page: 947 ident: bib49 article-title: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study publication-title: Lancet Oncol – reference: Chadwick X, Loescher LJ, Janda M, Soyer HP. Mobile medical applications for melanoma risk assessment: false assurance or valuable tool? Paper presented at:47th Hawaii International Conference on System Sciences. 6–9 January 2014. Waikoloa, HI. – volume: 8 year: 2022 ident: bib13 article-title: Disparities in dermatology AI performance on a diverse, curated clinical image set publication-title: Sci Adv – volume: 12 start-page: 481 year: 2022 ident: bib19 article-title: Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using deep learning publication-title: Sci Rep – volume: 4 start-page: e330 year: 2022 end-page: e339 ident: bib10 article-title: Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge publication-title: Lancet Digit Health – volume: 18 year: 2023 ident: bib57 article-title: New AI-algorithms on smartphones to detect skin cancer in a clinical setting-a validation study publication-title: PLoS One – volume: 29 start-page: 4 year: 2019 end-page: 7 ident: bib1 article-title: Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology? publication-title: Eur J Dermatol – volume: 2 start-page: 665 year: 2020 end-page: 673 ident: bib21 article-title: Shortcut learning in deep neural networks publication-title: Nat Mach Intell – volume: 12 start-page: CD013192 year: 2018 ident: bib8 article-title: Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma publication-title: Cochrane Database Syst Rev – volume: 315 start-page: 1187 year: 2023 end-page: 1195 ident: bib45 article-title: Towards successful implementation of artificial intelligence in skin cancer care: a qualitative study exploring the views of dermatologists and general practitioners publication-title: Arch Dermatol Res – volume: 238 start-page: 4 year: 2022 end-page: 11 ident: bib3 article-title: Reproducible naevus counts using 3D total body photography and convolutional neural networks publication-title: Dermatology – volume: 14 start-page: 5886 year: 2022 ident: bib46 article-title: Diagnostics using non-invasive technologies in dermatological oncology publication-title: Cancers (Basel) – volume: 155 start-page: 58 year: 2019 end-page: 65 ident: bib51 article-title: Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks publication-title: JAMA Dermatol – volume: 538 start-page: 20 year: 2016 end-page: 23 ident: bib4 article-title: Can we open the black box of AI? publication-title: Nature – volume: 67 start-page: e17 year: 2012 end-page: e27 ident: bib43 article-title: Benefits of total body photography and digital dermatoscopy (“two-step method of digital follow-up”) in the early diagnosis of melanoma in patients at high risk for melanoma publication-title: J Am Acad Dermatol – volume: 37 start-page: 1160 year: 2023 end-page: 1167 ident: bib53 article-title: The application of artificial intelligence in the detection of basal cell carcinoma: a systematic review publication-title: J Eur Acad Dermatol Venereol – volume: 119 start-page: 57 year: 2019 end-page: 65 ident: bib35 article-title: Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks publication-title: Eur J Cancer – volume: 28 start-page: 10 year: 2018 end-page: 13 ident: bib9 article-title: Geautomatiseerde analyse van huidkanker-app onbetrouwbaar publication-title: Ned Tijdschr Dermatol Venereol – volume: 142 start-page: 2353 year: 2022 end-page: 2362.e2 ident: bib25 article-title: Evaluation of artificial intelligence-assisted diagnosis of skin neoplasms: a single-center, paralleled, unmasked, randomized controlled trial publication-title: J Invest Dermatol – volume: 29 start-page: 1941 year: 2023 end-page: 1946 ident: bib2 article-title: A reinforcement learning model for AI-based decision support in skin cancer publication-title: Nat Med – volume: 156 start-page: 202 year: 2021 end-page: 216 ident: bib24 article-title: Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts publication-title: Eur J Cancer – volume: 5 start-page: e679 year: 2023 end-page: e691 ident: bib36 article-title: Comparison between humans and mobile phone-based artificial intelligence for the diagnosis and treatment of pigmented skin cancer in secondary care: a multinational prospective clinical diagnostic study publication-title: Lancet Digit Health – volume: 29 start-page: 1836 year: 2018 end-page: 1842 ident: bib22 article-title: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists publication-title: Ann Oncol – volume: 26 start-page: 1364 year: 2020 end-page: 1374 ident: bib31 article-title: Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension publication-title: Nat Med – volume: 11 start-page: 429 year: 2022 ident: bib33 article-title: Artificial intelligence-based approaches to reflectance confocal microscopy image analysis in dermatology publication-title: J Clin Med – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib56 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 159 start-page: 669 year: 2008 end-page: 676 ident: bib52 article-title: Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting publication-title: Br J Dermatol – volume: 29 start-page: 663 year: 2015 end-page: 667 ident: bib32 article-title: Accuracy of a smartphone application using fractal image analysis of pigmented moles compared to clinical diagnosis and histological result publication-title: J Eur Acad Dermatol Venereol – volume: 13 start-page: 4293 year: 2023 ident: bib16 article-title: Exploring the potential of artificial intelligence in improving skin lesion diagnosis in primary care publication-title: Sci Rep – volume: 149 start-page: 422 year: 2013 ident: 10.1016/j.jid.2023.10.004_bib55 article-title: Diagnostic inaccuracy of smartphone applications for melanoma detection publication-title: JAMA Dermatol doi: 10.1001/jamadermatol.2013.2382 – volume: 238 start-page: 4 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib3 article-title: Reproducible naevus counts using 3D total body photography and convolutional neural networks publication-title: Dermatology doi: 10.1159/000517218 – volume: 142 start-page: 2353 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib25 article-title: Evaluation of artificial intelligence-assisted diagnosis of skin neoplasms: a single-center, paralleled, unmasked, randomized controlled trial publication-title: J Invest Dermatol doi: 10.1016/j.jid.2022.02.003 – volume: 26 start-page: 1229 year: 2020 ident: 10.1016/j.jid.2023.10.004_bib50 article-title: Human-computer collaboration for skin cancer recognition publication-title: Nat Med doi: 10.1038/s41591-020-0942-0 – volume: 87 year: 2021 ident: 10.1016/j.jid.2023.10.004_bib7 article-title: Dermal epidermal junction detection for full-field optical coherence tomography data of human skin by deep learning publication-title: Comput Med Imaging Graph doi: 10.1016/j.compmedimag.2020.101833 – volume: 18 year: 2023 ident: 10.1016/j.jid.2023.10.004_bib57 article-title: New AI-algorithms on smartphones to detect skin cancer in a clinical setting-a validation study publication-title: PLoS One doi: 10.1371/journal.pone.0280670 – volume: 12 start-page: CD013186 year: 2018 ident: 10.1016/j.jid.2023.10.004_bib17 article-title: Computer-assisted diagnosis techniques (dermoscopy and spectroscopy-based) for diagnosing skin cancer in adults publication-title: Cochrane Database Syst Rev – volume: 43 start-page: 299 year: 2017 ident: 10.1016/j.jid.2023.10.004_bib15 article-title: Validation of a melanoma risk assessment smartphone application publication-title: Dermatol Surg doi: 10.1097/DSS.0000000000000916 – volume: 13 start-page: 4293 year: 2023 ident: 10.1016/j.jid.2023.10.004_bib16 article-title: Exploring the potential of artificial intelligence in improving skin lesion diagnosis in primary care publication-title: Sci Rep doi: 10.1038/s41598-023-31340-1 – volume: 59 start-page: e175 year: 2018 ident: 10.1016/j.jid.2023.10.004_bib38 article-title: Efficacy of smartphone applications in high-risk pigmented lesions publication-title: Australas J Dermatol doi: 10.1111/ajd.12599 – volume: 2 start-page: e549 year: 2020 ident: 10.1016/j.jid.2023.10.004_bib11 article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(20)30219-3 – volume: 28 start-page: 10 year: 2018 ident: 10.1016/j.jid.2023.10.004_bib9 article-title: Geautomatiseerde analyse van huidkanker-app onbetrouwbaar publication-title: Ned Tijdschr Dermatol Venereol – volume: 4 start-page: e466 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib28 article-title: Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(22)00023-1 – volume: 186 start-page: 744 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib47 article-title: Accuracy of commercially available smartphone applications for the detection of melanoma publication-title: Br J Dermatol doi: 10.1111/bjd.20903 – volume: 3 start-page: 159 year: 2002 ident: 10.1016/j.jid.2023.10.004_bib29 article-title: Diagnostic accuracy of dermoscopy publication-title: Lancet Oncol doi: 10.1016/S1470-2045(02)00679-4 – volume: 29 start-page: 4 year: 2019 ident: 10.1016/j.jid.2023.10.004_bib1 article-title: Computational neural network in melanocytic lesions diagnosis: artificial intelligence to improve diagnosis in dermatology? publication-title: Eur J Dermatol doi: 10.1684/ejd.2019.3538 – volume: 26 start-page: 1364 year: 2020 ident: 10.1016/j.jid.2023.10.004_bib31 article-title: Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension publication-title: Nat Med doi: 10.1038/s41591-020-1034-x – volume: 158 start-page: 90 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib12 article-title: Checklist for evaluation of image-based artificial intelligence reports in dermatology: CLEAR derm consensus guidelines from the International Skin Imaging Collaboration Artificial Intelligence Working Group publication-title: JAMA Dermatol doi: 10.1001/jamadermatol.2021.4915 – volume: 12 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib41 article-title: Indications for digital monitoring of patients with multiple nevi: recommendations from the international dermoscopy society publication-title: Dermatol Pract Concept – volume: 31 start-page: 457 year: 2021 ident: 10.1016/j.jid.2023.10.004_bib44 article-title: Interest in artificial intelligence for the diagnosis of non-melanoma skin cancer: a survey among French general practitioners publication-title: Eur J Dermatol doi: 10.1684/ejd.2021.4090 – volume: 4 start-page: e330 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib10 article-title: Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(22)00021-8 – volume: 14 start-page: 3829 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib27 article-title: Over-detection of melanoma-suspect lesions by a CE-certified smartphone app: performance in comparison to dermatologists, 2D and 3D convolutional neural networks in a prospective data set of 1204 pigmented skin lesions involving patients' perception publication-title: Cancers (Basel) doi: 10.3390/cancers14153829 – volume: 12 start-page: 481 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib19 article-title: Non-invasive scoring of cellular atypia in keratinocyte cancers in 3D LC-OCT images using deep learning publication-title: Sci Rep doi: 10.1038/s41598-021-04395-1 – year: 2020 ident: 10.1016/j.jid.2023.10.004_bib30 article-title: Artificial slaves in the renaissance and the dangers of independent innovation – volume: 20 start-page: 938 year: 2019 ident: 10.1016/j.jid.2023.10.004_bib49 article-title: Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study publication-title: Lancet Oncol doi: 10.1016/S1470-2045(19)30333-X – volume: 368 start-page: m127 year: 2020 ident: 10.1016/j.jid.2023.10.004_bib20 article-title: Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies [published correction appears in BMJ 2020;368:m645] publication-title: BMJ doi: 10.1136/bmj.m127 – volume: 140 year: 2021 ident: 10.1016/j.jid.2023.10.004_bib42 article-title: Transparency of deep neural networks for medical image analysis: a review of interpretability methods publication-title: Comput Biol Med – volume: 177 start-page: 583 year: 2017 ident: 10.1016/j.jid.2023.10.004_bib37 article-title: Conflicting results between the analysis of skin lesions using a mobile-phone application and a dermatologist's clinical diagnosis: a pilot study publication-title: Br J Dermatol doi: 10.1111/bjd.15443 – volume: 156 start-page: 202 year: 2021 ident: 10.1016/j.jid.2023.10.004_bib24 article-title: Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts publication-title: Eur J Cancer doi: 10.1016/j.ejca.2021.06.049 – volume: 167 start-page: 54 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib26 article-title: Explainable artificial intelligence in skin cancer recognition: a systematic review publication-title: Eur J Cancer doi: 10.1016/j.ejca.2022.02.025 – volume: 14 start-page: 5886 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib46 article-title: Diagnostics using non-invasive technologies in dermatological oncology publication-title: Cancers (Basel) doi: 10.3390/cancers14235886 – volume: 67 start-page: e17 year: 2012 ident: 10.1016/j.jid.2023.10.004_bib43 article-title: Benefits of total body photography and digital dermatoscopy (“two-step method of digital follow-up”) in the early diagnosis of melanoma in patients at high risk for melanoma publication-title: J Am Acad Dermatol doi: 10.1016/j.jaad.2011.04.008 – volume: 159 start-page: 621 year: 2023 ident: 10.1016/j.jid.2023.10.004_bib54 article-title: Assessment of diagnostic performance of dermatologists cooperating with a convolutional neural network in a prospective clinical study: human with machine publication-title: JAMA Dermatol doi: 10.1001/jamadermatol.2023.0905 – volume: 12 start-page: CD013192 year: 2018 ident: 10.1016/j.jid.2023.10.004_bib8 article-title: Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma publication-title: Cochrane Database Syst Rev – volume: 11 start-page: 429 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib33 article-title: Artificial intelligence-based approaches to reflectance confocal microscopy image analysis in dermatology publication-title: J Clin Med – volume: 167 start-page: 703 year: 2012 ident: 10.1016/j.jid.2023.10.004_bib40 article-title: Caution in melanoma risk analysis with smartphone application technology publication-title: Br J Dermatol doi: 10.1111/j.1365-2133.2012.11046.x – volume: 542 start-page: 115 year: 2017 ident: 10.1016/j.jid.2023.10.004_bib56 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 119 start-page: 57 year: 2019 ident: 10.1016/j.jid.2023.10.004_bib35 article-title: Systematic outperformance of 112 dermatologists in multiclass skin cancer image classification by convolutional neural networks publication-title: Eur J Cancer doi: 10.1016/j.ejca.2019.06.013 – volume: 155 start-page: 58 year: 2019 ident: 10.1016/j.jid.2023.10.004_bib51 article-title: Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks publication-title: JAMA Dermatol doi: 10.1001/jamadermatol.2018.4378 – volume: 29 start-page: 663 year: 2015 ident: 10.1016/j.jid.2023.10.004_bib32 article-title: Accuracy of a smartphone application using fractal image analysis of pigmented moles compared to clinical diagnosis and histological result publication-title: J Eur Acad Dermatol Venereol doi: 10.1111/jdv.12648 – volume: 29 start-page: 1836 year: 2018 ident: 10.1016/j.jid.2023.10.004_bib22 article-title: Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists publication-title: Ann Oncol doi: 10.1093/annonc/mdy166 – ident: 10.1016/j.jid.2023.10.004_bib6 doi: 10.1109/HICSS.2014.337 – volume: 155 start-page: 1291 year: 2019 ident: 10.1016/j.jid.2023.10.004_bib14 article-title: Accuracy of computer-aided diagnosis of melanoma: a meta-analysis publication-title: JAMA Dermatol doi: 10.1001/jamadermatol.2019.1375 – volume: 23 start-page: 948 year: 2017 ident: 10.1016/j.jid.2023.10.004_bib48 article-title: Mhealth app for risk assessment of pigmented and nonpigmented skin lesions-a study on sensitivity and specificity in detecting malignancy publication-title: Telemed J E Health doi: 10.1089/tmj.2016.0259 – volume: 2 start-page: 665 year: 2020 ident: 10.1016/j.jid.2023.10.004_bib21 article-title: Shortcut learning in deep neural networks publication-title: Nat Mach Intell doi: 10.1038/s42256-020-00257-z – volume: 538 start-page: 20 year: 2016 ident: 10.1016/j.jid.2023.10.004_bib4 article-title: Can we open the black box of AI? publication-title: Nature doi: 10.1038/538020a – volume: 8 year: 2022 ident: 10.1016/j.jid.2023.10.004_bib13 article-title: Disparities in dermatology AI performance on a diverse, curated clinical image set publication-title: Sci Adv doi: 10.1126/sciadv.abq6147 – volume: 171 start-page: 1044 year: 2014 ident: 10.1016/j.jid.2023.10.004_bib39 article-title: Reflectance confocal microscopy as a second-level examination in skin oncology improves diagnostic accuracy and saves unnecessary excisions: a longitudinal prospective study publication-title: Br J Dermatol doi: 10.1111/bjd.13148 – volume: 5 start-page: e679 year: 2023 ident: 10.1016/j.jid.2023.10.004_bib36 article-title: Comparison between humans and mobile phone-based artificial intelligence for the diagnosis and treatment of pigmented skin cancer in secondary care: a multinational prospective clinical diagnostic study publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(23)00130-9 – volume: 315 start-page: 1187 year: 2023 ident: 10.1016/j.jid.2023.10.004_bib45 article-title: Towards successful implementation of artificial intelligence in skin cancer care: a qualitative study exploring the views of dermatologists and general practitioners publication-title: Arch Dermatol Res – volume: 190 year: 2023 ident: 10.1016/j.jid.2023.10.004_bib5 article-title: Diagnostic performance of augmented intelligence with 2D and 3D total body photography and convolutional neural networks in a high-risk population for melanoma under real-world conditions: a new era of skin cancer screening? publication-title: Eur J Cancer doi: 10.1016/j.ejca.2023.112954 – volume: 37 start-page: 1160 year: 2023 ident: 10.1016/j.jid.2023.10.004_bib53 article-title: The application of artificial intelligence in the detection of basal cell carcinoma: a systematic review publication-title: J Eur Acad Dermatol Venereol doi: 10.1111/jdv.18963 – volume: 29 start-page: 1941 year: 2023 ident: 10.1016/j.jid.2023.10.004_bib2 article-title: A reinforcement learning model for AI-based decision support in skin cancer publication-title: Nat Med doi: 10.1038/s41591-023-02475-5 – volume: 31 start-page: 137 year: 2020 ident: 10.1016/j.jid.2023.10.004_bib23 article-title: Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions publication-title: Ann Oncol doi: 10.1016/j.annonc.2019.10.013 – volume: 159 start-page: 669 year: 2008 ident: 10.1016/j.jid.2023.10.004_bib52 article-title: Dermoscopy compared with naked eye examination for the diagnosis of primary melanoma: a meta-analysis of studies performed in a clinical setting publication-title: Br J Dermatol – reference: 38244023 - J Invest Dermatol. 2024 Mar;144(3):444-445. doi: 10.1016/j.jid.2023.11.020. |
| SSID | ssj0016458 |
| Score | 2.5788326 |
| SecondaryResourceType | review_article |
| Snippet | The field of skin cancer detection offers a compelling use case for the application of artificial intelligence (AI) within the realm of image-based diagnostic... |
| SourceID | unpaywall proquest pubmed crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 492 |
| SubjectTerms | Algorithms Artificial Intelligence Convoluted neural network Dermoscopy Humans Image Interpretation, Computer-Assisted Melanoma Mobile apps Primary care Skin Skin Neoplasms - diagnosis |
| Title | Artificial Intelligence in Skin Cancer Diagnosis: A Reality Check |
| URI | https://dx.doi.org/10.1016/j.jid.2023.10.004 https://www.ncbi.nlm.nih.gov/pubmed/37978982 https://www.proquest.com/docview/2891757645 https://doi.org/10.1016/j.jid.2023.10.004 |
| UnpaywallVersion | publishedVersion |
| Volume | 144 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1523-1747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016458 issn: 0022-202X databaseCode: KQ8 dateStart: 19380101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1523-1747 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0016458 issn: 0022-202X databaseCode: DIK dateStart: 19380101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1523-1747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016458 issn: 0022-202X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1523-1747 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016458 issn: 0022-202X databaseCode: AKRWK dateStart: 19380201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8QwEB50BcUH72NFJYJPSpemSdvUt2W9QRFxYX0qSZri6lLF3UX01zvpsXgfb6WdhGRmQr5hpt8AbGsZUMoS40RcMocbRp1IsNTxqdRCJRhD50xMZ-fBcZufdvxOSRZt_4V5l7_P67Buu5bQ02ONvAiLj8NE4CPsrsFE-_yieV2xgaNIJ-dG9SzlJg-rDOZXc3x3B33GmNMwNcwe5POT7PXe3DuHs0XFVj-nK7TlJneN4UA19MsHMsc_bWkOZkr0SZqFu8zDmMkWYPKszK8vQtN-KTglyMkbsk7SzYht00Va1kkeyX5RoNft75EmuTQ5lietG6PvlqB9eHDVOnbKJguOZlEwcCTjKkIUlcrE4GFHwC0DTaWkUqRSeAl1XR1poXUaeiJRlErDlMJHyXzmsZQtQy27z8wqEOG7PEEbuzQJufKUkDivEgpRQSQCw-vgVmqPdclAbhth9OKq1Ow2RtXEVjX2FaqmDjujIQ8F_cZPwryyZVzihwIXxGiCn4ZtVXaP8WzZhInMzP2wH2MwiugqDLhfh5XCIUarYCHG35Hw6rA78pDfl7j2L-l1qA0eh2YDYc9AbcL4UYdulm7_Ci6I-g4 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rS8MwED90guIH34-JSgQ_KR1Nk7ap38ZUVFBEHMxPJUlT3BxV3IboX--lj-H78a20l5DcXcjvuOvvAHa1DChliXEiLpnDDaNOJFjq-FRqoRKMoXMmpvOL4KTNzzp-pySLtv_CvMvf53VYva4l9PRYIy_C4pMwFfgIu2sw1b64bN5UbOAo0sm5UT1LucnDKoP51Rzf3UGfMeYszIyyB_n8JPv9N_fO8XxRsTXI6QptucldYzRUDf3ygczxT1tagLkSfZJm4S6LMGGyJZg-L_Pry9C0XwpOCXL6hqyTdDNi23SRlnWSR3JYFOh1BwekSa5MjuVJ69bouxVoHx9dt06cssmCo1kUDB3JuIoQRaUyMXjYEXDLQFMpqRSpFF5CXVdHWmidhp5IFKXSMKXwUTKfeSxlq1DL7jOzDkT4Lk_Qxi5NQq48JSTOq4RCVBCJwPA6uJXaY10ykNtGGP24KjXrxaia2KrGvkLV1GFvPOShoN_4SZhXtoxL_FDgghhN8NOwncruMZ4tmzCRmbkfDWIMRhFdhQH367BWOMR4FSzE-DsSXh32xx7y-xI3_iW9CbXh48hsIewZqu3S4V8BV6L5HQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+in+Skin+Cancer+Diagnosis%3A+A+Reality+Check&rft.jtitle=Journal+of+investigative+dermatology&rft.au=Brancaccio%2C+Gabriella&rft.au=Balato%2C+Anna&rft.au=Malvehy%2C+Josep&rft.au=Puig%2C+Susana&rft.date=2024-03-01&rft.pub=Elsevier+Inc&rft.issn=0022-202X&rft.eissn=1523-1747&rft.volume=144&rft.issue=3&rft.spage=492&rft.epage=499&rft_id=info:doi/10.1016%2Fj.jid.2023.10.004&rft.externalDocID=S0022202X23029640 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-202X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-202X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-202X&client=summon |